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Abstract Palmitoylation describes the enzymatic attachment
of a 16-carbon atom fatty acid to a target protein. Such
lipidation events occur in all eukaryotes and can be of revers-
ible (S-palmitoylation) or irreversible (N-palmitoylation) na-
ture. In particular S-palmitoylation is dynamically regulated
by two opposing types of enzymes which add (palmitoyl
acyltransferases - PAT) or remove (acyl protein thioesterases)
palmitate from proteins. Protein palmitoylation is an important
process that dynamically regulates the assembly and compart-
mentalization of many neuronal proteins at specific subcellu-
lar sites. Enzymes that regulate protein palmitoylation are
critical for several biological processes. To date, eight
palmitoylation related genes have been reported to be associ-
ated with human disease. This review intends to give an
overview on the pathological changes which are associated
with defects in the palmitoylation/depalmitoylation process.

Protein palmitoylation and depalmitoylation

The reversible enzymatic modification of proteins with a free
fatty acid is generally described as S-acylation and occurs in
all eukaryotes. It is different from other cellular lipidation

events such as farnesylation and isoprenylation in which the
lipid moiety is irreversibly attached to proteins via an amide or
thioether bond. The most common modification is S-
palmitoylation which describes the reversible attachment of
a palmitic acid onto a cysteine residue via thioester linkage
(Resh 2006; Conibear and Davis 2010; Salaun et al 2010). A
diverse group of proteins undergo palmitoylation including
signaling proteins, ion channels, scaffold proteins, proteins
involved in vesicle trafficking and viral proteins (Mitchell
Vasudevan et al.et al 2006; Charollais and Van Der Goot
2009; Fukata and Fukata 2010; Veit et al 2013). Up to date
there is no consensus motive established which dictates S-
palmitoylation. The attached palmitate serves as a hydropho-
bic anchor for proteins that lack transmembrane domains. The
hydrophobicity of a single fatty acid alone is typically not
sufficient to stably anchor a protein to a lipid bilayer.
Therefore a second signal is normally required for stable
membrane binding. Normally, this second signal is either a
cluster of positively charged amino acids (lysines and argi-
nines) or an attached palmitate (El-Husseini et al 2000; Fukata
and Fukata 2010). Palmitoylation of a protein is typically
associated with its transport to specific intracellular compart-
ments. Soluble proteins are normally palmitoylated at the
Golgi from where they traffic to the plasma membrane
(Rocks et al 2010). The reversible nature of palmitoylation
allows proteins to dynamically shuttle between intracellular
compartments or to relocalize in physiological contexts. The
small GTPases HRAS and NRAS shuttle between Golgi and
plasma membrane due to a palmitoylation–depalmitoylation
cycle (Rocks et al 2006). The dynamic nature of protein
palmitoylation/depalmitoylation cycles resembles hereby the
principle of regulating protein functions by a kinase and
phosphatase mediated addition and removal of phosphate
groups in cellular signaling events. Besides membrane inter-
action, palmitoylation also regulates protein stability, protein
sorting, and the localization to specific membrane sub-
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domains (Linder and Deschenes 2007; Greaves et al 2009;
Fukata and Fukata 2010). The segregation of plasma mem-
brane proteins into lipid rafts is important for regulating many
cell signaling events and often requires palmitoylation (Brown
2006; Levental et al 2010). Protein palmitoylation is important
for the assembly and compartmentalization of many neuronal
proteins at specific subcellular domains (Prescott et al 2009;
Fukata and Fukata 2010) and plays a critical role in synaptic
plasticity (El-Husseini and Bredt 2002; Huang and El-
Husseini 2005). It is also important for neuronal developmen-
tal processes, such as neurite outgrowth, axon pathfinding,
filopodia formation, and spine development (Kutzleb et al
1998; Kato et al 2000; Laux et al 2000; Gauthier-Campbell
et al 2004; Arstikaitis et al 2008). It has been reported for
numerous neuronal proteins, including signaling proteins
(HRAS, NRAS and rhoB), synaptic scaffolding proteins
(PSD95, GRIP1 and AKAP18), transmembrane proteins (G
protein-coupled receptors), neuronal cell adhesion molecules
(NCAMs), glutamate receptors (GluRs), synaptic vesicle pro-
teins (SNAP25), and cysteine string proteins (CSP and syn-
aptotagmin I) (El-Husseini and Bredt 2002; Linder and
Deschenes 2007). In particular the postsynaptic targeting of
PSD-95, a molecule involved in excitatory synapse develop-
ment and plasticity, is regulated by palmitoylation (El-
Husseini et al 2000; Kim and Sheng 2004). Glutamate recep-
tor activation markedly accelerates depalmitoylation of
PSD95 and causes endocytosis of the associated AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) gluta-
mate receptor (AMPAR) which leads to a down regulation of
the respective signaling pathway (El-Husseini et al 2002).
Palmitoylation can also be influenced by alternative splicing.
This is well described for Cdc42, a small Rho GTPase that is
involved in neuronal morphogenesis. Cdc41 is normally
prenylated but brain specific alternative splicing results in a
variant that becomes palmitoylated instead. Both variants are
expressed in developing neurons but only the palmitoylated
isoform induces the extension of dendritic filopodia which
then develop into dendritic spines (Kang et al 2008).

