
ORIGINAL ARTICLE

Estimating soil erosion in sub-Saharan Africa based
on landscape similarity mapping and using the revised
universal soil loss equation (RUSLE)

Lulseged Tamene • Quang Bao Le

Received: 15 April 2014 / Accepted: 13 January 2015 / Published online: 22 January 2015

� Springer Science+Business Media Dordrecht 2015

Abstract Soil erosion is one of the major forms of

land degradation in sub-Saharan Africa (SSA) with

serious impact on agricultural productivity. Due to the

absence of reliable data at appropriate resolution and

differences in the methods used, there are discrepan-

cies in soil erosion estimates at both continental and

basin levels. This study attempts to contribute to the

existing regional soil erosion estimates based on a

two-stage approach. First, we partitioned SSA into

environmental units, so-called similar environmental

constraint envelops (SECEs), using broad scale data as

proxies of erosion drivers. The SECEs are intended to

provide spatial frame for scaling out modeled erosion

results. Second, soil erosion estimate is made at two

selected basins of the White Volta and the Nile using

spatially distributed revised universal soil loss (RU-

SLE) model. The delineation of SECEs across SSA

provided spatially differentiated clusters governed by

the existence of similar environmental conditions and

soil erosion risk levels. The RUSLE-based estimates

show that soil erosion ranges between 0 to 120 t

ha-1 yr-1 (overall mean of 35 t ha-1 yr-1) in the

White Volta basin, and 0–650 t ha-1 yr-1 (overall

mean of 75 t ha-1 yr-1) in the Nile basin. The soil loss

estimates show an overall agreement with other

studies conducted in the two basins. Our approach

provides guidance on where empirically estimated soil

erosion for a given SECE can be extrapolated to

similar SECE’s with acceptable confidence and where

finer SECE’s sub-units should be defined to further

collapse the spatial variability of drivers of erosion.

Keywords Soil erosion � Erosion modeling �
Landscape similarity � RUSLE � White Volta Basin �
Nile Basin � Sub-Saharan Africa

Introduction

Due to population pressure, land degradation, low

input use and climate change, the majority of farming

communities in sub-Saharan Africa (SSA) are locked
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in poverty and food insecurity with earnings below the

poverty line of 1.5 USD per day (Vlek et al. 2010,

Hazell et al. 2010). With limited resources to invest in

land management, the continued pressure on resources

further aggravate land degradation due to soil erosion,

soil nutrient mining, deforestation and biodiversity

loss. Though consistent studies covering wide geo-

graphical areas are limited, some studies show that

about 490 million ha land in Africa (about 16 % of the

total area) are affected by different types of degrada-

tion (FAO 1995; Batjes 2001). It is also estimated that

65 % of SSA’s agricultural land is degraded because

of water and soil erosion, chemical and physical

degradation (Oldeman et al. 1991; Scherr 1999). Due

to the severity of land degradation coupled with

climate change and rainfall variability, agricultural

productivity in SSA stagnates and remains low as

evidenced in hunger and poverty levels in the region

despite overall global advances in biotechnology

(Ejeta 2010; Abe and Wakatsuki 2011).

Soil erosion is generally considered the most severe

threat to land productivity creating negative impacts

on agricultural production, infrastructure and water

quality (Vrieling 2006; Obalum et al. 2012). Lal

(1995) estimated that past erosion in Africa has caused

yield reduction of 2–40 %, and that if present trend

continues, the yield reduction by 2020 may be 16.5 %.

Due to extensive soil erosion, poor management, or

insufficient use of inputs, soil nutrient depletion is

another major land degradation problem in SSA

(Bishop and Allen 1989; Stocking 1987; Sanchez

et al. 1997). During the 2002–2004 cropping season,

about 85 % of African farmland had nutrient mining

rates of more than 30 kg ha-1 yr-1 and 40 % had rates

[60 kg ha-1 yr-1 (Henao and Baanante 2006).

In spite of the fact that the problem of land

degradation is particularly severe in SSA, little

consistent and reliable data are available both on its

extent and its impact on productivity (FAO 1995; Lal

1995; Stocking and Benites 1996; Eswaran et al. 2001;

Warren et al. 2001; Obalum et al. 2012). As a result,

there is still a debate whether the problem of land

degradation really reached levels, which seriously

threaten the land, the economic future of the continent

and the livelihoods of its inhabitants (Symeonakis and

Drake 2010). This impairs the preparedness and

willingness of international organizations, policy and

decision makers to invest in measures that can help

tackle land degradation. The absence of accurate and

detailed benchmark about the current status of land

resources also restricts the ability to monitor change

over time. There is therefore a need for improved

understanding of erosion processes and their interac-

tions as well as identify hotspot areas of concern in

order to guide conservation planning. Currently, the

availability of remote sensing data, advancements in

computation and data integration in a geographic

information system (GIS) have enhanced the possi-

bility to map and identify hotspots areas where

conservation priority is needed.

