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background: Endometriosis, the growth of endometrial tissue outside the uterine cavity, is associated with chronic pelvic pain, subfertility
and an increased risk of ovarian cancer. Current treatments include the surgical removal of the lesions or the induction of a hypoestrogenic state.
However, a reappearance of the lesion after surgery is common and a hypoestrogenic state is less than optimal for women of reproductive age.
Additional approaches are required. Endometriosis lesions exist in a unique microenvironment characterized by increased concentrations of
hormones, inflammation, oxidative stress and iron. This environment influences cell survival through the binding of membrane receptors and
a subsequent cascading activation of intracellular kinases that stimulate a cellular response. Many of these kinase signalling pathways are consti-
tutively activated in endometriosis. These pathways are being investigated as therapeutic targets in other diseases and thus may also represent a
target for endometriosis treatment.

methods: To identify relevant English language studies published up to 2015 on kinase signalling pathways in endometriosis, we searched the
Pubmed database using the following search terms in various combinations; ‘endometriosis’, ‘inflammation’, ‘oxidative stress’, ‘iron’, ‘kinase’, ‘NF
kappa’, ‘mTOR’, ‘MAPK’ ‘p38’, ‘JNK’, ‘ERK’ ‘estrogen’ and progesterone’. Further citing references were identified using the Scopus database and
finally current clinical trials were searched on the clinicaltrials.gov trial registry.

results: The current literature on intracellular kinases activated by the endometriotic environment can be summarized into three main path-
ways that could be targeted for treatments: the canonical IKKb/NFkB pathway, the MAPK pathways (ERK1/2, p38 and JNK) and the PI3K/AKT/
mTOR pathway. A number of pharmaceutical compounds that target these pathways have been successfully trialled in in vitro and animal models of
endometriosis, although they have not yet proceeded to clinical trials. The current generation of kinase inhibitors carry a potential for adverse
side effects.
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conclusions: Kinase signalling pathways represent viable targets for endometriosis treatment. At present, however, further
improvements in clinical efficacy and the profile of adverse effects are required before these compounds can be useful for long-term endo-
metriosis treatment. A better understanding of the molecular activity of these kinases, including the specific extracellular compounds that
lead to their activation in endometriotic cells specifically should facilitate their improvement and could potentially lead to new, non-hor-
monal treatments of endometriosis.
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Introduction
Endometriosis is an estrogen-dependent condition characterized by
the growth of endometrial epithelial and stromal cells outside the
uterine cavity and is often accompanied by chronic pelvic pain, subfertility
and an increased risk of ovarian cancer (Vercellini et al., 2014). It is an ex-
tremely prevalent condition, occurring in 10% of women of reproductive
age (Eskenazi and Warner, 1997) and up to 50% of women with infertility
(Meuleman et al., 2009) and represents a significant burden on the health
care system (Simoens et al., 2012). Although a number of theories
have been proposed, the most widely accepted is the Sampson
theory of transplantation where menstrual tissue, including viable endo-
metrial epithelial and stromal cells, enter the peritoneal cavity via retro-
grade menstruation (Sampson, 1927). Once present, an innate or
acquired characteristic of these endometrial cells and the inflammatory
and hormonal microenvironment combine to facilitate lesion growth at
multiple locations throughout the peritoneal cavity (Burney and
Giudice, 2012).

Endometriosis is an extremely heterogenic condition that was ori-
ginally proposed to exist as three different entities: peritoneal endo-
metriosis, ovarian endometrioma and adenomyotic nodules of the
rectovaginal septum all of which develop through distinct pathogenic
pathways (Nisolle and Donnez, 1997). More recent research, how-
ever, suggests that the different clinical presentations are actually a
continuum of the same disease (Vercellini et al., 2000) with shared
origins (Somigliana et al., 2004, 2007). Superficial peritoneal endome-
triotic lesions represent the least severe clinical presentation, followed
by endometrioma and deeply infiltrating endometriosis (DIE), the
most severe (Chapron et al., 2009). DIE is defined by infiltration into
the muscularis propria (Chapron et al., 2010) and is further subcategor-
ized by the invaded organ, which may be the bladder, uterosacral liga-
ments, intestines and/or vagina (Chapron et al., 2003b). DIE lesions
are most commonly associated with strong pain (Chapron et al.,
2003a) and represent the most complex clinical challenge (Abrão
et al., 2015).

Challenges of current endometriosis
management
The current European Society of Human Reproduction and Embryology
(ESHRE) guidelines advocate endometriosis management via hormonal
modulation with medical therapies, or the surgical removal of the
lesions (Dunselman et al., 2014). Both of these approaches, however,
have significant shortcomings.

Hormonal modulation through medical therapies creates a hypoes-
trogenic environment with hormonal contraception, progestogens,
anti-progestogens, gonadotrophin-releasing hormone analogues and
aromatase inhibitors (Brown and Farquhar, 2014). This approach,

however, is inappropriate for patients with endometriosis-associated
infertility who wish to conceive normally (Dunselman et al., 2014).
Furthermore, symptoms reoccur once treatment has ceased (Streuli
et al., 2013) and up to one-quarter of patients will have intolerable
side effects, or not respond (Vercellini et al., 2008). An inadequate
response to medical therapies is believed to be a particular problem
for DIE lesions (Vercellini et al., 2009), possibly due to extensive fibrosis
rendering them less susceptible to hormonal modulation (Remorgida
et al., 2005).

Surgical intervention is the primary treatment of choice for severe
forms of endometriosis (Abrão et al., 2015), such as symptomatic DIE
that incorporate bowel or urethra stenosis, large adnexal masses or
large endometrioma (Vercellini et al., 2009; Meuleman et al., 2011). A
reduction in pelvic pain (Jacobson et al., 2009), dyspareunia (Ferrero
et al., 2007) and an increase in fertility (Duffy et al., 2014) is achieved
via surgical intervention with a significant improvement in patient
wellbeing and quality of life that can be extrapolated to significant
savings for the health care system (Wullschleger et al., 2015). Surgery,
however, can be associated with complications, particularly in complex
cases. Recurrence of the lesions (Shaw, 1992) and the painful symptoms
(Duffy et al., 2014) is also common.

Surgical removal of DIE lesions can be complex and outcomes are
highly dependent on surgical skill. A recent meta-analysis revealed the
complication rates for bowel resection anastomosis of DIE lesions
have been measured as 2.7% of patients for rectovaginal fistulae, 1.5%
for anastomotic leakage and 0.34% for pelvic abscesses. The less aggres-
sive techniques had slightly lower rates, but were associated with an
increase in recurrence from 5.8 to 17.6% (Meuleman et al., 2011). The
primary reason for recurrence is unclear but an incomplete resection
of the lesion (Nirgianakis et al., 2014) due to the complexity of the
surgery or to the presence of occult endometriosis (Khan et al., 2014)
are possible.

The endometriotic microenvironment
The peritoneal microenvironment is significantly altered in endo-
metriotic women. Endometrial cells refluxed into the peritoneal cavity
secrete chemokines (Lebovic et al., 2001) creating a feed-forward
loop (Hornung et al., 2001) that stimulates the infiltration of immune
cells (Halme et al., 1983). Both endometriotic and immune cells (Laird
et al., 1993; Bersinger et al., 2008, 2011) produce pro-inflammatory
cytokines and prostaglandins (Badawy et al., 1985; Wu et al., 2005)
and anti-inflammatory interleukins are suppressed (Santulli et al.,
2013) creating an inflammatory imbalance. Erythrocytes and menstrual
debris enter the peritoneal cavity via retrograde menstruation re-
sulting in increased iron concentrations (Arumugam and Yip, 1995;
Iizuka et al., 1998; Yamaguchi et al., 2008) that accumulate in peritoneal
macrophages (Lousse et al., 2009) and mediate oxidative stress
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(Defrère et al., 2008) in both the peritoneal fluid (Carvalho et al., 2012)
and the endometriotic cells (Murphy et al., 1998; Oner-Iyidoğan et al.,
2004; Ngô et al., 2009; Seo et al., 2010).

Once the lesions are established, local estrogen production begins
through endometrial cell expression of aromatase p450 (Noble et al.,
1996) and a reduction in 17b-hydroxysteroid dehydrogenase type II
(Zeitoun et al., 1998). The overexpression of estrogen receptor
(ER)b in endometriotic stromal cells also alters their behaviour
leading to a reduction in the expression of ERa (Xue et al., 2007;
Trukhacheva et al., 2009) and possibly of progesterone receptors
(PRs) (Bulun et al., 2010). Finally, neuroangiogenesis leads to the
infiltration of nerve fibres and blood vessels (Asante and Taylor,
2011) that supply nutrients and remove waste, as well as secreting
neurogenic compounds (Sanfilippo et al., 1992) that interact with
endometriotic lesions (McKinnon et al., 2013). These mechanisms
create an altered endometriotic microenvironment characterized by
an inflammatory imbalance, oxidative stress and increased iron
concentrations that support the maintenance of the cells, while their
continued growth is facilitated by estrogen production and neuroan-
giogenesis (Fig. 1).

The extracellular influence on
endometriotic cells
The ability of this altered microenvironment to support endometriotic
cells is transmitted by kinase signalling pathways. In many diseases, the
dysregulation of a protein kinase leads to unchecked cellular proliferation
through stimulation of neoplastic processes resulting in a kinases-
dependent tumour growth (Sawyers, 2003). Pharmaceuticals targeting
these kinases is proving successful in the treatment of other tumours
and is increasingly being examined as potential endometriosis treat-
ments. Whether endometriosis exhibits kinase dependency is not yet
clear, although inflammation (Lee and Hung, 2007), neurogenic media-
tors (Azzolina et al., 2003), steroid hormones (King et al., 2010) and
both iron and oxidative stress (Alvarado-Dı́az et al., 2015) interact
with multiple kinase signalling pathways in endometriotic cells.