Instead of forming a thioester bond acylation may also
occur at an N-terminal cysteine or glycine via an amide bond
(N-palmitoylation). N-palmitoylation is primarily found in
secreted proteins (Nadolski and Linder 2007) and is like
prenylation and myristoylation not reversible and therefore
not dynamic.

Palmitoyl acyltransferases (PATs) and thioesterases

The lipidation of proteins was first observed 30 years ago
(Schmidt and Schlesinger 1979; Schlesinger et al 1980) but
only recently the relevant catalytic enzymes were identified.
The first palmitoyl acyltransferase was identified in
S. cerevisiae by forward genetic screens. This approach iden-
tified Erf2 –Erf4 (Bartels et al 1999; Lobo et al 2002 and Akr1

(Roth et al 2002) as palmitoyl acyltransferases (PATs) for the
yeast proteins RAS2 and Yck2 (casein kinase 2). Erf2 and
Akr1 share a 51-amino acid domain known as DHHC
cysteine-rich domain (CRD) which is a variant of the C2H2

zinc finger motif (Putilina et al 1999). Erf2 and Akr1 strictly
required an intact DHHC motif for activity and subsequent
work showed that palmitoyl transferases are general members
of the DHHC protein family (although commonly referred to
as “DHHC PATs” the official gene name is “ZDHHC”, e.g.,
ZDHHC8). The core DHHC motif is highly conserved and
essential for catalytic function (Mitchell et al 2006). Seven
DHHC genes have been identified in yeast and 23 DHHC
proteins are predicted from mammalian genomes (human and
mouse) (Fukata, Fukata et al 2004; Ohno et al 2006). DHHC
palmitoyl transferases are membrane proteins with four to six
predicted transmembrane domains (TMD) (Politis et al 2005;
Conibear and Davis 2010) and expression studies showed that
the majority of the mammalian PATs are localized at the ER
and Golgi (Ohno et al 2006) with some exceptions like
DHHC5, which is localized to the plasma membrane. Erf2 is
present in the endoplasmic reticulum (ER), whereas Akr1 is
localized at the Golgi. A precise consensus sequence for
palmitoylation has not been identified yet and it seems that
some DHHC proteins can palmitoylate rather a broad range of
substrates whereas others are more selective. Also Erf2 and
Akr1 showed a certain substrate specificity as Yck2
palmitoylation is unaffected by mutation in Erf2 and Ras2
palmitoylation is not affected by Akr1 mutants. However, the
lack of a consensus sequence currently does not allow to
predict whether a protein is a target for palmitoylation (Fig. 1).

In contrast to S-palmitoylation is N-palmitoylation mediat-
ed by set of multispanning transmembrane O-acyltransferase
(MBOAT). Many members of the MBOAT family are
lysophospholipid acyltransferases (Shindou and Shimizu
2009) and typically catalyze the addition of a fatty acid to
the hydroxyl group of membrane lipids (Hofmann 2000).