The aim of this study is to provide a two-stage

approach to better estimate soil erosion risk for the

SSA sub-continent. First ‘similar environmental con-

straint envelops (SECEs)’ are developed by integrat-

ing broad scale data (e.g., climate, terrain, soil, and

land cover) as proxies of soil erosion drivers. The

principle behind SECEs is that different areas having

the same SECE type should have their soil erosion rate

within the same severity class. With this, empirically

estimated soil erosion for a given SECE can be

extrapolated to similar SECEs with defined uncer-

tainty. Next, quantitative soil loss is estimated using

the revised universal soil loss equation (RUSLE) in

two example basins of the White Volta and the Nile.

The RUSLE is selected over other models considering

ease of use, data availability and wide applicability.

The net soil loss (NSL) is then computed for the

different SECE clusters and the level of uncertainty

calculated. This calculation provides guidance on

where the estimated NSL can be extrapolated with an

acceptable confidence and where finer SECE sub-units

should be defined to collapse the spatial variability of

drivers of erosion. The results of the study can be of

preliminary use in land use planning and management

efforts as well as serve as a benchmark against which

future trends can be compared.

Methodology and data sources

Study area

Broadly, this study is conducted across SSA where

easily available data were used to derive similar

environmental constraint envelopes (SECEs). For

detailed assessment, two basins (the White Volta and

the Nile) were exemplarily analyzed using the RUSLE

adjusted for sediment delivery ratio (SDR).
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The White Volta is a sub-river basin of the Volta

basin, covering an area of 106,000 km2, predomi-

nantly in Ghana and Burkina Faso (Fig. 1). The sub-

basin is situated within the semi-arid West African

savanna zone, and accommodates about 7 million

people with 61 people km-2 (Balk and Yetman 2004).

The basin is known to suffer from severe degradation.

Between 1965 and 1995 the natural vegetation

declined from 43 to 13 % of the total basin area in

Burkina Faso with a concomitant increase in culti-

vated areas from 53 to 76 % while bare soil increased

from 4 to 11 % (Droogers et al. 2006).

The Nile Basin, shared by about eleven counties in

the eastern and central Africa region (Fig. 1), covers

an area of 2.9 million km2 (about 10 % of the African

continent). With a course of 6,695 km, the Nile is the

longest river in the world and its drainage basin

represents the longest route of sediment transport. It is

mainly formed by the White and Blue Nile basins.

Lake Victoria, the second largest freshwater body in

the world with a surface area of 68,500 km2, is the

source of the White Nile (Fig. 1), which has a

catchment area of 184,000 km2. On the other hand,

the Blue Nile is originated from Lake Tana in the

North Western part of Ethiopia. The upper Blue Nile

basin has an area of 184, 560 km2 and is fed by many

tributaries especially inside Ethiopia. The Blue Nile

carries large amount of water and soil towards the

Sudan and Egypt. The Blue Nile and the White Nile

join in Khartoum to form the Nile River that flows

northeast and continues its course up to Egypt where it

enters Lake Nasser and flows further downstream to

enter the Nile Delta before reaching the Mediterranean

Sea (Fig. 1). The Nile basin accommodates about 238

million people and has diverse land use/cover types

(Nile Basin Initiative 2012).

Developing similar environmental constraint

envelops (SECEs)

The fundamental of SECEs is based on the principle

that landscape features and the corresponding processes

are results of amalgamation of different natural forces.

Similar environmental units or situations can prevail

when similar natural processes take place or when

similar forces of human action are exerted. With this

background, it could be possible to ‘cluster’ similar

environmental units by systematically integrating

White Volta basin

Nile basin (upper part)
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Fig. 1 Sub-Saharan Africa (in grey) and the locations of the White Volta and the Nile (upper) basins. (Color figure onlie)
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relevant natural and human processes (Bull et al. 2003;

Hochschild et al. 2003). Development of SECEs

possibly dictated by the co-existence of similar bio-

physical and human-induced (e.g., land uses) drivers

can help understand the principal governing forces and

thus devise suitable management or adaptation

mechanisms.

In this study, broad classes of biophysical driving

forces of soil erosion—including climate (mean

annual rainfall), terrain (slope), soils (texture) and

land cover types, derived from different sources

(Table 1) were systematically integrated in a GIS

platform to derive SECEs across SSA. Since the

SECEs are derived based on attributes that control

erosion processes, they can represent potential areas of

similar erosion problems and serve as proxies to

erosion potential maps. The SECEs not only designate

areas of similar environmental conditions but also can

be used to complement modeling results. The proce-

dure followed to derive SECEs is illustrated in

Table 1. Spatial data processing and analysis were

conducted in an Arc GIS 10.0 platform. All the data

were adjusted to a spatial resolution of 1-km cell size.

