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Abstract This study is aimed at the theoretical analysis

of the acoustic radiation torque and the experimental

realization of a controlled rotation of non-spherical parti-

cles by ultrasound. A finite element model has been

developed and validated to calculate the acoustic radiation

torque on a microfiber. The influence of different param-

eters such as the frequency, fiber size and position in the

acoustic field are evaluated. The rotational motion of a

non-spherical particle and the resulting drag torque are

analyzed as well. This allows for the calculation of the

angular velocity of a fiber. Various rotation methods for

non-spherical particles with the acoustic radiation torque

have been developed, tested experimentally with a mic-

rodevice at frequencies in the MHz range and compared to

each other. The first method relies on successive change of

the wave propagation direction in discrete steps. Three

additional rotation methods have been developed which

allow for a continuous rotation and alignment at defined

orientations. The methods are characterized by the modu-

lation of one single parameter (amplitude, phase or fre-

quency) over time.

Keywords Acoustophoresis � Ultrasonic particle

manipulation � Acoustic radiation torque � Rotation

1 Introduction

Ultrasonic manipulation of particles exploits the acoustic

radiation force to provide a contactless handling method

for particles suspended in a fluid. It is also referred to as

acoustophoresis and allows the handling of a wide range of

particle types. The important attribute is the difference in

the material properties (density and compressibility)

between the particle and the surrounding fluid, creating a

scatterer in the fluid. For bulk acoustic wave devices the

typical frequency is in the 1 MHz range and lm sized

particles are manipulated. Different manipulation strategies

and techniques have been published such as particle sep-

aration, focusing, concentration, removal, trapping, mixing

and moving (Lenshof et al. 2012; Augustsson and Laurell

2012; Evander and Nilsson 2012; Dual et al. 2012). These

manipulation techniques are required for particle handling

in lab-on-a-chip devices or micrototal analysis systems to

realize various kinds of analysis steps.

In combination with the translation of particles due to

the acoustic radiation force, the rotational manipulation

offers a new controllable degree of freedom for the

movement of particles. Therefore the application field can

be extended. There is a high demand for controlled align-

ment and deposition of non-spherical objects such as mi-

crowires and nanowires (Bentley et al. 2004). Moreover,

the alignment of biological fibers such as collagen is of

interest (Lee et al. 2006; Guo and Kaufman 2007). In lab-

on-a-chip applications micromotors, stirrers or valves can

be realized. Also, there is a growing interest for microas-

sembly techniques (Bogue 2011; Vandaele et al. 2005),

where controllable positioning and orientation of objects is

needed for the manufacturing of complex 3D microsys-

tems. Herein, a major challenge is the unwanted bonding of

objects to neighboring surfaces. Ultrasonic manipulation is
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well suited as it allows the positioning of objects and

provides levitation at the same time. Ultrasonic microas-

sembly is an important application of acoustically actuated

microrobotics. Moreover, the long term study of biological

cells is an interesting application (Wiklund et al. 2012a)

because ultrasonic particle manipulation is well known to

be biocompatible (Wiklund 2012). The ability to control

the orientation of a cell or cell cluster will help in the

investigation of biological processes. For other particle

manipulation techniques such as dielectrophoresis (Sun and

Morgan 2011; Fan et al. 2005), magnetic (Barbic et al.

2001) or optical (Friese et al. 2001) manipulation the

rotation and alignment of objects has been intensively

investigated.

There are only a few publications concerning experi-

mental work with the acoustic radiation torque which arises

from the acoustic radiation pressure distribution on the

surface of a non-spherical particle. The focus of these

publications is on the development of composite materials

with non-spherical particles, using ultrasonic standing

waves for the arrangement and alignment. Brodeur (1991)

studied the acoustic layering and reorientation as a function

of fiber dimensions for fibers shorter than one fourth of the

acoustic wavelength. For the experimental part, paper-

making fibers (length 0.2–3 mm) suspended in water and

an excitation frequency of 72 kHz were used. Brodeur

verified experimentally that acoustic reorientation is a

faster process than acoustic displacement and explained the

results with a simplified theoretical investigation of the

fiber motion. Saito et al. (1998) studied the fabrication of

polymer composites by solidification of a particle suspen-

sion in ultrasonic standing waves. Experiments were car-

ried out with glass rods (diameter 10 lm) at an excitation

frequency of 3 MHz. Yamahira et al. (2000) studied the

behavior of polystyrene fibers in a one-dimensional

standing wave. The equations of motion for a fiber have

been derived by evaluation of the force and torque gener-

ated by the radiation pressure, the buoyancy force and the

drag force. In a simplified model, the fiber was represented

as a chain of small spheres. Experiments were carried out

with polystyrene fibers with a diameter of 0.5 mm and

lengths between 5 and 20 mm at frequencies of 25 and

46 kHz. The motion of the fiber as well as the influence of

the length and position was compared with the simplified

model.

Beside the rotation of particles with the acoustic radia-

tion torque, which is the topic of this paper, there exist

other acoustic methods for the rotation of particles. The

viscous torque is generated by two orthogonal standing

waves shifted in phase and the resulting near boundary

streaming inside the viscous boundary layer spins an axi-

symmetric object. This phenomenon has first been

observed experimentally by Wang et al. (1977). An

analytical solution of the viscous torque on a sphere is

given by Lee and Wang (1989) which was extended by

Lamprecht et al. (2013) for the case of a rotating sphere

including experimental validation. Another example is an

acoustic vortex beam (Bessel vortex beam), carrying

orbital angular momentum along the propagation direction

which can be transferred to a particle depending on the

object scattering and absorbing properties (Silva et al.

2012; Anhäuser et al. 2012). Surface acoustic waves

(SAW) have been used for the actuation of motors for Lab-

on-a-chip and micro–electro–mechanical systems (MEMS)

applications (Zhang and Cheng 2010; Tjeung et al. 2011).

Also, an acoustic needle was used to rotate trapped parti-

cles around its tip (Hu et al. 2005; Zhang et al. 2008).

This paper discusses in Sect. 2 the acoustic radiation

torque acting on a non-spherical particle and a finite

element model for the simulation of the torque is pre-

sented. The simulation results for a microfiber and the

influence of different parameters such as frequency, fiber

size and position are evaluated in Sect. 2.2. The rotational

motion of a fiber and the parameters which define the

maximal angular velocity are presented in Sect. 2.3.

Beside the alignment, the acoustic radiation torque can be

used for a continuous rotation of objects. Different

approaches to experimentally realize a rotation of non-

spherical particles are developed and discussed in Sect. 3.

The first rotation technique is based on successively

changing the orientation of the standing wave. Three

additional methods for a continuous rotation are pre-

sented. They rely on the modulation of one single

parameter such as amplitude, phase or frequency.The

experimental investigation of the different rotation meth-

ods can be found in Sect. 4.

2 Acoustic radiation torque

A spherical particle experiences an acoustic radiation force

in an ultrasonic standing wave. A non-spherical particle is

additionally subjected to an acoustic radiation torque. Over

time, this leads to a change of the angular orientation of the

particle. The acoustic radiation torque is a nonlinear

acoustic effect caused by the angular momentum transfer

from an acoustic field to a scatterer (Fan et al. 2008).