In contrast to the great number of DHHC PATs only four
acyl protein thioesterases (commonly referred to as
th ioes te rases) have been ident i f ied to ca ta lyze
depalmitoylation. This is APT1 (LYPLA1) and APT2
(LYPLA2), and the protein palmitoyl thioesterases 1 (PPT1)
and 2 (PPT2) (Zeidman et al 2009; Tomatis et al 2010). APT1
was first purified from the cytosol of rat hepatocytes based on
its ability to remove palmitate from [3H]-palmitoyl–Gαi

(Duncan and Gilman 1998). APT1 is expressed in a wide
range of mouse tissues and has been shown to depalmitoylate
a list of proteins including H-Ras (Duncan and Gilman 1998)
and endothelial NOS (Yeh et al 1999). APT2 is a homologue
of APT1 and shows 64 % amino acid sequence identity. It has
been shown to depalmitoylate GAP-43 and also H-Ras
(Tomatis et al 2010; Rusch et al 2011). Also thioesterases
seem not to have a defined substrate recognition sequence
and the list of APT1 substrates contains proteins that are
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structurally diverse and containing different lipid modifica-
tions (Zeidman et al 2009). The third identified thioesterase is
PPT1, which is a lysosomal enzyme and indiscriminately
cleaves fatty acids from cysteine residues in the process of
protein degradation (Zeidman et al 2009). As PPT1 is located
in the lysosomes it is probably not involved in the dynamic
depalmitoylation of cytoplasmic proteins (Hellsten et al 1996;
Verkruyse and Hofmann 1996). However, PPT1 interacts with
the F(1)-complex of the mitochondrial ATP synthase and the
levels of F(1)-subunits alpha and beta on the plasma mem-
brane were increased in neurons of PPT1 deficient mice (Lyly
et al 2008). PPT2 is a homologue to PPT1 and shares about
20 % identity. Also PPT2 is a lysosomal protein but seems to
have a distinct substrate specificity as it did not remove
palmitate groups from proteins that are substrates for PPT1
(Soyombo and Hofmann 1997).

Enzymes that regulate protein palmitoylation are critical
for several biological processes. To date, nine palmitoylation
related genes have been reported to be associated with human
disease (Liu et al 2002; Mansouri et al 2005; Yanai et al
2006; Raymond et al 2007; Mizumaru et al 2009; Singaraja
et al 2011; Callier et al (2014).

Huntington’s disease

Huntington’s disease (HD) is a neurodegenerative disease that
presents with cognitive, motor, and psychiatric signs and
symptoms (Roos 2010; Sturrock and Leavitt 2010). The prev-
alence of HD in Caucasian European populations is 5–7 per
100,000 individuals (Warby et al 2011). HD is caused by
mutations in the HTT (huntingtin or HD) gene located on
chromosome 4. The exact function of HTT is not clear. It is
essential for development and the absence of HTT is lethal in
mice (Nasir et al 1995). The protein has no sequence homol-
ogy to other proteins and is highly expressed in neurons and
testes of humans and rodents (Cattaneo et al 2005). CAG
repeats which exceed the number of 36 lead to the production

of an HTT protein with an abnormally long N-terminal
polyglutamine tail which is unstable. Individuals with 36 to
40 CAG repeats may or may not develop HD whereas indi-
viduals with more than 40 repeats will develop the disorder.
Sixty and more CAG repeats lead to a severe form of juvenile
HD.

Huntingtin has been found to interact with a number of
other proteins including HIP14 (ZDHHC17) (Kalchman et al
1996; Singaraja et al 2002). HIP14 and its homologue HIP14L
are human orthologues of the yeast proteins Akr1 and Akr2.
HIP14L is an atypical ZDHHC protein as it has a DQHC
instead of the typical DHHC motive (Mitchell et al 2006;
Greaves and Chamberlain 2011). The role of HIP14 in HD
gained focus when it was shown that the HIP14-HTT interac-
tion correlated inversely with the number of CAG repeats.
This suggests an aberrant palmitoylation to be involved in the
pathogenesis of HD (Singaraja et al 2002). HIP14 is expressed
in brain and in particular in medium spiny neuron (MSN)
cells, special inhibitory neurons which are primarily present
in corpus striatum of the basal ganglia. MSN cells play a key
role in initiating and controlling movements of the body,
limbs, and eyes and are the earliest cell population affected
in HD. Further work showed that HTT is primarily
palmitoylated at Cys214 and the mutation of this site was
associated with increased inclusion formation in COS cells
and neuronal cultures and increased NMDA-induced toxicity
in cultured rat cortical neurons (Yanai et al 2006). The silenc-
ing of HIP14 in cortical neuron cultures of YAC128 mice, a
mouse model which is transgenic for the human huntingtin
protein, resulted in increased inclusion formation (Slow et al
2003; Yanai et al 2006). Palmitoylation of HIP14 is reduced in
brains of YAC128 mice, suggesting a reduced HIP14 activity
in the presence of mutant HTT. The overexpression of HIP14
reduced inclusion formation in cultured neurons (Yanai et al
2006). HIP14 itself is autopalmitoylated (Huang et al 2004)—
a conserved feature that is correlated with PAT activity
(Fukata, Fukata et al 2004; Huang et al 2004).