The interaction of the microenvironment and the endometriotic cells
may also vary based on lesion subtype. DIE lesions have a significantly dif-
ferent microenvironment compared with lesions from other locations as
they produce significantly more inflammatory cytokine mRNA (Bertschi
et al., 2013) and have higher peritoneal fluid IL-33 concentrations

Figure 1 The endometriotic microenvironment. Endometriotic lesions exist in a unique microenvironment created by the interaction of multiple cells.
Through retrograde menstruation epithelial and stromal endometrial cells, along with erythrocytes and other menstrual debris enter the peritoneal cavity.
The endometrial cells attach to the underlying mesothelium and establish ectopic lesion that begin producing chemokines and hormones. These com-
pounds can have both an autocrine and paracrine effect. Chemokines stimulate the infiltration of immune cells and hormones influence the endometriotic
cells. Erythrocytes lead to increased iron concentrations, which in turn creates reactive oxygen species and an oxidative environment. The subsequent
inflammatory, hormonal and oxidative environment leads to the stimulation of the signalling kinase pathways that facilitate endometriotic lesion progression.
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(Santulli et al., 2012) and oxidative stress markers than lesions from other
locations (Santulli et al., 2015a). Significantly higher concentrations of
endometriosis-associated nerve fibres have also been observed in DIE
lesions increasing the potential for neurogenic inflammation (McKinnon
et al., 2012b). Whether the extracellular environment of DIE lesions
creates a specific influence is not clear, but the high concentrations of po-
tential kinase stimulating components suggest DIE lesions may respond
to kinase inhibition, as opposed to hormonal therapies.

All together this makes endometriosis a heterogeneous condition that
poses a difficult clinical challenge, particularly for symptomatic DIE
lesions. New therapeutic options are needed. Endometriotic lesions
create a unique microenvironment capable of inducing kinase activity
and potentially, a kinase-dependent lesion growth. Targeting these
kinases may represent a potential novel treatment, and mayalso hold po-
tential for DIE lesions. We therefore examined the relevant literature to
identify published data on kinase activity in endometriotic tissue and to
determine whether they were activated by components of the endome-
triotic extracellular environment. We focused on three specific pathways
involving nuclear factor (NF)kB, mitogen-activated protein kinase
(MAPK) or mammalian target of rapamycin (mTOR). We also assessed
therapeutics that target these pathways and analysed their potential for
future treatments.

Methods
We identified relevant English language studies published up to 2015 via a
search of the Pubmed database using the following search terms in various
combinations; ‘endometriosis’, ‘inflammation’, ‘oxidative stress’, ‘iron’
‘kinase’, ‘NF kappa’, ‘mTOR’, ‘MAPK’ ‘p38’, ‘JNK’, ‘ERK’ ‘estrogen’ and ‘pro-
gesterone’. Further citing references were identified using the Scopus data-
base and current clinical trials were identified using the clinicaltrials.gov trial
registry.

The NFkB pathway in endometriosis
NFkB is the nodal point of a primary inflammation stimulated signalling
pathway that has a significant role in the immune response (Hayden et al.,
2006). The NFkB complex is assembled from two groups of proteins: the
NFkB proteins, p105 and p100, which are truncated to p50 and p52, respect-
ively, and the Rel proteins (c-Rel, REL B and p65). These proteins combine as
either hetero or homodimeric complexes to form the NFkB complex of
which the most common arrangement is the p50/p65 heterodimer
(Ghosh et al., 1998). Under resting state conditions, the dimeric NFkB/Rel
complexes are bound to the inhibitor kappa beta protein (IkB). Binding
between the NFkB and IkB keeps the complex sequestered to the cytosol
(Fig. 2). Activation of cell surface receptors by the extracellular environment
begins a cascading reaction that separates IkB and NFkB complex and allows
for the translocation of NFkB to the nucleus and initiation of gene transcrip-
tion. IkB removal from the NFkB complex is mediated by the IkB kinase (IKK)
complex, which consists of two catalytic subunits IKKa and IKKb and the
regulatory subunit IKKg (Smale, 2011).

Two distinct cascading reactions, each controlled by the different catalytic
subunits of the IKK complex, lead to NFkB activation. The canonical NFkB
pathway is characterized by activity of the IKKb catalytic subunit removing
IkB from p65 and targeting it for ubiquitin ligase-mediated degradation
(Ghosh and Karin, 2002). The alternative NFkB pathway is characterized
by IKKa catalytic activity that is stimulated by NFkB inducing kinase (NIK).
This catalytic subunit preferentially targets IkB proteins bound to the
p100-Rel B dimers stimulating a partial proteasome degradation that
creates the transcriptionally active p52-Rel B dimer (Oeckinghaus et al.,

2011). Both the canonical and alternative NFkB pathways lead to increased
transcription of different genes and therefore mediate different immune func-
tions (Bonizzi and Karin, 2004).

NFkB may represent a potential therapeutic target due to its constitutive
activation in peritoneal endometriotic lesions (Gonzalez-Ramos et al., 2007).
An overexpression of NFkB has been confirmed in cultured endometriotic
stromal cells (Sakamoto et al., 2003) and peritoneal macrophages (Lousse
et al., 2008) isolated from women with endometriomas. Furthermore, in
ovarian endometriomas, p65 expression has been correlated with recur-
rence (Shen et al., 2008). In vitro evidence raises the possibility that the con-
stitutive activation may be due to the endometriotic microenvironment.
IL-1b stimulates NFkB with a subsequent increased production of inflamma-
tory cytokines (Veillatet al., 2009), including macrophage migration inhibitory
factor (MIF) (Cao et al., 2006) in endometrial stromal cells, as does tumour
necrosis factor alpha (TNFa) (Grund et al., 2008) in the immortalized epithe-
lial (12Z) cell line. In primary epithelial cells, 17b-estradiol stimulates NFkB
nuclear translocation (Zhang et al., 2010a) and progesterone withdrawal
increases NFkB activity in the endometrium (King et al., 2001). Interestingly,
iron increases NFkB activity in endometriotic stromal cells (Alvarado-Dı́az
et al., 2015) and it has been speculated that the alternative NFkB pathway
may be responsible for the stimulation of inflammation by iron overload in
endometriotic women (González-Ramos et al., 2012). However, the contri-
bution of iron to NFkB remains controversial (Hayakawa et al., 2003).

There is also the significant possibility of an interaction between NFkB and
peroxisome proliferator-activated receptor (PPAR)g, a nuclear transcription
factor involved in the inflammatory response (Daynes and Jones, 2002) and
implicated in the pain experienced by endometriotic women (Moravek et al.,
2009; McKinnon et al., 2010). The exact mechanism by which PPARg
agonists attenuate the inflammatory response, however, is not yet clear,
but previous evidence has shown that the natural ligand for PPARg,
15-deoxy-delta-12, 14-prostaglandin J2 (15dPGJ2) also represses NFkB
(Castrillo et al., 2000; Straus et al., 2000), raising the possibility that some
of the anti-inflammatory effects ascribed to the PPARg agonist may be
PPARg independent. In endometrial stromal cells, both pioglitazone and cigli-
tazone attenuate the production of IL-6 and IL-8 in a PPARg-independent
mechanism (McKinnon et al., 2012a) and pioglitazone significantly reduces
the concentration of TNFa-stimulated p65 (Ohama et al., 2008).

Targeting the NFkB pathway in endometriosis
As NFkB regulates numerous physiological processes and contributes to the
pathology of several human diseases, there has been a great deal of interest in
designing pharmacological methods to intervene in its activity (Gilmore and
Herscovitch, 2006). Given the huge number of compounds already devel-
oped, we have focused only on those that have shown either in vitro or clinical
potential in endometriosis and divided these into molecules that function
prior to the removal of IkB from the NFkB complex (upstream) and those
that function after the removal of IkB and the translocation of the complex
to the nucleus (downstream).

Upstream modulation of NFkB activity has been trialled in endometriosis
via inhibition of the catalytic subunits that mediate IkB phosphorylation and
its removal from the NFkB complex and subsequent proteasomal degrad-
ation (Fig. 2). BAY 11-7085, a synthetic compound that inhibits IkB phos-
phorylation (Pierce et al., 1997), decreased cell proliferation and DNA
synthesis and induced apoptosis in endometriotic stromal cells (Nasu
et al., 2007). In a heterologous nude mouse model, it decreased lesion size
and increased apoptotic markers (González-Ramos et al., 2008). Bortezo-
mib, a proteasome inhibitor, reduced the endometriotic lesion size in a trans-
planted endometriosis model using Wistar rats and decreased proliferating
cell nuclear antigen (PCNA) and Ki67 expression (Celik et al., 2008),
whereas N-Tosyl-L-Phenylalanine Chloromethyl ketone (TPCK) also
showed anti-NFkB activity in primary stromal cells isolated from endome-
trioma (Yamauchi et al., 2004). Pyrrolidine dithiocarbamate (PDTC),
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which functions as both an antioxidant effects and IkB-ubiquitin ligase (Haya-
kawa et al., 2003) decreased inflammation, angiogenic factors and matrix
metalloproteinases (MMP) in vitro in both endometrial epithelial (Zhang
et al., 2011) and stromal cells (Zhang et al., 2010a, b), all of which were pref-
erential in endometriotic compared with endometrial cells. Furthermore, in a
heterologous transplanted endometriosis model in Wistar rats, PDTC
mediated a reduction in lesion size (Celik et al., 2008).

Downstream of the NFkB complex, it is also possible to inhibit the tran-
scriptional activity of this pathway via disruption of NFkB translocation to
the nucleus and the subsequent DNA binding (Fig. 2). The anti-inflammatory
cytokines IL-10 and IL-13 suppress nuclear localization of NFkB and increase
the IkB mRNA transcription (Lentsch et al., 1997) and in endometriotic
stromal cells, IL-10 treatment significantly reduces the production of

TNFa-induced IL-6 but not IL-8 production (Tagashira et al., 2009). Blocking
the specific NFkB DNA-binding sites at promoter regions with decoy oligo-
nucleotides is another possible strategy (Khaled et al., 1998) that has been
used successfully with endometriotic stromal cells in vitro as it was shown
to suppress IL-1b-induced RANTES production and MCP-1 activity (Xiu-li
et al., 2009).

