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Ordovician age in the Alpine realm is explained by the 
accretion of exotic China-derived basements and their col-
lision with the Gondwana margin during the opening of the 
Rheic Ocean.
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Introduction

The Palaeozoic Gondwana margin and its interaction with 
Laurentia–Baltica are strongly related to the history of the 
Rheic Ocean (Nance et al. 2010; Stampfli et al. 2013). Dis-
tinct interpretations have been envisaged for the European 
Variscan context (Ballèvre et al. 2009; Martínez Catalán 
et al. 2009; Linnemann et al. 2007; Stampfli et al. 2011), 
involving models of early interaction with Laurentia–Bal-
tica, the accretion of proto-Rheic intra-oceanic pieces, or 
only Gondwana-derived terranes, and the formation of the 
Rheic Ocean was seen either as an intracontinental rift zone 
or as a widely stretching oceanic space.

Although great progress has been made in the interpre-
tation of the Variscan plate-tectonic evolution (Kroner and 
Romer 2013; Ballèvre et al. 2014; Lardeaux et al. 2014; 
Schulmann et al. 2009), the plate-tectonic interpretation of 
the Variscan basement domains hosting the so-called exotic 
terranes with ophiolites drawn in Fig. 1a did not change.

The pre-existing omnipresent Cadomian basement 
(e.g. Linnemann et al. 2007) appears as relics in the 
highly transformed Variscan basement, and in this frame-
work, we hypothesize the “exotic terranes with ophi-
olites” (Fig. 1a), and some adjacent autochthonous base-
ments, to represent remnants of a former continuous or 

Abstract In tectonic maps of Variscan Europe, alloch-
thonous pieces of Cadomian basement clearly stand out 
with their predominant metabasic to ultrabasic elements, 
the so-called exotic terranes with ophiolites. Most of these 
domains are observed in basements of the Central Ibe-
rian Allochthone, the South Armorican domain, the nappe 
structures of the French Massif Central, the Saxothuringian 
Zone and the Bohemian Massif. Similar relics can be rec-
ognized in many Alpine basement areas, and correlations 
with supposedly more autochthonous basements, such as 
the Ossa Morena Zone and the Central Iberian basement, 
can be envisaged. All of these relics are thought to repre-
sent the interrupted trace of a former continuous or discon-
tinuous structure, characterized by the presence of ocean-
derived proto-Rheic rock suites. These can be interpreted as 
pieces of former magmatic arcs of Ediacaran to Cambrian 
age accreted to the Gondwana margin, which later were 
scattered as allochthonous units during the Variscan plate-
tectonic processes. The presence of similar rock suites of 
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discontinuous suture zone. The latter can be characterized 
through the presence of ocean-derived rock suites, which 
are probably representing pieces of a former continuous 
magmatic arc of Ediacaran to Cambrian (proto-Rheic) age 
accreted to the Gondwana margin before being dissipated 
as allochthonous units during the Variscan plate-tectonic 
processes.

Our arguments are based on the singular distribu-
tion of these units when placed in an already published 
Early Palaeozoic reconstruction (Stampfli et al. 2011): 
In tracing terranes back to their possible position around 
Gondwana, obviously, not all could be positioned north 
of Africa. The new concept proposes a ribbon-like Gala-
tian superterrane, comprising most of the “European” 
Variscan elements and extending in Ordovician times 
from the north of South America to South China (located 
formerly in continuity to Africa). Evidently, along such 
a length, the geodynamic evolution presents variations. 
Instead of terminating the considerations at the Tornquist 
Line, the hitherto used model and knowledge from the 
Altaids (Wilhem et al. 2012) let us adopt geodynamic 
scenarios for the extended Gondwana margin including 
the Chinese basement areas thus reviving the discussion 
by von Raumer et al. (2002) and Kalvoda and Bábek 
(2010). In this enlarged frame, we want to demonstrate, 
that the allochthonous “exotic terranes with ophiolites” 
(presented in Fig. 1a) could represent the relics of a for-
mer Ediacaran–Cambrian active margin setting along the 
Gondwana margin, also comprising pieces of Chinese 
blocks, usually ignored in general considerations.

Ediacaran–Cambrian elements

In the European geodynamic context, the so-called alloch-
thonous domains with ophiolites (Arenas et al. 2007a, their 
Fig. 1) basements hosting Ediacaran–Cambrian mafic to 
ultramafic rock suites (Fig. 1a) appear above the Central 
Iberian basement, possibly in the South Armorican zone 
and in the Limousin domain of the French Massif Central, 
in the Saxothuringian, the Teplá–Barrandian of the Bohe-
mian Massif, and in comparable Cambrian–Neoproterozoic 
elements from the Alpine domains (e.g. Austroalpine and 
Briançonnais), all supposed to host mafic and/or ultramafic 
rock units predating the opening of the Rheic Ocean. Addi-
tionally, the Neoproterozoic–Cambrian metabasites from 
the Ossa Morena Zone and the Central Iberian basement 
are included in our considerations.