Parameterization of the RUSLE model

The kind of model applied generally depends on the

purpose at hand but also the availability and quality of

data related to the area under consideration. For areas

where quality data for model building and calibration are

scarce, empirical models such as the RUSLE may give

better approximation of soil loss (Renard et al. 1997)

compared to complex physical based models that require

detailed data (Garg and Jothiprakash 2012; Chowdary

et al. 2013). Accordingly, the RUSLE adjusted for SDR is

used in this study to assess soil erosion risk with a spatial

resolution of 250 m at regional scale. RUSLE is formu-

lated as (Renard et al. 1997):

RUSLE t ha�1y�1
� �

¼R� K � LS� C � P ð1Þ

where R is rainfall erosivity (MJ mm ha-1 h-1 y-1);

K is soil erodibility (t ha h (ha MJ mm)-1); LS, C and

P are the coefficients (-) of the slope length-steepness,

land use/cover, and conservation/management factors,

respectively.

In this study, the Stream Transport Capacity Index

(STCI) is used to calculate the LS-factor (Moore and

Burch 1986; Moore et al. 1991):

LS ¼ ðmþ 1Þ As

22:13

� �m
sinb

0:0896

� �n
ð2Þ

where m and n are slope length and angle coefficients,

respectively; As is the specific upslope contributing

area per unit length of contour; b is the local slope

gradient (degree).

The LS calculation was made after processing the

ASTER-derived 90 m resolution digital elevation

model (DEM). The resulting LS factor was then

resampled to a resolution of 250 m in order to make

the slope and upslope area calculations consistent with

other datasets used in the modelling exercise.

Table 1 Definition of similar environmental constraint envelops (SECEs) relevant to soil erosion risk assessment and related data

sources

Main components of SECE

Classes of mean annual rainfall (A)1 Classes of surface slope (B)3 Class of topsoil texture (D)4 Class of land cover (E)6

1 = Arid (\500 mm/yr) 1 = Flat (\ 5�) 1 = Fine 1 = Forested land

2 = Semiarid (500–800 mm/yr) 2 = Relatively flat (5 �–10 �) 2 = Medium 2 = Mosaic forest-shrub/grass

3 = Subhumid (800–1,300 mm/yr) 3 = Gentle slope (10 �–15 �) 3 = Coarse 3 = Shrub land

4 = Humid ([1,300 mm/yr) 4 = Steep (15 �–25 �) 4 = Grassland

5 = Very steep ([ 25 �) 5 = Cropland

6 = Sparse vegetation or bare soil

Data source:

CRU TS 3.12

Data source: GAEZ 20085 Data source: GAEZ 20085 Data source: Globcover 2005–20067

The digital code of an SECE has four strictly ordered digits: ABDE. For example, an SECE unit coded ‘‘3415’’ indicates the

combination of Sub-humid climate, Steep slope, Fine soil texture and Cropland classes
1 Vlek et al. (2010); 2 (Jones and Harris 2008); 3 Tamene et al. (2014); 4 modified from Fischer et al. (2008); 5 Fischer et al. (2008);
6 adapted from Vlek et al. (2010); 7 Bicheron et al. (2008)
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The R-factor is defined as the product of kinetic

energy and the maximum 30-min intensity and shows

the erosivity of rainfall events (Wischmeier and Smith

1978; Renard et al. 1997). In situations where rainfall

intensity data with adequate spatial coverage is not

available, the relationship established between mean

or monthly rainfall and rainfall intensity can be used to

estimate R-factor (Renard and Freimund 1994; van der

Knijff et al. 2000; Yang et al. 2003; Lawal et al. 2007;

Le Roux et al. 2008; Xin et al. 2010). In this study, we

applied the models developed by Roose (1977) and

Hurni (1985) for the White Volta and the Nile basins,

respectively. The two models are given as:

RR ¼ 0:557 �MAP� 5:766 ð3Þ

RH ¼ 0:360 �MAPþ 47:6 ð4Þ

where RR and RH are rainfall erosivities based on

Roose (1977) and Hurni (1985), respectively;

MAP = mean annual precipitation (mm).

For the Volta basin, rainfall data available for 200

stations in northern Ghana and Burkina Faso were

used to derive erosivity while for the Nile basin it was

based on Climatic Research Unit (CRU) time series

rainfall data (Jones and Harris 2008). Both datasets

were resampled to a cell size of 250 m in order to

make them consistent with the other datasets used to

estimate soil loss.

Soil erodibility (K-factor) is the inherent property

of a soil that plays major role in the ability of water to

detach and transport its particles. Some of the major

soil properties that affect soil erosion and based on

which erodibility is estimated include soil texture, soil

organic matter, soil structure and basic permeability of

the soil profile (Wischmeier et al. 1971; Renard et al.

1997). Since information on texture, organic matter,

structure and permeability especially at large geo-

graphical coverage are scarce, various studies

attempted to estimate K-factor based on soil types

(Veldkamp 2002; Roy et al. 2003; FAO 2004;

Symeonakis and Drake 2004, 2010).

