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Received: 23 July 2013 / Accepted: 21 November 2014 / Published online: 9 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In recent years, different alternatives have been suggested to specify and
estimate gravity models for bilateral trade. Presently, the so-called Poisson pseudo-
maximum likelihood (PPML) with log-linear index is probably the most commonly
used method. A method is proposed for panel data that targets to reconcile the pros and
cons of fixed and random effects models, respectively. It applies equally to two- and
three-way panel models and those with country-specific time-varying effects. It allows
to filter out potential correlation between observed and unobserved heterogeneity and
to identify the effects of time-invariant factors. It can also be used when panels are short
in time, and to other specifications than the PPML-like gamma PML, zero-inflated, or
Tobit-like models. We introduce and illustrate the proposed estimator with a study of
bilateral trade flows across the European Union before the recent economic crisis.
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362 I. Proença et al.

1 Introduction

The gravity model is still a standard tool when analyzing trade flows. Niedercorn and
Bechdolt (1969) gave an economic derivation of this model, followed by Anderson
(1979) who started out from consumer expenditure system theory. More recent theo-
retical contributions in this direction are provided, for example, by Deardorff (1998)
who proved the consistency of the gravity model with the Heckscher–Ohlin trade the-
ory, Anderson and van Wincoop (2003) who revisited the gravity model extending it
to deal with the border puzzle, and Anderson and Yotov (2009) who addressed the
proportions of trade costs paid by sellers and buyers.

At the same time, there has been myriad empirical research focusing on model
specifications, relevant covariates, and estimation procedures that fit the data to a
reasonable economic model. The work of Bergstrand (1985) marked an important
contribution to bridge economic theory and common empirical practices. However, this
discussion of correct econometric specification and estimation can differ substantially
from the textbook theoretical model, see Mátyás (1997).

Santos Silva and Tenreyro (2006) have raised a problem that has been ignored so far
by both the theoretical and applied communities. They argue that logarithmic trans-
formations are inadequate to estimate elasticities. They argue that multiplicative trade
models with multiplicative error, which typically exhibit heteroscedasticity, engen-
der dependency between the error term of the transformed log-linear model and the
regressors, and consequently inconsistency of the ordinary least squares estimator.
As an alternative, they propose the Poisson pseudomaximum likelihood (henceforth
PPML) without the use of a log-transformation. Even with the perceived popular-
ity of the PPML, there still remains some doubt on the generality of the estimator for
empirical bilateral trade models.1 Based on the intensive simulation studies, Martinez-
Zarzoso (2013) shows that in several situations feasible GLS combined with the
log-transformation can have a better performance than PPML. Also, Gomez-Herrera
(2013) performed a large simulation comparison but focused more on the handling of
zero-trade. She recommended the log-linear specification with Heckman’s two-step
estimator.

While model specification is still at the forefront of applied gravity models, the
appropriate encapsulation of unobserved heterogeneity is also important. For example,
Mátyás (1997) uses fixed effects (FEs) for time, unobserved importer- and exporter-
specific heterogeneity. Egger and Pfaffermayr (2003) consider a three-way model with
importer- and exporter-specific, country-pair and time effects; it is identical to a two-
way model with only country-pair and time effects but allows for a direct estimation
of the centered country-specific effects. Anderson and van Wincoop (2003) estimate
the unobservable countries’ resistance to trade as country-specific fixed effects in a
particular gravity model. Baltagi et al. (2003) discuss two- and three-way models with
time-varying country-specific effects. But as in such a model, only a very limited
set of factor impacts can directly be identified, these are typically neglected; see
also Nuroğlu and Kunst (2013). Anderson and Yotov (2009) use only directional

1 Note that like for the log-linear OLS, the consistency of PPML depends on the assumptions made about
the error structure.
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Semi-mixed effects gravity models 363

(i.e., importer and exporter) FEs. Westerlund and Wilhelmsson (2011) use a Poisson
FEs estimator to study the trade effects of the 1995 European Union enlargement. Note
that FE estimators yield only within-estimates and typically identify only the impact
of time-varying variables.2 Furthermore, the popular differencing estimator cannot be
applied, resulting in an incidental parameter problem for many nonlinear models;3

see Serlenga and Shin (2007) for a rather complex alternative. Random effect (RE)
models might be an alternative, especially if the effect of time-invariant observables is
of interest. They may also capture potential overdispersion, see Lin and Zhang (1999)
for a semiparametric context.

The main problem is the independence assumption for the REs. In order to circum-
vent this problem, Lombardía and Sperlich (2012) introduce a class of semi-mixed
effects models (SMEM) for cross-sectional data.4 They include a nonparametric proxy
in a parametric multilevel model to filter out potential mean dependency between the
REs and covariates. The flexibility of the nonparametric function allows one to place
SMEM between the FE and RE models when the first suffers from overparametrization
(with all the mentioned problems) while the second suffers from underparametriza-
tion (leading to potential endogeneity problems). The SMEM can be interpreted as
an extension of the Mundlak (1978) device for RE models or vice verse, since it just
adds more parameters in the RE model coming thereby closer to the FE model. The
inclusion of a nonparametric filter does not degrade the estimation of the effects of
time-invariant variables; one might even include time or other FEs. The proposed
model can be estimated with programs provided in standard software packages. Most
of the semiparametric contributions to panel count data are based on REs, that is,
assuming that unobserved individual heterogeneity is distribution-free but not corre-
lated with the covariates, see, for examples, Gurmu et al. (1999) and Zheng (2008)
who resort to Bayesian techniques. A distinct approach is given by Wellner and Zhang
(2007).

Summarizing, a main motivation for using SMEM is that of overparameterization
when one incorporates FEs but imposes too strong of an assumption (or underpara-
metrization) when using a simple RE model. The SMEM is a middle ground similar
to the correlated RE panel data estimator in the standard conditional mean setting. In
the next section, the basic model is introduced. We then explain our modification and
estimator. In Sect. 3, we study the trade flows among the 25 members of the European
Union after the expansion in 2004 toward Eastern Europe. To not distort the results by
the financial crises, we concentrate on the period of 2004–2007. In Sect. 4, we present
a simulation study. Section 5 concludes.

2 Except if the time-invariant covariate exhibits variation in a different dimension than the fixed effects, for
example when we have covariates Xi j and FEs (ηi , η j ).
3 Exceptions are, for example, Logit or Poisson-distributed responses where conditioning on their mean
eliminates the country-pair fixed effects.
4 They actually do it in the context of small-area statistics.
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364 I. Proença et al.

2 A semi-mixed effects gravity model for panels

In the standard gravity model, bilateral trade Ti jt , say import from country j to country
i at time t , is assumed to be determined by the GDPs Yit , Y jt of countries i and j ,
by trade cost factors that might be represented by country-pair-specific information
such as contiguity and distance, common language, ethnic groups or borders, and
by country-specific information like landlockedness or population size. Instead of
including GDP and population separately, it is common to use GDP per capita. In
panel specifications, it is common to include time FEs to account for business cycles.
For notational convenience, we classify the independent variables into the following
groups: the GDPs Yit ,Y jt , the binary information Di jt , non-binary but time-invariant
information Zi j , and the remaining set Xi jt . All three types of vectors, Di jt , Zi j , and
Xi jt , include variables that may vary only over i , j , or both (i, j), i.e., are country-
specific (like the number of patents or landlockness) or specific to the relation of these
countries (like common border). In the former case, we may split, for example, Zi j

into (Zi , Z j ). For i, j = 1, . . . , ni , t = 1, . . . , nt , often the following gravity model
is considered

Ti jt = exp[β ′ ln(Xi jt )+ γ ′ ln(Zi j )+ δ′ Di jt + αt + ηi j ] Y β1
i t Y β2

j t + εi j t (1)

= exp[β1 ln Yit + β2 ln Y jt + β ′ ln Xi jt + γ ′ ln Zi j + δ′ Di jt + αt + ηi j ]εi j t ,

(2)

with time FEs αt , unobserved heterogeneity ηi j , and random terms εi j t (or εi j t , respec-
tively). It will become obvious that our modeling and estimation idea can be equally
well used for country-specific and three-way effect models, for example if one wants
to decompose ηi j into ηi + ξ j . Here, εi j t is a zero-mean random variable and εi j t

consequently a multiplicative disturbance term with a conditional mean equal to one.
Further, Xi jt , Zi j , and Di jt are column vectors,β, γ , and δ column vectors of unknown
coefficients of corresponding size, andβ1,β2 unknown scalar coefficients. If one wants
to allow for time-varying unobserved heterogeneity of countries like in Baltagi et al.
(2003), then one has to additionally introduce ηi t + ξ j t . If they are defined to be
FEs, then only the coefficients of variables that vary over both countries are (directly)
identified. Note that some studies aim to estimate the total country-specific or the
country-pair trade costs by FEs; others are more interested in estimating the coeffi-
cients of the covariates.