We present in the following lines only the above men-
tioned basements, proceeding from the most western 
located Ossa Morena Zone to the most eastern located 
Alpine domains, independent of their Variscan evolution 
(comp Table 1):

Ossa Morena Zone

Two rift-related magmatic events (Sánchez-García et al. 2008; 
Chichorro et al. 2008; Pereira et al. 2012), comprising an 
Early Cambrian magmatic cycle dominated by calc-alkaline 
felsic rocks followed by a Middle Cambrian to Early Ordovi-
cian magmatic suite with bimodal alkaline and tholeiitic mag-
matic rocks, were interpreted as the opening and subduction of 
a Late Cambrian to Ordovician oceanic ridge (Sánchez-García 
et al. 2010), after Cambeses et al. (2014) a Cambro-Ordovi-
cian rifted volcanic margin. Sánchez Lorda et al. (2014a, b) 
identify the metabasic series hosted by the Serie Negra meta-
sediments as a Late Ediacaran magmatic arc.

The allochthonous units above the Central Iberian Zone

Derived from peri-Gondwanan regions, they include the 
Variscan suture s.l. outlined by a suite of Devonian ophi-
olitic units.

In the northern allochthonous domain, the uppermost 
terrane is formed by a thick sequence of Cambrian silici-
clastic rocks intruded by large massifs of gabbros (Monte 
Castelo gabbro) and granitoids (Corredoiras orthogneiss) 
dated at ~500 Ma (Abati et al. 1999; Andonaegui et al. 
2012). The contemporaneous intermediate pressure tec-
tonothermal evolution was followed by a high-pressure 
and high-temperature event dated at c. 400 Ma (Abati et al. 
2007; Fernández-Suárez et al. 2007). In the underlying 
Variscan “suture”, two main types of ophiolites have been 
described: a younger group with Devonian ages and an 
older group dated at ca. 500 Ma. From the latter, Sánchez 

Fig. 1  Geodynamic units hosting allochthonous “exotic” terranes 
with ophiolites as relics of former Ediacaran–Cambrian Geody-
namic units from the Gondwana margin. a Late Variscan geological 
map modified after Arenas et al. (2007a). b, c Late Variscan (b) and 
Hirnantian (c) plate-tectonic reconstructions, modified after Stamp-
fli et al. (2011). Stars (black and violet) meta-eclogites; Crosses 
autochthonous, low-grade rift-related magmatic rocks. Light blue 
Avalonian basements; Light brown Rhenohercynian domain. A–Aʹ: 
Section 450 Ma in Fig. 4. Ad Adria and Sardinia, All Allochthonous 
above the Iberian basement, al-Sx allochthonous Saxothuringian, 
An Anatolic, AP Aquitaine Pyrenees and Corsica, Ar Armorica, ArS 
South Armorica, Au Austroalpine, Bri Briançonnais, BRK Betics-Rif-
Kabbilies, Bw Brunswick, Ca Cantabrian and West Asturian-Leonese 
zones, CC Caucasus, Ch Channel, ChR Chamrousse, cI Central Ibe-
ria, Cr Carpathian, Ct Catalunia, Db Dobrogea, D–B Dacides–Buco-
vinian, eM Eastern Moroccan Meseta (interpreted after Herbig and 
Aretz (2013, with references), Gt Getic nappes, He External Alpine 
massifs, HI Hellenidic, Is Istanbul, Li Ligerian block, Md Moldanu-
bian (Black Forest and Vosges included) and Teplá–Barrandian, MC 
French Massif Central, Me Moroccan Meseta, Mg Meguma, MM 
Montagne Noire-Maures and Tanneron, Mo Moesia, MR Mid-Ger-
man Rise, OM Ossa Morena, Po south Portuguese, Pt Pontides (Kara-
kaya), Rd Rhodope, Sh Sehoul block, Sx Saxothuringian domain, TB 
Teplá–Barrandian unit of the Bohemian Massif, TW Tauern Window, 
Tz Tizia

▸
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Martínez et al. (2012) interpreted the Late Cambrian Bazar 
ophiolite as derived from the Iapetus–Tornquist Ocean, 
which, subsequently, was accreted to a dissected Ordovi-
cian arc before or during the opening of the Rheic Ocean. 