Maidanik (1958) published a theory about the torque due to

acoustic radiation pressure. This theory was used to derive

the torque on a plane disk of arbitrary shape excited by a

plane progressive wave. Fan et al. (2008) derived the

acoustic radiation torque on an irregularly shaped scatterer

for an arbitrary sound field. However, surface integrals

involved can only be evaluated analytically for a limited

number of situations, e.g., a spheroid in a plane standing-

wave field. Additionally, the scatterer has to be small
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compared to the wavelength of the sound field. An ana-

lytical solution for a fiber (long cylinder) is not feasible.

The above theories are restricted to the case of objects

immersed in an inviscid fluid. Nevertheless, in practice

they are useful approximations, when the streaming is

weak and the viscous boundary layer is small compared to

the object size (Zhang and Marston 2011).

Hasheminejad and Sanaei (2007) derived an exact

expression for the acoustic radiation torque and force on

infinite elastic cylinder with elliptic cross section in 2D. An

analytical expression with an infinite series of Mathieu

functions was developed. The influence of the ellipticity

and the angle of wave incidence has been investigated on a

stainless steel cylinder immersed in water. Wang and Dual

(2010) also derived an analytical solution for rigid cylin-

ders with elliptical cross section based on Mathieu func-

tions. This analytical model has been used to validate the

finite element simulation for the acoustic radiation torque

in Sect. 2.1.

Brodeur (1991) derived for his study of paper fibers a

rough estimation for the torque on a cylinder in a 1D

standing wave. Based on Putterman et al. (1989) the torque

for a non-spherical object in a standing wave should be

proportional to its volume and the mean acoustic energy

density. Another rough estimation for the torque on a fiber

is given by Yamahira et al. (2000), who represented the

fiber as a chain of small spheres and uses the expression of

the acoustic radiation pressure on a small sphere from

Yosioka and Kawasima (1955). The interaction between

neighboring spheres was not considered.

2.1 Numerical Simulation of acoustic radiation torque

The analytical solutions are restricted to cases with a

simple scatterer geometry and a simple acoustic field.

This is the motivation for a numerical simulation of the

acoustic radiation torque on a non-spherical object such as

a fiber. In general, any kind of particle with no restric-

tions concerning the size, shape and material can be

modeled at any position and orientation in an arbitrary

acoustic field. The viscosity of the fluid is neglected here,

which is valid when the viscous boundary layer is small

compared to the object size. Also, the influence of a

nearby wall (Dual et al. 2012) or another particle can be

considered when the viscous boundary layer is small

compared to the distance.

For the calculation of the torque, the scattered acoustic

field has to be determined based on a given background

field (incident field). The acoustic radiation torque Trad on

an object can be calculated as the surface integral of time

averaged second-order pressure and the momentum flux

tensor at the object surface S0 (Dual et al. 2012):

Trad ¼ �
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where q0; c0 are the fluid density and speed of sound,

respectively. The position vector r points from the center

of mass to a point on the surface of the scatterer and n is

the outward normal vector of the scatterer surface. The

time averaged squared first order pressure and velocity

field are denoted by p2
1

� �
and v2

1

� �
, respectively. The cal-

culation was done numerically with the finite element

software COMSOL Multiphysics 4.2.

The scattering object (the fiber) is placed in the middle

of the model with its centroid at the origin of the coordinate

system. The fiber is modeled as a linear elastic solid using

the solid mechanics module. In the solid domain, the

dependent variable is the displacement field u and the time

harmonic wave equation for a linear elastic continuum is

solved for the given material parameters and boundary

conditions. The boundary condition on the surface of the

fiber is a load from the fluid, implemented as �pn, where

p is the pressure from the acoustic domain.

The surrounding of the fiber (the fluid) is modeled with

the pressure acoustics module. The dependent variable in

the acoustic domain is the pressure p and the Helmholtz

equation is solved for the given material parameters and

boundary conditions. The fluid is affected by the solid

motion, modeled as acceleration continuity in surface

normal direction. The outer boundary of the fluid is a

perfectly matched layer (PML) which absorbs the wave,

avoiding any reflections of the scattered field back into the

acoustic domain. An important part is the definition of the

acoustic background field (incident pressure field). The use

of a background pressure field pb is very convenient as it

allows the creation of arbitrary acoustic fields and also

defines the position of the fiber inside the acoustic field.

Parameter studies have been performed with numerical

simulations. Depending on the aspect ratio of the fiber or

the size of the parameter set, 3D or 2D simulations have

been chosen in order to keep the computational time within

reasonable limits. For the 3D model, about 5� 105 tetra-

hedral elements of quadratic order have been used to

resolve the field quantities. A time harmonic analysis for a

certain frequency f was performed. For the calculation of

the torque, the values of the pressure p and velocity v are

needed to perform the integration along the fiber surface.

The equations for the acoustic radiation torque (Eq. 1) can

be implemented in COMSOL whereas a line integration or

a surface integration is evaluated for the 2D or 3D case,

respectively. Additionally, the acoustic radiation force can

be calculated by deleting the position vector r in Eq. 1.
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The validation of the model was done with an analytical

solution for the torque on a rigid ellipse in a one-dimen-

sional standing wave (Wang and Dual 2010). The agree-

ment between the analytical solution and the simulation

was remarkable with a relative error below 0.01 % for the

tested frequency range between 10 kHz and 20 MHz.

2.2 Results of the numerical simulation for a glass fiber

The FEM simulation has been used to evaluate the

behavior of a non-spherical particle, in particular a glass

fiber as it was used in the experimental parts of this study.

The standard model parameters of the elastic glass fiber

used later are: fiber length lf ¼ 200 lm, diameter

df ¼ 15 lm, Young’s modulus Ef ¼ 73 GPa, Poisson’s

ratio mf ¼ 0:18 and density qf ¼ 2; 600 kg/m3. The fiber

was assumed to have spherical ends (radius df=2) in order

to avoid sharp edges where a very fine discretization would

be necessary otherwise. The fiber is surrounded by water

(q0 ¼ 998 kg/m3; c0 ¼ 1; 481 m/s) and positioned at an

angle a ¼ 45� in the pressure node of a standing wave in

x-direction with an amplitude Pa of 1� 105 Pa (Fig. 1).

The orientation of the nodal pressure line is given by the

angle b ¼ 90� which spans between the nodal pressure line

and the x-axis. The frequency is f ¼ 1MHz and the cor-

responding wavelength in the fluid is k ¼ 1; 481 lm. Dif-

ferent parameters have been varied and the torque was

analyzed.

2.2.1 Frequency

The influence of the frequency on the torque will be dis-

cussed first. The frequency was varied between 10 kHz and

10 MHz. The results can be seen in Fig. 1. The red dashed

line is representing a glass fiber. The other lines are for

various densities which is discussed below.

For the glass fiber in the frequency range below

500 kHz, where the wavelength is at least ten times larger

than the fiber length, the torque stays nearly constant at

1� 10�14 Nm. This characteristic is unexpected as the

acoustic radiation force on a compressible circular cylinder

is proportional to the frequency for the long wavelength

approximation (Wei et al. 2004). The investigation of

particle trajectories at various frequency ranges might be a

relevant topic. Brodeur (1991) showed that the reorienta-

tion is faster than the displacement of a fiber at a frequency

of 72 kHz. As the acoustic radiation force decreases with

decreasing frequency, the dynamic behavior of a fiber in

the kHz range might differ from the MHz range concerning

the timescale of the translation and reorientation.

