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Abstract In this paper, completely uncoupled dynamics for n-player bargaining are
proposed that mirror key behavioral elements of early bargaining and aspiration
adjustment models (Zeuthen, 1930; Sauermann and Selten, 118:577–597 1962). Indi-
vidual adjustment dynamics are based on directional learning adjustments, solely
driven by histories of own realized payoffs. Bargaining this way, all possible splits
have positive probability in the stationary distribution of the process, but players will
split the pie almost equally most of the time. The expected waiting time for almost
equal splits to be played is quadratic.

Keywords Bargaining · Cooperative game theory · Equity · Evolutionary game
theory · (Completely uncoupled) learning

JEL Classifications C71 · C73 · C78 · D83

1 Introduction

Bargaining models are amongst the most important applications of game theory,
spanning cooperative, noncooperative, evolutionary and experimental games. The
most basic one is bilateral bargaining. Indeed, Ellingsen (1997) asks the question:
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Is there any economic activity more basic than two people dividing a pie? Dating
back to Zeuthen (1930), Raiffa (1953), Luce and Raiffa (1957), Schelling (1956),
and Rubinstein (1982), bilateral bargaining has been modelled as some kind of
“power struggle”. The proposed procedures mirror adjustments driven by admix-
tures of patience, threats, and/or rounds of offers and counteroffers with subsequent
compromise.1

In this paper, we focus on infinitely repeated multilateral bargaining in a homo-
geneous population that takes place in an informational setting characterized by the
absence of information concerning other players’ utility functions, actions and pay-
offs. We propose an evolutionary model of bargaining without information exchange.
The game-theoretic full-rationality canon is of course not germane in such an envi-
ronment (Young 2004), and not even standard evolutionary models can be applied
(Weibull 1995; Sandholm 2010). Other than in the dynamic bargaining models of
Zeuthen (1930), Raiffa (1953), Luce and Raiffa (1957), Schelling (1956), and Rubin-
stein (1982), the pie is not just split once at the end of the bargaining process but
repeatedly each round. Agents repeatedly demand slices of the pie without informa-
tion about others’ demands. Agents receive their slices when demands are globally
feasible, but receive nothing when not. Without individuals going through a process
of hypothesis-formation concerning other agents’ actions, the model that we propose
is easy as pie (pun intended):

an agent whose previous demand was feasible occasionally demands incremen-
tally more, while an agent whose previous demand was infeasible reduces his
demand with a probability that is increasing in his demand-payoff differential.

Bargaining this way, all possible n-way splits of the pie have positive probabil-
ity in the stationary distribution of the process, but players end up sharing the pie
almost equally most of the time. Indeed, from any initial state, an almost equal split
is reached in quadratic time. Equity here refers to players receiving the same (or very
similar) payoffs in the long-run outcomes.2 In our setting, due to the homogeneity
of the population, the multilateral generalizations of the aforementioned, standard
bargaining solutions (due to Zeuthen’s, Nash’s, or Rubinstein’s) all coincide with
this allocation. The aim of this paper is to illustrate another dynamic with which
it may be reached, the distinguishing factor being the informational limits of the
environment.

Even though our model of bargaining is evolutionary in a finite population, that
is, the pie is split repeatedly by the same agents, our bargaining dynamics are dif-
ferent from the standard bargaining models of this kind which we shall discuss
shortly. In terms of the underlying dynamic adjustment components, our dynam-
ics have closer antecedents in the iterative bargaining model of Zeuthen (1930)

1Axiomatic bargaining solutions such as Nash’s (1950) explicitly consider relative bargaining strengths
(“outside options”). Harsanyi (1956) shows that the solutions obtained by Zeuthen’s dynamic model and
Nash’s axiomatization coincide.
2The number of adjustments needed to reach such outcomes may not be the same for all players, hence
there is ground to think of some inequality in terms of bargaining efforts or more general concepts of
social exchange equity (Adams, 1965) depending on initial states.