The Vila de Cruces ophiolite (Table 1, N-MORB, Arenas 
et al. 2007b), by contrast, is considered as a remnant of a 
Cambrian back-arc basin generated during the beginning 
of the opening of the Rheic Ocean. The basal units of the 
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Table 1  Ediacaran–Cambrian ages of metabasic and ultramafic rocks along the Gondwana margin (for older references, see Neubauer 2002, 
von Raumer et al. 2002)

Terrane Rock-type Age (Ma) References

1. Ossa Morena Felsic volcanics early rift (~530) Sánchez-García et al. (2010)

Main rift basalts 502

Amphibolites N-MORB, E-MORB, VA ~580 εNd +0.8 to +8.4 Sánchez Lorda et al. (2014)

2. Central Iberia

 Allochthon Monte Castelo gabbro 499 ± 2 Abati et al. (1999)

Vila de Cruzes ophiolite, N-MORB 497 ± 4 Arenas et al. (2007a, b)

Bazar ophiolite 495 ± 2 Sánchez Martínez et al. (2012)

Malpica Tuy eclogites 494, 498 Abati et al. (2010)

Eclogite protolith ~491 Roper et al. (2013)

 Autochthon Tamames Neoproterozoic–lowermost Cambrian metaandesites Lithostratigraphy Rodríguez Alonso et al. (2004)

3. South Armorica Granitoids, gabbros 480, 470 Ballèvre et al. (2014)

4. French Massif Central

 Marvejols Bimodal volcanics ~480 Pin and Lancelot. (1982)

 Limousin Eclogite, N-MORB tholeiite 489–475 Berger et al. (2010, 2012)

 Massif de Maures Supra-subduction lithosphere Early Palaeozoic Bellot et al. (2010)

5. Alps

 External domain Chamrousse oceanic granite 498 Ménot et al. (1988)

Chamrousse oceanic granite 500 Pin and Carme (1987)

Aarmassif, gabbro 475–467 Oberli et al. (1994)

Aarmassif, gabbro 478 ± 5 Schaltegger et al. (2003)

HT stage 456–450

Cordierite-pegmatite 445 ± 2

 Penninic domain

  Briançonnais Thyon granite 500 +3/−4 Bussy et al. (1996)

Metagabbro, 504 ± 2 Sartori et al. (2006)

Cambro-Ordovician Lithostratigraphy

Oceanic metabasites

  Métailler formation Gabbros, tholeiites E-MORB 457, 462 detrital zircon 520 Gauthiez et al. (2011)

  Berisal unit Tholeiitic amphibolites 546 ± 21 Sm/Nd wh.r Stille and Tatsumoto (1985)

Gabbro 475 εNd + 5.4

  Biasca–Loderio Mafics–ultramafics IA/T-MORB ~518 7.3 to 4.2 Schaltegger et al. (2002)

Sasso Nero metadiorites 533, 544 Bussien et al. (2011)

  Adula Salahorn Back-arc tholeiites 514–518 Cavargna-Sani et al. (2014)

  Adula Treskolmen MORB tholeiite affinity 521.1 Cavargna-Sani et al. (2014)

 Austroalpine domain

  Silvretta nappe Gabbro 475, 510 Poller (1997)

Arc metadiorites ~610 Schaltegger et al. (1997)

Metagabbros, metatonalites 523 Schaltegger et al. (1997)

Oceanic granite 500 Müller et al. (1996)

  Tauern Window Supra-subduction Cambrian Frisch and Neubauer (1989)

Basalts 547 ± 27 Eichhorn et al. (1999)

  Habach terrane Mafic–ultramafic cumulates 496–482 Eichhorn et al. (2001)

  Tauern Window South Eclogite protolith 488 Von Quadt et al. (1997)

N-Morb intra-oceanic arc 590 εNd 6.9 Schulz et al. (2004)

Arc basalt 550–530 εNd −.3 + 2.5

Metagabbro 477 Loth et al. (2001)

  Oetztal Metagabbro, ultramafics 530–521 Miller and Thöni (1995)

 Southern Alps Eclogites HP event 457 ± 5, 443 ± 19 Franz and Romer (2007)
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allochthonous complexes would represent the most exter-
nal margin of Gondwana, constituted by Ediacaran to 
Cambrian terrigenous sequences, intruded by calc-alkaline 
to peralkaline granitoids and minor mafic rocks dated at 
around 510–470 Ma (Abati et al. 2010; Díez Fernández 
et al. 2010).

In the southern allochthonous Morais domain, Dias da 
Silva et al. (2012) brought the first evidence for a Late Cam-
brian bimodal Mora volcanic suite, observed at its base.

In the subjacent Central Iberian basement, andesitic vol-
canics testify to a Neoproterozoic–earliest Cambrian syn-
sedimentary magmatism (Rodríguez Alonso et al. 2004), 
supposed to be closely related to the subduction of the Ossa 
Morena Zone.

South Armorican domain

Following Ballèvre et al. (2014), the metabasic units in 
the Bay d’Audierne domain have an Ordovician age and, 
together with the Champtoceaux and Essarts areas, could 
possibly host Ediacaran–Cambrian basic to ultrabasic rock 
suites (Fig. 1a).