Pharmaceuticals with off-target effects on NFkB have also been consid-
ered for endometriosis treatment. Thalidomide inhibits NFkB through the
suppression of IkB degradation (Majumdar et al., 2002). Treatment of endo-
metriotic stromal cells with thalidomide inhibited TNFa-stimulated IL-8 pro-
duction and secretion (Yagyu et al., 2005) and reduced the size of autologous
transplanted endometriotic lesions in rat models (Azimirad et al., 2014).
Thiazolidinediones, ligands for PPARg, which may have PPARg-independent

Figure 2 The NFkB signalling pathway and its inhibition in endometriosis. Binding to cell membrane receptors stimulates both the canonical and alter-
native NFkB signalling pathways. Stimulation of the canonical NFkB pathway leads to the phosphorylation of IKKb. IKKb is part of the IKK complex along
with IKKa and IKKg and an activated IKKbphosphorylates the inhibitory protein IkB preferentially on p50–p65, removing it from the complex and targeting
it for proteasomal degradation. The unbound p50–p65 complex translocates into the nucleus and stimulates gene transcription. The PPARg nuclear tran-
scription factor may also interact with p50–p65 complex and suppress gene transcription. Extracellular molecules, including inflammatory mediators, oxi-
dative stress markers and iron also activate the alternative NFkB pathway. Binding of these molecules to cell membrane receptors leads to activation of the
NIK, which in turn phosphorylates IKKa dimers preferentially that remove IkB from the p100-Rel B complex. Removal of the IkB protein allows a partial
degradation of the p100 protein to p52 and the subsequent p52-Rel B dimer to translocate to the nucleus and stimulate gene transcription.
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mechanism in endometriotic stromal cells (McKinnon et al., 2012a) and ori-
ginally developed for diabetes treatment, reduced the size of endometriotic
lesions in both rats (Lebovic et al., 2004) and primates (Lebovic et al., 2007).
These drugs, however, also produce adverse effects on skeletal health
(Bodmer et al., 2009). Non-steroidal anti-inflammatory drugs (NSAIDS),
such as celecoxib, inhibit cyclooxygenase (COX)-2 and also interact with
NFkB in leiomyoma cells (Parket al., 2014). In an in vitroexperiment celecoxib
also decreased cellular proliferation of endometrial epithelial cells (Olivares
et al., 2008). Sulindac also decreased RANTES through an NFkB mechanism
(Wieser et al., 2005). However, neither of these NSAIDs reduced the size of
a surgically induced endometriotic lesion in a mouse model significantly more
than any other NSAIDs (Efstathiou et al., 2005).

Natural occurring compounds may also represent possible endometriosis
treatments, mediated through their antioxidant effects on NFkB. Resvera-
trol, a compound present in red wine, modulates NFkB activity (Leiro
et al., 2005) and significantly reduced the size of surgically induced endome-
triotic lesions of nude mice (Bruner-Tran et al., 2011) and reduced vascular
density in a BALB/c mouse model (Ricci et al., 2013). In both in vitro and
animal models resveratrol reduced cell proliferation and increased apoptosis
of endometrial epithelial cells (Ricci et al., 2013; Rudzitis-Auth et al., 2013) as
well as reducing peritoneal fluid MCP1, VEGF (Ergenoğlu et al., 2013; Ozcan
Cenksoy et al., 2015), IL-6, IL-8 and TNFa concentrations (Bayoglu Tekin
et al., 2015). Similarly, epigallocatechin-3-gallate (EGCG) a catechin found
in green tea also interacts with NFkB (Khan et al., 2006) and significantly
reduced surgically induced endometriotic lesions in mice (Ricci et al.,
2013). Parthenolide, the active ingredient from the medical herb feverfew
(Tanacetun parthenium L.), inhibited NFkB activity (Kwok et al., 2001) and
reduced the inflammatory response in endometriotic stromal cells isolated
from endometriomas (Takai et al., 2013). Curcumin, a naturally occurring
polyphenol (Cao et al., 2005), attenuated IL-1b induced MIF secretion
(Veillat et al., 2009) and TNFa-induced inflammation (Kim et al., 2012) in
endometriotic stromal cells, as well as reducing MMP3 expression and
lesion size in BALB/c mice (Jana et al., 2012).

It is possible that these compounds mediate anti-endometriotic activity.
Owing to their low concentrations in the commonly consumed products
of which they are found, it is unlikely, however, that they will produce
lasting effects through natural consumption. However, through a manufac-
turing process it may be possible that the concentrations used to produce
the effects observed in vitro and in animal models can be reproduced.
Whether they will be at concentrations that are also clinically effective in
human studies is not yet clear as significantly more information is still required
about their bioavailability, metabolism and potential side effects.

There is also the potential for combinational therapy that incorporates an
NFkB targeting compound with another molecule. The combination of cel-
ecoxib with the PPARg agonist rosiglitazone significantly reduced the size of
surgically induced lesions in mice (Olivares et al., 2011) compared with the
individual use of these drugs, although an antagonizing effect was observed
when pairing celecoxib with the aromatase inhibitor anastrozole (Olivares
et al., 2013). Pycnogenol, from the bark of the French maritime pine (Pinus
pinaster), has shown anti-NFkB activity in endothelial cells (Peng et al.,
2000) and used in combination with oral contraceptives showed promising
results on dysmenorrhea, compared with use with contraception alone
(Maia et al., 2013, 2014). Resveratrol and oral contraceptives in combination
also showed a greater decrease in aromatase and COX expression than in
individual therapy (Maia et al., 2012).

The adverse effects associated with modulating such a ubiquitously
employed pathway may also limit therapeutic targeting of the NFkB
pathway. Given the importance of NFkB to immune regulation, it may not
be feasible to inhibit this pathway long-term as it may suppresses the
host-immune response and leave the patient vulnerable for infection, an
effect observed in animal models (Lavon et al., 2000). Furthermore, a
number of the targeted mechanisms in this pathway are regulatory proteins

that control numerous other functions within the cell and thus their inhibition
may also lead to other unwanted side effects (Yamamoto and Gaynor, 2001).

Both embryotoxicity and teratogenicity are also important considerations
given the demographic characteristics of endometriotic women. Of the drugs
that interact with the NFkB pathway, thalidomide has a dire history and will
be unlikely to have a useable reputation for women with endometriosis.
PDTC has also shown some teratogenicity on zebrafish models (Tilton
et al., 2006) and the thiazolidinediones are categories C class pregnancy
drugs and are currently not indicated during pregnancy. Sulindac also pro-
duced cleft palates in mouse models (Montenegro and Palomino, 1990)
and high concentration of resveratrol was toxic in chick embryo toxicity
assays (Venturelli et al., 2013). Lastly, the parthenolide like compounds
have recently been indicated as possibly embryotoxic (Amorim et al., 2013).

Summary
A constitutive activityof NFkB has been observed in endometriotic cells both
in vivo and in vitro. Furthermore, inflammation, oxidative stress and hormones
stimulate this pathway in endometriotic tissue and it therefore represents a
potential target for endometriosis treatment. Given the central role of
NFkB in mediating the immune response however, it is a concern that target-
ing its activity might also impair the body’s natural ability to remove ectopic
tissue. Targeting this pathway successfully therefore requires a balance
between the suppression of the immune response and the induction of its
apoptotic activity. Both upstream and downstream modulation of NFkB
are viable approaches with particular promise in targeting proteasomal deg-
radation of IkB. Such a balance may be achievable by combining a moderate
inhibition of NFkB through naturally occurring compounds with additional
targets, similar to other drugs that have off-target effects on this pathway.
However, problems with reputation (thalidomide) and adverse side effects
(thiazolidinediones) of some compounds will most likely limit their clinical
applications. The ability of naturally occurring compounds to inhibit NFkB
and their minimal side effects may provide the opportunity to combine
these compounds with other drugs.

The MAPK pathways in endometriosis
The MAPK pathways encompasses a collection of kinase signalling pathways,
organized in a three tier hierarchical structure (1st-MAPK, 2nd-MAP2K and
3rd-MAP3K) with abundant crosstalk, that play a significant role in linking the
extracellular environment with fundamental cellular responses. The MAPK
signalling kinases are subdivided into the three families (Fig. 3): extracellular
signal-regulated kinase (ERK), p38 and c-Jun-N terminal kinase (JNK)
(Yoshino et al., 2004). Within these subfamilies, six distinct terminal
MAPKs have been characterized; ERK1/2, ERK3/4, ERK5, ERK7/8, which
comprise the ERK family, JNK1/2/3, which make up the JNK family, and
the p38 subunits a/b/g/d, which comprise the p38 family (Dhillon et al.,
2007). The extracellular environment activates all three pathways with
ERK predominantly activated by inflammation and growth factors and JNK
and p38 predominantly activated by stress and inflammation. Once activated,
the MAPKs initiate a cellular response via nuclear transcription factors.

The ERK1/2 pathway
The ERK pathway is the most comprehensively studied of the mammalian
MAPK pathways and was once synonymous with cell proliferation, although
is now known to regulate other cellular responses (Dhillon et al., 2007). At
the cell membrane receptor, tyrosine kinases associate with small guanosine
triphosphate proteins (GTPases) known as Ras (H, K and N-Ras). Once acti-
vated, these Ras GTPase mediate the tertiary Raf kinases, which in turn acti-
vates the secondary kinases MEK1/2 and subsequently the terminal kinase
ERK1/2 (Little et al., 2013; Fig. 3). The downstream effects of ERK
pathway activation is the regulation of over 160 proteins, most of which
are nuclear and alter gene expression (Yoon and Seger, 2006).
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The increased ERK activation in endometriotic tissue suggests that it may
have a role in endometriosis pathogenesis. Increased phosphorylated ERK
has been reported in primary eutopic epithelial cells (Yotova et al., 2011; Mat-
suzaki and Darcha, 2015), as has a prolonged phosphorylation of ERK in
endometrial stromal cells from women with endometriosis compared with
women without endometriosis (Velarde et al., 2009). Furthermore, in both
epithelial and stromal cells in vitro there is a significantly increased

phosphorylation of ERK in cells derived from endometriomas (Ngô et al.,
2010) and DIE (Leconte et al., 2011) than in cells derived from normal endo-
metrium. The factors that lead to a constitutive activation of ERK in endomet-
riosis are not yet resolved, although one possibility that presents an attractive
hypothesis is the reduction in the inactivating enzyme dual-specificity phos-
phatase (DUSP2) (Wu et al., 2011), through a hypoxia induced expression
of miRNA-20a in endometriotic tissue (Lin et al., 2012).