Equity dynamics in bargaining without information exchange 1013

where the pie is split only once at the end of the process. In Zeuthen, bargaining
starts with both parties demanding the entire pie.3 Over time, bargaining ensues as
a sequence of mutual concessions that are based on the two parties’ relative will-
ingness to risk conflict: at any infeasible intermediate proposal, the party with the
lower willingness to accept breakdown, which (in the symmetric case) is the party
with the higher demand, adjusts its demand to a slightly smaller demand. Con-
cessions alternate in this way until feasible demands are made.4 Then bargaining
ends. Formally, our dynamics are a probabilistic interpretation of Zeuthen’s model
with repeated consumption of the pie, but the underlying behavioral motivations
are also motivated differently. In Zeuthen, the party with the lower willingness to
risk breakdown concedes precisely because she judges her opponent’s willingness
to risk breakdown to be higher (probably by interpretation of her past actions).
By contrast, our model assumes that demand concessions are triggered by own
demand-payoff differentials and past experiences, without hypotheses made about
others.

Our individual adjustment dynamics do not rely on information about others.
Instead, decisions are solely based on the histories of own realized payoffs. This
means that our dynamics are “completely uncoupled” (Foster and Young 2006;
Young 2009) from others’ actions and payoffs. “Completely uncoupled” learning
tightens the informational constraints of “uncoupled” learning (Hart and Mas-Colell
2003, 2006), which may depend on others’ past actions.5 Completely uncoupled
rules have recently been applied to noncooperative games by Karandikar et al.
(1998), Foster and Young (2006), Germano and Lugosi (2007), Young (2009), Mar-
den et al. (2009), Pradelski and Young (2012), Babichenko (2012), and Marden et al.
(2014), and to cooperative games and matching models by Nax (2011) and Nax
et al. (2013). These models have antecedents in classic learning theory dating back
to Thorndike (1898), Hoppe (1931), Estes (1950), Heckhausen (1955), Herrnstein
(1961), and Sauermann and Selten (1962). Reinforcement learning models (Bush and
Mosteller, 1955; Suppes and Atkinson 1959; Harley 1981; Cross 1983; Roth and Erev
1995; Erev and Roth 1998) are a particularly famous class of completely uncoupled
learning dynamics.

Our dynamics are most closely related to the theory of aspiration adjustment due to
Heckhausen (1955) and Sauermann and Selten (1962). The particular learning heuris-
tic we adopt is based on “directional learning” (Selten and Stoecker 1986; Selten and
Buchta 1998). According to the directional learning hypothesis of bargaining, agents
demand either more or less dependent on whether previous demands were successful
or not. This hypothesis was tested extensively in (bilateral) experiments by scientists

3Other iterative bargaining procedures such as Raiffa (1953), Luce and Raiffa (1957), Kalai (1977), and
John and Raith (1999) start from inside the bargaining set. The differences between these approaches and
ours is similar in spirit to the differences with Zeuthen that are discussed in detail here.
4In Raiffa (1953), Luce and Raiffa (1957), Kalai (1977), and John and Raith (1999), the process moves
the other way around and iterative steps towards the Pareto frontier are negotiated.
5See Babichenko (2010, 2012) for convergence comparisons of uncoupled and completely uncoupled
dynamics.
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surrounding the theory’s main proponents at the time (e.g. Tietz et al. 1978).6 In fact,
we could restate our adjustment dynamics with their words (Tietz et al. 1978; pp. 91,
94):

• “the basis of the aspiration levels changes according to the economic situation
and is modified by success and failure in the previous negotiation.”

• “a subject lowers his aspiration level after a negative impulse. It is not lowered if
the impulse is positive. After a neutral impulse the aspiration level is kept stable.”

• “a subject raises his aspiration level after a positive impulse. It is not raised if the
impulse is negative. After a neutral impulse the aspiration level is kept stable.”

What is new about our take on directional learning is our re-interpretation as
a completely uncoupled dynamic. In the standard formulation (see, for example,
Grosskopf 2003), players learn directionally because they have knowledge of coun-
terfactuals, that is, they can assess how strategies in either direction would have
performed relative to the strategy that was actually chosen. Here, we do not require
such knowledge. Instead, directionality is born from the fact that players have a
tendency to demand more (less) when currently receiving a payoff that matches
or exceeds (falls short of) their aspirations. A similar approach has recently been
taken by Nax et al. (2013), Nax and Perc (2015), Nax and Pradelski (2015), and
Burton-Chellew et al. (2015).