French Massif Central

Strongly metamorphosed relics of Late Neoproterozoic to 
Early Palaeozoic oceanic rock suites were supposed to be 
part of the Upper Gneiss Unit (Ledru et al. 1989; Faure 
et al. 2009), being interpreted to represent an Early Ordovi-
cian continental break-up (Pin 1990; Pin and Marini 1993; 

Santallier 1994). Specifically, the Limousin area presents 
features of an early magmatic evolution (Lardeaux et al. 
2001; Berger et al. 2005, 2010, 2012), hosting relics of a 
former pre-Cambrian to Cambrian oceanic crust, equally 
discussed for the Maures Massif (Bellot et al. 2010). Ultra-
high-pressure relics dated about 412 Ma in the Limousin 
area (Berger et al. 2010) may represent a lower Devonian 
intra-oceanic subduction event before the general Early 
Variscan HP evolution around 380 Ma (comp. Stampfli 
et al. 2013, their Figs. 7, 4–5).

Saxothuringian Zone and Bohemian Massif

These basements were object of a general re-interpretation 
(Franke 2000; Friedl et al. 2004; Schulmann et al. 2009, 
2014; Žák et al. 2014). After the Cadomian accretionary 
evolution (Linnemann et al. 2007, 2008), Lower to Middle 
Cambrian rift basins in the Saxothuringian Zone resulted in 
an oblique incision of an oceanic ridge into the continent 
(Linnemann et al. 1998), and the Vesser ultramafic body 
(501 Ma, Kemnitz et al. 2002) preceded the opening of the 
Rheic Ocean (Tremadoc). The Münchberg eclogitic met-
agabbro (~500 Ma, Table 1) was tectonically related to the 
Bohemian Teplá–Barrandian Zone (Franke 2000).

The Teplá–Barandian unit in the Bohemian Massif 
(Hajná et al. 2013; Sláma et al. 2008; Žák et al. 2013b; 
Zulauf et al. 1999) testifies to Cadomian island-arc vol-
canism (620–560 Ma) and subsequent (560–530 Ma) arc 
erosion, before crustal extension since 510 Ma and back-
arc-type opening of the Prague basin contemporaneous to 

Presented εNd ages already may reflect alteration (Schaltegger et al. 2002). The authors recognize that many of the observed metabasic units in 
the Variscan mountain chain still wait for identification, needing future investigations. Consult references for analytical data

Table 1  continued

Terrane Rock-type Age (Ma) References

6. Saxothuringian

 Vesser area MOR gabbro 501.7 Kemnitz et al. (2002)

 Münchberg Klippe Eclogiteic metagabbro ~500 Gebauer and Grünenfelder 
(1979)

 Erbendorf-Hohenstrauss Metagabbro 494 ± 3 Von Quadt (1990)

7. Bohemian Massif

 Letovice Complex Tholeiitic metabasalt 530 ± 6 Soejono et al. (2010)

 Marianske Lasné Coronitic metagabbro 516–496 Stedra et al. (2002)

Oceanic crust protolith ~540 Timmermann et al. (2004)

Coronitic metagabbro 503, 496 Timmermann et al. (2006)

 Tepla–Barrandian unit Smrzovice meta-quartzdiorite ~550 K–Ar Hbl Bues et al. (2002)

Leucotonalite pebble 610 ± 17 Smala et al.Sláma et al. (2008)

Volcanic rocks 568 ± 3 Dörr et al. (2002)

Metarhyolite 524 ± 8.8 Žák et al. (2013a, b)

 Bavarian Forest Epidote–amphibolite 548 Teipel et al. (2004)

Eclogitic amphibolite 481–482 Teipel et al. (2004)
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the opening of the Rheic Ocean with basic submarine vol-
canism (Table 1). The Mariánské Lázně complex is char-
acterized by large mafic-dominated Cambro–Ordovician 
bimodal series (e.g. Crowley et al. 2002; Floyd et al. 2000; 
Stedra et al. 2002) with N-MORB to within-plate alkali 
basalts. Bues et al. (2002) and Teipel et al. (2004) dated 
Ediacarian magmatism in the western Teplá–Barrandian 
Zone (Table 1).

The Brunovistulian unit in the south-east of the Bohe-
mian Massif hosts a distinctly older assemblage of rock 
units with different types of metabasic rocks representing 
the Avalonian margin of the rock series under discussion in 
this paper (Finger et al. 2000).