Fig. 1 Schematic representation
of the interplay between
palmitoyltransferases (PAT, blue)
and acyl protein thioesterases
(orange) and associated
pathologies
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Autopalmitoylation is reduced in HIP14 isolated from
YAC128 brains. HIP14 appears to be predominantly a neuro-
nal PAT and its confirmed substrates include SNAP25,
GAD65, HTT, STREX-BK potassium channel, and GluR1/2
AMPA receptor subunits (Fukata, Fukata et al 2004; Huang
et al 2004; Huang et al 2009; Greaves et al 2010; Tian et al
2010; Singaraja et al 2011). HIP14 may also be a PAT for
PSD-95 as the knockdown of HIP14 reduced palmitoylation
of PSD-95 (Huang et al 2004, 2009). In return it appears that
HTT modulates the palmitoylation and activity of HIP14
itself. Palmitoylation of HIP14 was reduced in heterozygous
Hdh+/− mice. Hip14−/− mice revealed a reduced brain weight
at 1 month of age (Singaraja et al 2011).

Schizophrenia

For three SNPs in the palmitoyl acyltransferases ZDHHC8 a
significant association with schizophrenia was found in a US
and South African population (Liu et al 2002). The association
with schizophrenia was further confirmed for one of these
SNPs (rs175174) in an American and South African cohort.
An association between ZDHHC8 and schizophrenia was also
found in the Han Chinese population (Chen et al 2004b). Also
the association of the 22q11 microdeletion region, which
bears the ZDHHC8 gene and schizophrenia was reported.
The identified SNP was functional and influenced alternative
splicing of ZDHHC8which led to the retention of intron-4 and
the introduction of a premature termination codon. Female
ZDHHC8-deficient mice showed abnormalities in fear-related
measures of spontaneous activity which were absent in male
mice. This was believed to be related to an influence of
ZDHHC8 on glutamatergic signal transmission, as female
ZDHHC8-deficient mice also appeared to be less sensitive to
an NMDAR blocker (Mukai et al 2004). A follow-up study
demonstrated that ZDHHC8-deficient mice have a decreased
density of dendritic spines (Mukai et al 2008). Furthermore it
was shown that a polymorphism in ZDHHC8 is associated
with nystagmus (abnormalities in smooth eye movements)
which is common in schizophrenia (Shin et al 2010).
However, several other studies failed to identify an association
of ZDHHC8 with schizophrenia in other populations (Glaser
et al 2005, 2006; Otani et al 2005; Saito et al 2005; Demily
et al 2007; Xu et al 2010).

Alzheimer’s disease

A number of studies have explored the role of palmitoylation
in the pathogenesis of Alzheimer’s disease (AD). Alzheimer’s
disease is a neurodegenerative type of dementia in which the
death of brain cells causes memory loss and cognitive decline.
The disease starts typically mild and gets progressively worse.
A typical pathogenic step in AD is the generation of neuro-
toxic beta-amyloid (Aβ) from amyloid precursor protein

(APP) by the sequential cleavage of two proteases (β- and
γ-secretase). No genetic link has yet been found between
PATs and AD but there is evidence that the β- and γ-
secretase enzymes are palmitoylated. Whether this
palmitoylation is altered in AD is currently unclear.
ZDHHC12 has been linked to APP trafficking by retaining
APP in the Golgi and to prevent its further trafficking to the
trans Golgi network and PM in neuroblastoma cells
(Mizumaru et al 2009). However, this is probably not a direct
effect of APP palmitoylation by ZDHHC12 as APP does not
contain cytosolic cysteines.

Interestingly the major APP cleaving enzyme BACE1 is
palmitoylated at four sites: three within the C-terminal cyto-
solic tail (Benjannet et al 2001) and one on its TMD which
seems to be critical for targeting BACE1 to lipid rafts. Five
PATs (ZDHHC3, 4, 7, 15, and 20) have been identified by co-
expression studies to potentially enhance the palmitoylation of
BACE1 (Vetrivel et al 2009).