A particular feature of these dynamics is that, after a negative impulse, an agent
reduces his demand with a probability that is increasing in his demand-payoff differ-
ential. This is a phenomenon observed regularly in the aforementioned experiments
(e.g. Tietz et al. 1978). More recently, experiments by Ding and Nicklisch (2013),
Nax et al. (2013), and Burton-Chellew et al. (2015) also provide non-bargaining evi-
dence for this phenomenon. Nax and Pradelski (2015), for example, consider the
context of voluntary contributions games played in an experimental setting where
information is neither revealed about the structure of the game nor about other play-
ers’ actions and payoffs. The predominant type of adjustments identified in their
study is directional in our sense, and indeed much more accentuated after negative
stimuli than after positive ones. This finding is confirmed in Burton-Chellew et al.
(2015), and indeed found to be a robust feature even in environments where more
information is available and against competing hypotheses.7 This suggests that neg-
ative stimuli regularly have a more immediate effect than positive stimuli, the impact
of which depends on the size of the shock. This feature of our dynamic, more gener-
ally, relates to asymmetric reactions to perceived gains and losses that also lie at the
heart of several of the recently proposed completely uncoupled, trial-and-error learn-
ing models (in particular, in Young 2009; Pradelski and Young 2012; Marden et al.
2014).

6See also Tietz and Weber (1972), Tietz (1975), Weber (1976), and Tietz and Weber (1978), Tietz and
Bartos (1983), Crössmann and Tietz (1983), and Tietz et al. (1978). Roth (1995) discusses subsequent
experiments.
7Actually, such directional adjustments may turn out to be strategically rationalizable in these higher
information environments. (I thank an anonymous referee for pointing this out.)
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As mentioned previously, the differences between our approach and traditional
evolutionary bargaining models, as for example in Young (1993), Ellingsen (1997),
Alexander and Skyrms (1999), Saez-Marti and Weibull (1999), and Binmore et al.
(2003), are substantial in terms of their behavioral and informational assumptions.8

Take Young’s (1993) model, for instance, where random pairs of agents from finite
populations are repeatedly drawn to play the Nash demand game. Each player in such
an interaction randomly samples demands from previous bargaining encounters and
plays a best reply to his sample with high probability, but there is small probabil-
ity of “noise”, that is, players commit errors with small probability. The analysis of
“stochastic stability” (Foster and Young 1990; Young 1993) reveals which bargain-
ing outcomes are long-run stable as the “noise” rate goes to zero in such a dynamic.9

Under some regularity assumptions, stochastic stability analysis reveals that the pop-
ulation evolves to play of the Nash bargaining solution. By contrast, our model is not
based on best-reply dynamics, and its implicit noise rates do not diminish. Hence,
we formally do not use the concept of stochastic stability, but a zonal notion of
convergence instead.10 Indeed, agents do not reply to others because they have no
information about them. Instead, agents adjust their behavior based on own experi-
ence and continue to experiment with their own actions at fixed rates ad infinitum. In
this paper, we propose an intuitive model motivated by experimental evidence as to
how this is done and explore its convergence properties.

The paper is structured as follows. Next, we introduce the model’s static and
dynamic components. Section 3 contains the paper’s convergence results. Section 4
concludes.

2 The model

2.1 Static components

The following n-player extension of the Nash demand game is played.

n-player cooperative transferable-utility bargaining A fixed population of play-
ers, N = {1, ..., n}, bargains over the unit pie.G(v, N) is the cooperative bargaining
game with characteristic function v : 2n → R such that subcoalitions are inessential
(v(S) = v(∅) = 0 for all S ⊂ N ), and the grand coalition produces the unit pie (i.e.
v(N) = 1).

8See also Gale et al. (1995), Nowak et al. (2000), and Konrad and Morath (2014) for evolutionary models
of “ultimatum bargaining” (Güth et al. 1982), or Binmore et al. (1998) for an evolutionary analysis of
alternating-offer “Rubinstein bargaining” (Rubinstein 1982).
9“Stochastic stability” is an equilibrium refinement that is different from “evolutionary stability” based
on replicator arguments (Maynard Smith and Price 1973; Maynard Smith 1974) or from “evolutionary
stability” in finite populations (Schaffer 1988; Nowak et al. 2004).
10The difference between these convergence concepts is addressed in more detail in Young (2009), see
also Babichenko (2012)
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Demands Each player i ∈ N makes a demand di ∈ [0, 1] of the unit pie. We assume
that, for some k ∈ N

+, each di is a multiple of some discrete stepsize δ = 1/nk.
Write d = {d1, ..., dn} for a demand vector, and � for the (finite) set of possible
demand vectors.