Figure 3 MAPK pathways and their inhibition in endometriosis. The MAPK pathways is a collection of signalling pathways organized in a three tier struc-
ture. Through a series of membrane receptors, including cytokine receptors, toll-like receptors and growth factor receptors, the MAPK pathways are sti-
mulated by many components of the endometriotic microenvironment. These membrane receptors stimulate a series of MAP3K signalling molecules that
transmit this signal to the secondary MAP2K kinases, followed by the MAPK kinases. The ERK1/2 pathway is predominantly activated upstream by the Raf
kinases (Raf-1, B-Raf and A-Raf), which have become a significant target for pharmaceutical modulation. These kinases signal through MEK1/2 to activate
ERK and initiate nuclear translocation. The p38 and JNK pathways share a number of common upstream molecules in the MAP3K level that include TAK1,
ASK, MLK3 level but diverge at the secondary MAP2K level with MEK3/6 mediating p38 activation and MEK4/7 mediating JNK activation. Once activated all
three MAPK translocate into the nucleus and bind to transcription factors. These pathways can be targeted at numerous levels and the pharmaceutical
compounds that have been trialled in endometriosis are marked at their location of action.
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The endometriotic microenvironment may stimulate increased ERK activ-
ity in ectopic cells. Both TNFa and IL-1b activate ERK and induce the expres-
sion of IL-8 and IL-6, although only IL-1b induced-IL-8 secretion and COX2
production could be attenuated by the ERK1/2-specific inhibitor PD98059
(Yoshino et al., 2004). Another study, however, found that ERK inhibition
had no effect on the IL-1b-mediated COX2 expression in endometriotic
stromal cells, but that it was rather through p38 activation (Huang et al.,
2013). TGFb-induced ERK activation through a Raf-dependent pathway
has also been identified in endometrial epithelial and stromal cells (De La
Garza et al., 2012). The chemokine MCP1 also elicits a significant induction
of PGE2 (Carli et al., 2009) as well as VEGF, IL-8 and MCP-1 via an ERK-
specific pathway in human endometriotic cells (Veillat et al., 2010), and
PGE2 in turn activates ERK in ectopic endometrial stromal cells (Sun et al.,
2003).

Oxidative stress may also contribute to ERK activation. H2O2 induces ERK
phosphorylation in endometriotic stromal cells (Yoshino et al., 2004) with a
stronger induction compared with stromal cells from women without endo-
metriosis (Andrade et al., 2013). An increase in oxidative stress markers was
observed in stromal and epithelial cells derived from women with endomet-
riosis in a similar pattern to phosphorylated ERK levels, however, no direct
relationship between oxidative stress and pERK activation was confirmed.
Endocrine disruptors, such as diethylhexyl phthalate (DEHP) have also
been linked with a possible pathogenesis of endometriosis through the induc-
tion of oxidative stress and stimulation of ERK activity (Cho et al., 2015).

Estrogen also regulates ERK activation in endometriosis. Treatment with
17b-estradiol increases phosphorylated ERK expression in eutopic epithelial
cells from women with and without endometriosis at similar rates between all
cell types (Zhang et al., 2010a). Treatment of ESC with E2 conjugated to
bovine serum albumin (E2-BS) also increases phosphorylated ERK expres-
sion in a dose-dependent manner (Cheng et al., 2012), indicating the
effects are mediated at the cell membrane, as E2-BS cannot penetrate
cells. This effect may also occur on immune cells with 17b-estradiol stimulat-
ing the release of MCP1 throughactivation of ERK in monocytes isolated from
an endometriotic pelvic cavity (Lee et al., 2012). Furthermore, in endometrial
epithelial cells, TNFa-induced activation of ERs mediates an increase in ERK
activation (Gori et al., 2011).

The p38 pathway
Environmental stress stimuli including heat, osmotic shock and inflammatory
cytokines influence the p38 MAPK pathway (Zarubin and Han, 2005). This
diverse range of stimuli is indicative of the numerous tertiary level
(MAP3K) kinases that participate in p38 activation (Fig. 3). These tertiary
kinases include, but are not limited to TAK1 (Taniguchi et al., 2009), ASK1,
DLK/MUK/ZPK (Zarubin and Han, 2005). Many MAP3Ks stimulate both
p38 and JNK, resulting in a convergence of the two pathways. Divergence
of these two pathways occurs at the secondary kinase level with the activation
of MEK3 and MEK6 kinases leading to the phosphorylation of p38 at a con-
served amino acid sequence, threonine–glycine–tyrosine. Four isoforms
of p38 have been characterized;a,b,g,d, of which p38a is the best character-
ized. Upon activation p38a translocates into the nucleus and activates
nuclear transcription factors (Fig. 3).

At present, there is little data to confirm an over-activation of p38 in endo-
metriotic cells. The endometriotic microenvironment, however, contains
high concentrations of numerous molecules that activate this pathway, sug-
gesting that constitutive activation in ectopic endometrial cells is possible.
It has been suggested that in normal endometrium p38 activity is stronger
in epithelial than in stromal cells (Seval et al., 2006), although most of the
current data has been collected in stromal cells. In endometriotic stromal
cells, IL-1b, TNFa and H2O2 stimulate p38 phosphorylation, while its sup-
pression attenuates IL-1b-induced IL-6, IL-8 (Yoshino et al., 2004) and
VEGF secretion (Huang et al., 2013), as well as COX2 mRNA production
(Yoshino et al., 2004). MIF induces VEGF, IL-8 and MCP-1 secretion

through p38 activation (Veillat et al., 2010), as well as reduced COX2 expres-
sion, which may be specific to p38 (Carli et al., 2009). In the immortalized in
vitro epithelial model of peritoneal endometriotic cells (12Z), TNFa induces
activation of p38 and concurrent treatment with specific inhibitors blocks
IL-8, IL-6, MCP-1 and granulocyte macrophage colony-stimulating factor
(GMCSF) secretion, as well as N-cadherin mRNA production (Grund
et al., 2008).

The activation of p38 may have a significant role in the regulation of
non-endometriotic cells in the peritoneal microenvironment. MCP1
release from monocytes after treatments with peritoneal fluid is attenuated
by a specific p38 inhibitor (Lee et al., 2012), although this occurs equally in
cells from women with and without endometriosis. IL-1b stimulates the
thymic stromal lymphopoietin expression in Th2 cells by p38 inhibitors
(Urata et al., 2012). CCL20-induced Th17 cell recruitment to the peritoneal
cavity of endometriotic women is regulated by p38 and other MAPK path-
ways (Hirata et al., 2010). In a feed-forward mechanism, the Th17 cells in
turn secrete IL-17 which induces IL-8 secretion through p38 and other
MAP kinases pathways in endometriotic stromal cells (Hirata et al., 2008).
Lastly, p38 activation occurs in sensory nerve cells of the rostral–ventrome-
dulla in a BALB/c mouse with surgically induced endometriosis (Chen et al.,
2015), suggesting a possible role for this pathway in inflammation-mediated
endometriotic pain (McKinnon et al., 2015).

Estrogen may also regulate p38 in endometriosis. Estradiol treatments
of endometrial stromal cells increase p38 phosphorylation within two
minutes and can be inhibited by ER antagonists (Seval et al., 2006).
17b-estradiol stimulates p38 activation via ERb in endometrial stromal
cells (Chen et al., 2014) and, in combination with the endocrine disruptor
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), influences macrophage po-
larization into an M2 phenotype, which is reduced by p38 inhibition, but
not via JNK or ERK inhibition (Wang et al., 2015). Another endocrine disrupt-
or diethylhexyl phthalate increases the generation of ROS and decreases anti-
oxidant enzymes through both ERK and p38 (Cho et al., 2015), indicating the
possible influence of environmental factors on this pathway.

Given the complexity of the microenvironment, it is not surprising
that negative feedback loops exist to limit the influence of chronic inflamma-
tion and the p38 pathway may have a significant role in this negative regula-
tion. Lipoxin A4 (LXA4) activates biochemical pathways necessary for the
resolution of acute inflammation (Serhan et al., 2008). LXA4 attenuates in-
flammation, angiogenic markers and estrogen metabolism as well as the
endometriotic lesion itself in a surgically induced C57BL/6J mouse model
(Kumar et al., 2014) and importantly this effect of LXA4 is mediated
through the p38 pathway in endometriotic stromal cells (Wu et al., 2014).
Sheddases also function in a feedback mechanism by cleaving receptors
from the cell membrane. Sheddases activate MAPK pathways inducing A dis-
integrin and Metalloproteinases (ADAM)-10 and 17 that influence the recep-
tor and ligand composition at the membrane, resulting in constitutive action
of compensatory pathways, including p38 (Miller et al., 2013).

The JNK pathway
Environmental stimuli for the JNK pathway include cytokines, growth factor
deprivation, and G protein coupled receptors and stress signalling (Weston
and Davis, 2002). In this pathway, the JNK protein represent the terminal
(MAPK) kinase with up to 10 isoforms of JNK identified through alternative
splicing of three different genes ( jnk1, jnk2 and jnk3). JNK can be activated
upstream via the MEK4 and MEK7 kinases, which in turn are activated by
several MAP3Ks that share similarities with those of p38, including TAK1
(Taniguchi et al., 2013), MEKK1-4, MLL2/3, YTpl-2, DLK, TAO1/2
(Dhillon et al., 2007). Stress signalling pathways feature a large number of
MAP3K, reflecting the many possible molecules that can mediate a stress re-
sponse. Once activated, the terminal kinase JNK translocates to the nucleus
and activates transcription factors, of which c-Jun is a major target, enhancing
AP-1 transcriptional activity (Adler et al., 1992). JNK and NFkB often operate
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in opposition, as anti-apoptotic effects of TNFa stimulation are mediated by
NFkB-induced genes that suppress JNK activity (Javelaud and Besançon,
2001; Tang et al., 2002; Fig. 3).

Similar to p38, there is currently little data on whether there is an over-
activation of the JNK pathway in endometriotic cells. Additionally, p38 and
JNK share many activating molecules and upstream regulators. IL-17
(Hirota et al., 2005), IL-4 (OuYang et al., 2008) and IL-1b (Urata et al.,
2012) mediate JNK phosphorylation, as does IL-1b, TNFa and H2O2

(Yoshino et al., 2004). One extracellular molecular that may be specific to
JNK activation is indoleamine 2,3-dioxygenase-1 (IDO1), as treatment of
endometrial stromal cells with this compound stimulates a phosphorylation
of JNK, but not of ERK or p38, and is able to stimulate an increase in prolif-
eration, p53 expression and COX2 and MMP9 production (Mei et al.,
2013). Estrogen may also play a role, as stimulation of TSLP by estrogen
induces JNK phosphorylation and the subsequent secretion of IL-8 and
MCP-1 (Chang et al., 2014). It has also been confirmed from miRNA profiling
that some miRNAs in endometriotic tissue interact with downstream targets
of the JNK pathway, such as c-jun (Teague et al., 2010).