Goltz syndrome

Human focal dermal hypoplasia or Goltz syndrome is an X-
linked dominant form of ectodermal dysplasia. It is transmit-
ted as an X-linked dominant trait and is lethal in utero for male
fetuses. It is a multisystem disorder, primarily characterized by
skin manifestations as atrophic and hypoplastic areas (Wang
et al 2007). Clinical signs constitute areas of cutaneous atro-
phy and periorificial papillomas around the mouth, genitalia,
and/or anus. Osseous defects include scoliosis, hypoplastic
clavicles and ribs, and a deformed thorax. Dental anomalies
are typical and may include malpositioned teeth, extra teeth,
and enamel defects. Eyes are affected by coloboma of the iris,
microphthalmia, and/or strabismus. Goltz syndrome is caused
by mutations in the Porcupine (Porcn) gene. Porcn is a
multipass membrane protein and a member of the MBOAT
family. Porcupine (Porcn) has been implicated in fatty acid
modifications of Wnt proteins (Willert et al 2003; Takada et al
2006; Galli et al 2007) which are dual acylated with palmitate
and palmitoleate. This modification is required for Wnt pro-
tein secretion and signaling (Takada et al 2006; Doubravska
et al 2011) and dysregulation of theWnt signaling pathways is
associated with oncogenesis (Polakis 2007). The deletion of
Porcn in mice is embryonically lethal due to the failure to
secrete functional Wnt proteins (Biechele et al 2011) but
symptoms of Goltz syndrome can be recapitulated in mice
with a conditional disruption of Porcn (Barrott et al 2011).

Other diseases related to PAT mutations

The post-translational attachment of cholesterol and palmitate
to the Hedgehog (Hh) family of secreted proteins is critical for
multimerization and long range signaling potency (Chen et al
2004a). Hh proteins act as morphogens to control embryonic
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patterning and development in a variety of organ systems. A
very recent study reported the case of an autosomal recessive
syndromic 46,XY disorder of sex development (DSD) with
testicular dysgenesis and chondrodysplasia which was associ-
ated with a homozygous missense mutation in the hedgehog
acyl-transferase (HHAT) gene (Callier et al 2014). The muta-
tion (G287V) was found in a conserved membrane bound O-
acyltransferase (MBOAT) domain and in vitro studies showed
that the mutations disrupted the ability of HHAT to
palmitoylate Hh proteins such as DHH and SHH.

A translocation between chromosome X and a region
15,2442 bp upstream of the ZDHHC15 gene which resulted
in the absence of ZDHHC15 transcripts was reported in the
case of a 29-year old woman with severe non-syndromic
mental retardation (Mansouri et al 2005).Mutations in another
X-chomosomal PAT (ZDHHC9) were found in four of 250
families with X-linked mental retardation. Two missense mu-
tations were located in the DHHC-CR domain and one was
located at a highly conserved residue (Mitchell et al 2006;
Raymond et al 2007). However, the effect of these mutations
on enzyme activity was not yet validated in functional assays.

Mutations in three PATs (ZDHHC2, 9, 11) have been
implicated in various forms of human cancer (Oyama et al
2000; Mansilla et al 2007; Yamamoto et al 2007; Zhang et al
2008) and one study reported HIP14 to be an oncogene
in vitro and in vivo in mice (Ducker et al 2004). Mutations
in HIP14L (ZDHHC13) and ZDHHC21 have been shown to
result in dermatological and related phenotypes in inbred mice
(Mill et al 2009; Saleem et al 2010).