For frequencies above 1 MHz the ratio of wavelength k
to the length l�f becomes relevant, where l�f is the projected

length of the glass fiber on the wave vector (x-direction).

There is a local maximum of the torque at l�f =k ¼ 0:42 or

4.35 MHz. The torque vanishes at a ratio of 0.71 or

7.4 MHz. This can be explained, if the fiber is modeled as a

chain of spheres as shown by Yamahira et al. (2000). The

multiplication of the forces with the distance of the sphere

from the rotation axis and subsequent summation gives the

overall torque. The maximum torque does not appear at a

chain length of a quarter wavelength because a decrease of

the wavelength means an increase of the frequency which

leads to higher forces at the spheres and a higher torque.

For a ratio l�f =k higher than 0.5, the forces on the spheres at

the end of the chain are changing sign.

The acoustic field also excites resonances of an elastic

particle which affects the scattering field. This leads to an

increase or decrease of the torque depending on the phase

shift between particle vibration and the acoustic back-

ground field. For an elongated object like a glass fiber,

bending resonance modes occur at lower frequencies than
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Fig. 1 Results of a FEM simulation for the acoustic radiation torque

T rad on an elastic fiber as a function of the frequency in logarithmic

scales. In the top row the definitions of the 1D standing pressure wave

(background field pb) and the fiber variables are shown. The red

dashed line represents the result for a glass fiber with a density of

qf ¼ 2; 600 kg/m3. The first and third bending modes of the glass fiber

at 1,606 and 8,275 kHz are depicted. Additionally the fiber density

(qf ¼ 998 kg/m3) is set to the density of water (black line) and this

fiber density was increased by 1 and 10 % (gray lines). The Young’s

modulus and Poisson’s ratio of the fiber remain constant at Ef ¼
73 GPa and mf ¼ 0:18, respectively (color figure online)
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the longitudinal modes. The first, second and third bending

modes appear at 1,606, 4,343 and 8,275 kHz, respectively,

including the additional mass loading of the surrounding

fluid. The corresponding peak in the torque graph can be

seen for the first and third bending mode. The second

bending mode which is antisymmetric is not excited by the

acoustic field at the fiber position in the nodal pressure

plane. To ensure that there is no correlation between the

frequency at maximum torque and the second bending

mode frequency various glass fiber aspect ratios have been

modeled.

2.2.2 Density

The acoustic radiation torque T rad as function of the fre-

quency was simulated for various fiber densities qf . The

result is plotted also in Fig. 1. A fiber with an equal

density as the surrounding water shows a different char-

acteristic in the low frequency range. The torque is

increasing quadratically with the frequency. This is in

contrast to the glass fiber or a fixed fiber (infinite density).

The effect of an increase of the fiber density of 1 and

10 % relative to the water density is plotted in Fig. 1. The

torque is constant at low frequencies and successively

approaches the response of the fiber with equal density as

water. The reason for this effect is unknown and needs to

be investigated further.

2.2.3 Angular position

The influence of the angular position a on the torque is

very relevant for rotation and alignment. The torque T rad on

a glass fiber (standard model parameters) was simulated for

various angular positions a and fiber lengths lf . The length

of the fiber is varied between 50 and 1,200 lm. The results

can be seen in Fig. 2.

A fiber which is much shorter than the wavelength shows

a perfect sinusoidal characteristic. This is the case for the

50 lm fiber which is more than ten times shorter than the

wavelength. The torque has maxima at the positions of 45�
and 135�, acting in positive or negative direction. At the

positions of 0�, 90� and 180� the torque is zero. Only the

position of 90� will be a stable position for a particle which

is free to rotate as the torque is always directed toward the

90� position. On the other hand, in the vicinity of the 0�
position, the fiber will rotate in clockwise direction for

a\0� and rotate counterclockwise for a[ 0�. With

increasing fiber length to wavelength ratio ðlf=kÞ, the

maximum of the torque is shifted toward 90�. There are two

aspects which are important for the position of the maxi-

mum torque. The effective lever arm which is increasing

when approaching 90� and the force magnitude with its

maximum in between the pressure node and anti-node. For a

fiber length of about lf [ 1; 000 lm and therefore a ratio

ðlf=kÞ[ 0:68 the characteristic changes significantly. The

angular positions of 0� and 180� become stable positions

and two additional unstable positions where the torque is

zero appear. The angle a of the additional unstable zero-

crossing depends on the length of the fiber.

2.2.4 Length and diameter

The influence of the fiber length and diameter on the

resulting torque is examined next to analyze the importance

of the aspect ratio. In the simulations, the parameters from

the standard model are used and only the length lf or

diameter df are varied. A 2D simulation is chosen in order

to allow a large variation of the length and diameter.

The fiber length lf was varied from 15 to 1,500 lm. The

results can be seen in Fig. 3a. At a fiber length of 15 lm

the resulting torque is zero as the object is circular since

diameter and length are equal in size. For a range of the

fiber length from 50 to 800 lm the curve can be fitted with

a power-law function and the proportionality is T rad / l
3=2
f .

The maximum torque is at a length of 1,020 lm which

belongs to a ratio l�f =k of about 0.49. A further increase of

the fiber length strongly decreases the torque. The peaks in

the graph belong to bending modes of the fiber which are

excited by the acoustic field.

The influence of the diameter on the torque can be seen

in Fig. 3b. The diameter was varied from 0.1 to 200 lm.

For thin fibers in the range of 0.1–20 lm the torque per unit

depth shows a linear behavior in the logarithmic plot and

can be fitted with a power-law function. The torque per unit

depth is approximately proportional to the diameter. For a

real 3D fiber, the depth of the fiber correlates with the fiber

diameter. Therefore the torque dependence on the diameter

will be quadratic (T rad / d2
f ). For a diameter of 80 lm the

0 45 90 135 180
−1

0

1

Fig. 2 The normalized torque T rad=T rad
max as a function of the angular

position a for an elastic glass fiber. The fiber with a diameter df of

15 lm is placed in the pressure node of a 1D standing wave in

x-direction. Various fiber length lf between 50 and 1,200 lm are

depicted. The corresponding fiber length to wavelength ratio ðlf=kÞ is

given in brackets
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torque reaches a maximum at a ratio df=lf of 0.4. For larger

diameters the torque is decreasing as the fiber becomes

more circular than elongated. For a diameter of 200 lm the

fiber is circular and the resulting torque is zero.

2.2.5 Position

The acoustic radiation force and torque depend on the

position and orientation of the fiber in the acoustic field.

For the development of rotation techniques it is of interest

to know the equilibrium position and positions of maxi-

mum torque. The FEM simulation was used to evaluate the

force and torque for a range of positions and fiber orien-

tations. For a glass fiber with lf\ 1
4
k in a 1D standing

wave, the equilibrium position is at the nodal pressure

plane with an orientation perpendicular to the wave prop-

agation. As shown above, a fiber with 1
4
k\lf\ 1

2
k has an

additional equilibrium position at the pressure anti-nodes

with an orientation of the fiber in wave propagation

direction which was shown theoretically and experimen-

tally by Yamahira et al. (2000). For fibers larger than half a

wavelength, the force and torque characteristic is compli-

cated and depends strongly on the fiber length.