Payoffs If demands are jointly feasible, each player receives his demand; otherwise,
individuals receive zero. For any player i ∈ N at any time t , his payoff is

φi =
{

di if
∑

i∈N di ≤ 1,
0 otherwise.

Write φ for a vector of payoffs {φ1, ..., φn}.

2.2 Dynamic components

The process moves in infinite continuous time. Players are “activated” by indepen-
dent Poisson clocks at rate one.11 Define a “time step” t by activation of a unique
agent, the uniqueness of which is given by the independence of the Poisson clocks.
A new bargaining game is played every time a new time step t begins.

Let dt describe agents’ demands at time t . For all j �= i not activated at time
t + 1, j remains inactive and continues with his previous demand dt+1

j = dt
j . For

the activated agent, we assume the following demand adjustments. Recall that agents
crucially have no information about other agents’ demands or payoffs.

Increases If
∑

j∈N dt
j ≤ 1, then, if dt

i < 1,

dt+1
i =

{
dt
i + δ with probability r,

dt
i otherwise.

(1)

We assume that r ∈ (0, 1), subsequently referred to as the rate of experimentation, is
constant. If

∑
j∈N dt

j ≤1 and dt
i =1, then we assume dt+1

i =dt
i with probability one.

Reductions If
∑

j∈N dt
j > 1, then

dt+1
i =

{
dt
i with probability s

(
dt
i

)
,

dt
i − δ otherwise.

(2)

We assume s(·), subsequently referred to as the degree of stickiness, to be a time-
invariant linear function, constant for all players, and of the form 1 − s

(
dt
i

) = adt
i

with 0 < a < 1.12 For convenience, we shall define f (·) = 1 − s(·). Notice that
dt+1
i = dt

i with probability one if dt
i = 0. Furthermore, in line with the empirical

11It will be convenient to have set up the process with these Poisson clocks when we turn to convergence
times. For the meantime, it is also possible to think of agents being activated uniformly at random in
discrete time.
12The linear function is an approximation for more general functions or a lower bound for functions that
first-order dominate the linear bound (e.g. more convex or step functions). Using adi with a = f (δ)

δ
for any

convex function f (·) with f (0) = 0, f ′(x) > 0 and f ′′(x) ≥ 0 for all x > 0, for example, “understates”
the stickiness and works in the opposite direction in terms of our results.
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observation mentioned in the introduction that agents react stronger to negative than
to positive stimuli, we shall assume that r < aδ, i.e. that any reduction is more likely
than an increase.13

3 Analysis

3.1 Recurrence class

The state of the process at any time t is described by dt , which implies time-t utili-
ties for all players and also the probabilities for the time-(t + 1) Markov transitions
(expressions 1 and 2), thus yielding a Markov chain on �. In this section, we shall
show that all states with less than efficient demands and all states with demands that
are infeasible by more than δ are transient, all other states are recurrent.We shall refer
to state d′ as a neighbor of any given state d if d′ is reached with positive probability
in period t + 1 if the period-t state is d.

Definition A state d ∈ � is transient if, given dt = d at any time t , there exists a
positive probability that the process never returns to d at any time t ′ > t . State d is
recurrent if it is not transient.

Proposition 1 Any state d ∈ � with
∑

i∈N di < 1 or > 1 + δ is transient. All states
d ∈ � with

∑
i∈N di ∈ [1, 1+ δ] are recurrent.

Proof of proposition 1. Transience: At t , suppose dt is such that
∑

i∈N dt
i ≤ 1.

Starting at dt , the process exits with a positive probability in an “outwards” direction
(to larger demands), but not “inwards” (to smaller demands). The direct neighbors
of all states with

∑
i∈N dt

i < 1 have
∑

i∈N dt
i ≤ ∑

i∈N dt+1
i ≤ 1, the states on the

frontier with
∑

i∈N dt
i = 1 have neighbors with 1 ≤ ∑

i∈N dt+1
i ≤ 1 + δ.