If the conditional expectation of ln εi j t is a function of the independent variables
and/or ηi j , then the OLS estimator of the logarithmic transformation of (1), i.e.,

ln Ti jt = β1 ln Yit + β2 ln Y jt + β ′ ln Xi jt + γ ′ ln Zi j + δ′ Di jt + αt + ηi j + ln εi j t ,

is inconsistent (no matter if ηi j refers to RE or FE), which was the motivating reason
behind Santos Silva and Tenreyro’s (2006) PPML estimator. For the reasons discussed,
namely that FE models only capture the within effects, do not allow for the direct esti-
mation of the impact of time-varying variables, and (potentially, depending on the
model and estimation method) suffer from incidental parameter problem, we concen-
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Semi-mixed effects gravity models 365

trate in the following on the problem of estimating the gravity model by a semi-mixed
effects PPML, including versions with directional and time-varying effects.

2.1 The semi-mixed effects gravity model

There are two main alternatives to introduce the SMEM. Lombardía and Sperlich
(2012) propose a nonparametric filter to eliminate possible dependency between ran-
dom heterogeneity and the covariates. Translated to our problem, they make use of the
fact that for a set of (time-invariant) variables Wi j , there may exist a function ψs(·) of
smoothness s such that for

ηi j = ψs(Wi j )+ ui j (3)

ui j is a RE unrelated to Yit ,Y jt , Xi jt , Zi j , Di jt , and Wi j . Why should a nonpara-
metric function ψs offer this? For Wi j (containing at least one continuous variable), a
nonparametric function with arbitrary smoothness s can be everything between inter-
polation (say s = 0) and a constant (say s = ∞). This implies that (3) offers us a
continuum of models between the two extremes, namely the FE and the RE model.
Parameter s is a slider that places our model between (if 0 < s < ∞) or on one of
them (if s = 0 or s = ∞). Certainly, a poor choice of variables in Wi j will lead to a
wiggly function approaching almost the FE model. For example, (1) becomes in any
case

Ti jt = eβ1 ln Yit +β2 ln Y jt +β ′ ln Xi jt +γ ′ ln Zi j +δ′ Di jt +αt +ψs (Wi j )+ui j + εi j t (4)

with ui j being independent of εi j t by assumption. If one considers directional effects
ηi + ξ j , decomposition (3) becomes ηi = ψ1

s1(Wi ) + ui , ξ j = ψ2
s2(W j ) + v j with

ψ1, ψ2 being two different nonparametric functions of smoothness s1, s2, and u, v
the remaining REs; analogously, one has ηi t = ψ1

s1(Wit )+ uit , ξ j t = ψ2
s2(W jt )+ v j t

for the time-varying version.
There are three open questions: the choice of smoothness s, composition of Wi j ,

and estimation of (4). Concerning the first question, when using smoothing meth-
ods for estimating ψs , the choice of s is equivalent to the question of smoothing
parameter selection. For example, using kernel smoothing, this is simply bandwidth
choice (Köhler et al. 2014), the penalization parameter when using P-splines (Wood
2008), or the number of knots when using regression splines (Nie and Racine 2012).
Whereas smoothing parameter selection is commonly invoked based on minimizing
mean squared error of the unknown function relative to the truth, here our goal was to
smooth over Wi j to remove potential correlation between the REs and the covariates.
Recalling that a trade-off between bias and variance still exists, which will serve as
a platform for selecting an appropriate smoothing parameter. Note that Sections 4.5
to 4.7 of Wood (2006) are dedicated to the different methods of smoothing parameter
selection for P-spline regression, namely the minimization of the unbiased risk esti-
mator, the minimization of the cross validation, or the generalized cross-validation
criterion. As P-splines can be rewritten as linear mixed effects models in which the
smoothing parameter appears as the a priori variance of spline basis coefficients, one
might also take an estimate of this variance for being our data-adaptive smoothing
parameter, see Kauermann (2005) for details.

123



366 I. Proença et al.

Concerning the second question, proper composition of Wi j should start from
Mundlak (1978). Statistically speaking, he introduces additional parameters in the RE
model in order to eliminate potential endogeneity, that is, Mundlak’s (1978) approach
lies between the RE and FE model. This brings us to the second way of introducing the
SMEM: as an extension of his device, again regarding the RE model as an underpara-
metrized model with the FE model as its overparametrized counterpart. He proposes
to include (linearly) the temporal means of the time-varying covariates. However, for
short-time panels, the inclusion of all these means (additional to the time-varying
variables) may render estimation numerically less stable and may introduce covari-
ance structures with large variances and covariances for the coefficient estimates. This
holds in particular for those variables that exhibit little variation over time. Nonethe-
less, since Mundlak (1978), these temporal means are considered to be the most natural
candidates for the vector of proxy variables Wi j in order to control for the relation
of (Yit ,Y jt , Xi jt , Zi j , Di jt ) with ηi j .5 For some applications, one may have a clear
idea of the causes of the dependency between explanatory variables and the individ-
ual unobserved heterogeneity term. For instance, if we modeled wages, this is to a
good part individual ability, and we would look for corresponding proxies like IQ, c.f.
Blackburn and Neumark (1992).

Estimation of (4) follows from existing methods for generalized partial linear mixed
effects models (GPLMM). In practice, given the dimensionality of Wi j , one typically
would model ψs additively resulting in a generalized additive mixed effects model
(GAMM). This simplifies estimation and mitigates the curse of dimensionality. Esti-
mation of the GPLMM and GAMM is well studied, see, for example, Lin and Zhang
(1999), Wood (2006), Lin and Carroll (2006), Lombardía and Sperlich (2008), and
references therein. The first two apply P-splines, whereas the latter two apply ker-
nel smoothed profiled likelihood. Implementations are provided in different software
packages, typically based on splines; they can be found as extensions of generalized
additive models (see, e.g., mgcv in R) or in the context of Bayesian statistics (see,
e.g., BayesX in R).

2.2 Estimating SMEMs by penalized splines

Before we introduce the implementation of SMEMs via P-splines,6 we should briefly
comment on this choice because often GPLMMs are estimated via kernel smooth-
ing. Both methods (P-spline and kernel smoothing) maximize a pseudo- or quasi-
likelihood.7 In the kernel approach, this objective function is smoothed by kernels

5 When including temporal means of covariates, one has to be careful for the coefficients’ comparison: for
example, including β ln xi j t and ξ · 1

n t
∑

t ln xi j t , the total impact of ln xi j t is β + 1
nt
ξ . One can therefore

find both, studies looking only at β̂ and those looking at β̂ + 1
nt
ξ̂ .