For the Volta basin, the K-factor was derived from

the FAO-IIASA soil map (Fischer et al. 2002) and the

translation of soil types into K-factor values (ton ha-1

yr-1) was based on Folly (1997). For the Nile basin, K-

factor values were derived based on:

K ¼
2:1M1:14ð10�4Þð12 � OMÞ
� �

7:59
ð5Þ

where, K = soil erodibility, OM = soil organic con-

tent (%), M = ((%silt ? %sand) 9 100 - %clay).

Soil organic content, silt, sand, and clay percentages of

the top soil layer (0–20 cm) were derived from ISRIC

Africa dataset (ISRIC 2013). Generally Eq. 5 can help

capture relative differences in erodibility between soil

types and help approximate the resistance to erosion of

different soils under consideration.

The C-factor is defined as the ratio of soil loss from

land with specific crop or vegetation to the corre-

sponding soil loss from tilled and bare soil (Wischme-

ier and Smith 1978). It is intended to capture

differences in soil loss due to variability in surface

cover since areas of dense vegetation have high total

roughness, which increases infiltration and reduces

runoff, and vice versa (Desmet and Govers 1996; Bull

et al. 2003).

Since C-factor values for the RUSLE are calibrated

for conditions in the United States, attempts have been

made to develop local and/or regional C-factor values

by different researchers. Satellite derived vegetation

indices have been found to be good proxy for land

cover on relatively large basins and were applied in

various regions (van der Knijff et al. 1999, 2000; Van

Leeuwen and Sammons 2003, 2005; Van Rompaey

et al. 2005). In this study, the MODIS Normalized

Difference Vegetation Index data (annual mean over

the period 2001–2008) with a spatial resolution of

250 m have been used to estimate the C-factor and

account for the effect of differences in vegetation

surface cover on soil loss (van der Knijff et al. 1999,

2000; Van Leeuwen and Sammons 2005):

C ¼ exp �a� NDVI

1 � NDVIð Þ

� �
ð6Þ

where C is C-factor that determines the frictional

resistance of land surface to runoff and erosion; a is a

unit-less parameter that determines the shape of the

curve-relating NDVI and the C-factor (van der Knijff

et al. 1999, 2000). In relation to MODIS data, a-value

of 2.5 which gives reasonable results (Van Leeuwen

and Sammons 2003, 2005) was used in this study.

P-factor gives the ratio between the soil loss

expected for a certain soil conservation practice to

that with up-and down-slope plowing (Wischmeier

and Smith 1978). As values for P-factor are not

available for the region and since it was not possible to

derive appropriate values from similar regions, we
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used a P-factor value of 1 for this study. This assumes

that no significant conservation measures are in place

to counter soil loss and sediment yield at the basin

scale. This may not have an overestimation effect as

well-maintained conservation structures in the basins

are rare (Mati and Veihe 2001) except for localized

interventions (e.g., Kaboré and Reij 2004; Reij et al.

2005) whose basin level impacts may not be very

significant.

Evaluation of RUSLE model results

and uncertainty of SECE-based erosion assessment

In regional modelling exercises like this study the

main target is to assess ‘erosion risk and map spatial

variability’ and not to provide detailed quantitative

measurement of magnitude of soil erosion. We thus

believe that accuracy required for assessing spatial

variability of soil loss is not expected to be as rigorous

as those intended for modeling method-inspired

studies. As a result, our model evaluation is mainly

focused on comparing our model results with results of

other studies in the same environment. We compared

the soil loss risk estimates for the two basins with

results of other studies within the respective study

sites. Data- and parameterization-induced uncertain-

ties of the RUSLE results were also discussed.

The main purpose of the present study is to estimate

soil loss risk over large geographical region based on

the aggregation of pixel-based RUSLE results for

spatial SECE clusters. There will be associated

uncertainties when extracting soil loss estimates for

each SECE cluster. To measure statistical uncertain-

ties of the SECE-averaged NSL (that is proposed to be

used to extrapolate to similar SECEs in the region), we

use confidence interval of the mean at a reliability of

95 % (CI0.05, p\ 0.05) (Curran-Everett and Benos

2004):

CI0:05 ¼ tdf;a=2 �
SD
ffiffiffiffiffiffiffiffiffiffiffi
n � 1

p ð7Þ

where tdf,a/2 is the value from t-table at df = n -1

(n = number of spatial clusters within the SECE) and

a/2 = 0.05/2 = 0.025 (2-tails), SD is the standard

deviation of the SECE-averaged NSL. In addition, the

percentage of CI0.05 compared to the averaged NSL

was calculated.

Results and discussion

Similar environmental constraint envelops

(SECEs)

The combination of mean annual rainfall (4 clas-

ses), surface slope (5 classes), topsoil texture (3

classes) and main land cover types (6 classes)

resulted in 190 units of SECE. The areas of these

units are shown in Table S1 (Supplementary

Information). The SECEs form ‘cluster’ of land-

scape units with similar potentials, constraints and

processes systematically grouped based on common

attributes. In order to make the SECEs manageable

and especially show spatial variability with under-

standable legend, SECE units with total area over

SSA \10 km2 and areas with few pixels (\10

pixels) were excluded. Figure 2 shows the spatial

pattern of the 19 main SECEs across SSA.