The behavior of a fiber in a 2D pressure field was

simulated as well. The 2D pressure field is a superposition

of two orthogonal standing waves with equal amplitude

and phase. The conclusion of this simulation is that for all

orientations, the center of the fiber is forced to the position

where a nodal pressure line is and the velocity term v2
� �

has a maximum. The torque for a fiber in the equilibrium

position is always directed toward a ¼ 135� or 315�, which

is congruent with the nodal pressure lines. This agrees with

the experimental results. Here, only fibers shorter than a

quarter wavelength were considered. For longer fibers, the

behavior gets even more complex as in a 1D standing

wave. Beside the length, also the material properties of the

fiber are affecting the behavior where the p2
� �

or v2
� �

field

can be dominating. For a fiber with equal density as the

surrounding fluid, the velocity field can be neglected and

the behavior is only affected by the p2
� �

term.

2.3 Rotational motion of non-spherical particles

In order to describe the rotational motion of a particle,

Newton’s second law for rotational motion about a fixed

axis can be used. For simplicity, a plane rotation is

assumed here. Applying this to the rotation of a fiber with

acoustic radiation torque leads to:

I
oX
ot
þ TdragðXÞ þ Tmisc ¼ T rad ð2Þ

where I is the moment of inertia of the fiber and the fluid

portion that is attached to it. The hydrodynamic drag torque

TdragðXÞ is a function of the angular velocity X, and T rad is

the driving torque of the rotation. The variable Tmisc rep-

resents all unknown effects which are influencing the

rotation. These effects might be buoyancy, gravity, friction

due to contact with a wall or acoustic streaming. For the

further calculations and discussions these effects are

neglected. It is assumed that buoyancy and gravity have no

influence due to the setup and the symmetric fiber. The

influence of the acoustic streaming is difficult to estimate.

This phenomenon is presented theoretically in Sadhal

(2012), and the typical streaming patterns in acoustic

cavities can be found in Wiklund et al. (2012b). It is

believed that the resulting torque is zero for a symmetric

streaming pattern and the symmetric rotating fiber.

There is no analytical solution available for the drag tor-

que on a rotating fiber. Therefore, a FEM simulation was

performed to evaluate the torque and the influence of

parameters such as fiber length, diameter and distance to a

wall and to provide a model to handle different object shapes

and aspect ratios such as the model for the acoustic radiation

torque. For the simulation, COMSOL Multiphysics 4.2 has

been used. The creeping flow module solves the Stokes
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Fig. 3 a Torque per unit depth 2DT rad as a function of the fiber length

lf for a frequency of 1 MHz plotted in logarithmic scale. The diameter

df of the 2D elastic glass fiber is 15 lm. The standard fiber length of

200 lm and the wavelength k and half a wavelength are depicted with

a gray dashed line. b Torque per unit depth 2DT rad as a function of the

fiber diameter df plotted in logarithmic scale. The length lf of the 2D

elastic glass fiber is 200 lm. The standard fiber diameter of 15 lm is

depicted with a gray dashed line
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equation for the stationary situation. The standard parameters

of the simulation are a fiber length lf of 200 lm, a diameter

df of 15 lm, spherical fiber ends, an angular velocity X of

2p rad/s and the fluid properties of water with density q ¼
998 kg/m3 and dynamic viscosity g ¼ 1� 10�3 Pa s. A drag

torque Tdrag of 2:464� 10�14 Nm has been found. An

accurate model was presented by Tirado and Garcia de la

Torre (1980) to calculate the rotational friction coefficient of

cylinders over a wide range of length to diameter ratios. The

model derived by Tirado and Garcia de la Torre (1980) gives

a drag torque of 2:6362� 10�14 Nm. The difference to the

performed simulation is only 6.7 %.

The acoustic radiation torque and the drag torque can be

set equal under the following assumptions: The fiber is

performing a steady state rotation (angular velocity X is

constant) where the drag torque is the only resistive torque

and the acoustic radiation torque is the only driving torque.

Here, only the rotation around the z-axis at the center of the

fiber is considered.

As Tdrag / X, the maximal angular velocity can be

increased by reducing Tdrag or increasing T rad. The acoustic

radiation torque can be strongly increased when the pressure

amplitude is increased since T rad / P2
a . The pressure ampli-

tude can be increased by increasing the applied peak-to-peak

voltage of the exciting piezoelectric element: Pa / Upp as

shown in Bruus (2012), if linearity is assumed. The frequency

has also an influence on the acoustic radiation torque. When

the wavelength is much larger than the fiber length, the

influence can be neglected for a glass fiber in water (Fig. 1) as

the acoustic radiation torque is nearly constant.

The drag torque can be decreased by increasing the

distance to a cavity wall. For a distance to diameter ratio

hf=df ¼ 4, the influence of the wall is weak and for a ratio

of 10 it becomes negligible.

The fiber length lf is influencing the acoustic radiation

torque as well as the drag torque. The following influence

has been found for fibers of a ratio lf=df [ 3 and

l�f =k\ 0:4 : T rad / l1:5
f and Tdrag / l2:6f . Therefore, a longer

fiber has a slower maximal angular velocity.

The fiber diameter is also affecting both torques. For a

diameter of 0.1 to 20 lm or a ratio of lf=df [ 10 the

influence on the acoustic radiation torque is T rad / d2
f . For

the drag torque the proportionality is more complicated but

it can be assumed that it is less than linear. Therefore, a

larger diameter leads to a higher maximal angular velocity.

3 Methods for rotation of non-spherical particles

It is possible to use the acoustic radiation torque not only

for alignment but also for the continuous and controlled

rotation of objects. Therefore, a varying pressure field with

a controllable orientation of the nodal pressure line is

necessary. The first rotation technique changes the orien-

tation of a one-dimensional standing wave in a stepwise

manner. The other rotation methods are for continuous

rotation and alignment at arbitrary orientations using two-

dimensional standing waves. Here, a single parameter

(amplitude, phase or frequency) is modulated, whereas

modulation is understood as the slow variation of a

parameter over time, i.e. with a variation in the range of

seconds compared to the actuation frequency in the MHz

range.

3.1 Changing of propagation direction

of one-dimensional standing waves

A non-spherical particle aligns in a one-dimensional

standing wave perpendicular to the wave propagation

direction due to the acoustic radiation torque. After align-

ment at the equilibrium position, a further rotation of the

object can only be induced by rotating the nodal pressure

plane of the 1D standing wave to a new direction and

therefore changing the propagation direction of the one-

dimensional standing wave. The most intuitive setup for

the change of the propagation direction is a movable

transducer unit such as presented by Haake and Dual

(2005) for rectilinear motion. Here we focus on a realiza-

tion with a closed chamber and fixed excitations. For the

variation of the propagation direction of a one-dimensional

standing wave in a fluidic cavity, the hexagonal configu-

ration is the simplest implementation concerning the

excitation and the design. A square chamber is not possible

as the change of the propagation direction has to be smaller

than 90�. For exactly 90� the torque on the object is zero.

This is an unstable equilibrium orientation and the direc-

tion of rotation is uncertain. The hexagonal chamber pro-

vides parallel walls and a change of the propagation

direction of 60�. Chamber designs with a higher number of

parallel walls such as an octagonal chamber lead to a

change of the propagation direction of 45�. The four nec-

essary actuators require a more complex system, and the

interference between different propagation directions

increases.