6 The notation is not unique in the literature, while many use it as a synonym for penalized splines in
general, others refer exclusively to its implementation with B-spline basis.
7 Santos Silva and Tenreyro (2006) use the notation of pseudo referring to McCullagh and Nelder (1989)
who speak of quasi- likelihood. Nelder (2000) differentiates between them. Along his classification, one
might be more interested in the quasi-maximum likelihood methods, but in abuse of notation, we keep the
abbreviation PPML.
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when calculating the nonparametric part; in the P-spline approach, a regression spline
is used inside the quasi-likelihood, and a term is added to the objective function that
penalizes for the wiggliness of the regression splines. Commonly attributed advantages
of the latter are the simpler implementation, its computational speed, the easier impo-
sition of additional structure like additivity, and the availability of different smoothing
parameter selectors. For these reasons, we opted for splines without generally judging
one smoother to be superior to the other.

For the sake of notation but without the loss of generality, let us explain the idea
and implementation of penalized splines for the reduced set of covariates Di jt ,Wi j

with Wi j ∈ IRdw . For presentation, it is easier to work with an additive nonparametric
function, i.e.,

ψs(Wi j ) = f0 + f1(Wi j1)+ · · · + fd(Wi jdw) (5)

where f0 is a constant and fk , k = 1, . . . , dw are one-dimensional nonparametric
functions, centered to zero for identification, and typically assumed to be twice con-
tinuously differentiable. The nonadditive case is discussed below. Each function fk is
approximated by a spline (piecewise polynomials on intervals, separated by so-called
knots, that cover the support of the covariate). One speaks of penalized splines if in
the moment of estimation for each nonparametric f j an additional term is added that
penalizes for its wiggliness. As a spline basis, B-splines are the most popular ones for
regression splines, simple cubic splines are also often used for penalized splines. For
a cubic regression spline, we can write for each nonparametric additive component

fk(ω) = α0 + α1ω + α2ω
2 + α3ω

3 +
L∑

l=1

θlω
311{τl−1 < ω ≤ τl} (6)

with τl being the knots, τ0 < min{Wi jk}, τL ≥ max{Wi jk}, and
∑L

l=1 θl = 0. It is
obvious that this has continuous second derivatives everywhere inside the support,
and that the smoothness can be controlled via the θl . We disregard here smoothing
splines which consider each observation as being a knot. To reach consistency, the
number of knots is assumed to converge to infinity for increasing sample size. For a
given sample size, there are a finite number of knots and therefore (5) becomes an
expression of several parametric polynomials with a finite number of parameters that
can be estimated by parametric methods.

Once the choice of the basis is made, the challenge for estimation is to fix the num-
ber and placement of knots. While the number could be determined by a data-driven
criterion like cross validation, the placement is a much harder problem. The P-splines
is a compromise between regression and smoothing splines. In fact, depending on the
knots-sample-size ratio, P-splines converge to the same limit as either regression or
smoothing splines do, see Krivobokova et al. (2010). The key idea is to be generous
with the number of knots such that their placement becomes less important. In order to
avoid overfitting, penalizing terms are added to the objective function (i.e., the quasi-
likelihood) to control the variation in the θl in (6). Numerically, this is equivalent to
the estimation of a generalized linear mixed effects model (GLMM) with the θl being
random coefficients with variance σ 2

θ . Standard methods from parametric GLMM can
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be used to estimate σ 2
θ providing a data-adaptive mean squared prediction error mini-

mizing smoothing parameter for the nonparametric functions. So there is an interplay
between the number of knots and the penalizing parameter. Therefore, nonparamet-
ric estimates based on different number of knots are virtually identical as long as a
reasonably large number of knots is chosen. In practice, every 10th data point of the
ordered sample is taken as a knot.

Clearly, to this GLMM, we can add now δ′ Di jt and REs ηi j without changing the
estimation procedure. So far, only approximate inference is available, for example
using the penalized quasi-likelihood approach of Breslow and Clayton (1993) adapted
to GAMMs as outlined in Lin and Zhang (1999).8 For PPML, variances were assumed
to be proportional to the mean. Although in practice this is often the case, one could
calculate the standard deviations by resampling methods like subsampling or wild
bootstrap as in Lombardía and Sperlich (2008) at high computational costs. Further
research should be devoted to the estimation and efficient implementation of standard
errors that are robust against more complex heteroscedasticity and autocorrelation.
Note that the classical naive bootstrap is typically inconsistent in this context.

If data sets are large enough or interactions between some proxies are very likely to
be important for the filtering, then one should relax the additivity assumption. However,
for d > 3, the curse of dimensionality renders

√
n-estimation of the parameters of

interest infeasible or at least very hard with the need of imposing strong smoothness
conditions onψs . This would also contradict the filtering idea for which the possibility
of choosing a small s is crucial. Therefore, we recommend to include interaction terms
separately in an additive fashion (see Sperlich et al. 2002), e.g.,

ψs(Wi j ) = f0 + f1,2(Wi j1,Wi j2)+ f3(Wi j3)+ . . .+ fd(Wi jdw). (7)

More generally, we can think of (5) with some of the Wi jk being vectors of dimension
≤3. These interaction terms are typically estimated with thin-plate splines (Green
and Silverman 1994) or simply by using tensor products of the corresponding one-
dimensional splines, e.g., in (7) you model f1,2 by the tensor product of the basis
functions of f1 and f2 in (5). Smoothing parameter selection remains the same as
before.

We conclude this section with two remarks. First, in the moment of estimation,
we may face the problem of multifunctionality (the nonparametric analogue to multi-
collinearity). There are basically two ways to handle this: variable selection or impos-
ing some structure onψs as will be seen in our application. The problem of testing and
model selection in GPLMMs has recently been studied in different articles, see, for
example, Sperlich and Lombardia (2010). Model selection can be based on different
existing criteria including, for example, AIC. Although we consider a quasi-likelihood,
the likelihood is still the objective function whose maximization we take as the crite-
rion for estimation.

Note finally that an extension of our model with nonparametric filter to the more
complex semi- and nonparametric world is straightforward and can even be performed

8 For the implementation, see Venables and Ripley (2002) concerning GLMM and the modifications of
Wood (2011) for the particular case of P-splines for GAMMs.
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with the same estimation method and software.9 More specifically, one might want to
extend model (4) to a GAMM of the form

Ti jt = exp[β1(Yit )+β2(Y jt )+β(Xi jt )+γ (Zi j )+δ′Di jt +αt +ψs(Wi j )+ui j ]+εi j t

(8)
with ui j being REs, εi j t random errors, β1 and β2 univariate nonparametric functions,
β, γ , ψs nonparametric (additive) functions, and αt time FEs.

3 Trade flows inside the European Union after the big eastward enlargement

We study trade flows among the EU25 countries from 2004 through 2007 by the use
of our method inside the PPML framework. Note that this was the period from the
opening of the EU toward Eastern Europe until the financial crises in 2008.

3.1 Data and variables

The dependent variable of interest will be the import flows T , given that countries often
tend to monitor their imports more carefully than their exports. Regarding the inde-
pendent time-variant variables, we use as proxies for the overall economic mass of the
countries the logarithm of GDPs (MGDP and XGDP for importer and exporter coun-
tries, respectively) and the logarithm of populations (MPOP and XPOP for importer
and exporter countries). We expect a positive effect for MGDP and XGDP while for
MPOP and XPOP, the literature documents an ambiguous effect. As proxies for bilat-
eral trade costs, we have the distance of the two trading partners (logarithm of kms
between the capitals), DIST, and a dummy to capture contiguity, NEIGH, which is
equal to one if both trading countries share a land or sea border. We expect a nega-
tive effect on trade from DIST and a positive one from NEIGH. Further variables of
interest are whether countries are landlocked, MLOCK, and XLOCK, which are equal
to one if the importer (respectively, exporter) country has no direct connection to the
sea; COMLANG which is equal to one if both trading partners share the same official
language; ETHNIC which is equal to one if in the importer country there is an ethnic
minority of the exporter country; and EU15 which is equal to one if both countries
belonged to the European 15. While for landlockedness we expect negative effects
on trade, the effect of all the other dummy variables should be positive. Finally, we
introduce time dummies, denoted by 2005, 2006, and 2007.