Alpine terrane assemblages

Following Neubauer’s (2002) comparative paper, Schulz 
(2008) reported from distinct Austroalpine domains 
(comp. Table 1) a rather long-lasting magmatic evolu-
tion, comprising intra-oceanic arcs (metadiorites around 
610 Ma; N-MORB-type eclogitic metabasalts around 
590 Ma), subsequent 550–530 Ma volcanic arc basalts 
and 520–530 Ma eclogitized gabbroic and tonalitic melts 
intruding a continental (Gondwana) margin magmatic 
arc. These were followed by 500 Ma oceanic plagiogran-
ites in a supposed fore- or back-arc environment and the 
subsequent intrusion of gabbroic melts (475 Ma) in a col-
lisional to post-collisional context. Sartori et al. (2006) 
and Scheiber et al. (2014) suggest an extensional Neo-
proterozoic–Cambrian evolution for the Briançonnais 
Siviez-Mischabel type basement. Equally, in the lower 
Penninic nappes (Schaltegger et al. 1997; Bussien et al. 
2011), Early Cambrian metadiorites (533, 544 Ma) from a 
banded mafic complex and Cambrian (~518 Ma) oceanic 
magmatism as dismembered relics of mafic and ultramafic 
rocks testify to a Cambrian magmatic evolution domi-
nated by metabasic magmatic rocks. For the South Alpine 
Strona-Ceneri Zone, an upper Ordovician HP evolution 
is discussed (Zurbriggen et al. 1997; Franz and Romer 
2007), with an upper Ordovician orogenic evolution for 
this area (Zurbriggen 2014). An Ordovician orogenic evo-
lution has also been proposed for the external parts of 
the Alps (Schaltegger et al. 2003). Supposed Ediacaran–
Cambrian meta-volcanic series from the Aiguilles Rouges 
basement (von Raumer et al. 2013; external alpine base-
ment) can be compared to nearly identical lithostratig-
raphies from the Central Iberian basement (Rodríguez 
Alonso et al. 2004). The “root-less” Alpine ultramafic 
Chamrousse ophiolite complex from the external domain 
(Belledonne, Ménot et al. 1988) represents an allochtho-
nous Late Cambrian magmatic body involved in the Vari-
scan tectonic evolution (Guillot et al. 2009).

Discussion

Summarizing the data (Table 1), an Ediacaran to Cam-
brian age group (~650–510 Ma) is documented through 
intra-oceanic dismembered sequences, representing 
an early magmatic arc (Ossa Morena, Saxothuringian–
Teplá Barandian Units, Austroalpine domains), which 
accreted over a period of time to form a Cambrian peri-
Gondwana cordillera (Fig. 2). The Ossa Morena and the 
Teplá–Barrandian domains areas (see preceding chapter) 
show some interesting parallels when considering their 
more or less synchronous rifting-type subsidence pat-
terns (Von Raumer and Stampfli 2008). The observa-
tions of widely distributed sedimentary horizons hosting 
amphibolites in the Ossa Morena Zone (Sánchez Lorda 
et al. 2014), probably former Ediacaran arc basalts, and 
possibly also in the Bohemian Massif (Hajná et al. 2013) 
reinforce these parallels. Comparable arc volcanics are 
known from the Austroalpine domain (Schulz et al. 
2004) and compose also the Penninic Briançonnais base-
ment nappes (Sartori et al. 2006). The Siviez-Mischabel 
and Mont Fort nappes (Escher 1988) represent parts of 
different types of basement, the former could represent 
the Ediacaran arc, intruded by Late Cambrian gabbros 
and granitoids (Bussy et al. 1996, and in Sartori et al. 
2006), whereas the latter may comprise a suture zone 
(serpentinites, mélange type) of Ordovician age (comp. 
Gauthiez et al. 2011). The pre-Rheic igneous evolu-
tion ended apparently with a period of crustal exten-
sion along the Gondwana margin, accompanied by the 
emplacement of c. 500 Ma mafic to granitoid rocks: 
“where in a scenario of oblique convergence, pull-
apart may have facilitated the appearance of ophiolites, 
accompanied laterally by incomplete intra-oceanic rock 
suites, or simply by volcanic rocks and/or detrital sedi-
ments” (Von Raumer et al. 2002, p. 45), strike-slip mod-
els having been evoked since Murphy and Nance (1989). 
Reconstruction of cross sections (Fernández-Suárez 
et al. 2014; Zulauf et al. 1999; Schulz et al. 2004; Linne-
mann et al. 2007; Sánchez Martínez et al. 2012; Žák 
et al. 2013a; Ballèvre et al. 2014) present intra-cordillera 
rifting at lower crustal level triggering the upwelling 
of asthenosphere, leading to back-arc rifting during the 
Early Ordovician. Similarly, in the Saxothuringian basin 
(Linnemann et al. 2014), a synrift sequence from the 
Tremadoc onwards is supposed to accompany the open-
ing of the Rheic Ocean, and in the Prague basin, it is 
accompanied by basic submarine volcanism (Patočka 
et al. 1994; Žák et al. 2013b). The South Armorican 
units could have formed in a comparable context, as 
Ordovician igneous rocks (Table 1) seem to represent 
the main Early Palaeozoic manifestation.
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Plate-tectonic considerations