The hexagonal configuration of the chamber allows to

setup standing waves with a wave vector oriented along

three different directions in the xy plane. An alternating

excitation of three actuators allows the complete rotation of

an object in 60� steps. Figure 4 shows schematically the

three standing waves created by one of the active piezo-

electric actuators (marked red). A nodal pressure line is

assumed to be in the middle of the parallel chamber walls.

A free fiber (black arrow) is moving to the pressure node

and aligns perpendicular to the wave propagation direction.

The orientation of the object a equals the orientation of the
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nodal pressure line. By switching from excitation 1 to

excitation 2 or 3 the fiber rotates 60� clockwise or coun-

terclockwise, respectively. For a complete rotation of 360�
in clockwise direction the sequence 1–2–3 has to be excited

two times. For a counterclockwise rotation the sequence is

1–3–2. The rotation speed for a complete rotation of 360�
is defined by the switching frequency between the actua-

tors. The fiber rotation can be stopped only at discrete

angular positions defined by the chamber. However, it

might be possible to apply a mode switching technique

presented by Glynne-Jones et al. (2010) for the arbitrary

orientation of particles.

The maximal length of an object is limited by the

wavelength and the angle for the change of the propagation

direction and can be determined with the finite element

simulation of the acoustic radiation torque. A maximal

fiber length to wavelength ratio (lf=k) of 0.79 was deter-

mined. Figure 2 illustrates also the length limit for this

rotation technique. The fiber with a length of 1,200 lm

(lf=k ¼ 0:81) has a negative torque at a ¼ 30� and is

therefore not rotating to the orientation of the nodal pres-

sure line at 90�. If the aspect ratio of the fiber changes

strongly, the length limit is changing as well.

3.2 Amplitude modulation

The basis of this method is the superposition of two

orthogonal ultrasonic modes excited by two sources. With

the slow variation of the amplitude over time, the nodal

pressure line and therefore the angular position of an object

can be changed. The basic system consists of a square

chamber with one excitation for a standing wave in

x-direction and another excitation for a standing wave in

y-direction. The details of this method are presented by the

same authors in Schwarz et al. (2013). The resulting

pressure field has been used to compare different ways to

achieve rotation and to evaluate the characteristics of dif-

ferent excitations.

3.3 Phase modulation

In a cavity, a 2D mode can be expressed as ðm; nÞ, where

the first variable stands for the number of nodes of the

pressure wave in x-direction and the second variable for the

y-direction. In a perfect square chamber with rigid walls,

the modes ðm; nÞ and ðn;mÞ exist at the exact same fre-

quency. All degenerated modes, meaning the superposition

of both modes for various amplitudes, are also at the same

frequency. Due to the slightly compliant walls and there-

fore interaction of the structure and the fluid, the modes can

be slightly separated by a small frequency difference. Due

to the damping in the system, both the resonance peaks

corresponding to both modes are overlapping. The phase

modulation of two degenerated ultrasonic standing modes

leads to a local rotation of the pressure field. Two degen-

erated modes which are slightly separated in frequency are

needed to induce the rotation.

For a better understanding of this rotation method and to

confirm that the degenerated and separated modes are

responsible for this rotation, a simple 2D finite element

model is developed. The model consists of a square

acoustic domain with a length of 1 mm, surrounded by a

square solid domain with edge length 1.5 mm. Figure 5a

shows the model. The material of the acoustic domain is

water with the following properties: density of 998 kg/m3

and speed of sound of 1; 481 ½1þ i=ð1; 000Þ�ms�1 includ-

ing damping. The material of the solid frame is steel with a

Young’s modulus of 190 GPa, a Poisson’s ratio of 0.25 and

a density of 7,850 kg/m3. The fluid structure interaction

between the steel frame and the fluidic cavity is imple-

mented. The actuation of the model is done with a pre-

scribed displacement �u0 in x-direction and �v0eiDu in y-

direction including a phase shift Du, as shown in Fig. 5a.

The amplitude for the prescribed displacement is 1 nm

and equal for the x- and y-direction. A modal analysis of

the model is shown in Fig. 5b. There are two slightly

separated modes at 1,468.8 and 1,471.9 kHz. Even though

the system is a perfect square, there are two separated

modes due to the compliance of the steel frame. The corner

regions of the steel frame are stiffer than the sides. The

mode with pressure anti-nodes at the side walls is therefore

at a lower frequency. The absolute pressure pj j for a time

harmonic analysis with different phase values Du is shown

in Fig. 5c. The excitation frequency is 1,470.35 kHz which

is exactly half way between the two modes. The nodal

pressure line performs a local rotation if the phase is var-

ied. There exist four rotation spots in a domain kx � ky

{

(a) (b) (c)

Fig. 4 Schematic depiction of the alternating excitation of three

actuators in combination with a hexagonal chamber for rotation of

non-spherical objects. a The active piezoelectric actuator 1 excites a

1D standing wave in x-direction with a pressure node in the middle of

the chamber. A fiber (black arrow) will align with an angular position

a ¼ 90�. b By switching to actuator 2 the wave propagation direction

changes by 60� and the fiber aligns perpendicular to the new

direction. c The actuator 3 aligns the fiber at an orientation of a ¼
�30� and the fiber has done a rotation of 120� compared to the

orientation when actuator 1 is active
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whereas two spots rotate clockwise and the other two

counterclockwise. This is identical to the amplitude

modulation

For a uniform rotation of the nodal pressure line, the

phase shift DuðtÞ has to be varied linearly over time. The

variation of the phase shift is much slower (in the order of

seconds) compared to the periodic time of the excitation (in

the order of ls).

3.4 Frequency modulation

Frequency modulation leads to the local rotation of the

pressure field if two slightly separated modes exist. This

method is related to the rotation with phase modulation as

two modes are needed. For the rotation with frequency

modulation, the modes can be one-dimensional compared

to the phase modulation were degenerated modes are

necessary. This method relies strongly on the bandwidth of

the resonance modes and the frequency difference Df

between them which is typically in the kHz range. One

method to enforce a separation of two modes is a small

asymmetry. A nearly square chamber where one edge

length differs slightly from the other length leads to such an

asymmetry.

A simple finite element model is presented here to

describe this rotation technique. The model consists of only

a 3D fluidic cavity, modeled with the acoustics module of

COMSOL 4.2 and is depicted in Fig. 6a. The edge lengths

are Lx ¼ 1 mm; Ly ¼ 1:005 mm and Lz ¼ 0:2 mm. The

cavity is surrounded by sound-hard walls and the excitation

is implemented with a normal acceleration at the bottom of

the cavity, shown as a red triangle in Fig. 6a. The place and

shape of the excitation is arbitrary. Important, however, is

that all modes shown in Fig. 6c can be excited, therefore

the excitation should be asymmetric. The material of the

acoustic domain is water with the following properties:

density of 998 kg/m3 and speed of sound of

1; 481 ½1þ i=ð2QÞ�m/s, where Q is the Q-factor (Gröschl

1998).

The result of a modal analysis is shown in Fig. 6b. The

two one-dimensional modes occur at slightly different

frequencies. The mode in y-direction is at a lower fre-

quency as the edge length is chosen to be slightly larger.

The larger the length difference of Lx and Ly, the larger is

the frequency difference.