The basis of the SECEs is that different erosion

process dynamics are linked to certain associations of

system component properties (Flügel 1996, 1997;

Flügel et al. 2003; Marker et al. 2001). As a result,

entities with the same erosion process dynamics

consist of certain associations of system characteris-

tics and system inputs whereby a drainage system can

be perceived as an assembly of spatial process entities

with different potentials (Hochschild et al. 2003).

Other studies such as Fargas et al. (1997) developed a

method to identify sites of sediment emission risk

through qualitative ratings of basic terrain data. Bull

et al. (2003) developed the concept of hydrologically

similar surfaces, distributed homogeneous units

within a catchment based on key runoff producing

variables of land use, slope and geology, resulting in

similar runoff response. As the SECEs are explicitly

defined by major biophysical drivers of soil and water

redistribution over the land surface, they can be used

to designate landscape positions with similar con-

straint types and levels. The SECE map can also

provide guidance towards the development of suitable

land degradation indicators as well as a basis where

detailed land degradation and other environmental

studies should focus. In the next steps of this study, the

SECEs were used as spatial basis to aggregate NSL

based on pixel-based RUSLE soil erosion assessment

in selected basins.
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Soil loss rate and its spatial distribution

Soil loss estimate and its spatial pattern in the White

Volta basin

The average gross soil erosion estimated for the White

Volta basin using the RUSLE model was about 75 t

ha-1 yr-1. When corrected for SDR, the mean NSL

reduced to about 35 t ha-1 yr-1. Thus, about 50 % of

the soil eroded upslope is deposited within the sub-

basin. However, it has to be noted that few areas show

very high soil loss that increased the overall mean.

When we exclude these high soil loss areas mostly at

steep slopes representing\1 % of the area, the overall

soil loss reduced to 27 t ha-1 yr-1. In addition, over

75 % of the area experienced soil loss below 8 t

ha-1 yr-1 indicating how the few extreme high soil

losses exaggerated the overall soil erosion estimate

based on the RUSLE.

In term of the spatial pattern of NSL, the north-

eastern part of the White Volta sub-basin lost over 15 t

ha-1 yr-1 whereas for the central and western parts it

was\5 t ha-1 yr-1 (Fig. 3). Similarly, the Upper East

region of Ghana and most places bordering Ghana–

Burkina Faso showed sediment yield more than 15 t

ha-1 yr-1, whereas the southern parts of the basin

showed sediment yield of \5 t ha-1 yr-1. Based on

this, the specific places where soil loss is compara-

tively high and thus immediate management measures

are needed included the Upper East Region of Ghana

and the northeastern parts of the sub-basin in Burkina

Faso (Fig. 3).

The purpose of the pixel-based soil erosion assess-

ment is to provide spatial basis for gauging average

NSL of SECE (i.e., SECE-averaged NSL) that can be

extrapolated to landscape units of similar SECE. It is

thus essential to evaluate the model results. Since no

similar basin scale results of other studies are avail-

able, we compared our NSL results for several sub-

catchments against findings of other studies that were

based on field measurement or used the same model

but with different data sources. Table 2 shows that the

sub-catchment average NSL values measured in the

different studies agree fairly well with the NSL

predicted in this study. The agreements reported in

Table 2 and those of other studies thus lend confidence

-10° 0° 10° 20° 30° 40° 50°

0°

10°

-10°

-30°

-20°

0 500 1000 km

Legend
(The meaning of the 4-digit 
code of CECE is in Table 1)

Fig. 2 The SECEs over sub-Saharan Africa (SSA). Notes on map legend: pixel size = 1 km, pixel value = SECE’s digital code with

the format defined in Table S1; the number of SECEs = 320. (Color figure online)
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to delineating the patterns of erosion severity classes

using the presented SDR-adjusted RUSLE model.

Soil loss estimate and its spatial pattern in the Nile

basin

Due to major differences in landscape attributes as

well as predicted erosion, we discuss the soil loss

estimates of the Blue and White Nile Basins sepa-

rately. In this paper, the White Nile basin refers to the

region from Lake Victoria to Khartoum and Blue Nile

basin from Ethiopian highlands to Khartoum (Fig. 1).

The average gross soil loss estimated for the Blue

and White Nile Basins were about 140 and 45 t

ha-1 yr-1, respectively. When adjusted for SDR, the

NSL for the Blue Nile reached about 85 t ha-1 yr-1

while that of the White Nile dropped to 6 t ha-1 yr-1.

As the RULSE does not consider gully and riverbank

erosion, the soil loss estimates presented here, espe-

cially those of the Blue Nile may be underestimated.

The significant reduction is soil loss when adjusted for

SDR in the White Nile can be due to the flat landscape

of the region especially major parts of the Sudan and

South Sudan as well as the various lakes and swamps

such as the Sudd, which the White Nile faces along its

journey towards the north. Due to high intermediate

deposition, the contribution of the White Nile to the

Nile sediment discharge rate is \5 % (Ahmed and

Ismail 2008).