The existence of pre-Palaeozoic active margin sequences 
along the Gondwana margin has been discussed since 

Frisch and Neubauer (1989; Austroalpine gneiss-amphibo-
lite association; Schulz et al. 2004). In view of their loca-
tion at the margin border, Stampfli et al. (2011) proposed 
to correlate part of them with a pre-Rheic arc located in the 
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Fig. 2  Cambrian (500 Ma) plate-tectonic reconstruction (modified 
after Stampfli et al. 2011). Stars (black and violet) Magmatic rocks 
as meta-eclogites, Crosses Cambrian rift-related magmatic rocks. 
The future break-up of the Rheic Ocean is marked as a dashed pur-
ple line. a Inset Geodynamic units along the Gondwana margin, pre-
sented in detail in b Geodynamic units along the Gondwana margin. 
Light brown Hunic terranes, future Chinese basement domains; Light 
green Central European. Variscan basements with domains (dark 
green) hosting allochthonous former proto-Rheic oceanic basements. 
Orange Rift zone with strong subsidence and accumulation of detrital 
sediments (comp. von Raumer and Stampfli 2008). Stars Magmatic 
rocks as meta-eclogites, crosses Cambrian rift-related magmatic 

rocks. B–Bʹ: Section 500 Ma in Fig. 4. QILIAN ARC: All Iberian 
Allocthomous, al-Sx allochtonous Saxothuringian, ChR Chamrousse. 
GALATIAN: Ar Armorica, Au Austroalpine, Md Moldanubian 
Teplá–Barrandian unit, He External massifs, Li Limousin, OM Ossa 
Morena, Sx Saxothuringian, BRK Betic Rif Kabbylies, TE Tell East, 
Si Sidi, Pa Panormides. AVALONIA-HANSEATIC: MR Mid-German 
Rise, ZK Zonguldag-Kure, Bu Bukovina. GONDWANA: Ap Apulia, 
HA High Atlas, Pg Pelagian, Tr Taurus. HUNIA: Ag Aghdarband, An 
Anarak, AT Altyn Tagh, Ba Badakshan, EK East Kunlun, HK Hindu-
kush, Ka Karakum, NP North Pamir, Qa Qaidam, Qi Qilian, Qu Qin-
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Palaeo-Asian Ocean. The exotic Qilian–Qaidam arc base-
ment of Fig. 2 could possibly be derived from these east-
ern regions (Wilhem 2010; Wilhem et al. 2012; Stampfli 
et al. 2013) and would consist of a Cadomian type base-
ment. Ridge jump detached a fragment of Qilian to form 
the Qaidam arc (Fig. 3) accreted to the Gondwana margin 
around 475 Ma. Potential remnants of this arc could be rep-
resented by arc sequences at the top of the Iberian nappe 
pile dated around 500 Ma. The presence of 500 Ma plagi-
ogranites (Chamrousse) could also be interpreted as derived 
from an intra proto-Rheic/Palaeo-Asian oceanic crust. Sim-
ilarly, the Métailler formation of the Penninic domain (Sar-
tori et al. 2006; Gauthiez et al. 2011) represents a poten-
tial post-Cambrian mélange of oceanic nature, comprising 
ultramafite, OIB, E-MORB and some carbonates. In this 
context, some mafic to ultramafic rock suites interpreted as 
related to intra-cordillera rifting (South Armorica, alloch-
thonous Saxothuringian, parts of the Moldanubian) may 
have been derived from this exotic arc domain.

The topmost (Floian) Armorican Quartzite s.str. (Gutié-
rrez-Alonso et al. 2007; Shaw et al. 2012, 2014) in Iberia 

represents erosion of the rift shoulder of the opening Rheic 
Ocean; however, its base generally lies unconformably on 
a thick, folded, Late Precambrian to Cambrian turbidite 
sequence (McDougall et al. 1987) that we relate with the 
collision of the Gondwana active margin with the Qaidam 
arc, soon followed by the accretion of the Qilian block. 
Comparably, the Sardic tectonic phase (e.g. Martini et al. 
1991) is of similar age and is found from Catalonia to the 
Montagne Noire and the nappe zone of Sardinia (Oggiano 
et al. 2010) where it marks the eastern limit of this Early 
Ordovician obduction event and related tectonic inversion 
of pre-existing rifts (Fig. 1).