Ceroid lipofuscinosis type 1 (CLN1)

Besides defects in the palmitoylation reaction is also the
opposite step — the removal of the S-linked palmitate —
associated with pathological conditions. Mutations in the
PPT1 gene result in infantile neuronal ceroid lipofuscinosis
type 1 (CLN1 or Batten disease) (Vesa et al 1995). CLN1 is a
rare disease (prevalence one out of 100,000 births) and be-
longs to the family of neuronal ceroid lipofuscinosis (NCL) a
genetically distinct group of neurodegenerative diseases fea-
tured by epilepsy, progressive blindness and premature death.
Collectively, they represent the most common group of he-
reditary encephalopathies in childhood, with an incidence of
up to 1/12,500 (Haltia 2006). At the ultrastructural level the
disease is associated with the lysosomal accumulation of
lipofuscin — a granular autofluorescent lipopigment. CLN1
is caused by homozygous or compound heterozygous muta-
tions in the PPT1 gene on chromosome 1p32. To date 64 PPT
mutations are annotated in the NCL mutation database (http://
www.ucl.ac.uk/ncl/mutation.shtml). Many of these mutations
are private mutations although a c.451 C>T (R151X) ex-
change seems to be the most prevalent mutation in non-
related carriers. A c.364 A>T (R122W) transversion seems

to cluster in Finnish patients. Both mutations represent about
20 % of the total CLN1 cases. CLN1 has an early-onset and
symptoms appear typically within the first 6–12months of life
with previously normal development (Mitchison et al 1998).
The disease is initially characterized by the delay of develop-
mental progress, microcephaly, and the loss of motor function
leading to hypotonia. Vision loss becomes apparent from the
12th month and progresses to blindness until 2 years of age.
At that time the child usually starts to loose previously ac-
quired skills (speech and movements) and most affected chil-
dren die by the age of seven (Santavuori 2011). The autopsy
shows a shrunken brain and diffuse cortical and cerebellar
atrophy. Electron microscopy of brain and other tissues like
blood lymphocytes demonstrates accumulation of granular
osmiophilic dense (GROD) bodies. Palmitoylated peptide
intermediates accumulate in the lysosomes along with
sphingolipid activator proteins (saposin) A and D (Tyynela
et al 1993). After the crystal structure of PPT1 was identified,
a correlation was observed between the severity of the infan-
tile CLN1 phenotype and the effect of the various mutations
on the catalytic site (Bellizzi et al 2000). The pathogenesis of
the disease may be due to activation of an apoptosis pathway.
PPT1 deficient mice demonstrate abnormal ER morphology
and an accumulation of palmitoylated GAP-43 in the ER. This
might lead to activation of unfolded protein response in the
ER and subsequently activation of caspase-3 and apoptosis
(Zhang et al 2006). The same group reported that caspase-9 is
activated following increased production of reactive oxygen
species and disruption of calcium homeostasis. PPT1 may
therefore help to protect against apoptosis. Neuroblastoma
cells which overexpress PPT1 showed reduced cell death,
reduced activation of caspase-3, and increased phosphoryla-
tion of the anti-apoptotic protein Akt when treated with the
apoptosis-inducing agent C2 ceramide (Cho and Dawson
2000). On the other hand, inhibition of PPT1 either via
PPT1 antisense RNA or a PPT1 inhibitor resulted in enhanced
apoptosis (Cho et al 2000).

Experimental PPT2 deficiency in mice causes an unusual
form of neuronal ceroid lipofuscinosis with striking visceral
manifestations but no PPT2 deficiency has been described in
humans yet (Gupta et al 2003).

Currently there is no treatment for CNL1. However, a
recently concluded pilot study investigated the combination
of phosphocysteamine and N-acetylcysteine as a therapy in
nine patients with CNL1 (Levin et al 2014). The results
showed a remarkable clearance of GRODs in blood cells, a
reduced irritability of the patients and a slowdown of the
disease course. In particular the reduced irritability in response
to the treatment might affect present clinical practice. Besides
these promising results seizures may be controlled or reduced
with use of anti-epileptic drugs and physical, speech, and
occupational therapies may help affected patients retain their
cognitive and motor functions as long as possible.
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In summary six PATs (HIP14, HIP14L, ZDHHC8,
ZDHHC9, ZDHHC12, and ZDHHC15) which catalyze S-
palmitoylation have been implicated in the neuropsychiatric
diseases like Alzheimer’s and Huntington’s disease, schizo-
phrenia, and mental retardation. Mutations in Porcupine and
HHATwhich both belong to the MBOAT family cause human
focal dermal hypoplasia (Goltz syndrome) and testicular dys-
genesis and chondrodysplasia, respectively. On the opposite
side are defects in the thioesterase PPT1 associated with
infantile NCL (CLN1). This highlights the importance of
protein palmitoylation in particular for neurons as a distur-
bance of this process results in severe, mostly neuronal
pathologies.
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