Table 1 reports some descriptive statistics of the variables of interest. Further details
about the variables can be found in the “Appendix.” Although we observe some zeros
for trade (T ), zero inflation is not an issue given the limited occurrences in our data
set. Note that GDP and population are highly correlated (|ρ| > 0.8). Being landlocked
is strongly correlated with population size (|ρ| ≈ 0.3 ) and GDP (|ρ| ≈ 0.25). As
COMLANG and ETHNIC are insignificant with p values clearly above 0.5 in all

9 Henderson and Millimet (2008) state that the added value of nonparametric gravity models is poor.
However, they start out from the more restrictive model of Anderson and van Wincoop (2003). Their
conclusions do not necessarily hold for the more flexible gravity models considered here.
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Table 1 Descriptive statistics

All variables except T and the
dummies are given in
logarithms. We observed 25
countries over 4 years giving
2,400 observations of bilateral
trade flows

Variable Mean SD Min Max

T 37.55 95.48 0.00 920.77

GDP 12.00 1.52 9.17 14.70

POP 16.09 1.27 13.03 18.23

DIST 7.01 0.64 4.04 8.12

NEIGH 0.13 0.34 0 1

COMLANG 0.03 0.17 0 1

ETHNIC 0.02 0.13 0 1

EU15 0.35 0.48 0 1

LOCK 0.20 0.40 0 1

our models, we opt to give below only estimation results with models where these
regressors are excluded.

For the proxies, Wi j , that shall filter possible dependence between the unobserved
heterogeneity and the regressors, we consider variables that reflect the size of a country.
This goes back to the idea that multilateral resistance is associated with country size,
see, for example, (Anderson and Yotov 2009). As GDP and population are already
included, further possible proxies are the area of a country, MAREA and XAREA,
reflecting the physical size, and the number of patents (MPAT, XPAT), reflecting
the technological size. Note that the AREA variables are highly correlated with the
corresponding population sizes (|ρ| ≈ 0.8) and the corresponding GDPs (|ρ| ≈ 0.6).
The number of average patents have a correlation of more than 0.8 with average GDP,
and of about 0.6 with population. Note finally that the selection of proper proxies for
W depends on the context; our proposal here is not necessarily a general suggestion.

Most of the results we present below have been obtained by the gamm procedure
in the software package R, see Wood (2006). For the models for which alternative
software existed in R or stata , we counterchecked the results. Where offered by
the routines, we tried different specifications of the distribution of the random effects.
Estimates did not vary significantly along the different specifications.

3.2 Estimation and comparison of models

Tables 2 and 3 provide coefficient estimates, excluding intercepts, for a variety of
different models discussed above. Function ψs is composed of additive P-spline func-
tions with data-adaptive smoothing parameter and knots as described above. We start
with the estimation of parametric FE panel models with country-pair (ηi j , Model 1a)
and directional (ηi +ξ j , Model 1b) FEs, respectively. Models 2a and 2b are the SMEM
counterparts of Models 1a and 1b where the temporal averages of GDP and population
are included in ψs .

We neglect here the possibility of two-step estimation of the impact of covariates
whose coefficients are not identified in the FEs model. Consequently, in the first
model, we see only estimates for covariates that vary over time, while for the second
we get also estimates for pair-specific effects that are time-invariant. In the appendix
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Table 2 Estimates of coefficients and random effects standard deviations

Model 1a Model 1b Model 2a Model 2b
FE ηi j FE ηi + ξ j ψi j + ui j ψ1

i + ui + ψ2
j + v j

MGDP 0.823 0.820 0.822 0.819

(0.091)∗∗ (0.212)∗∗ (0.042)∗∗ (0.207)∗∗
XGDP 0.228 0.409 0.227 0.232

(0.110)∗ (0.092)∗∗ (0.026)∗∗ (0.131)

MPOP 0.000 0.000 0.000 0.001

(0.003) (0.027) (0.004) (0.019)

XPOP −0.093 0.022 −0.092 −0.068

(0.061) (0.121) (0.046)∗ (0.201)

DIST – −0.001 −1.228 −0.722

– (0.000)∗∗ (0.056)∗∗ (0.023)∗∗
NEIGH – 0.375 0.284 0.348

– (0.034)∗∗ (0.093)∗∗ (0.026)∗∗
EU15 – 0.680 0.505 0.769

– (0.067)∗∗ (0.094)∗∗ (0.066)∗∗
MLOCK – – −0.157 0.271

– – (0.094) (0.143)

XLOCK – – 0.111 0.354

– – (0.114) (0.259)

2005 0.018 0.010 0.018 0.018

(0.010) (0.039) (0.005)∗∗ (0.026)

2006 0.072 0.054 0.072 0.072

(0.018)∗∗ (0.044) (0.007)∗∗ (0.034)∗
2007 0.087 0.058 0.087 0.087

(0.026)∗∗ (0.058) (0.009)∗∗ (0.046)

mM/XGDP – – n.p. n.p.

mM/XPOP – – n.p. n.p.

σu or {σu , σv} – – 0.531 {0.230, 0.372}
Temporal means of time-varying regressors are denoted by an “m” in front of the original name of the
variable. Standard errors are in (·) brackets
n.p. nonparametric estimated; the corresponding estimates are shown in Figs. 3 and 4
∗ Significance at the 5 %, ∗∗ at the 1% level

are also provided the regression results for a PPML without modeling unobserved
heterogeneity, i.e., pooled regression without random or fixed effects.

Considering the results in Table 2 for the PPML, the estimated elasticity of exporter
GDP has size smaller than the usual estimates obtained with log-linear models, except
for Model 1b. This is a tendency depicted also in other studies that apply PPML instead
of estimating a log-linear model, see, for example, the cross-sectional study of Proença
et al. (2008) considering the same country set addressed here. The population sizes
seem not to be relevant, what is most likely due to their high correlation with GDP.
If countries share borders or if both trading partners belonged to the EU15, one finds
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Table 3 Estimates of coefficients and random effects standard errors

Model 3a Model 3b Model 3c
ψi j + ui j ψ1

i + ui + ψ2
j + v j ψ1

i t + uit + ψ2
j t + v j t

MGDP 0.823 0.824 0.937

(0.042)∗∗ (0.208)∗∗ (0.042)∗∗
XGDP 0.228 0.260 0.097

(0.026)∗∗ (0.142) (0.026)∗∗
MPOP 0.000 0.001 0.009

(0.004) (0.019) (0.004)∗∗
XPOP −0.091 −0.055 −0.010

(0.045)∗ (0.167) (0.046)∗
DIST −1.185 −0.722 −0.708

(0.059)∗∗ (0.023)∗∗ (0.056)∗∗
NEIGH 0.319 0.346 0.341

(0.100)∗∗ (0.026)∗∗ (0.093)∗∗
EU15 0.473 0.749 0.734

(0.096)∗∗ (0.065)∗∗ (0.094)∗∗
MLOCK −0.039 0.181 0.329

(0.084) (0.138) (0.094)

XLOCK 0.033 0.366 0.227

(0.101) (0.220) (0.114)

2005 0.018 0.016 0.020

(0.005)∗∗ (0.026) (0.005)∗∗
2006 0.072 0.068 0.083

(0.007)∗∗ (0.034)∗ (0.007)∗∗
2007 0.087 0.081 0.100

(0.009)∗∗ (0.047) (0.009)∗∗
mMGDP −0.355 −0.502 −0.621

(0.066) (0.217)∗ (0.369)

mXGDP 0.348 0.225 0.271

(0.060) (0.178) (0.204)

mMPOP 0.283 0.355 0.441

(0.066) (0.106)∗∗ (0.078)∗∗
mXPOP 0.453 0.333 0.530

(0.087) (0.222) (0.192)∗∗
M/XAREA n.p. n.p. n.p.

mM/XPAT n.p. n.p. –

M/XPAT – – n.p.