For a Q-factor of 500 the modes are overlapping. The

pressure field for characteristic frequencies is shown in

Fig. 6c. The transition of the different patterns can be

explained with the phase difference between both modes.

At a frequency of 1,470 kHz, both modes are weakly

excited and in phase, leading to a diamond shaped pattern.

At 1,473.6 kHz the mode in y-direction has a high ampli-

tude and is dominating. In between both modes at

1,477.3 kHz, both modes are weakly excited and the first

mode has a phase shift of nearly 180� compared to the

second mode, leading to the cross shaped pattern. For a

frequency of 1,481 kHz the mode in x-direction has a high

amplitude and is dominating. At a frequency of 1,485 kHz

(a) (b)

(c)

Fig. 5 a Simulation of the rotation due to phase modulation with a

2D model of a cavity, filled with water and surrounded by a steel

frame. The excitation is done by a prescribed displacement in the x-

and y-direction at the outer side walls of the steel frame. b Modal

analysis of the model showing the two slightly separated modes.

c Absolute pressure pj j for a time harmonic analysis at a constant

excitation frequency of 1,470.35 kHz and for different phase values

Du. The white arrow represents the equilibrium orientation of a fiber

in the pressure field

(a)

(c)

(b)

Fig. 6 a Simulation of the rotation due to frequency modulation with

a 3D model of a fluidic cavity. The cavity is surrounded by hard walls

and the excitation is implemented with a normal acceleration at the

bottom of the cavity shown as a red triangle. b Result of a modal

analysis showing the modes with one wavelength in the y-direction

and one wavelength in the x-direction at different frequencies. c The

absolute pressure field pj j inside the cavity is plotted for five

characteristic frequencies for a Q-factor of 500. The white arrow

represents the equilibrium orientation of a non-spherical object in the

pressure field (color figure online)

Microfluid Nanofluid (2015) 18:65–79 73

123



both modes are weakly excited and are in phase, again

leading to the diamond shaped pattern. With a continuous

frequency sweep from 1,470 to 1,485 kHz, the nodal

pressure line is locally rotating. There exist four rotation

spots in a domain kx � ky where two spots are performing a

clockwise rotation and the other two a counterclockwise

rotation. This is identical to the amplitude and phase

modulation techniques presented above. One frequency

modulation (sweep from start frequency to stop frequency)

would lead to a rotation of 180�. The direction of rotation

depends on the direction of the frequency sweep and the

rotational velocity is defined by the time, necessary for two

sweeps.

Important for the rotation is the interplay between the fre-

quency difference Df and the Q-factor. For a high Q-factor of

5,000 both modes will be completely separated with virtually

no overlap. For a sweep in the frequency range of 1,470–

1,485 kHz, only the two pure modes are visible with very weak

pressure amplitudes for frequencies in between them. If the Q-

factor is too low (Q = 200), the overlap of the peaks increases

and the resulting pressure pattern is not suitable for particle

rotation. The phase difference h at the frequency in between

both modes (1,477.3 kHz) has to be[90� to ensure a rotation

and h has to be \180� to ensure the overlapping of the two

separated modes and a sufficient pressure amplitude in

between the two modes. The optimum has been found for a

phase difference h of 135�.

This rotation technique leads to a varying rotation speed

as the amplitude is changing during the sweep. Neverthe-

less, the excitation is simple compared to the other methods

because only one excitation is needed and a frequency

sweep is very simple to implement. On the other hand, it is

difficult to precisely control the Q-factor which is very

important for this rotation technique as it defines the

overlap of the two resonances.

4 Experimental results

Three different methods, the stepwise change of the prop-

agation direction, the amplitude modulation and the phase

modulation have been tested experimentally with mic-

rodevices, operating at frequencies in the MHz range. Par-

ticle clumps with elliptical shape and microglass fibers have

been used as rotation objects. For the frequency modulation

it was not possible to obtain experimental data as none of

the designed devices supplied a sufficient interplay between

the frequency difference Df and the Q-factor.

4.1 Changing of the propagation direction

The rotation was realized with a hexagonal chamber and the

device is depicted in Fig. 7a. It is based on the microdevices

presented in Neild et al. (2007), Oberti et al. (2007). The

main changes concern the fluidic chamber and the actuation.

The fluidic chamber is a hexagon with a width of 3 mm. The

actuation consists of three individual piezoelectric elements

with an electrode area of 2.8 mm � 0.7 mm and a thickness

of 0.5 mm. The transducers are aligned with the fluidic

chamber walls and fixed on the back side of the silicon plate.

The width between parallel walls in the fluidic chamber

is identical, therefore the resonance frequencies for the

standing waves are very similar for all three directions. An

actuation of a standing wave in only one direction is pos-

sible by selectively actuating one of the piezoelectric

transducers. The three piezoelectric transducers are con-

nected to one signal generator (DS345, Stanford Research

Systems) and one amplifier (2100 RF power amplifier,

ENI) by a switch with a predefined actuation sequence and

a tunable switching frequency. The disadvantage of this

simple actuation setup is that all transducers are actuated

with the same frequency. Due to manufacturing inaccu-

racy, the perfect actuation frequency deviates for each

transducer within 30 kHz. Therefore, a compromise fre-

quency has to be used, where all directions work accept-

ably. However, this can lead to deviations in the angular

alignment of the object because the lines of zero pressure

are slightly bent.

The rotation of a glass fiber with a length lf of 205 lm

and a diameter df of 15 lm suspended in DI-water was

setup. The mode with seven nodal pressure lines at a fre-

quency of 1,730 kHz and an excitation voltage Vrms of

(a)

(b)

Fig. 7 a Exploded view of the device with the hexagonal chamber

etched into silicon and three separated piezoelectric elements on the

back side for actuation. b Rotation of a glass fiber

(lf ¼ 205 lm; df ¼ 15 lm) in a hexagonal chamber at a frequency

of 1,730 kHz. The excitation is switched from transducer 1 to

transducer 2 and to transducer 3. The red line depicts the actuated

piezoelectric element (color figure online)
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18 V was used. A sequence of the clockwise rotation is

shown in Fig. 7b. Each frame represents the excitation of

one of the three transducers.

A plot of the angular position a of the fiber versus time

is shown in Fig. 8. Each frame of the video is represented

by a black dot. The connecting gray line is for better

illustration. The discrete steps of the curve belong to the

correspondent actuator noted on the right side of the graph.

The plot is for two complete rotations of the glass fiber.

The time for one rotation is 6.35 s and the average rotation

speed is therefore 9.45 rpm. This corresponds to a

switching frequency between the actuators of 0.945 Hz.

The instantaneous rotation speed at the 60� steps is much

larger than the average rotation speed. The rotation was too

fast to be captured properly by the video with a frame rate

of 18 frames/s. The 60� rotation is completed in between

two frames. Therefore, the instantaneous rotational speed is

at least 180 rpm.

The maximal average rotational speed of the fiber for

this setup was determined to be approximately 34 rpm. The

rotational speed is limited by the drag torque which bal-

ances with the acoustic radiation torque. In addition to the

drag torque, adhesion and friction influences the maximal

rotation speed. The fiber density is higher than the density

of the surrounding fluid, so the fiber is very likely partially

in contact with the cavity bottom. The friction could be

avoided by acoustic levitation of the fiber or adjustment of

the density difference between fluid and fiber.