At t , suppose dt is such that
∑

i∈N dt
i > 1. Starting at dt , the process exits with

a positive probability in an inwards direction, but not outwards. The direct neighbors
of all states with

∑
i∈N dt

i > 1+ δ have
∑

i∈N dt
i ≥ ∑

i∈N dt+1
i > 1, whereas a state

with
∑

i∈N dt
i = 1 + δ is the neighbor of states with 1 ≤ ∑

i∈N dt+1
i ≤ 1 + δ.

Jointly, these observations imply that all states d with
∑

i∈N di <

1
(
and

∑
i∈N di > 1 + δ

)
are transient because the process exits these states with a

positive probability in an outward (inward) direction but, once left, they are never
again reached.

Recurrence: Any recurrent state d is such that
∑

j∈N dj ∈ [1, 1+ δ].

Claim There exist positive-probability transitions between any two recurrent states
d, d′.

The claim follows directly from the following two observations.

13Assuming r < aδ guarantees that this assumption holds for any current dt
i > 0 of any player.
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• given dt = d with
∑

i∈N di = 1, the probability that dt+1
i = dt

i + δ for any
i ∈ N and dt+1

j = dt
j for all j �= i is r/n > 0 if dt

i < 1.

• given dt = d with
∑

i∈N di = 1 + δ, the probability that dt+1
i = dt

i − δ for any
i ∈ N and dt+1

j = dt
j for all j �= i is at least aδ/n > 0 if dt

i > 0.

The two transitions can be used to reallocate any number of δs from any player
demanding a positive amount, via any player, to any player demanding less than one
in all d ∈ �:

∑
i∈N di ∈ [1, 1+ δ].

3.2 Embedded Pareto frontier chain

Denote by �e ⊂ � the states on the embedded chain of states d on the Pareto fron-
tier

(
with

∑
i∈N di =)

. d′ is a neighbor of any given state d in this chain if there
exists a state d′′ not in the embedded chain such that, in the original chain, d′′ is a
neighbor of d, and d′ is a neighbor of d′′ (i.e. d′ is reachable from d in two time
steps in the original chain). Recall that all states in �e are recurrent (proposition
1). Moreover, given any state d = (d1, ..., dn), his neighbors dij are of the form
(d1, ..., di + δ, ...., dj − δ, ..., dn): i.e. between neighbouring states, d and dij , in �e

a single transfer takes place; first some player i increases his demand to di + δ (caus-
ing infeasibility), then some player j �= i (demanding > 0) reduces his demand to
dj − δ (restoring feasibility); all other demands remain at their previous levels. The
probability of any feasible transition between any two neighbors, d and dij , in �e is

πddij = 1

n
r · 1

n
f

(
dj

)
. (3)

We will view these transitions in �e as single time steps indicated by times with hats(
t̂ = 1̂, 2̂, ...

)
. Note that these take at least two time steps in � but may take longer

if, for example, an agent demanding one is drawn on the Pareto frontier, an agent
demanding zero is drawn above the Pareto frontier, etc.

3.3 Equity

Next, we shall prove that almost equal splits will be played most of the time.
Before we turn to the mathematical results, let us state the basic intuition behind

this result which is best-illustrated in bilateral bargaining. (Figure 1 illustrates.) The
reader should note, however, that despite the fact that bilateral bargaining is a useful
(graphic) illustration of our dynamics, the same arguments do not carry over trivially
to multilateral bargaining.

Suppose two players bargain over the unit-pie. If d1+d2 ≤ 1, both players receive
the shares they respectively demand. At the next time step, both players are equally
likely to increase their demand by δ if both demand less than one. If d1 + d2 > 1,
both players receive zero. At the next time step, the player currently demanding a
higher share of the pie is more likely to reduce. Eventually (by proposition 1), this
increase-decrease dynamic will boil down to an ongoing process that moves on (or
one δ above) the Pareto frontier; again and again, one of two transitions occur: (i)

one of the two players overshoots the Pareto frontier by δ; then (ii) one of the two
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Fig. 1 Bilateral bargaining with linear boundary of slope -1.The bargaining process takes place above
zero. States below the Pareto frontier are transient, expected movement is outwards along 45-degree rays
towards the Pareto frontier. In the external region, the process tends inwards and towards equal surplus
splits. In the long run, the process moves between states with sums of demands equal to one (fat diagonal)
and exterior states with sums of demands equal to 1 + δ (dashed diagonal). The zigzag in the exterior
region highlights possible negotiation paths in Zeuthen’s model. Long-run mass concentrates around equal
surplus splits

players (more likely the one with the higher demand) reduces by δ. Over time, this
leads to equal splits.