The proposed cross-sectional model (Figs. 2, 3) is located 
at the junction between two types of setting. North of Africa 
the incoming Qaidam arc was most likely underplated and 
would have been removed by subsequent rifting of a rela-
tively large (up to 500 km) Hunia during the opening of the 
Rheic Ocean (Fig. 3), whereas, eastward, the arc–arc colli-
sion was followed by the obduction of the young and buoy-
ant Qaidam supra-subduction ocean. Part of these obducted 
arc/back-arc sequences have been preserved along this 

Fig. 3  Geodynamic scenarios 
from the Late Cambrian to the 
Silurian across the future Alpine 
and adjacent domains at the 
Gondwana margin: from Late 
Cambrian arc–arc collision and 
subsequent back-arc obduction 
(480 Ma) along the Gondwana 
border. After subduction rever-
sal, slab rollback is triggering 
the opening of the Rheic rift 
and Rheic Ocean (465 Ma) in 
eastern Gondwana. The arc–arc 
collision was diachronous, as 
well as the opening of the Rheic 
Ocean, both events taking place 
sooner westwards (c.10 Ma). 
The different stages of “Armori-
can Quartzite I, II, III” are 
commented in the text
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portion of the margin (from the allochtonous sequences of 
Spain to the Alpine domains) due to the removal of a rela-
tively thin (100 km) Hunia ribbon terrane along that portion 
of the margin. The obducted sequences would then form the 

toe of the Gondwanan Rheic passive margin north of Spain, 
Ligeria and Moldanubian domains (palaeomagnetic data 
correspond to our Ordovician placing of the Prague basin, 
Patocka et al. 1994) after the opening of the Rheic Ocean.

Fig. 4  Early Palaeozoic geody-
namic scenarios for the Alpine 
Briançonnais–Austroalpine 
basements and adjacent areas: 
from a Cambrian Gondwanan 
cordillera (500 Ma) to under-
plated arc and Sardic inverse 
folding (Sardic Phase 480 Ma), 
subsequent crustal extension 
(460 Ma), arc–arc oblique colli-
sion (450 Ma) and exhumation 
at a transform margin (430 Ma). 
Age data from Table 1 and from 
von Raumer et al. (2013)
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The internal part of the obducted arc (and its Cadomian 
substratum) was removed during the drifting of Hunia 
(violet stars of Figs. 1, 2) and re-accreted north-eastwards 
along the future transform margin west of S-China (Fig. 4). 
This scenario is confirmed by the presence of a Late Ordo-
vician orogenic evolution (Zurbriggen et al. 1997; Zur-
briggen 2014) involving fore-arc sequences in the Strona-
Ceneri Zone (Southern Alps) with possible parallels in the 
Austroalpine (Schulz et al. 2004) and external domains. 
The dated eclogites and HP evolution in a subduction zone 
(~457 Ma: Franz and Romer 2007: Strona-Ceneri Zone; 
Schaltegger et al. 2003: Helvetic domain) comprise mafic 
magmatism and resulted in crustal thickening from Early 
to Late Ordovician. The Métailler back-arc-type mafic 
rocks (Gauthiez et al. 2011) are interpreted here as a wit-
ness of a short-lived back-arc basin within the margin west 
of S-China, in view of its age too young to pertain to the 
Qaidam back-arc complex. After the Strona-Ceneri tectonic 
event, this “Alpine” domain margin became a passive trans-
form margin, in which basic rocks were intruded at the pas-
sage of the Rheic mid-ocean ridge during the Silurian. This 
margin was also affected by a first phase of Paleo-Tethys 
rifting during that period that aborted in the Early Devo-
nian (Stampfli et al. 2013). Most of the Alpine basement 
blocks are therefore regarded as pertaining to Hunia (cf. 
Schulz et al. 2004), before to be detached from Gondwana 
in the Devonian to form the large Galatian ribbon terrane.

When comparing structures along the Gondwana margin 
(Von Raumer et al. 2014), it becomes evident that structures 
observed at the eastern end of the Gondwana margin can-
not directly be compared to the westernmost ones, where 
the main suture is supposed to represent mainly the amal-
gamation of Gondwana through Cadomian events (Murphy 
et al. 2006; Linnemann et al. 2008). The provenance of the 
involved basements may have had their origin in northern 
China or in north-eastern Baltica, and the suture is likely 
of Ediacaran (540–530 Ma) age. Eastern equivalents may 
be found in more eastern Variscan basement blocks, but the 
proximity of Panafrican and Cadomian sutures prevented 
any distinction so far.

The eastern Gondwana margin, the subject of this paper, 
contains Sardic and Strona type sutures in addition to older 
Cadomian, Panafrican ones which are related to the collid-
ing Qaidam arc with Gondwana (African and Alpine type 
basements), and the drifting of Hunia, which occurred 
when Avalonia was already separated from Gondwana.