The time tstep the fiber needs to rotate by one 60� step

can be used to evaluate the pressure amplitude or the

maximal instantaneous rotational speed. The influence of

friction, gravitation, etc. are neglected to simplify matters.

The drag torque TdragðXÞ ¼ ~DX depends linearly on the

angular velocity X with X ¼ da=dt and ~D ¼ 4:121�
10�15 Nm/(rad/s) being the drag torque coefficient. The

pressure amplitude Pa gives the maximum acoustic radia-

tion torque T̂ rad ¼ P2
a � 2:052� 10�24 Nm/Pa2. Assuming a

standing wave in x-direction, the acoustic radiation torque

is T radðaÞ ¼ T̂ rad sinð2aÞ which can be seen in Fig. 2. In a

first step the moment of inertia is neglected and the

resulting differential equation

~D
da
dt
¼ T̂ rad sinð2aÞ ð3Þ

can be solved by separation of the variables. The solution

is:

aðtÞ ¼ arctan tan að0Þð Þexp
2T̂

rad
t

~D

" # !
ð4Þ

where að0Þ is the start angular position of the fiber at t ¼ 0

which is 30� in this case.

The step time can be calculated as a function of T̂ rad or

the pressure Pa by replacing aðtÞ by the final orientation of

the fiber at t ¼ tstep. The results for various a close to 90�
are evaluated. The angular position of the fiber after t ¼
tstep can only be estimated because the exact angular ori-

entation of the nodal pressure line is unknown. Therefore

an a between 80� and 89� has been used for the estimation

of the pressure. It is expected that for tstep ¼ 0:056 s (18

frames/s) the pressure Pa is in the range of 0.2–0.3 MPa.

This is in the same range as the pressure estimated in

square chambers, used for amplitude modulation experi-

ments. A more accurate prediction would be possible with

a high-speed camera where the angular position of the

rotating fiber can be resolved during the switching process.

This would allow the fitting of the curve aðtÞ to the

experimental data.

The angular velocity is not constant during the switching

process. A peak instantaneous angular velocity of 31.1

rad/s or 297 rpm was determined using Eq. 4. The maxi-

mum acoustic radiation torque was T̂ rad ¼ 1:28�
10�13 Nm for an assumed pressure Pa of 0.25 MPa.

Due to the high accelerations, the full differential

equation with inertial terms was solved numerically to

ensure that the inertial terms can be neglected for the above

situation.

4.2 Amplitude modulation

Experiments have been performed in microdevices with

square chambers using copolymer particles or a microglass

fiber. A continuous rotation was successfully demonstrated

and the method allowed to stop the rotation at arbitrary

angular positions. The details of the device and the

experiment are presented by the same authors in Schwarz

et al. (2013).

Moreover, the simulation results for the acoustic radia-

tion torque will be applied to the experimental data. In

Fig. 9 the rotation of a microglass fiber (diameter of 15 lm

Fig. 8 Angular orientation a of a glass fiber in a hexagonal chamber

rotating in clockwise direction. Each Frame of the video (18 frames/s)

is represented by a black dot. The connecting gray line is for better

illustration. The discrete steps of the curve belong to the actuator

noted on the right side of the graph. The gray dashed lines mark the

theoretical angular position for each actuator
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and length of 210 lm) is depicted. The angular position of

the glass fiber is plotted over time for two rotation cycles

(720�). The black dots represent the angle a of the fiber for

each frame in the video. The gray line represents the

expected average angular position for the rotation time

TM ¼ 1:67 s and a corresponding rotational speed of

36 rpm. The gray line accentuates the variation in the

rotational speed. The reasons for the deviation are unbal-

anced amplitudes, a not perfectly excited mode and the

variation of the total pressure due to the linear amplitude

modulation.

The rotational motion of the fiber can be analyzed with

the considerations of Sect. 2.3. When the angular orien-

tation of the fiber a is equal to the nodal pressure line b
the acoustic radiation torque on the fiber will be zero. The

orientation of the nodal pressure line is changing due to

the amplitude modulation. The drag torque, due to the

movement in the viscous fluid, arises because of the

rotation of the fiber which follows the nodal pressure line.

The drag torque is proportional to the angular velocity of

the fiber. The acoustic radiation torque is balanced with

the drag torque. For a fiber rotation with the maximum

angular velocity, the maximal acoustic radiation torque

arises on the fiber at an angle difference between b and a
of 45�. For a very slow rotation the angle difference is

nearly zero. For rotations in between the maximum

angular velocity and no rotation the angle difference is in

between 45� and 0�.

The simulation of the acoustic radiation torque allows

the additional estimation of the pressure amplitude during

the experiment. The increase of the average rotational

velocity was possible until about 40 rpm. In the experiment

instantaneous velocities of 150–200 rpm were reached

during parts of one rotation due to unbalanced amplitudes.

The pressure amplitude in the cavity can be roughly

estimated with the experimentally determined angular

velocity. The drag torque of a rotating fiber with the same

size as in the experiment and for an angular velocity X of

4:19 rad/s (40 rpm) has been modeled. The drag torque

Tdrag is 1:836� 10�14 Nm. The acoustic radiation torque

has been determined for the frequency of 1085 kHz and the

mode with m ¼ 4 and n ¼ 2. The position of the fiber was

the same as in the experiment, and an orientation of 45�
was implemented to reach the maximal torque. The

acoustic radiation torque as function of the pressure

amplitude is T radðPaÞ ¼ P2
a � 5:844� 10�25 Nm. Therefore,

the pressure amplitude Pa is 0.18 MPa. The influence of the

cavity bottom was neglected. Assuming a wall to fiber

distance of 5 lm, the drag torque increases to Tdrag ¼
3:977� 10�14 Nm giving a pressure of 0.26 MPa. The

determination of an exact value is not possible as the dis-

tance to the cavity bottom, and the influence of possible

contact are unknown. The higher instantaneous velocities

of 150–200 rpm during parts of the rotation allow to

assume that the pressure amplitude is higher than calcu-

lated above. For these instantaneous velocities, a pressure

amplitude of 0.34–0.4 MPa was determined.

Of interest is the theoretical maximal rotational velocity

for a glass fiber as used in the experiments. The following

assumptions are used. A pressure amplitude of 0.5 MPa is

reasonable for a microodevice d(Barnkob et al. 2010). The

frequency is 1 MHz, and a one-dimensional mode is

excited. The fiber is assumed to float in the middle of the

cavity without any influence of the walls or other particles.

The simulated radiation torque T rad is 3:57� 10�13 Nm.

The drag torque as function of the angular velocity is

TdragðXÞ ¼ X � 4:382� 10�15 Nm. This results in a theo-

retical maximal angular velocity X of 82 rad/s and there-

fore a rotational speed of 780 rpm. An improvement of the

device toward the excitation of a higher pressure amplitude

and free floating fiber can result in a very high rotational

speed as the influence of the pressure amplitude is

quadratic.