3.4 Equity drift

To prove convergence, we track the variance of demands in the embedded chain �e.
Note that, in the recurrent class, payoffs equal demands if demands are feasible,
and payoffs are zero when demands are infeasible. The variance of payoffs, too, is
therefore equal to the variance of demands if demands are feasible, and equal to zero
when demands are infeasible.

Variance Given any state d ∈ �, the variance of demands is V ar(d) =
1
n

∑
i∈N(di − μ)2 where μ = 1

n

∑
i∈N di = 1

n
is the constant mean payoff in

�e. Write �
(
V ar

(
d̂t+1

))
= V ar

(
d̂t+1

)
− V ar

(
d̂t

)
for the change in variance

between times t̂ and t̂ + 1 in �e.
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Variance drift Given any state d̂t = d at time t̂ such that d ∈ �e, we shall refer to

E

[
�

(
V ar

(
d̂t+1

))
|d̂t = d

]
as the variance drift.

If E

[
�

(
V ar

(
d̂t+1

))
|d̂t = d

]
< 0, there is an “equity-drift”, that is, the

variance of demands in �e diminishes in expectation.

Lemma 2 Starting with d̂t = d ∈ �e, the variance drift is

E

[
�

(
V ar

(
d
̂t+1

))
|d̂t = d

]
= 2arδ

[
δ
n − 1

n2
− V ar(d)

]
. (4)

Proof of lemma 2. From any state d ∈ �e, we move to a given dij �= d ∈ �e with
probability rf

(
dj

) 1
n2

which is positive if dj > 0. In the original chain, we leave d in

one time step and come back to d in the next with probability
∑

i∈N

∑
j �=i rf

(
dj

) 1
n2
.

Hence, with probability 1 − ∑
i∈N

∑
j �=i rf

(
dj

) 1
n2
, we stay in d in �e. The next

expected sum of squares of demands in �e is therefore

E

[∑
i∈N

(
d
̂t+1
i

)2 |d̂t = d
]

= r

n2

∑
i

{∑
j �=i

f
(
dj

) (
[di +δ]2+[

dj −δ
]2+∑

k �=i,j
d2
k

)}

+
(
1−

∑
i∈N

∑
j �=i

rf
(
dj

) 1

n2

)∑
i

d2
i .

Expanding the squares, this becomes

r

n2

∑
i

{∑
j �=i

f
(
dj

)(∑
k
d2
k +2δ2+2δ

[
di −dj

])}
+

(
1−

∑
i∈N

∑
j �=i

rf
(
dj

) 1

n2

)∑
i
d2
i ,

which is

∑
i
d2
i + 2δr

1

n

∑
i
f (di)

[
n − 1

n
δ −

(∑
i f (di) di∑
i f (di)

−
∑

i di

n

)]

. Substituting f (di) = adi in the above equation, the drift in the sum of squares of
demands is

E

[
�

(∑
i∈N

(
d
̂t+1
i

)2) |d̂t = d

]
= 2

arδ

n

∑
i

di

[
δ
n − 1

n
−

(∑
i d2

i∑
i di

−
∑

i di

n

)]

= 2arδ
∑

i

di

[
δ
n − 1

n2
− V ar(d)

]
,

which is also the drift in the variance as
∑

j∈N dj = 1 for all d ∈ �e.

Note that the variance drift in �e is negative if, and only if,

V ar(d) > δ
n − 1

n2
. (5)
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Furthermore, when V ar(d) < δ n−1
n2

, any change in �e in a single time step is at most

δ2 n−1
n2

(which occurs when V ar(d) = 0).14

3.5 Results

Theorem 3 For any small β > 0 and for any large probability 1 − γ < 1, there
exists a step size δ ≤ βγ

3 and a time Tδ such that the variance of payoffs is less than
β at least 1 − γ of the time after Tδ .