The soil loss estimates made in this study are

generally comparable with other similar studies

though strict composition in some cases is not

possible. Table 3 shows that the result of soil erosion

Burkina Faso

Ghana

Legend
Na�onal border

NSL (t/ha/y)

-2° -1° 0°

13°

14°

20°

10°

11°

9°
0 50 100 km

Fig. 3 Net soil loss (t ha-1 yr-1) of White Volta basin

computed by SDR-adjusted RUSLE model. Note: pixel size

used in the computation = 250 m. (Color figure online)

Table 2 Average net soil loss (NSL) for different sub-catchments in White Volta sub-basin estimated by field measurements and the

respective results from this study

Sub-catchments Average NSL(t ha-1 yr-1)

Name Catchment area (ha) Predicted by the RUSLE

model in this study1
From

literature

Doba 70 22 ± 3 192

Dua 35 124 ± 21 1032

Zebila 105 22 ± 3 272

Bugri 216 124 ± 2 82

1 Le et al. (2012) applied the same RUSLE model but used data inputs at a finer resolution, i.e., 100 m pixel size
2 Adwubi et al. (2009)
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for the Blue Nile agreed with various studies con-

ducted in the region. Though the models used are

different and in some cases the areas of emphasis are

not the same, the general agreement indicates that easy

to use and accessible soil erosion models such as the

RUSLE can be used to assess soil erosion risk and

identify priority areas of intervention.

Figure 4 shows the spatial pattern of soil erosion in

the Nile Basin. As described above, the map reveals

the severity of erosion in the Ethiopian highlands

compared to the other parts of the basin. Some areas of

the White Nile sub-basin such as those in the highlands

of Rwanda and Burundi also experienced relatively

high soil loss though not comparable to those of the

Blue Nile basin. Both areas experiencing high soil loss

are characterized by high altitude and thus relatively

high rainfall (over 1,500 mm per year), steep slope

(over 25 �) and high population density (Nyssen et al.

2005). This means that both the kinetic energy of

water and gravitational forces are conducive for high

runoff and soil movement. Some parts of the Blue Nile

basin (its southwestern part), which have good surface

cover (dense forest) and less areas under cultivation

showed relatively low soil loss and sediment yield. It

is important to note that few areas of steep slopes or

river canyons have extreme soil loss rates which

exaggerate the overall of soil loss. This is even more

severe than the White Volta basin where extreme steep

slope and deep river gorges are relatively rare.

Comparatively the Blue Nile, which contributes

nearly 90 % of the waters to the Nile River, experi-

ences very high erosion risk than the White Nile and

contributes the most flooding as well as sedimentation

danger to downstream locations. This is one reason

why observers at Khartoum where the two rivers meet

witness the difference in the color of the waters in the

rivers caused by differences in silt. The high level of

soil loss in the Blue Nile is estimated to cost about 1.5

billion tons of topsoil in Ethiopia that could have

added about 1.5 million ton of grain to the country

(Taddese 2001). Such high level of erosion has also

severe impact off-site. For example, the Sinnar dam in

the Sudan has lost 65 % of its original storage after

62 years operation (Shahin 1993) and other dams lost

similar proportions since construction (Ahmed and

Ismail 2008). In addition, sedimentation of irrigation

canals in the Sudan costs the country millions of

dollars per year for cleaning and dredging purposes.

This highlights the need for joint investment between

the upstream and downstream countries to sustainably

manage the basin and tackle both on- and off-site

impacts (BCEOM 1999; World Bank 2006).

Data- and parameterization-induced uncertainties

of the RUSLE results

Despite the fact that we chose the RUSLE model that

can be applied with easily available data compared to

process-based models, its application at continental

and regional scales can still be challenging. For

instance, some of the inputs used in this study are

derived based on suggestions and/or experimental

studies within the region. This may have an implica-

tion on the soil loss estimates: it would be wise not to

Table 3 Average net soil loss (NSL) for different sub-catchments in the Nile sub-basin estimated by different studies

Study site Area (km2) NSL/Sediment

yield (t ha-1 yr-1)8

Simiyu catchment, Tanzania1 10,312 984

El Diem, Upper Blue Nile outlet2 NA 4.91

Basin above El Diem catchment, Blue Nile3 NA 4.8

Upper Blue Nile and Tekeze basins4 275,000 2–4

Ethiopian highlands5 NA 1–10

Lake Tana basin, Ethiopia6 110 ha 0–65

Nyando catchment, Kenya7 NA 90

1 Kimwaga et al. (2012), Jayakrishnan et al. (2005); 2 Betrie et al. (2011); 3 Hussein et al. (2005); 4 McDougall et al. (1975);
5 Walling 1984; 6 Setegn et al. (2010); 7 ICRAF/MARD (2000)
8 Net soil loss estimates in this study are 6 t ha-1 yr-1 (White Nile, with an area of 186,000 km2) and 85 t ha-1 yr-1 (Blue Nile,