σu or {σu , σv} 0.573 {0.234,0.372} {0.156,0.225}
Temporal means of time-varying regressors are denoted by an “m” in front of the original name of the
variable. W refers to the vector of size proxies (area and patents). Standard errors are in (·) brackets
n.p. nonparametric estimated; some of the corresponding estimates are shown in Figs. 3 and 4
∗ Significance at the 5%, ∗∗ at the 1% level
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Fig. 1 Estimates of f1(mMG D P), f2(m XG D P), f3(mM P O P), and f4(m X P O P) of ψs , see Eq. (5),
for Model 2a with 95 % confidence bands

significant positive effects. As expected, distance has a significant negative impact,
whereas landlockedness has no significant effect inside the EU. Time effects exhibit a
positive trend but are only clearly significant for models accounting for country-pair
effects.

Comparing Model 1a with 2a, we see that the coefficient estimates stay basically
unchanged. As expected, the estimated standard errors are substantially smaller for the
SMEM. This is different when comparing Model 1b with 2b where several coefficients
have changed quite a bit, and not all standard errors are smaller in 2b. When we
compare Model 2a with 2b, we see that their coefficients are much closer to each
other than those of their FE counterparts 1a and 1b. Also, the additive components of
their corresponding ψ functions are quite similar, cf. Figs. 1, 2, though the confidence
bands in Model 2a are much smaller than those in 2b. At first glimpse, it seems that the
model with country-pair effects has smaller standard deviations for most covariates.
Note, however, that exactly those covariates that are country-pair-specific, namely
DIST, NEIGH, and EU15 have larger standard deviations in the country-pair SMEM,
while all importer-/exporter-specific covariates have larger standard deviations in the
importer/exporter SMEM. This is to be expected as these covariates try to capture the
same variation as the respective REs. Looking at the last line of Table 2, we observe
that the variance of the country-pair effects is smaller than the sum of the variances of
the directional REs.

The FE Models 1a and 1b identify only the linear within effects of our covariates. In
Models 2a, 2b, the between effects of GDP and population are included nonparamet-
rically (via their temporal means). One may prefer to include these temporal means
linearly, perhaps for ease of interpretation. This stops smoothing parameter s from
being a data-adaptive slider to place our model between the FE and the RE model.
However, Chamberlain (1982) showed even for much simpler models that the linear
inclusion of all temporal means can easily fail to control for potential endogeneity.
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Fig. 2 Estimates of f1(mMG D P), f2(m XG D P), f3(mM P O P), and f4(m X P O P) of ψs , see Eq. (5),
for Model 2b with 95 % confidence bands

Therefore, we need additional proxies when modeling the impact of the temporal
means of GDP and population linearly. In order to do so, we include the size proxies
log-area and number of patents in ψs , see Models 3a, 3b, and 3c. These models con-
tain the same variables as above, but with mMGDP, mXGDP, mMPOP, and mXPOP
entering these models linearly. As before, the difference between Model 3a and 3b is
that the former one has a country-pair RE ui j , whereas the latter includes the importer
and exporter REs ui + v j . We first note that from Model 2a to 3a, there is hardly an
important change in the coefficient values except for NEIGH which increases by about
10 %. Further, the coefficient estimates on MLOCK and XLOCK change greatly, but
remain statistically insignificant. Similarly, the changes from Model 2b to 3b seem to
be minor; only the coefficient of XPOP changes by more than 10 %, and landlocked-
ness remains insignificant. The variation in the REs ui j and (ui , v j ) across different
models is minimal. Not surprisingly, the coefficients of country-pair and directional
effects models come closer to each other when new covariates are added to the model.

The nonparametric components of Models 3a, 3b are plotted in Figs. 3 and 4. As
before, the functional shapes are similar and the importer/exporter REs model exhibits
much larger standard errors (in terms of broader confidence bands, compare the scale
of the vertical axes).

Next, we consider models with time-varying country effects. A time-varying
country-pair effect collapses with the error term and is therefore skipped. Models
3c and 4c contain time-varying directional effects uit + v j t . In order to filter potential
correlation, we need here proxies W that are also time-varying. Therefore, in Model
3c, 4c, the number of patents enterψs with their yearly observations, not aggregated as
temporal means. In Model 3c, the coefficient estimates change moderately compared
to Model 3b with time-invariant REs. The standard deviations of Model 3c are similar
to those of 3a but the coefficient estimates are still closer to those of 3b. Note that
the variance (squared standard deviations) of the time-varying REs is a bit larger than
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Fig. 3 Estimates of f1(M ARE A), f2(X ARE A), f3(mM P AT ), and f4(m X P AT ) of ψs , see Eq. (5),
for Model 3a with 95 % confidence bands

Fig. 4 Estimates of f1(M ARE A), f2(X ARE A), f3(mM P AT ), and f4(m X P AT ) of ψs , see Eq. (5),
for Model 3b with 95 % confidence bands

those of Model 3b divided by four (= nt ). This indicates that the REs (uit , v j t ) do not
vary much over time. If we compare the results in Table 3 with those obtained for FE
Models 1a and 1b, then we see that the coefficient estimates for Model 3c differ most
severely.

So far we have only estimated models with additively separable control functions
ψ ,ψ1, andψ2. When estimating the model with a four-dimensional nonparametricψ ,
the program stops due to multicollinearity for both estimation procedures, thin plates
and tensor products. When including two-dimensional interactions instead, recall (7),
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one has still multicollinearity or to impose strong smoothness on ψ , ψ1, and ψ2 so
that their estimates become in fact linear functions. All selection criteria give worse
values than one obtains for additive separable control functions. This certainly is not
a general finding but depends always on the data sample at hand.

The last study in this section is the extension of the above models toward semipara-
metric alternatives in which the use of nonparametrics is not limited to the filtering
of potential dependences between covariates and REs. Endogeneity can also occur
due to functional misspecification of the impact of covariates. However, if one tries
to estimate a PPML with a nonparametric additive index (8), then the estimation pro-
cedure suffers from multifunctionality and other numerical instability, unless each
variable enters only once, and some in a restricted way. One has to skip the temporal
means or the yearly observations of GDP and population. Even then, there are still
numerical problems due to the strong dependency between GDP and population. One
can either consider GDP per capita and skip the population covariates, or restrict the
impact of them to a simple parametric form. The results for two examples are given
in Table 4 and Figs. 5 and 6, where Model 4a has a country-pair RE ui j , and Model
4c time-varying importer/exporter REs uit + v j t .

When comparing Model 4a with 3a and 4c with 3c, we see that the coefficient
estimates have changed along the correlation of their covariates with MGDP and/or
XGDP, see, for example, the nonlinear impact of XGDP, Fig. 6, and compare it with
the changes for XPOP (and XLOCK) in Model 4a. These could indicate a problem
of functional (mis-)specification in the simpler generalized linear models. The main
remaining difference between Models 4a and 4c is the much larger confidence bands
for the latter, and while in 4a XLOCK is significant but not MLOCK, in 4c we find
exactly the contrary situation. Furthermore, in Model 4c, the variance of the REs is
almost zero, i.e., once we allow for nonparametric country-specific impact functions of
GDP, individual time-varying directional effects disappear. For this, many explanations
are possible, so that we abstain from further discussion on this as it would result in
speculation.

We conclude this section with two remarks: if you want to perform a Hausman-type
test, note that the attractive decomposition of the covariance matrix of the squared dif-
ference in parameters under fixed versus random effects estimation which we have in
the classical Hausman test is no longer possible. Moreover, the test statistic and its
variance are influenced by the nonparametric smoother for ψ . Therefore, the distrib-
ution of the test statistic has to be estimated by resampling. We implemented such a
test based on wild bootstrap for the simple case when using log-linear transformation
of the model instead of PPML. It turned out that already in that case, the variance
estimate for the test statistic was little reliable unless sample size was huge.