Proof of theorem 3. First, we shall prove the following lemma:

Lemma 4 From any state d ∈ �e, for any bargaining game with step size δ > 0,
there exists a time Tδ such that, for every t > Tδ , relative inequity as measured by
the variance of payoffs will in expectation be less than 2δ.

Proof of lemma 4. It follows from proposition 1 that convergence of the process
can be analyzed using the embedded chain �e. Remember that, in �e, payoffs and
demands coincide, and recall that we move in �e in times t̂ .

We prove this theorem in two steps. First, we prove that, from any state d ∈ �e

with V ar(d) ≤ 2δ, all expected future variances are less than 2δ, and that, from any
state d ∈ �e with V ar(d) > 2δ, all expected future variances are less than V ar(d).
Second, we prove that, for any initial state d0 ∈ �e, it takes at most time T̂ for
the expected variance to be less than 2δ. Jointly, these two facts imply that, starting

anywhere in �e, E
[
V ar

(
d̂t

)
|d0

]
≤ 2δ after time T̂ .

Step 1. Expression 4 is negative for all states dT̂ = d ∈ �e with V ar(d) >

δ n−1
n2

(lemma 2). If dT̂ = d is such that V ar(d) ≤ δ n−1
n2

< δ, a maximum

�
(
V ar

(
d̂T +1

))
= δ2 n−1

n2
< δ may occur at the next time step and, thus, result in

a V ar
(
d̂T +1

)
no larger than 2δ.

Hence, for any state d with V ar(d) > 2δ, it is true that, for all t̂ ′ > t̂ ,

E

[
V ar

(
dt̂ ′

)
|d̂t = d

]
< V ar(d); (6)

and, for any state d with V ar(d) ≤ 2δ,

E

[
V ar

(
dt̂ ′

)
|d̂t = d

]
< 2δ. (7)

Step 2. We now prove that there exists a time T̂ < ∞ such that

E

[
V ar

(
d̂t

)
|d0

]
≤ 2δ indeed holds for all t̂ > T̂ from any starting state d0 in �e.

Note that, for any time t̂ and for any state d̂t = d with V ar(d) = 2δ, we know that

E

[
�

(
V ar

(
d̂t+1

))
|d̂t = d

]
< 0. Hence, for any state d with V ar(d) > 2δ, the

14Note that we may drop 2ar from this last expression because 2ar < 2r < 2δ < 1.
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drift can be bound by E

[
�

(
V ar

(
d̂t+1

))
|d̂t = d

]
= 2 arδ

n

[
δ n−1

n
− V ar(d)

]
<

−2arδ2 n+1
n2

. Writing c ≡ 2arδ2 n+1
n2

, we obtain the expression

E

[
V ar

(
d̂t+1

)
|d̂t = d

]
≤ V ar(d) − c (8)

for any d ∈ �e with V ar(d) > 2δ. Iteratively applying Eq. 8 as long as the variance
exceeds 2δ yields, from any starting state d0 ∈ �e,

E

[
V ar

(
d̂t

)
|d0

]
= E

[
E

[
V ar

(
d̂t

)
|d̂t−1

]
|d0

]
(9)

≤ max{E
[
V ar

(
d̂t−1

)
− c|d0

]
, 2δ}.

As long as E
[
V ar

(
d̂t−1

)
− c|d0

]
> 2δ, we iterate expression 9 repeatedly forward

to obtain
E

[
V ar

(
d̂t

)
|d0

]
≤ max{V ar

(
d0

)
− ĉt; 2δ}, (10)

which is less than or equal to 2δ for every t̂ > T̂δ when T̂δ ≥ 1
c
(1 − 2δ) ≥

1
c
(V ar(d0) − 2δ).

Now we can prove theorem 3.
For any β ∈ (0, 1] and starting at any d0 ∈ �e, lemma 4 implies that, for any

t̂ > T̂δ ,

P

([
V ar

(
d̂t |d0

]
≥ β

)
· β + P

([
V ar

(
d̂t

)
|d0

]
< β

)
· 0 ≤ E

[
V ar

(
d̂t

)
|d0

]
.