4.3 Phase modulation

The experiments have been performed using the microde-

vice presented in Schwarz et al. (2013). For the

Fig. 9 Rotation of a glass fiber with a length of 210 lm and a

diameter of 15 lm using amplitude modulation of two ultrasonic

modes. The actuation frequency was 1,085 kHz and the maximum

applied voltage Vrms was 20 V. Angular position a of the fiber plotted

over time for two complete rotations (720�). The black dots represent

the angle of the fiber for each frame in the video. The gray line is the

average expected angular position at a rotation speed of 36 rpm

(rotation time TM ¼ 1:67 s)

76 Microfluid Nanofluid (2015) 18:65–79

123



characterization of the device behavior, first copolymer

particles have been used. This allows the observation of the

whole cavity by using a high amount of particles. For the

excitation, two possibilities exist. One is the method

described in the theory section (Sect. 3.3), where two

electrodes are excited with the exact same frequency and

the phase of one signal DuðtÞ is varied slowly over time.

The direction of the rotation is defined by the sign of the

phase shift and the rotational velocity by the time TM for

two modulations of the phase Du from 0 to 2p.

Another method is the excitation with two slightly dif-

ferent frequencies f1 and f2. A slight frequency difference

between both signals (Df 	 1Hz) will lead to a slow line-

arly varying phase shift over time between both signals.

The difference f2 � f1 ¼ Df between both frequencies

determines the rotational speed. The modulation time TM

for an object rotation of 360� is defined as TM ¼ 2= Dfj j.
The direction of rotation is depending on which of the two

frequencies is larger.

The rotation of particle clumps is shown in Fig. 10, a

rotation of 180� is depicted. The square fluidic cavity of the

microdevice was filled with copolymer particles with a

diameter of 17 lm. The excitation frequency for electrode

1 was f1 ¼ 1; 434 kHz and f2 ¼ 1; 434 kHzþ Df for elec-

trode 2. The frequency matches to 3 wavelengths in the x-

and y-direction of the cavity. This leads to a formation of

36 clumps. A domain of kx � ky is highlighted with a white

square to show the change of the pattern from (a) to (e).

The different patterns are as follows: (a) diamond shape,

(b) lines perpendicular to x-direction, (c) cross pattern, (d)

lines perpendicular to y-direction and (e) diamond shape.

The rotation of the clumps is a continuous rotation but not

fully uniform as can be seen from the times given for every

image of Fig. 10. The Df was approximately 1.12 Hz

which leads to a rotation time TM of 1.79 s and therefore an

average rotational speed of 33 rpm. In contrast to the

amplitude modulation, the particle clumps are separated

and not merging during the rotation.

The rotational manipulation with phase modulation was

also performed with glass fibers and is shown in Fig. 11. In

the fluidic cavity filled with DI-water, there is fiber A and

fiber B rotating in different locations. Fiber A consists of

two glass fibers sticking together with a total length of

315 lm. The fiber B is a single glass fiber with a length of

215 lm. The actuation frequencies were f1 ¼ 1; 158 kHz

and f2 ¼ 1; 158 kHzþ 0:55 Hz leading to a rotation time of

TM ¼ 3:64 s per 360� rotation and a rotational speed of

16.5 rpm. The excitation frequency corresponds to 2.5

wavelengths in the x- and y-direction. In Fig. 11, the ori-

entation a of both fibers is plotted. The fibers both rotate in

clockwise direction. Beside the average rotational velocity

of 16 rpm, instantaneous angular velocities of 82 rpm can

be found. The rotation is not uniform due to unbalanced

amplitudes of the modes and possible contact with the

cavity floor.

The maximum observed average rotational speed of a

fiber was 30 rpm. The maximum average angular velocity

depends on the applied acoustic radiation torque and is

(a) (b) (c)

(d) (e)

Fig. 10 A 180� rotation of 36 particle clumps formed out of 17 lm

copolymer particles with phase modulation. The excitation frequency

for electrode 1 was f1 ¼ 1; 434 kHz and for electrode 2

f2 ¼ 1; 434 kHzþ 1:12 Hz. The excitation voltage Vrms was 18 V. A

domain of kx � ky is highlighted with a white square for better

observation of the changing pattern shapes

Fig. 11 Rotational manipulation of two glass fibers with phase

modulation. Fiber A (black cross) consists of two glass fibers sticking

together and has a total length of 315 lm. The fiber B (gray circle) is

a single glass fiber with a length of 215 lm. The actuation frequencies

are f1 ¼ 1; 158 kHz at electrode 1 and f2 ¼ 1158 kHzþ 0:55 Hz at

electrode 2. The excitation voltage Vrms was 20 V. The rotation time

TM is 3.64 s for a 360� rotation. The plot is showing the orientation a
of the glass fibers plotted as function of time
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limited by the drag torque and friction force of the fiber at

the cavity bottom. A detailed discussion can be found in

Sect. 2.3. The maximum rotational speed is comparable

with the amplitude modulation where an average rotational

speed of 40 rpm was observed. It is assumed that the

pressure is in the same range as for the amplitude modu-

lation. The cavity and excitation are identical, and the

rotation techniques are comparable as well.

5 Conclusion

The rotation of particles by means of the acoustic radi-

ation torque arising from ultrasonic standing waves was

investigated. A finite element simulation of the acoustic

radiation torque was used to evaluate the behavior of a

microglass fiber. The acoustic radiation torque on a glass

fiber stays nearly constant at low frequencies (kHz

range) for wavelengths 10 times larger than the fiber.

This is in contrast to the acoustic radiation force which

is proportional to the frequency. The equilibrium position

and orientation of a fiber, shorter than a quarter wave-

length is at the pressure nodes, aligned perpendicular to

the wave propagation direction. For larger fibers, addi-

tional equilibrium positions occur. For fibers that are

short compared to the acoustic wavelength, the torque

varies approximately sinusoidally as function of the

orientation difference between the fiber and the nodal

pressure line.

The first presented rotation method using the acoustic

radiation torque is based on changing the propagation

direction of one-dimensional standing waves in a stepwise

manner. A hexagonal cavity design was used in combina-

tion with three piezoelectric transducers to change the

orientation of the standing wave in 60� steps. The rotating

object stops only at discrete angular positions, defined by

the cavity. This rotation method is less complicated due to

1D standing waves but restricted to discrete rotation steps.

The rotation with amplitude, phase and frequency

modulation is similar in the characteristic of the resulting

pressure field. The amplitude modulation offers the best

control for a uniform rotation, but besides a signal gener-

ator, additional equipment is necessary. The mechanism

behind the phase modulation is more complicated due to

the separated degenerated modes. The excitation is simple

but achieving a uniform rotation is difficult. As an

advantage, the merging of close by particle clumps can be

avoided during the rotation. This can be useful for the

separated mixing of particle clusters in one chamber. The

frequency modulation convinced with only one excitation

and a simple frequency sweep but the Q-factor needs to be

precisely controlled. All methods were appropriate for the

arbitrary alignment of elongated objects.

The acoustic radiation torque and the pressure amplitude

were estimated by comparison with the drag torque. The

calculation of both variables from the amplitude modula-

tion experiments led to 0.18 MPa and 1:84� 10�14 Nm,

respectively. For the instantaneous velocities of up to

200 rpm, a maximal pressure amplitude of 0.4 MPa was

determined with a corresponding maximal acoustic radia-

tion torque of 9:4� 10�14 Nm. For a reasonable pressure

amplitude of 0.5 MPa, a perfect mode and a levitated fiber,

a radiation torque of 3:6� 10�13 Nm and a rotational

speed of 780 rpm should be possible. The quadratic influ-

ence of the pressure leads to this strong increase.
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