Location in the Variscan nappe pile

The allochthonous units (Fig. 2) found in the Variscan 
nappe pile underwent an HP event well established around 
390 Ma in the whole Variscan chain (Abati et al. 2010; 
Ballèvre et al. 2009; Faryad and Kachlík 2013; Godard 

2009; Lardeaux et al. 2001; Lucks et al. 2002; Stamp-
fli et al. 2002). Diverging points of view regard that event 
either as an early collision between Gondwana and Lau-
russia (Matte 2002, and references therein; Arenas et al. 
2014), or as peri-Gondwanan (Stampfli et al. 2013, and 
reference therein). The Cambro–Ordovician oceanic rel-
ics that remained on the Gondwana passive margin of the 
Rheic have certainly been re-displaced and locally meta-
morphosed during this c. 410–390 Ma obduction/collision 
event (e.g. Timmermann et al. 2004; Berger et al. 2010) and 
also during younger Variscan HP–HT events (Abati et al. 
2007; Fernández-Suárez et al. 2007) when Galatian blocks 
started to collide with each other (Stampfli et al. 2013). 
The main Variscan collision started around 360 Ma, locally 
accompanied by HP metamorphism (Maluski and Patočka 
1997), and complex nappe structures were formed until 
the final closure of the Rhenohercynian Ocean in the Late 
Carboniferous. Therefore, the final juxtaposition of alloch-
tonous units hosting Early Palaeozoic oceanic relics with 
other Variscan units is certainly not representative of their 
original position and still needs to be properly re-assessed.

The collision of these Variscan terranes with Laurasia-
derived terranes (Hanseatic) started the Variscan cycle of 
collision s.str. In this context, the 390 Ma event is regarded 
as Early Variscan and peri-Gondwanan. The Variscan colli-
sion started around 360 Ma, and complex nappe structures 
were formed until the final closure of the Rhenohercynian 
Ocean in the Late Carboniferous.

Summary and conclusion

The preceding chapters demonstrate the presence of an 
Ediacaran–Cambrian active margin setting along the Gond-
wana margin (Figs. 2, 3). Despite local differences, the 
basement areas under consideration must have evolved 
continuously and in a more or less cylindrical way during 
this earlier time period, resulting in the building of a cor-
dillera along the Gondwana margin. But different to the 
sutures observed in the more western domains (Murphy 
et al. 2006; Linnemann et al. 2008), those of the eastern 
Gondwana margin, including the sectors from Iberia and 
Ossa Morena to the Bohemian Massif and the Eastern Alps, 
host younger Ordovician sutures in which older structures 
were preserved (Fig. 4). This diversified evolution is related 
to a possible juxtaposition of China-derived blocks and 
intra-oceanic arcs of the Palaeo-Asian/proto-Rheic Ocean 
with parts of this eastern Gondwana margin (see earlier dis-
cussion, von Raumer et al. 2002).

These eastern sectors of the Gondwana margin docu-
ment the emplacement of Late Cambrian metabasic, ultra-
basic or granitoid rocks possibly related to extensional 
environment of different origins. The thickened crust of 
the ageing Gondwanan cordillera may have collapsed more 
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easily, also due to accelerating rollback as exotic terranes 
approached the margin in Early Cambrian times. Gabbros 
in intra-cordillera rifts had their contemporaneous counter 
parts in the exotic Qaidam domain due to rollback of the 
same Palaeo-Asian Ocean, resulting in the opening of Late 
Cambrian supra-subduction back-arc basins.

Arc–arc collision and opening of the Rheic Ocean were 
diachronous along the Gondwana margin. The cross sec-
tions of Fig. 3 characterize a more eastern location (see 
Fig. 2), where a Late Cambrian arc–arc collision was fol-
lowed by back-arc obduction (480 Ma). Subsequent sub-
duction reversal triggered the rifting and opening of the 
Rheic Ocean (465 Ma) as the Hun terrane left the eastern 
Gondwana margin.

For the Alpine Briançonnais–Austroalpine basements and 
adjacent areas, the sections (Fig. 4) depict after the Sardic 
tectonic inversion and folding stage (Sardic phase 480 Ma), a 
younger arc–arc oblique collision (450 Ma) of the eastern tail 
of the Hun terrane with the internal Alpine margin, followed 
by exhumation in a transform margin setting (430 Ma).

We conclude that parallels of a pre-Rheic magmatic 
evolution in the different Variscan allochthonous ophiolitic 
basement areas is evident. Presenting relics of former Edi-
acaran to Cambrian arcs, part of them could include rem-
nants of intra-oceanic proto-Rheic/Palaeo-Asian arcs/back-
arcs, before they were accreted to the Gondwana margin 
and before the opening of the Rheic Ocean. Time parallels 
with more western Neoproterozoic sutures (comp. Murphy 
et al. 2006) are evident, but differences appear in the more 
eastern Gondwana margin, where the evolution terminated 
with Late Ordovician suturing. The postulated obduction/
collision event (c. 390 Ma) and the subsequent Variscan 
orogenic evolution explain the final tectonic situation of 
these ophiolitic sequences. We are conscious that much 
more detail research has to be performed for reconstitut-
ing the original pre-Cambrian to Ordovician plate-tectonic 
configurations, and it was only our intention to stimulate 
discussion for coming research.
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