with an area of 184, 560 km2). The Figures in Table 3 should be considered indicative as comparing these values with NSL of While

and/or Blue Nile can be challenging due to mainly differences in the size of areas involved
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entirely consider the soil loss estimates as exact

quantification of the process within each pixel. Rather,

the results should be gauged (aggregated) as the best

estimates available considering the available data. It is

also wise to focus on spatial variability (differences

across different areas) rather than the magnitude of

soil loss. With this background, we discuss some of the

issues that require attention when utilizing the results

of such modelling exercises and mention some

particular cases below. Such information is useful

for those who wish to use the results of the study and/

or model inputs.

• Uncertainty related to rainfall erosivity: Rainfall

erosivity is generally derived from rainfall inten-

sity data. However, rainfall intensity is not avail-

able especially for basin and regional scale

applications. As a result, mean annual rainfall

has been used to derive the R-factor in different

studies. Despite the fact that rainfall amount

calibrated for rainfall intensity for respective

regions is used, there can still be some degree of

sensitivity when modelling soil erosion. In addi-

tion, it is important to note the sources of the input

data (rainfall) when comparing model results. For

Sudan

Ethiopia

Kenya

Uganda

Tanzania

Legend
Na�onal border

White Nile-Blue Nile border

NSL (t/ha/y)

25° 30° 35°
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15°

5°

0°

0 200 400 km

Fig. 4 Net soil loss (t ha-1 yr-1) of the upper Nile basin computed by SDR-adjusted RUSLE model. Note: pixel size used in the

computation = 250 m. (Color figure online)
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instance, rainfall data from available rainfall

recording stations are used for the White Volta

for CRU-based rainfall data is used for the Nile

basin.

• Uncertainty related to soil erodibility: Soil erod-

ibility is one of the most difficult ‘erosion factors’

especially when applied at larger geographical

extent. This is because it requires information on

different parameters such as soil structure, perme-

ability, texture and organic matter. In this study,

erodibility is estimated based on key soil proper-

ties such as type, texture and organic matter, which

are derived from published sources. In addition,

the ‘translations’ between soil types-erodibility

will have its own uncertainty. These could further

introduce uncertainty in the quantitative values of

soil loss per unit area. Like the case of rainfall, it is

also essential to understand the sources of the soil

erosion parameters used in the modelling exercise.

• Sensitivity related to surface cover factor: Land

use/cover is one of the key components of soil

erosion models. In the USLE and its derivatives,

detailed land use/cover parameters (classes) are

used to derive the C-factor. Generating accurate

and detailed land use/cover factor is a challenge

and its complexity increases when the size of the

study area increases. As a result of such chal-

lenges, different studies tried to calibrate easily

available data such as normalized difference

vegetation index to derive the C-factor. In such

instances, it is likely that the modelled soil erosion

values will have uncertainty associated to them

and it is essential to be cautious when using the

quantitative soil loss estimates.

• Uncertainty related to the land management

factor: Land management and conservation prac-

tices are introduced into soil erosion models to

assess the impacts of different interventions on soil

loss and sediment yield. Such interventions can be

physical (e.g., stone bunds and trenches), or

biological (e.g., afforestation and ex-closures).

Mapping the extent and condition of such inter-

ventions at adequate spatial resolution is a chal-

lenge, especially when the geographical extent of

the study area is large. In this study, P-factor value

of 1 was used with the assumption that conserva-

tion practices at basin or regional level are

insignificant and thus will have minimum impact

in reducing erosion. This can contribute to

increased soil loss estimate compared to plot-level

detailed studies.

Considering the above points, it is generally

important to take pre-caution when interpreting and

using soil erosion model results, especially when

applied at larger geographical areas and when adopt-

ing models developed and calibrated in different

environmental conditions. Instead of using the soil

loss estimates as exact quantification of the process

within each pixel, it will be wise to use them as close

approximations. It is also generally recommended that

soil erosion modelling results be used to map spatial

variability and identify areas with different soil

erosion risk levels rathter than quantify soil loss rates,

especially at large geographical areas.

Variation of soil erosion risk within SECEs

and uncertainties of SECE-based extrapolation

approach

The mean NSL values for the SECE units and their

uncertainty (i.e., ±confidence interval at 95 %) in the

White Volta basin are shown in Table 1. Of the 16

SECE units (with the total area per unit [10 km2)

found in the basin, 9 units have uncertainty ranges

equal to or less than 50 % of their NSL mean values

(see %CI0.05 in Table 4). The other 4 SECE units have

confidence intervals between 50 and 100 % of the

NSL mean values, which are less certain, compared to

the 9 SECEs. The high uncertainty of the NSL mean

values ([100 %) of the other remaining 3 SECE units

suggests that the defined classes are too broad for

biophysical heterogeneities of the land where these

units occur. More detailed stratifications of these units

into sub-SECEs and using them for extrapolation of

RUSLE results would reduce uncertainty.