For model selection, one would need an objective (function) such as the prediction
quality and likelihood maximization. Standard software provides the log-likelihood,
AIC, and BIC. However, for the quasi-likelihood methods, the use of the log-likelihood
as a quality measure (to compare models) is disputed. Using the popular AIC and BIC
criteria, Model 4a is the best, and all of the “a” models outperforms the “b” and “c”
versions. The latter two have more or less the same AIC, BIC, and log-likelihood. All
in all, it is clear that the more flexible the model, the better the data fit; prediction
qualities have not been studied. On the other hand, the determination of the degrees of
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Table 4 Estimates of
coefficients and random effects
standard deviations

Temporal means of time-varying
regressors are denoted by an
“m” in front of the original name
of the variable. W refers to the
vector of size proxies (area and
patents). Standard errors are in
(·) brackets
n.p. nonparametric estimated;
some of the corresponding
estimates are shown in Figs. 5
and 6
∗ Significance at the 5%, ∗∗ at
the 1% level

Model 4a Model 4c
ψi j + ui j ψ1

i t + uit + ψ2
j t + v j t

MGDP n.p. n.p.

XGDP n.p. n.p.

MPOP 0.003 0.022

(0.004) (0.022)

XPOP 0.128 0.305

(0.039)∗∗ (0.046)∗∗
DIST −1.202 −0.717

(0.060)∗∗ (0.024)∗∗
NEIGH 0.372 0.347

(0.101)∗∗ (0.027)∗∗
EU15 0.274 0.748

(0.079)∗∗ (0.056)∗∗
MLOCK −0.082 0.235

(0.085) (0.084)∗∗
XLOCK 0.258 0.093

(0.103)∗ (0.085)

2005 0.032 0.042

(0.005)∗∗ (0.031)

2006 0.105 0.064

(0.007)∗∗ (0.030)∗
2007 0.139 0.110

(0.011)∗∗ (0.038)∗
mMGDP – –

mXGDP – –

mMPOP – –

mXPOP – –

M/XAREA n.p. n.p.

mM/XPAT n.p. –

M/XPAT – n.p.

σu or {σu , σv} 0.578 {0.037,0.0001}

Fig. 5 Estimates for the nonparametric impact of MGDP and XGDP in Model 4a with 95 % confidence
intervals
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Fig. 6 Estimates for the nonparametric impact of MGDP and XGDP in Model 4c with 95 % c.b

freedom for non- and semiparametric estimators is still an unsettled matter that affects
also the reliability of AIC and BIC.10

3.3 Empirical findings

In general, our results on the effects of the determinants of trade flows are consis-
tent with theory. The increase in importer and exporter GDP leads to a significant
increase in trade while the effect of population is much less important. These results
indicate that it might be more appropriate to include GDP and population separately
instead of using GDP per capita. Distance has the negative effect documented in the
literature even after accounting for contiguity of trading partners. Inside the EU, it
is irrelevant for trade whether the trading partners share the same official language
or ethnic groups. Countries belonging to the European 15 still trade more on average
(among themselves), and this effect is relatively large, although it is expected that with
deepening economic integration, this gap will decrease. The effect of landlockedness
is ambiguous. Countries with access to the sea trade generally more with oversea part-
ners than landlocked countries do. For the EU, this can lead to the effect that relative
to their GDP, landlocked EU members trade more with their EU partners. Fixed time
effects are all positive and increasing during the considered time period.

It is interesting to note that when the effects of importer and exporter GDP are
estimated nonparametrically, they exhibit significant nonlinearities. This questions the
usual hypothesis of constant elasticities. While the SMEM estimates with country-pair
REs are consistent with the (benchmark) FEs model, this is less the case for models
with directional effects. Models with country-specific fixed and/or random effects
(i.e., ui +u j , not shown here) give quite different, partly implausible estimates. These
findings deserve to be further investigated in the future; namely, it would be interesting
to analyze how well a constant elasticity estimate approximates the average elasticity.

4 A simulation-based comparison study

In this section, we present a simulation study to analyze the performance of our method
in a situation close to the real data we are dealing with in the empirical study. Therefore,
the explanatory variables in the simulated data are fixed and equal to the values,

10 See Racine and Parmeter (2014) for a method of model selection based on in-sample prediction that
accommodates non- and semiparametric estimations and panel data.

123



Semi-mixed effects gravity models 379

respectively, observed in the data. Consequently, the sample size is fixed at 2,400.
In order to simplify the calculations in the simulations, we choose as explanatory
variables only a subset of the variables used in the empirical study: namely, the GDP
of the importer country (Yit ), the GDP of the exporter country (Y jt ), and the distance
between both countries (Zi j ). As proxy variables for the nonparametric filter, we
consider the area of the exporter country, denoted by W j1, and the average number of
patents of the importer country, denoted by Wi2.11 We consider two different settings
to generate the dependent variable Ti jt .

We are further limiting the simulation study to cases where the data include an
unobserved heterogeneity term that is nonlinear in the proxy variables. The goal was
to analyze the behavior of estimators that ignore the existence of this term or intend to
capture it using the averages of the variables that are time-varying following Mundlak
(1978). We compare parametric approaches where the Mundlak variables enter lin-
early in the index function with our more flexible semiparametric approach where we
consider unknown functions of these variables using an additive model. For the sake
of comparison, we also study the performance of the semiparametric model using the
true proxies and we expect this will show the best performance. The reason to limit
the study in this way is that in Lombardía and Sperlich (2012), the superiority of semi-
parametric mixed effects models has already been demonstrated for the much simpler
case of (log-)linear random effect models with complex correlation structure, i.e., a
ψ(·) that is not additive linear. It is furthermore clear that a nonparametric ψ(·) can
filter out potential dependency between covariates and random effects if the Wi j are
just some available proxies for the (unobserved, maybe unknown) real drivers of this
dependence. We concentrate here on the comparison of cases where differences and
improvements might be less clear.12 We limit our presentation here to the case where
the parametric models with Mundlak device are expected to perform adequately by
construction.

The first setting introduces an additive error in the gravity model, i.e.,

Ti jt = exp
[
β0 + β1 log(Yit )+ β2 log(Y jt )+ γ log(Zi j )+ ηi j

] + εi j t (9)

where coefficients β1, β2, and γ are set to be equal to 0.8, 0.25, and −1.2 with intercept
β0 = −4.5 such that the mean of Ti jt is close to the mean of the dependent variable
observed in our data and the standard deviation is approximately equal to what we
actually observe in the data. The unobserved heterogeneity term is constructed as

ηi j = α1[0.5(W j1 − 11.52)2 + 0.5(W j1 − 11.52)3 + 12]
+α2[0.5(Wi2 − 5.67)2 + 0.5(Wi2 − 5.67)3 + 12] + ui j

with α1 = α2 = 0.05, and u being an independent normal variable with mean zero and
standard deviation 0.25. In other words, in the simulation, this drives the dependence

11 This selection is arbitrary and only to simplify the simulation study; it is neither a selection based on the
findings from the previous sections nor a recommendation for empirical studies.
12 Note that we conducted many more simulation studies, available from the authors, which were even
more in favor of the SEM approach.
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between explanatory variables and REs, with a high level of correlation with log(Yit )

and a very small one with the other explanatory variables. The W are also correlated
with the time means of log GDP, so that the Mundlak device alone should capture well
the dependence between the explanatory variables and the unobserved heterogeneity
term. The error is generated by

0.15ξ · exp
[
β0 + β1 log(Yit )+ β2 log(Y jt )+ γ log(Zi j )+ α1W ∗

j1 + α2W ∗
i2

]
(10)

with ξ being Chi-squared distributed with one degree of freedom, W ∗
j1 = 0.5(W j1 −

11.52)2 +0.5(W j1 −11.52)3 +12, and W ∗
i2 = 0.5(Wi2 −5.67)2 +0.5(Wi2 −5.67)3 +

12. Note that εi j t is heteroscedastic with a variance that depends on the explanatory
variables and our proxies via the conditional mean of Ti jt . One might think that the
motivation for the construction (10) is obvious but is typically neglected in simulation
studies: we need an asymmetric error term to ensure we do not generate negative trade
flows. The variance is a function of the mean because the larger the average trade flow
for given covariates, the larger but less asymmetric is the error dispersion.