Targeting the MAPK pathways in endometriosis
Given the upstream convergence of the three MAPK pathways (ERK1/2, p38
and JNK) attempts have been made to target shared upstream mediators.
Specific inhibitors of B-raf, vemurafenib and dabrafenib, have been approved
for use in melanoma, however, significant side effects, including the develop-
ment of cutaneous squamous-cell carcinomas, exist (Su et al., 2012). Similar
side effects have also been observed for the MEK inhibitor trametinib
(Menzies et al., 2015), although at a lower frequency than for dabrafenib.
Raf-1 represents another upstream mediator of ERK activity and inhibition
with GW5074 attenuated EM42 and primary stromal cells proliferation
and invasion (De La Garza et al., 2012).

Sorafenib is a multi-kinase inhibitor which has activity on the MAPK
pathway at both Raf-1 and B-RAF and also has activity on receptor tyrosine
kinases VEGF receptor 1, 2 and 3, platelet-derived growth factor receptor
b (PDGFR-b) and c-Kit (Wilhelm et al., 2004). A significant decrease in endo-
metrial stromal cell proliferation, as well as a reduction in surgically induced
endometriotic lesions in a heterologous nude mouse model, was observed
with high concentration treatments of sorafenib (Leconte et al., 2015).
Sorafenib has also been associated with numerous side effects, the most
common of which include palmoplantar erythrodysesthesia which occurs
in 76.3% of patients, diarrhoea (68.8%), alopecia (67.1%), rash (50.2%),
fatigue (49.8%), weight loss (46.9%), hypertension (40.6%) and anorexia
(31.9%) (Krajewska et al., 2015). In a phase III clinical trial on thyroid
cancer patients, these side effects lead to dose interruptions, reductions
and withdrawals in 66.2, 64.3 and 18.8% of patients, respectively, over a
28 day treatment cycle (Brose et al., 2014).

Additional teratogenic and embryogenic effects should also be considered
with the MAPK targeting drugs. Vemurafenib can cross the placenta in rat
models, although no tetragenic effects were observed (Grunewald and
Jank, 2015). In humans, its use during pregnancy was documented in one
patientwho experienced fetal growth retardation during gestation with a sub-
sequent recovery after birth (Maleka et al., 2013). Dabrafenib on the other
hand has shown reproductive toxicity in rats and dogs (Grunewald and
Jank, 2015). Data from clinical trials on reproduction, however, are limited
due to ethical concerns and while animal studies have been performed, the
significant variations between the reproductive systems of different animals
make it difficult to draw effective conclusions from these studies.

It is possible that a reduced side effects profile may be achievable if further
downstream targets with an over-activity in endometriotic cells are identi-
fied. At the tertiary kinase level several small molecular weight inhibitors
have been specifically designed to target ERK, p38 or JNK. The inhibition
of ERK in endometriosis-derived cells with A771726 (Leconte et al., 2011),
UO126 (Matsuzaki and Darcha, 2015) and higher concentrations of

PD98059 (Ngô et al., 2010) decreased cell proliferation. Some of these
have reached the stage of animal and clinical trials for other chronic inflamma-
tory conditions and may be worth investigating in endometriosis. FR180204
alleviates clinical arthritis and hypersensitivity elicited by an inflammatory
reaction in collagen induced arthritis in a DBA/1 mouse model (Ohori
et al., 2007) and SCH772984 has been successful in preclinical testing in
cell lines that were BRAF and MEK inhibitor-resistant (Morris et al., 2013).

Small molecular weight inhibitors have also been developed for p38
and trialled both in vitro and in animal studies for use in endometriosis. The
subcutaneous injection of 30 mg/kg FR167653 mediated a reduction in
endometriotic lesion size and reduced both IL-6 and MCP-1 in the peritoneal
fluid of BALB/c mice after a surgical transplantation of endometriotic lesions
(Yoshino et al., 2006). SB203580 reduced IL-1b secretion and endometriotic
lesion size in endometriotic stromal cells (Huang et al., 2013), as well as
reducing TNFa, IL-1b, MMP3 and MMP9 mRNA and protein concentra-
tions in cells isolated from the peritoneal cavity of an induced mouse
model of endometriosis (Zhou et al., 2010). SB202190 attenuated cell pro-
liferation of endometriotic stromal cells (OuYang et al., 2008). However,
p38a inhibitors are plagued by liver toxicity that suggests specific on-target
effects (Xu et al., 2008) that may significantly limit their potential use. Both
VX-745 and BIRB 796 failed phase II clinical trials due to high liver toxicity
(Dambach, 2005). The inhibition of p38a may also antagonize the
JNK-c-jun pathway, as judged by a conditional deletion in mice (Hui et al.,
2007).

The utility of targeting JNK in endometriosis is yet to be fully realized, as it is
the least characterized pathway. SP600125 is a small molecular weight inhibi-
tor developed to specifically target JNK (Bennett et al., 2001) and initial
studies in both mouse models and in in vitro analysis of human synoviocytes,
as a model of rheumatoid arthritis, it was capable of reducing the inflamma-
tory response (Han et al., 2001). SP600125 also attenuated IL-1b induced in-
flammation in endometriotic stromal cells (Yoshino et al., 2004). The
bentamapimod, PGL5001 is registered for a Phase IIa clinical trial in the treat-
ment of endometriosis although there is very little publicly available informa-
tion on the effectiveness of this compound in vitro (clinicaltrails.gov registry
number; NCT01630252). However, similar to p38 inhibitors, it is possible
that JNK inhibitors may be plagued by adverse effects as specific jnk mouse
knockout models spontaneously develop intestinal tumours (Tong et al.,
2007). Therefore, as long-term therapy is required to treat chronic inflamma-
tion, global inhibitors of JNK1 and p38a by orally applied kinase inhibitors at
this stage appear unlikely candidates (Gaestel et al., 2009).

Finally, some naturally occurring substances interact with the MAPK
pathways and may be beneficial for endometriosis treatment alone, or in
combination. Puerarin, a phytoestrogen, was shown to inhibit E2-BSA
mediated proliferation, although not as strongly as the ERK inhibitor
UO126 (Cheng et al., 2012). EGCG from green tea had a moderate effect
on JNK phosphorylation with a concomitant effect on VEGFC, which may
mediate the angiogenic potential of endometriotic lesions (Xu et al., 2011).
Artemisia leaves (APE) induced apoptosis of 12Z and 11Z endometriotic epi-
thelial cells, which could be attenuated by the specific p38 inhibitor, SB203580
(Kim et al., 2013).

Summary
The MAPK pathways represent a series of pathways and interconnecting
kinases that are influenced by the endometriotic microenvironment. The
strongest evidence for constitutive activity in endometriotic tissue is available
for ERK; however, this may simply be due to it being the most extensively
studied. Importantly, all three pathways are influenced not only by inflamma-
tion, but also by oxidative stress and hormones. It is also possible that the
MAPK pathways, and in particular JNK, have a significant role in the feedback
mechanisms that limit the overexpression of other pathways activated in the
endometriotic environment and thus combination targeting could be consid-
ered. Current strategies for targeting this pathway have focused on upstream
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molecules, but appear associated with significant side effects that are not
tolerable for endometriosis treatment. Downstream targeting of kinases
that are dysregulated in endometriosis may reduce the adverse effects;
however, for the p38 and JNK pathways liver toxicity and other side effects
may represent a problem. Therefore in conclusion, while a dysregulation of
this pathway in endometriotic microenvironment may occur, more specific
targeting is required.

The PI3K/AKT/mTOR pathway in
endometriosis
The PI3K/Akt/mTOR pathway regulates cell growth, proliferation, differen-
tiation and apoptosis in response to both intra- and extracellular signals in-
cluding nutrients, energy and oxygen levels, inflammation and growth
factors (Hennessy et al., 2005). mTOR exists as either the mTOR complex
1 (mTORC1) or complex 2 (mTORC2). In mTORC1, the most extensively
studied complex, mTOR is bound to four additional proteins; regulatory-
associated protein of mTOR (raptor), mammalian lethal with Sec13 protein
8 (mLST8), proline rich AKT substrate (PRAS40) and DEP-domain-containing
mTORinteracting protein (Deptor) and representsan importantnodal point in
this pathway. Upstream, the most common mediator of mTOR activity is the
membrane-bound phosphoinositol 3 kinase (PI3K), a membrane-bound
phospholipid that together with AKT, forms the core of the PI3K/AKT/
mTOR pathway (Fig. 4).

Stimulation of the PI3K/AKT/mTOR pathway begins once PI3K is
activated leading to the phosphorylation of phosphatidylinositol-4,5-
biphosphate (PIP2) to phosphatidylinositol-3,4,5 triphosphate (PIP3).
Proteins with a pleckstrin homology domain, such as phosphoinositide-
dependent kinase 1 (PDK1) and AKT are co-recruited to PIP3 and their
subsequent proximity results in AKT phosphorylation by PDK1 (Cantley,
2002). Phosphatase and tensin homolog deleted on chromosome ten
(PTEN) functions as a negative regulator of this reaction by dephosphorylat-
ing PIP3, back to PIP2. Once phosphorylated, AKT subsequently regulates
downstream activation of mTOR via an interaction with tuberin sclerosis
complex (TSC)2 (Manning, 2004). TSC2 exists as a heterodimer with
TSC1 and this complex is a negative regulator of mTOR activity through
their interaction with GTPase Ras homology enriched in brain (Rheb) (Li
et al., 2004). Downstream targets for mTOR are predominantly proteins
involved in the translational machinery and ribosomal recruitment to
mRNA (Hay and Sonenberg, 2004; Fig. 4).

Crosstalk with other kinases is common in the PI3K/AKT/mTOR
pathway. IKKb interacts with TSC2 and influences mTOR mediated
protein synthesis (Lee et al., 2007; Fig. 4) and conversely AKT can influence
both IKKb and phosphorylate the p65 subunit of NFkB (Nidai Ozes et al.,
1999; Sizemore et al., 1999). Interactions are also possible between the
PI3K and MAPK pathways. The upstream mediator of the MAPK pathways,
Ras-GTP, can bind and activate PI3K (Rodriguez-Viciana et al., 1994) and an
ERK mediated phosphorylation of TSC2 also occurs (Roux et al., 2004).
Importantly, however, these phosphorylation sites are different to that
mediated by AKT phosphorylation. An interaction between p38 and
mTOR has also been reported with the downstream target of p38 activation
MK2, phosphorylating TSC2 at serine 1210 altering mTOR activity (Li et al.,
2003).

mTOR maintains cellular viability by striking a balance between the anabol-
ic and catabolic processes, such as protein synthesis and autophagy. Protein
synthesis is regulated through the activation of the mTOR substrates S6K and
4EBP-1, which translate a subset of messenger RNAs that promote cell
growth and proliferation in a phospho-specific manner. When 4E-BP1 is
dephosphorylated, it sequesters the eIF-4F cap-binding protein and inhibits
its assembly into the eIF-4F cap-binding complex attenuating cap-dependent
translation (Pause et al., 1994). S6K is also able to mediate protein translation
through multiple substrates, such as S6K1aly/REF-like target (SKAR),

programmed cell death 4 (PCD4), eukaryotic initiation factor 4B (eIF4B)
and ribosomal protein S6 (Ma and Blenis, 2009). Under growth promoting
conditions, the S6 protein, a component of the 40S ribosomal unit, is pri-
marily responsible for stimulating high rates of protein synthesis (Gressner
and Wool, 1974).