The estimation of NSL for each SECE unit in the

upper Nile basin (95 units with the total area per unit

[10 km2) and related uncertainty are shown in Table

S2 (Supplementary Information). There are 30 SECE

units having confidence intervals\50 % of the unit’s

NSL mean. The other 40 SECEs have uncertainty

range between 50–100 % of the NSL means. The

remaining 25 SECEs units have uncertainty more than

100 % (see Table S2). Generally, uncertainty level

seems to be higher in the Nile basin compared to the

White Volta, which can be attributed to the complexity

of the terrain and land use/cover types in the former.
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In conditions where uncertainty levels are\50 %,

the NSL computed for the respective SECE units can

be applied in the same categories elsewhere in SSA

with a much higher certainty compared to some very

coarse erosion estimations made either at sub-basin

scale—e.g., 1–10 t ha-1 yr-1 (uncertainty range =

550 % of the mid-point) by Walling (1984), 0–65 t

ha-1 (uncertainty range = 200 % of the mid-point) by

Setegn et al. (2010) (see Table 3); or global scale—

e.g., 23.7–64.9 Pg y-1 soil lost from global crop land

(uncertainty range = 93 % of the mid-point) by Stal-

lard (see the review of Quinton et al. 2010).

The result in this study demonstrates the possibility

to employ similar approaches used in the generation of

SECEs in circumstances where modelling soil loss at

continental scale using soil erosion models is difficult.

Estimation of the uncertainty levels can help evaluate

where the estimated result gives enough confidence

and where the uncertainty is high that requires finer

data to improve the result. With detailed analyses at

selected basins or landscapes, uncertainty of the

estimations based on SECEs and their usefulness to

highlight area of similar degradation level can be

improved.

Conclusion

Understanding land degradation process requires

acquisition of detailed information on spatially

distributed phenomena as well as huge computation

power and time. There is therefore a tendency to

focus on either small geographical scale but with

detailed process understanding or cover wide geo-

graphical region but using coarse resolution data. In

this study we employ different approaches to derive

land degradation risk at sub-continental and regional

scales. For the sub-continental (SSA) scale, coarse

resolution but physically meaningful data were used

to derive homogeneous environmental units called

SECEs. These ‘envelopes’ are derived based on key

biophysical and human constraints and are expected

to have similar impacts and thus produce similar

landscape features. In order to provide more quan-

titative physical meaning, the RUSLE was used to

estimate soil erosion risk and its spatial patterns at

regional or watershed levels (White Volta and Nile

basins). The estimated NSL were evaluated by

comparing with other estimates made within the

respective regions.

Table 4 Estimated net soil losses for SECEs found in White Volta basin and related uncertainties

SECE unit1,2 Area (km2) Mean net soil loss

(t ha-1 yr-1) (X)

SD (t ha-1 yr-1) Confidence interval

(p\ 0.05) of mean

value (CI0.05)

% CI0.05

(compared to X)

3135 132 31 48 8 26

2125 234 30 61 8 26

3133 109 22 31 6 27

3121 162 34 70 11 32

2136 25 18 15 6 34

2135 182 41 106 16 38

3132 34 19 22 8 41

3123 293 49 180 21 42

3122 122 35 101 18 51

3115 29 26 40 16 61

2115 93 91 316 65 72

2134 12 13 18 12 89

3125 230 58 414 54 93

2126 13 40 68 43 107

2132 13 41 78 49 119

3113 15 106 284 163 154

1 See Table 1 for the meaning of the 4-digit code of CECE
2 SECE with the area\10 km2 (i.e.\10 pixels) are not showed
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Results show that the Nile basin experienced

average NSL of about 75 t ha-1 yr-1) while the

White Volta basis showed average NSL of 28 t

ha-1 yr-1). In both cases, extreme soil loss in few

areas has contributed the overall average erosion to

increase. Within the Nile basin, the Blue Nile of the

Ethiopian highlands experiences high soil loss and

sediment yield compared to the White Nile. There is

also spatial variability in soil loss in the White Volta

basin where high NSLs are experienced in the Upper

East Region of Ghana and around the Ghana-Burkina

Faso border.

The pixel-based NSL estimates were aggregated for

each SECE to evaluate the certainty/uncertainty of the

SECE-aggregated NSL if extrapolated to similar

SECEs in the region. Generally, the majority of the

SECE classes compared well with NSL values with

lower uncertainty levels while in some cases uncer-

tainty level was higher. In cases where uncertainties

are low, there is a possibility to use the ‘easy to derive’

SECEs to assess soil degradation risk. The work in this

study thus can provide guidance on where the

estimated NSL can be extrapolated with respect to

the different SECEs, and where finer SECE sub-units

should be defined to further collapse the spatial

variability of drivers of soil erosion. The results of

this study can also serve as a benchmark against which

future trend and change can be compared.
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