The other setting assumes a multiplicative error εi j t leading to

Ti jt = exp
[
β0 + β1 log(Yit )+ β2 log(Y jt )+ γ log(Zi j )+ ηi j

]
εi j t ,

where coefficients β1, β2, and γ are set to the same values as before, β0 = −4.25, ηi j

is generated as in the precedent setting, and εi j t is drawn from a Gamma distribution
with mean equal to one and variance equal to

Var
(
Ti jt |Yit ,Y jt , Zi j ,W1i ,W2 j

) = exp[β0 + β1 log(Yit )+ β2 log(Y jt )+γ log(Zi j )

+α1W ∗
j1 + α2W ∗

i2 + 1].

This choice of the error distribution is convenient for a multiplicative but heteroscedas-
tic error such that the variance is related to the mean function and leads to one of
the primary arguments in Santos Silva and Tenreyro (2006) for the PPML. We have
checked for both models that the resulting distributions for simulated T are comparable
to the distribution of the observed trade numbers.

We evaluate our different estimators using 1,000 simulations for each model. For
each setting, five different estimation procedures were applied

1. A random effects estimator with the Mundlak device of the log-linear model
(REOLSM)

log(Ti jt ) = β0 + β∗
1 log(Yit )+ β∗

2 log(Y jt )+ γ log(Zi j )

+ b∗
1log(Yi )+ b∗

2log(Y j )+ φi j + τi j t

with logY k = (1/4)
∑2007

t=2004 logYkt for k = i, j .
2. A pooled PPML of

Ti jt = exp
[
β0 + β1 log(Yit )+ β2 log(Y jt )+ γ log(Zi j )

] +�i j t .
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Table 5 Performance of parametric estimators in simulations for additive error

REOLSM PPML REPPMLM

β1 β2 γ β1 β2 γ β1 β2 γ

Mean 0.7974 0.2531 −1.2806 1.7321 0.2283 −1.2415 0.8116 0.2439 −1.293

Bias −0.0026 0.0031 −0.0806 0.9321 −0.0217 −0.0415 0.0116 −0.0061 −0.093

SD 0.0369 0.0359 0.0152 0.042 0.0214 0.0526 0.2304 0.1385 0.0167

RMSQE 0.0370 0.0361 0.0820 0.9330 0.0305 0.067 0.2306 0.1386 0.0945

Count 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

REOLSM, PPML, and REPPMLM stand for, respectively, random effects OLS of log-linear model with
Mundlak device, pooled PPML and random effects PPML with Mundlak device

3. A random effects PPML (REPPMLM) with Mundlak device of

Ti jt = exp
[
β0 + β∗

1 log(Yit )+ β∗
2 log(Y jt )+ γ log(Zi j )

+ b∗
1log(Yi )+ b∗

2log(Y j )+ φi j

]
+ ωi j t

with φi j ∼ N (0, σ 2
φ ).

4. The misspecified semi-mixed effects PPML (SPPPMLMiss) of

Ti jt = exp
[
β0 + β1 log(Yit )+ β2 log(Y jt )+ γ log(Zi j )

+ψ1

[
log(Yi )

]
+ ψ2

[
log(Y j )

]
+ φi j

]
+ ω∗

i j t

with ψ1(·) and ψ2(·) estimated by penalized splines and φi j ∼ N (0, σ 2
φ ).

5. The correctly specified semi-mixed effects PPML (SPPPMLWell) of

Ti jt = exp
[
β0 + β1 log(Yit )+ β2 log(Y jt )+ γ log(Zi j )

+ψ1
(
W j1

) + ψ2 (Wi2)+ φi j
] + τ ∗

i j t

with ψ1(·) and ψ2(·) estimated by penalized splines and φi j ∼ N (0, σ 2
φ ).

The terms τi j t , τ ∗
i j t ,�i j t , ωi j t , and ω∗

i j t are the resulting model deviations (errors).
The results from the simulation study for the additive error setting are summarized

in Tables 5 and 6 for the parametric and semiparametric estimators, respectively. They
include the mean estimate, along with the biases, standard errors, and root mean
squared errors of the estimators for β1, β2, and γ of model (9) estimated with each
of the above five procedures. Recall that in this setting, inconsistency in estimation
may arise due to the correlation between the unobserved heterogeneity term and the
explanatory variables, especially concerning log(Yit ). Therefore, it is not surprising
the bad performance of the pooled PPML (the only one that neglects unobserved
heterogeneity) on estimating β1. The random effects estimator of the log-linear model
with Mundlak device shows (as expected) good performance whether the bias or the
root mean squared error is concerned. The semiparametric estimator (whether using
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Table 6 Performance of semiparametric estimators in simulations for additive error

SPPPMLMiss SPPPMLWell

β1 β2 γ β1 β2 γ

Mean 0.8036 0.2458 −1.1836 0.8166 0.2473 −1.1959

Bias 0.0036 −0.0042 0.0164 0.0166 −0.0027 0.0041

SD 0.2267 0.1372 0.0191 0.1048 0.0197 0.0451

RMSQE 0.2268 0.1373 0.0252 0.1061 0.0199 0.0453

Count 1,000 1,000 1,000 1,000 1,000 1,000

SPPPMLMiss and SPPPMLWell stand for, respectively, semi-mixed effects PPML with Mundlak variables
as proxies and semi-mixed effects PPML using the true proxies

Table 7 Performance of parametric estimators in simulations for multiplicative error

REOLSM PPML REPPMLM

β1 β2 γ β1 β2 γ β1 β2 γ

Mean 1.5040 0.1374 −1.5403 1.7283 0.2260 −1.2384 0.7967 0.2508 −1.2921

Bias 0.7040 −0.1126 −0.3403 0.9283 −0.0240 −0.0384 −0.0033 0.0008 −0.0921

Median 1.4974 0.1477 −1.5375 1.7269 0.2250 −1.2367 0.7947 0.2508 −1.2918

SD 0.3829 0.1943 0.0391 0.0431 0.0228 0.0497 0.0579 0.0254 0.0199

RMSE 0.8014 0.2246 0.3425 0.9293 0.0331 0.0628 0.0580 0.0254 0.0942

Count 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

REOLSM, PPML, and REPPMLM stand for, respectively, random effects OLS of log-linear model with
Mundlak device, pooled PPML and random effects PPML with Mundlak device

the Mundlak variables or the true proxies) shows the best results in estimating the
coefficient of distance, γ . Also, the misspecified semiparametric estimator using the
Mundlak variables as proxies instead of the true ones depicts a better performance
than the random effects PPML with Mundlak device. Overall, the best performance
in estimation is achieved with the semiparametric estimator with the true proxies, as
expected, to control for unobserved heterogeneity.