Autophagy is a catabolic process whereby the cell liberates intracellular
stores of nutrients by degrading cytoplasmic proteins in lysosomes. During
periods where nutrition and growth factors are in abundance, mTOR inhibits
autophagy. If nutrients and growth factors are withdrawn or oxidative stress
occurs, inhibition of mTOR allows autophagic process to increase, resulting
in the production of amino acids that function as a feedback loop to again ac-
tivate mTOR and attenuate the autophagic response (Yu et al., 2010). Given
the presence of oxidative stress in the endometriotic microenvironment, the
potential for activation of mTOR mediated autophagy should be an import-
ant consideration.

At present, little is known about the function of the PI3K/AKT/mTOR
pathway in endometriosis, although there is some evidence of a dysregula-
tion. Mutations in the PTEN gene have been identified in 21% of endometrio-
mas (Sato et al., 2000). Phosphorylated AKT has been observed in ovarian
endometriosis of post-menopausal women (Yagyu et al., 2006), and
increased pAKT is present in eutopic and ectopic endometrial cells of
women with endometriosis, compared with those from women without
(Cinar et al., 2009). An increased pAKT has also been observed in stromal
cells from endometrioma compared with cells from the endometrium of
women without endometriosis (Yin et al., 2012). The over-activation of
AKT may also lead to decreased PR expression in endometriosis (Eaton
et al., 2013). Phosphorylated mTOR is increased in ectopic lesions compared
with the eutopic endometrium of women with endometriosis (Guo et al.,
2015) and increased mRNA expression of both AKT1 and 4EBP1 has also
been observed in the eutopic endometrium of women with endometriosis
compared with women without endometriosis (Laudanski et al., 2009).

As a key regulator of the nutrient and growth factor levels, mTORC1 also
contributes to glucose homeostasis, the regulation of iron-free radicals and
oxidative stress. Although much of this work is still in its infancy, some rela-
tionships have been identified. Inhibition of PI3K/mTOR reduces the
GLUT1 membrane localization in lung adenocarcinoma (Makinoshima
et al., 2015) and in cervical cancer the inhibition of AKT/mTOR significantly
inhibits GLUT1 and GLUT4 membrane transport (Rashmi et al., 2014). We
have previously shown an altered regulation of GLUT1 and GLUT4 receptors
in ectopic tissue (McKinnon et al., 2014) and it is therefore possible that this
may be mediated through a dysregulation in the mTOR mechanism, although
it is yet to be investigated in endometriosis. mTOR has also recently been
implicated in iron homeostasis (Bayeva et al., 2012; Guan and Wang, 2014)
and the modulation of ironuptake through regulation of the transferrin recep-
tor (Galvez et al., 2007). A dysregulation of the mTOR pathway in ectopic
tissue could provide a means for iron overload within the endometriotic
cells and a stimulation of oxidative stress.

Over-activation of the mTOR pathway may also be a function of the micro-
environment. IL-8 increases AKT phosphorylation and the induction of the
anti-apoptotic Bcl-2 and survivin proteins (Li et al., 2012) in endometriotic
stromal cells. In the immortalized epithelial 12Z cell line, TNFa stimulates
AKT phosphorylation that is inhibited by wortmannin, a PI3K-specific inhibi-
tor (Grund et al., 2008) and 17b-E2 decreases PTEN expression in both
normal and endometriotic cells (Zhang et al., 2010a). In endometrial tissue
from normal women, the menstrual cycle progression induces an autophagic
response thatdoes not occur in endometriotic women (Choi et al., 2014) and
markers of autophagy are increased in ovarian endometriomas, as is the oxi-
dative marker heme oxygenase 1 (Allavena et al., 2015). Platelet-derived
growth factor (PDGF), epidermal growth factor (EGF) and fibroblast
growth factor 2 (FGF2) all stimulate a phosphorylation of AKT and cell migra-
tion in endometrial stromal cells (Gentilini et al., 2007). Furthermore, the
hyper-proliferative phenotype observed in DIE lesions is associated with
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increased levels of endogenous oxidative stress and activation of the mTOR/
AKT pathway (Leconte et al., 2011).

Targeting the PI3K/AKT/mTOR pathway in endometriosis
In vitro evidence indicates that disrupting the PI3K/mTOR pathway reduces
the proliferation of endometriotic epithelial and stromal cells. Estrogen
down-regulates nometastatic gene 23-H1 (NME1) expression, which med-
iates a subsequent elevation in expression of PCNA, survivin and integrin

(Li et al., 2013) as well as VEGF and IL-8 (Chang et al., 2013), all of which
could be attenuated by LY294002, a specific PI3K inhibitor. Temsirolimus,
a specific mTOR inhibitor, blocked proliferation of endometriotic cell prolif-
eration in vitro and in a heterologous nude mouse model (Leconte et al.,
2011). The inhibition of AKT phosphorylation by MK-2206 in stromal cells
reduced the levels of a target protein p(S256)-forkhead box O1 and
decreased the viability of cells from women both with and without endomet-
riosis (Kim et al., 2014) (Fig. 4).

Figure 4 The PI3K/AKT/mTOR signalling pathway and its inhibition in endometriosis. The mTOR pathway is activated by multiple extracellular stimuli
through numerous cell membrane receptors, including receptor tyrosine kinases and cytokine receptors. Binding to these receptors stimulates PI3K to
mediate the phosphorylation of PIP2 to PIP3, leading to an association between PDK and AKT. PTEN serves as an inhibitory protein in this reaction.
The physical proximity between PDK and AKT leads to the phosphorylation of AKT and subsequent inhibition of TSC1. TSC1 exists as a heterodimer
with TSC2 and through the Rheb GTPase has an inhibitory function against mTORC1, which exits in a complex with four additional proteins bound to
mTOR, including Deptor, Raptor, PRAS40 and mLST8. Activation of mTORC1 leads to the activation of S6K1 and the downstream ribosomal S6
protein, as well as the inhibition of 4EBP1 that subsequently stimulates eIF4E and cap-dependent translation of mRNA and the translation of selected pro-
teins. The mTOR pathway interacts with both the NFkB pathway and the ERK1/2 MAPK pathway through an interaction with TSC2. A negative feedback
loop also via AMPK also connects mTOR with TSC2. Numerous pharmaceutical compounds modulate mTOR activity at different locations some of which
have been trialled in endometriosis.
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Some compounds already in use also exert off-target effects on mTOR
pathway regulation. Metformin, an oral anti-diabetic drug (Stumvoll et al.,
1995) activates 5′ adenosine monophosphate-activated protein kinase
(AMPK), mediating the drug’s effects in muscle, adipose, liver (Zhou et al.,
2001) and breast cancer cells (Zakikhani et al., 2006). AMPK is a negative
upstream regulator of TSC2, which exerts inhibitory effects on mTORC1
(Inoki et al., 2003). A recent clinical study on metformin in endometriosis
found a significant reduction in the symptomatic cases, increased chance of
pregnancy, and a decrease in the levels of serum cytokines, suggesting an anti-
endometriotic potential (Foda and Aal, 2012). Other studies had previously
documented this treatment effect in rat models (Oner et al., 2010; Yilmaz
et al., 2010).

A principle drawbackof targeting the mTOR pathway is that the substantial
crosstalk, as well as critical roles performed by this pathway increases the like-
lihood of unwanted side effects. The mTOR inhibitor temsirolimus, which has
shown promise in reducing endometriotic lesions in in vitroand animal models
(Leconte et al., 2011), is currently approved for treatment of renal cell carcin-
oma and through this use, the class-specific toxicities of these drugs areemer-
ging. Adverse effects commonly include an impact on the haematological,
pulmonary and dermatological systems (Hutson et al., 2008; Eisen et al.,
2012) and while these can be unpleasant they can be medically managed
with close patient monitoring and early intervention with a return to
normal after cessation of therapy (Bellmunt et al., 2008). However, the im-
munosuppressive effects of temsirolimus have also been linked to an increase
in infection of cancer patients (Kaymakcalan et al., 2013) that one study linked
to an increase in fatal adverse effects (Choueiri et al., 2013). Similar to MAPK
inhibitors, there is a suggestion that this class of drugs may be teratogenic, al-
though limited evidence has been obtained due to ethical concerns. Whether
these adverse effects and the need for their medical management have a suf-
ficiently limited impact to warrant the use of temsirolimus in a non-life threa-
tening condition, such as endometriosis, will need be carefully considered
against the symptomology of the patient, the technical difficulty of surgical
removal of the endometriotic lesion and the patients’ response to traditional
therapies (Table I).

Summary
The mTOR pathway plays a significant role in integrating signals from the
extracellular environment into cell viability and proliferation and a number
of kinases within this pathway may be over-active in endometriotic cells.
This pathway therefore represents a potential treatment option for endo-
metriosis. At present, however, even though there are numerous com-
pounds that modulate this pathway, only a few of these have been trialled
in endometriosis. While unwanted side effects still occur, the majority of
these are non-life threatening, medically manageable and dissipate after ces-
sation of treatment, particularly for temsirolimus. Therefore, although at
present there are no clinical trials currently underway, they may have signifi-
cant potential if their class-specific toxicities can be better delineated.

Conclusion
Endometriosis treatment represents a complex clinical challenge and
new therapies are needed. The peritoneal environment of endometrio-
tic women is significantly altered which can lead to an over-activation of
kinase signalling pathways in endometriotic tissue. In this manuscript, we
reviewed threepathways:NFkB, MAPK and PI3K/AKT/mTOR in endo-
metriotic cells. Increased activity of the NFkB pathway in endometriotic
cells and in vitro and animal data supports its potential as a target. Less
data were available on the MAPK pathway activation, although targeting
ERK may have potential. Similarly, the PI3K/AKT/mTOR pathway also
displays promising in vitro results in an endometriosis models. There is

therefore the potential for targeting these and perhaps other pathways
in endometriosis if current limitations and challenges can be overcome.