Rearranged, for any d0 ∈ �e, it holds for any β > 0 and γ > 0, that (yielding the
Markov inequality)

P

([
V ar

(
d̂t

)
|d0

]
≥ β

)
≤

E

[
V ar

(
d̂t

)
|d0

]
β

≤ 2δ

β
≤ γ, (11)

by appropriate choices of δ ≤ βγ
2 and this occurs after time

t̂ > T̂δ ≥ 1

c
(1 − 2δ). (12)

From any state d /∈ �e with
∑

i∈N di < 1, E
[∑

i∈N dt
i

] ≥ 1 after

t > T ′
δ = 1

rδ
. (13)

For any state d /∈ �e with
∑

i∈N di > 1, E
[∑

i∈N dt
i

] ≤ 1 + δ after

t > T ′′
δ = n2

aδ
(14)

Starting at any state d0 ∈ �, expression 11 therefore generalizes to

P

([
V ar

(
dt

)+|
∑
i∈N

dt
i −1| |d0

]
≥β

)
≤ E

[
V ar

(
dt

)+| ∑i∈N dt
i −1| |d0]

β
≤ 3δ

β
≤γ,

(15)
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which holds for any β > 0 and γ > 0 by appropriate choices of δ ≤ βγ
3 and by

adjustment for time; for all

t > Tδ ≥ n

arδ
T̂δ + T ′

δ + T ′′
δ . (16)

Corollary 5 The expected waiting time until theorem 3 holds, Tδ , is of order n2.

Proof of corollary 5. Expression 16 gives the expected waiting time for theorem 3:

Tβ,γ,δ = 1

rδ
+ n2

aδ
+ n2

2a2r2δ3
(1 − 2δ). (17)

The first term in Eq. 17, 1
rδ
, follows from Eq. 13, which gives the maximal

expected waiting time to reach a state in �e from any state in � with
∑

i∈N di < 1.
In particular, this is the expected waiting time to reach the Pareto frontier starting at
d: di = 0 for all i.

The second term, n2

aδ
, follows from equation Eq. 14, which gives the maximal

expected waiting time to reach a state in �e from any state in � with
∑

i∈N di > 1.
In particular, this is the expected waiting time to reach the Pareto frontier starting d:
di = 1 + δ for all i.

The third term follows from equation Eq. 12, which gives the maximal expected
waiting time to reach a state in �e with V ar(d) < 2δ from any state in �e, corrected
by the maximal expected waiting time in between any two states in �e. The correc-
tion includes one 1/r for the expected time spent on the Pareto frontier and another
n/aδ for the maximal expected time spent one δ off the Pareto frontier until the next
reduction occurs.

Jointly, this implies that Tβ,γ,δ ∈ O(n2).
Note that the respective average times spent with feasible (infeasible) demands are

1/r (n/a).

4 Conclusion

Zeuthen (1930) formulates a mechanistic bilateral negotiation protocol that mirrors
behavioral elements of adjustments. In his model, adjustments were attributable to
common knowledge about players’ relative willingness to concede or to risk conflict.
We propose a related dynamic based on aspiration adjustment theory and experi-
mental evidence from directional learning for the case of a homogeneous bargaining
population. Importantly, we assume that agents have information only about their
own demands and payoffs but not about those of others. We have proposed a model
that incorporates the underlying revision procedures in a fully dynamic n-player bar-
gaining model. In Zeuthen, the key assumption regarding individual adjustments is
that, starting from infeasible demands, the party which currently holds the higher
demand incrementally reduces with probability one. This coincides with a determin-
istic description of our model. We assume that, during bargaining breakdown, players
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with higher utility loss reduce with larger probabilities than players with smaller
utility loss. But, instead of consuming the pie only once, our bargaining game is
infinitely repeated. Over time, the procedures implement equal splits of the surplus
in a zonal rather than pinpoint way: using Brems’s (1976; p. 404) famous words on
Zeuthen’s bargaining model to describe the final convergent area as an

“area around the middle in which no party is substantially more eager to secure
an agreement than the other. Establishing the existence of such centripetal forces
- powerful around the edges of the bargaining area but weaker towards the
middle.”

Avenues for further research include multilateral bargaining experiments in the lab-
oratory, building on the classic bargaining experiments by Tietz and Weber and on
more recent non-bargaining experiments in low-information environments such as
Bayer et al. (2013), Nax et al. (2013), and Burton-Chellew et al. (2015). We are par-
ticularly interested in the speed with which convergence occurs, and the conditions
under which such simple directional bargaining dynamics apply.
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