Tables 7 and 8 show the results obtained in the simulations with the multiplicative
error. Recall that in this setting, there are two possible sources of endogeneity: one
due to the correlated unobserved heterogeneity term, as in the setting analyzed before,
and the other induced by the log-linear transformation, concerning the dependency
of the idiosyncratic error term with the explanatory variables due to the presence of
conditional heteroscedasticity in the multiplicative error. This last situation explains
the disastrous performance in terms of bias of the log-linear model confirming the
findings of Santos Silva and Tenreyro (2006). But note also that for the first simu-
lation study, OLS gave much better results than the PPML, although the data were
generated from a model with heteroscedastic errors. The pooled PPML shows a large
bias in estimating β1 as before. For the other estimators, the results lead to the same
conclusions as obtained in the additive error setting.
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Table 8 Performance of semiparametric estimators in simulations for multiplicative error

SPPPMLMiss SPPPMLWell

β1 β2 γ β1 β2 γ

Mean 0.7935 0.2516 −1.1957 0.7995 0.2486 −1.1961

Bias −0.0065 0.0016 0.0043 −0.0005 −0.0014 0.0039

Median 0.7915 0.2516 −1.1966 0.7980 0.2490 −1.1961

SD 0.0576 0.0253 0.0208 0.0369 0.0110 0.0242

RMSE 0.0579 0.0253 0.0212 0.0369 0.0111 0.0245

Count 1,000 1,000 1,000 1,000 1,000 1,l000

SPPPMLMiss and SPPPMLWell stand for, respectively, semi-mixed effects PPML with Mundlak variables
as proxies and semi-mixed effects PPML using the true proxies

To summarize, the simulations show the good performance of the semiparametric
models in both settings considered, being noticeable better in estimating the coefficient
of distance. When the true proxies are used in the nonparametric part that controls
the unobserved heterogeneity, the semiparametric approach shows a clear superiority.
The Mundlak variables seem to be successful in controlling the potential endogeneity
due to the dependence of the unobserved heterogeneity term with the explanatory
variables; so that it should always be part of the proxy set W , no matter whether they
enter linearly or viaψs . However, the parametric random effects PPML with Mundlak
device are not effective to avoid bias in the estimation of the coefficient of distance.
This suggests that, as expected, the semiparametric approach outperforms existing
methods mitigating bias of the coefficients of time-invariant variables.

5 Concluding remarks

In this paper, we have introduced a methodology to estimate a bilateral gravity model
for panel data. We discussed several reasons why, especially for short-time panels, FE
regression is not appropriate to estimate trade flows (at least within a nonlinear model).
On the other hand, RE and pooled Poisson regression ignore potential correlation
between country unobserved effects and explanatories that may lead to inconsistent
estimation. Our approach is a good compromise and has been shown to give sensible
results. As a by-product, one can also explore and handle the problem of further model
specification issues.

We propose the use of a SMEM with some proxy variables to filter nonpara-
metrically the non-observable effects (country-pair or country-specific, etc.) that are
assumed to be correlated with the covariates. Given that these proxies’ impact is mod-
eled nonparametrically, this model class nests the two extreme cases of FE and REs
models. If the temporal means are included in the set of proxies, then it also nests the
Mundlak device. In addition, it allows for the direct identification of coefficients of
time-invariant variables as long as s > 0. The generally resulting model is a semi-
MEM in the sense that it has still a residual RE component.
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The SMEM can be used to extend the suggestion of Santos Silva and Tenreyro
(2006) to use PPML estimation for gravity models or any other nonlinear approach
without running into the so-called incidental parameter problem. Though we intro-
duced the model class and estimator directly for the case of panel data analysis, one
should emphasize that it works equally well for other kinds of data (unbalanced pan-
els, cohorts, cross-sectional, etc.). It is known that the introduction of an additional
randomness in (pseudo-)Poisson models can substantially increase the efficiency of
estimation and can easily be combined with zero inflation (a generalization of the Tobit
approach to treat censored responses). Finally, the introduced principle can straight-
forwardly be extended to random coefficients and would then also nest the correlated
random coefficients models (Wooldridge 2005).

The presentation and claims are underpinned by a simulation study. The method has
been applied to study the trade flows among the EU25 countries from 2004 through
2007. Results show that it lead to the estimates of the effects of time-varying variables
that are very close to the FE PPML with the advantage of simultaneously providing esti-
mates of the constant in time variables. Moreover, with our semiparametric approach,
we could estimate, for example, importer and exporter GDP elasticities controlling
for importer and exporter time-varying unobserved effects. Results concerning the
nonparametric filters and respective confidence bands show important nonlinearities
that cannot be revealed with a parametric PPML.

It should finally be emphasized that, though the idea and model class are completely
new, the proposed approach is readily available as R and stata provide built-in
commands that help the practitioner to estimate these kinds of models in an easy-to-
handle way. However, further research is necessary to improve the construction of
robust standard errors and offer endogeneity tests. Also, the development of further
smoothing parameter selection procedures that are tailored toward the filtering idea
could be of interest.

Acknowledgments Isabel Proença is grateful for the financial support received from FCT (Fundação
para a Ciência e Tecnologia) through the PEst-OE/EGE/UI0491/2011 program and Stefan Sperlich for
funding from the Swiss National Science Foundation 100018-140295. We thank helpful discussions with
Jaya Krishnakumar, Inmaculada Martínez-Zarzoso, Marcelo Olarreaga, and Walter Zucchini, of participants
of ESEM/EEA-2012, the seminars at ISEG and GSEM, an anonymous referee, and in particular the AE
Christopher Parmeter who essentially contributed to the stepwise improvement of this article.

Appendix: Addition information on used data

Countries included in the data set: Austria (AU), Belgium (BE), Bulgaria (BU),
the Czech Republic (CZ), Denmark (DK), Estonia (EE), Finland (FI), France (FR),
Germany (DE), Greece (GR), Hungary (HU), Ireland (IR), Italy (IT), Latvia (LV),
Lithuania (LH), Luxembourg (LU), the Netherlands (NE), Poland (PL), Portugal (PT),
Romania (RO), Slovakia (SK), Slovenia (SV), Spain (SP), Sweden (SW), and the
United Kingdom (UK).
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Table 9 Pooled PPML

MGDP XGDP MPOP XPOP DIST NEIGH

Coeff. 0.624 0.692 0.079 0.009 −0.623 0.509

SE 0.027∗∗ 0.038∗∗ 0.026∗∗ 0.039 0.028∗∗ 0.039∗∗
EU15 MLOCK XLOCK 2005 2006 2007

Coeff. 1.57 0.068 −0.015 0.023 0.047 0.045

SE 0.058∗∗ 0.051 0.053 0.039 0.038 0.037

A pooled PPML regression without random or fixed effects: estimates of the coefficients with standard
errors

Details about the used variables:13

– T: nominal import (cif) flows in 103 euros.
– MGDP/XGDP: importer/exporter country’s nominal GDP at market prices in mil-

lions of euro, from Eurostat’s New Cronos Database.
– MPOP/XPOP: importer/exporter country’s population, expressed in thousands of

people at the end of the period, from Eurostat’s New Cronos Database.
– DIST: absolute distance expressed in kilometers, the geodesic distance between

capitals (in the case of the Netherlands, Amsterdam substitutes Den Haag), mea-
sured as the surface distance between two points of latitude and longitude (great
circle distance) obtained from www.wcrl.ars.usda.gov/cec/java/lat-long.htm.

– NEIGH: neighboring dummy variable is equal to one if two trading partners share a
land or sea border, zero otherwise. From CIA’s World Factbook 2003 as published
on www.cia.gov/cia/publications/factbook/index.html.

– EU15: dummy equal to 1 if the exporting country belongs to the European 15.
– MLOCK/XLOCK: landlockedness dummy for importer/exporter country; equals

one if country has no direct connection to sea.
– COMLANG: common language dummy variable is equal to one if two trading

partners share the same official language, zero otherwise. From CIA’s Factbook
2003 on www.cia.gov/cia/publications/factbook/index.html.

– ETHNIC: ethnic dummy, equal to one if there is an ethnic minority of the exporter
country in the importer country that represents more than 5 % of total population
of the latter. From CIA’s The World Factbook 2003.

– MAREA/XAREA: importer/exporter country’s area.
– PAT: the number of patents of importer country recorded as EPO (European patent

office) patent applications (Direct EPO filings + EURO-PCT in regional phase);
source OECD (Table 9).
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