Limitations and challenges
Although an increase in the activity of many kinases in endometriotic cells
has been identified, a specific kinase dependency for endometriotic
lesions, through an activating genetic mutation is yet to be confirmed.
It is possible, however, that a kinase dependency may stem from the
extracellular environment. Kinase-dependent tumours without activat-
ing mutations, but with an overexpression of kinase ligands have previ-
ously been identified (Simon et al., 1997; Shimizu et al., 1999), as has
the influence of the extracellular environment on the clinical efficacy of
kinases targeting drugs (Jänne et al., 2009). Identifying the kinase depend-
ency forendometriosis will be key to creating an effective kinase inhibiting
therapeutic.

A lack of a specific, single kinase dependency may also present chal-
lenges in regards to acquired drug resistance. Tumour cells are adept
at creating drug resistance by inducing mutations in other kinase signalling
pathways when challenged (Zhang et al., 2009). The ability of the extra-
cellular environment to stimulate multiple signalling pathways could
mean the extracellular environment has multiple possibilities to mediate
tumour growth and that targeting a specific kinase will result in the over-
activation of a compensatory pathway. Therefore, to successfully treat
endometriosis through inhibition of these pathways, more information
on kinase activation, the extracellular environment in endometriosis and
the effects of interrupting this interaction is needed.

Management of the associated toxicity profiles is the most immediate
challenge presented by the use of these drugs with both on-target and
off-target effects responsible for their toxicity. Off-targets effects are in-
herent to the high degree of conservation of the ATP biding sites across
the human kinome, whereas the on-target effects are due to the central
role these kinases play and are cell specific. The off-target effects may be
addressed by drug design strategies and improved binding site specifici-
ties in next generation kinase inhibitors. Careful selection of dosage is
also critical. The specificity of kinase inhibitors decreases as concentra-
tions increase and there is little justification for concentrations above
those required for maximal inhibition of the specific target, a consider-
ation that should also be important during both in vitro and clinical
studies. On-target effects present a more significant problem and will
need to be assessed from a disease-specific point of view and thus
more studies in endometriosis-specific models are needed.

Future directions
While the adverse effects associated with these drugs limits their useful-
ness in endometriosis at present, well-designed clinical strategies could
open the door to their clinical use in the future. As recently proposed
by Santulli et al. (2015a, b) for MAPK inhibitors, the current generation
of drugs could find a use in more severe cases of symptomatic DIE
lesions (Santulli et al., 2015b). These lesions have extracellular environ-
ments that predispose them to increase kinase activation are more
likely resistant to hormonal modulation and represent complicated sur-
gical procedures. If proven to be cytoreductive, these drugs could be
used for short-term treatment prior to surgery to reduce the size and
depth of a lesion. Furthermore, women with strong symptoms may
also be more willing to tolerate the adverse effects short-term. An im-
portant consideration, however, is the potential embryotoxic and
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Table I Pharmaceutical compounds that interact with kinase signalling pathways and trialled in endometriosis treatment.

Signalling
pathway

Compound Iupac name Target Function Reference Functional target
validation

NFkB BAY 11-7085 (E)-3-(4-tert-butylphenyl)sulfonylprop-2-enenitrileb IkB Inhibits IkB
phosphorylation

Pierce et al. (1997) Endometriotic stromal
cells

Decreases cell proliferation
and DNA synthesis.
Induces apoptosis

Nasu et al. (2007)

Decreases lesion size
Increases apoptotic
markers.

González-Ramos et al.
(2008)

Heterologous nude
mouse model

BORTEZOMIB Mannitol boronic ester, [(1R)-3-methyl-1-[[(2S)-3-phenyl-2-
(pyrazine-2-carbonylamino)propanoyl]amino]butyl]boronic acidb

Proteasome Reduces endometriotic
lesion size
Decreases PCNA and Ki67
expression

Celik et al. (2008) Transplanted
endometriosis in
Wistar Rat

TPCK N-Tosyl-L-Phenylalanine
Chloromethyl ketone, N-[(2S)-4-chloro-3-oxo-1-phenylbutan-
2-yl]-4-methylbenzenesulfonamideb

NFkB Anti-NFkB activity Yamauchi et al. (2004) Endometrioma
stromal cells

PDTC Pyrrolidine dithiocarbamate, 2-acetamido-3-sulfanylpropanoic
acid;pyrrolidine-1-carbodithioic acidb

IkB IkB-ubiquitin ligase Hayakawa et al. (2003) Jurkat T-cells
NA Decreases inflammation,

angiogenic factors and
MMPs

Zhang et al. (2010a, b) Endometriotic stromal
cells

Zhang et al. (2011) Endometriotic
epithelial cells

NA Reduces in lesion size Celik et al. (2008) Transplanted
endometriosis in
Wistar Rats

THALIDOMIDE a-Phthalimido glutarimide, 2-(2,6-dioxopiperidin-3-yl)isoindole-
1,3-dioneb

IkB Suppression of IkB
degradation

Majumdar et al. (2002) NA

NFkB Inhibits TNFa-stimulated
IL-8

Yagyu et al. (2005) Endometriotic stromal

NA Reduces endometrial
implants

Azimirad et al. (2014) Autologous
endometrial implant in
Sprague-Dawley rat

THIAZOLIDINEDIONES 1,3-Thiazolidine-2,4-dioneb PPARg Reduces endometriotic
lesion size

Lebovic et al. (2004) Autologous
endometrial implant in
Sprague-Dawley rat

Lebovic et al. (2007) Primates
CELECOXIB (NSAID) 4-[5-(4-Methylphenyl)-3-(trifluoromethyl)pyrazol-1-

yl]benzenesulfonamideb
COX-2 Interacts with NFkB Park et al. (2014) Leiomyoma cells

Decreases cellular
proliferation

Olivares et al. (2008) Endometrial epithelial
cells

SULINDAC (NSAID) 2-[(3Z)-6-fluoro-2-methyl-3-[(4-
methylsulfinylphenyl)methylidene]inden-1-yl]acetic acidb

NA Decreases RANTES
through NFkB mechanism

Wieser et al. (2005),
Efstathiou et al. (2005)

Normal and
endometriotic stromal
cells
C57BL/6J mice

RESVERATROLa 3,5,4′-Trihydroxy-trans-stilbene, 5-[(E)-2-(4-
hydroxyphenyl)ethenyl]benzene-1,3-diolb

NA Reduces surgically induced
endometriotic lesions

Bruner-Tran et al. (2011) Nude (NCr) mice

Continued
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Table I Continued

Signalling
pathway

Compound Iupac name Target Function Reference Functional target
validation

Reduces cell proliferation
Increases apoptosis

Ricci et al. (2013),
Rudzitis-Auth et al.
(2013)

Endometrial epithelial
cells

Reduces cytokine
concentrations

Ergenoğlu et al. (2013),
Ozcan Cenksoy et al.
(2015), Bayoglu Tekin
et al. (2015)

Peritonal from Rat
models

EGCGa Epigallocatechin-3-gallate, [(2R,3R)-5,7-dihydroxy-2-(3,4,5-
trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-
trihydroxybenzoateb

NA Interacts with NFkB Khan et al. (2006) NA
Reduces surgically induced
endometriotic lesions

Ricci et al. (2013) mice

PARTHENOLIDEa (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylene-
2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-
b]furan-9(1aH )-one

NA Inhibits
NFkB activity

Kwok et al. (2001) NA

Reduces the inflammatory
response

Takai et al. (2013) Endometriotic stromal
cells BALB/c mice

CURCUMINa (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-
3,5-dioneb

NA Attenuates cytokine
secretion and inflammation

Veillat et al. (2009), Kim
et al. (2012), Jana et al.
(2012)

Endometriotic stromal
cells
BALB/c mice

IL-10 Interleukin 10 DNA binding Attenuate cytokine
secretion

Lentsch et al. (1997),
Tagashira et al. (2009)

Endometriotic stromal
cells

Decoy Nucleotides Nucleotide sequences
Forward; 5′-CCTTGAAGGGATTTC CCTCC-3′

Reverse; 3′-GGAACTTCCCTAAAGGGAGG-5′

DNA binding Attenuate inflammation Xiu-li et al. (2009) Endometriotic stromal
cells

MAPK VEMURAFENIB N-[3-[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridine-3-carbonyl]-
2,4-difluorophenyl]propane-1-sulfonamideb

B-raf NA Su et al. (2012) Approved for use in
melanoma

DABRAFENIB N-[3-[5-(2-aminopyrimidin-4-yl)-2-tert-butyl-1,3-thiazol-4-yl]-2-
fluorophenyl]-2,6-difluorobenzenesulfonamideb

TRAMETINIB N-(3-{3-Cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-
dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-
1(2H)-yl}phenyl)acetamideb

MEK NA Menzies et al. (2015) NA

Sorafenib 4-[4-[[4-Chloro-3-
(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-
methylpyridine-2-carboxamide

Raf-1, B-Raf,
VEGFR1, 2, 3,
PDGFR-b,
c-KIT

Inhibits cellular
proliferation. Decreases
lesion size

Leconte et al. (2015) Endometrial stromal
cells
Nude mouse model

GW5074 (3Z)-3-[(3,5-dibromo-4-hydroxyphenyl)methylidene]-5-iodo-1H-
indol-2-oneb

Raf-1 Inhibits cell proliferation
and invasion

De La Garza et al. (2012) Epithelial EM42 cells
and primary stromal
cells

A771726 (Z)-2-cyano-3-hydroxy-N-[4-(trifluoromethyl)phenyl]but-2-
enamideb

ERK Decrease cell proliferation Leconte et al. (2011) Epithelial and stromal
cells from eutopic and
ectopic lesionsUO126 (2Z,3Z)-2,3-bis[amino-(2-

aminophenyl)sulfanylmethylidene]butanedinitrileb
Matsuzaki and Darcha
(2015)

PD98059 2-(2-Amino-3-methoxyphenyl)-4H-chromen-4-oneb Ngó et al. (2010)
FR180204 5-(2-Phenylpyrazolo[1,5-a]pyridin-3-yl)-2H-pyrazolo[3,4-

c]pyridazin-3-amineb
Alleviate clinical arthritis Ohori et al. (2007) DBA/1 mouse model
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SCH772984 (3R)-1-[2-oxo-2-[4-(4-pyrimidin-2-ylphenyl)piperazin-1-yl]ethyl]-
N-(3-pyridin-4-yl-1H-indazol-5-yl)pyrrolidine-3-carboxamideb

NA Morris et al. (2013) Preclinical testing in
BRAF and MEK
inhibitor-resistant cell
lines

FR167653 1-[7-(4-Fluorophenyl)-1,2,3,4-tetrahydro-8-(4-
pyridyl)pyrazolo[5,1-c][1,2,4]triazin-2-yl]-2-phenylethanedione
sulphate monohydrate

p38 Reduces endometriotic
lesion size. Reduces
peritoneal fluid IL-6 and
MCP-1

Yoshino et al. (2006) BALB/c mice

SB203580 4-[4-(4-Fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-
yl]pyridineb

Reduces IL-1b secretion
and endometriotic lesion
size

Huang et al. (2013) Endometriotic stromal
cells

Reducing TNFa, IL-1b,
MMP3 and MMP9 mRNA
and protein concentrations

Zhou et al. (2010) BALB/c mice; cells
isolated from
peritoneal cavity

SB202190 4-[4-(4-Fluorophenyl)-5-pyridin-4-yl-1,3-dihydroimidazol-2-
ylidene]cyclohexa-2,5-dien-1-oneb

Attenuates cell
proliferation

OuYang et al. (2008) Endometriotic stromal
cells

VX-745 5-(2,6-Dichlorophenyl)-2-(2,4-
difluorophenyl)sulfanylpyrimido[1,6-b]pyridazin-6-oneb

NA Dambach (2005) Failed phase II clinical
trials due to high liver
toxicityBIRB 796 Doramapimod, 1-[5-tert-butyl-2-(4-methylphenyl)pyrazol-3-yl]-3-

[4-(2-morpholin-4-ylethoxy)naphthalen-1-yl]ureab

SP600125 1,9-Pyrazoloanthrone, Dibenzo[cd,g]indazol-6(2H)-one JNK Reducing the inflammatory
response

Han et al. (2001) Mouse models and
human synoviocytes
as a model of
rheumatoid arthritis

Yoshino et al. (2004) Endometriotic stromal
cells

PGL5001 Doramapimod NA Clinicaltrails.gov
NCT01630252

Phase IIa clinical trial in
the treatment of
endometriosis

Puerarina 7-Hydroxy-3-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-oneb

NA Inhibits E2-BSA mediated
proliferation

Cheng et al. (2012) Endometriotic stromal
cells

ECGCa Epigallocatechin-3-gallate, [(2R,3R)-5,7-dihydroxy-2-(3,4,5-
trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-
trihydroxybenzoateb

JNK Moderate effect on JNK
phosphorylationand
VEGFC

Xu et al. (2011) Heterologous mouse
models

Artemisia leavesa NA NA Induces apoptosis Kim et al. (2013) 12Z and 11Z epithelial
cells

PI3K/AKT/
mTOR

LY294002 2-Morpholin-4-yl-8-phenylchromen-4-oneb PI3K Decreases PCNA,
surviving, integrin, VEGF
and IL-8 expression

Li et al. (2013), Chang
et al. (2013)

Endometrial stromal
cells

TEMSIROLIMUS (1R,2R,4S)-4-{(2R)-2-[(3S,6R,7E,9R,10R,12R,14S,15E,
17E,19E,21S,23S,26R,27R,34aS)-9,27-dihydroxy-10,21-
dimethoxy-6,8,12,14,20,26-hexamethyl-1,5,11,28,29-pentaoxo-
1,4,5,6,
9,10,11,12,13,14,21,22,23,24,25,26,27,28,29,31,32,33,34,
34a-tetracosahydro-3H-23,27-epoxypyrido[2,1-
c][1,4]oxazacyclohentriacontin-3-yl]propyl}-
2-methoxycyclohexyl 3-hydroxy-2-(hydroxymethyl)-2-
methylpropanoateb

mTOR Inhibits proliferation Leconte et al. (2011) Heterologous nude
mouse model
Endometriotic cells in
vitro

Behbakht et al. (2011) Phase II trial in ovarian
cancer patients

Continued
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teratogenic effects of these compounds and thus treatments should be
performed in combination with contraception allowing for at least
6 months post therapy wash-out. It should also be noted that due to
the influence on CYP3A4-mediated metabolism, the plasma concentra-
tions of hormonal contraceptives could vary and caution on their
effectiveness during this period should be considered.

Future treatment strategies for kinase inhibitors could also incorpor-
ate the heterogeneity of endometriosis and target-specific kinases
based on individual patient profiles. Through the use of robust and repro-
ducible genome wide association studies, the genetic basis of endomet-
riosis is increasingly being elucidated (Rahmioglu et al., 2014) as are the
peripheral changes and the extracellular environment that influence
the disease progression and symptomology (Morotti et al., 2014; McKin-
non et al., 2015). A better understanding of their biochemical basis and
inflammatory profiles of endometriotic subtypes and the contribution of
specific kinase pathways to individual endometriotic lesions may soon
provide more information on the kinase dependency of specific lesions
and the opportunity for personalized treatment.

Endometriosis research is gradually advancing the understanding of
the disease pathogenesis; the task now is to translate these discoveries
into novel therapeutics. An over-activation of kinases in endometriotic
tissue has been observed and thus the targeting of kinase signalling
pathways represents a valid treatment option. In the near future these
drugs may find applications for short-term use in more severe cases,
but at present more information is needed on the dysregulation of
these pathways in endometriotic tissue. Looking further ahead the
outlook is promising, early studies suggest these drugs can be cytoreduc-
tive and the development of new kinase inhibitors is increasing and thus
so is the likelihood of improvements in their specificity and side effects
profiles. A reduction in the adverse effects, combined with more knowl-
edge on which patients to match to particular drugs through an under-
standing of endometriosis heterogeneity and kinase dependency could
make them tolerable and efficacious for endometriosis patients.
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Regression of endometrial implants by resveratrol in an experimentally induced
endometriosis model in rats. Reprod Sci 2013;20:1230–1236.

Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin 1997;
24:235–258.

Ferrero S, Abbamonte LH, Parisi M, Ragni N, Remorgida V. Dyspareunia and quality of
sex life after laparoscopic excision of endometriosis and postoperative
administration of triptorelin. Fertil Steril 2007;87:227–229.

Foda AA, Aal IAA. Metformin as a new therapy for endometriosis, its effects
on both clinical picture and cytokines profile. Middle East Fertil Soc J 2012;
17:262–267.

Gaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in
inflammation. Nat Rev Drug Discov 2009;8:480–499.

Galvez T, Teruel MN, Heo WD, Jones JT, Kim ML, Liou J, Myers JW, Meyer T. siRNA
screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR
signaling pathway as a primary regulator of transferrin uptake. Genome Biol 2007;
8:R142.

Gentilini D, Busacca M, Di Francesco S, Vignali M, Viganò P, Di Blasio AM. PI3K/Akt and
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Natural therapies assessment for the treatment of endometriosis. Hum Reprod
2013;28:178–188.

Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ,
Waterfield MD, Downward J. Phosphatidylinositol-3-OH kinase as a direct target
of Ras. Nature 1994;370:527–532.

Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and
activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90
ribosomal S6 kinase. Proc Natl Acad Sci 2004;101:13489–13494.

Rudzitis-Auth J, Menger MD, Laschke MW. Resveratrol is a potent inhibitor of
vascularization and cell proliferation in experimental endometriosis. Hum Reprod
2013;28:1339–1347.

401Kinase signalling pathways in endometriosis



Sakamoto Y, Harada T, Horie S, Iba Y, Taniguchi F, Yoshida S, Iwabe T, Terakawa N.
Tumor necrosis factor-alpha-induced interleukin-8 (IL-8) expression in
endometriotic stromal cells, probably through nuclear factor-kappa B activation:
gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J Clin
Endocrinol Metab 2003;88:730–735.

Sampson JA. Peritoneal Endometriosis due to the menstrual dissemination of
endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 1927;14:422–469.

Sanfilippo JS, Williams RS, Yussman MA, Cook CL, Bissonnette F. Substance P in
peritoneal fluid. Am J Obstet Gynecol 1992;166:155–159.

Santulli P, Borghese B, Chouzenoux S, Vaiman D, Borderie D, Streuli I, Goffinet F, De
Ziegler D, Weill B, Batteux F et al. Serum and peritoneal interleukin-33 levels are
elevated in deeply infiltrating endometriosis. Hum Reprod 2012;27:2001–2009.

Santulli P, Borghese B, Chouzenoux S, Streuli I, Borderie D, de Ziegler D, Weill B,
Chapron C, Batteux F. Interleukin-19 and interleukin-22 serum levels are
decreased in patients with ovarian endometrioma. Fertil Steril 2013;99:219–226.

Santulli P, Chouzenoux S, Fiorese M, Marcellin L, Lemarechal H, Millischer AE,
Batteux F, Borderie D, Chapron C. Protein oxidative stress markers in peritoneal
fluids of women with deep infiltrating endometriosis are increased. Hum Reprod
2015a;30:49–60.

Santulli P, Marcellin L, Tosti C, Chouzenoux S, Cerles O, Borghese B, Batteux F,
Chapron C. MAP kinases and the inflammatory signaling cascade as targets for the
treatment of endometriosis? Expert Opin Ther Targets 2015b;19:1–19.

Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, Noguchi M. Loss of
heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in
benign endometrial cyst of the ovary: possible sequence progression from benign
endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the
ovary. Cancer Res 2000;60:7052–7056.

Sawyers CL. Opportunities and challenges in the development of kinase inhibitor
therapy for cancer. Genes Dev 2003;17:2998–3010.

Seo SK, Yang HI, Lee KE, Kim HY, Cho S, Choi YS, Lee BS. The roles of thioredoxin and
thioredoxin-binding protein-2 in endometriosis. Hum Reprod 2010;25:1251–1258.

Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory
and pro-resolution lipid mediators. Nat Rev Immunol 2008;8:349–361.

Seval Y, Cakmak H, Kayisli UA, Arici A. Estrogen-mediated regulation of p38
mitogen-activated protein kinase in human endometrium. J Clin Endocrinol Metab
2006;91:2349–2357.

Shaw RW. Treatment of endometriosis. Lancet 1992;340:1267–1271.
Shen F, Wang Y, Lu Y, Yuan L, Liu X, Guo S-W. Immunoreactivity of progesterone

receptor isoform B and nuclear factor kappa-B as biomarkers for recurrence of
ovarian endometriomas. Am J Obstet Gynecol 2008;199:486.e1–e486.e10.
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