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Schizophrenia is characterized by social interaction deficits 
contributing to poor functional outcome. Hand gesture use is 
particularly impaired, linked to frontal lobe dysfunction and 
frontal grey matter deficits. The functional neural correlates 
of impaired gesturing are currently unclear. We therefore 
investigated aberrant brain activity during impaired gestur-
ing in schizophrenia. We included 22 patients with schizo-
phrenia and 25 healthy control participants matched for age, 
gender, and education level. We obtained functional magnetic 
resonance imaging data using an event-related paradigm to 
assess brain activation during gesture planning and execu-
tion. Group differences in whole brain effects were calculated 
using factorial designs. Gesture ratings were performed by 
a single rater, blind to diagnoses and clinical presentation. 
During gesture planning and execution both groups acti-
vated brain areas of the praxis network. However, patients 
had reduced dorsolateral prefrontal cortex (DLPFC) and 
increased inferior parietal lobe (IPL) activity. Performance 
accuracy was associated with IPL activity in patients. 
Furthermore, patients activated temporal poles, amygdala 
and hippocampus during gesture planning, which was asso-
ciated with delusion severity. Finally, patients demonstrated 
increased dorsomedial prefrontal cortex activity during 
planning of novel gestures. We demonstrate less prefrontal, 
but more IPL and limbic activity during gesturing in schizo-
phrenia. IPL activity was associated with performance accu-
racy, whereas limbic activity was linked to delusion severity. 
These findings may reflect impaired social action planning 
and a limbic interference with gestures in schizophrenia con-
tributing to poor gesture performance and consequently poor 
social functioning in schizophrenia.

Key words:  nonverbal communication/social 
cognition/delusions/gesture performance/fMRI/amygdala

Introduction

Schizophrenia is characterized by impaired social 
interaction contributing to poor functional outcome.1 
Particularly nonverbal communication is disturbed 
including gesture performance in both patients and sub-
jects at risk for psychosis.2–8 Gestures are skilled move-
ments critical for social interaction,9,10 conveying relevant 
nonverbal information. Gesture deficits have been linked 
to impaired frontal lobe function, working memory defi-
cits and altered motor behavior.3,4 Gesture impairments 
in schizophrenia predict poor functional outcome after 
6 months.11 Furthermore, poor nonverbal social percep-
tion and impaired gesture performance are strongly asso-
ciated.4 Finally, alterations in the mirror neuron system 
may lead to poor gesture performance.12,13

Three key aspects of gesturing may be investigated: 
gesture perception, interpretation and production.14 
Recent functional magnetic resonance imaging (fMRI) 
studies indicated aberrant neural processing in the lan-
guage network in schizophrenia during perception of 
abstract metaphoric gestures.15,16 Behavioral data suggests 
misinterpretation of incidental movements as gestures in 
patients with delusions.17 Delusions in turn are associ-
ated with altered brain activity in the limbic system.18,19 
Therefore, functional alterations in the limbic system may 
foster misinterpretation of gestures in schizophrenia. Two 
recent fMRI studies investigated the imitation of mean-
ingless finger movements in schizophrenia: One reported 
preserved neural activity,20 while the other found reduced 
right parietal lobe activation in patients.21 Imitation of 
finger movements may be related to imitation of gestures, 
yet lacking the communicative context. Even though per-
formance of gestures on command (termed pantomimes) 
is defective in up to 67% of schizophrenia patients,2–4 
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the underlying pathophysiology is unknown and their 
functional neural correlates have not been studied yet. 
Pantomimes represent a critical nonverbal component 
of real-life social encounters, for instance as co-speech 
gestures.9,22

Current neurocognitive models23–25 including evidence 
from fMRI studies in healthy subjects26–28 as well as lesion 
studies29–32 suggest a widespread, left lateralized, fronto-
temporo-parietal cortical network for planning panto-
mime gestures and imitation of tool use. According to 
these models distinct ventral and dorsal streams of this 
so called praxis network are relevant for motor control. 
In detail, the dorso-dorsal stream provides “online” con-
trol of actions and is running from the primary visual 
cortex, the superior parietal lobe to the dorsal premotor 
area.23,24,33 In contrast, the ventro-dorsal stream is rel-
evant for action semantics connecting medial superior 
temporal areas with the inferior parietal cortex and dor-
sal premotor cortex.24 Finally, visual object processing 
and object semantics is processed in the ventral stream 
running from the visual cortex through the temporal lobe 
to the inferior frontal gyrus.28

Investigating gesture performance in schizophrenia 
provides further information on the contribution of 
the praxis network. In fact, schizophrenia patients with 
defective pantomime performance had reduced gray mat-
ter (GM) in the ventral-dorsal pathway, most prominent 
in the left IFG in contrast to patients with correct gesture 
performance.34

Despite the growing evidence and clinical relevance of 
gesture abnormalities in schizophrenia, the neural cor-
relates of impaired gesture performance are currently 
unclear. However, this pathophysiological knowledge 
may stimulate the development of treatment approaches. 
Therefore, we tested functional correlates of gesture per-
formance on visual verbal command (pantomime) in 
schizophrenia patients and healthy controls with fMRI. 
We hypothesized aberrant activation of the praxis network 
in schizophrenia during both planning and actual perfor-
mance of gestures and altered prefrontal cortex activation 
during gesture planning. In particular, we hypothesized 
planning of novel gestures to be demanding and to be 
associated with prominent alterations in the frontal lobe 
in schizophrenia. In contrast, brain activity during plan-
ning of familiar, highly overlearned gestures (such as tool 
related gestures) may be more preserved in schizophrenia. 
Finally, we tested a possible association of defective social 
action planning with delusional experience in patients.

Methods

Subjects

This study included 22 patients with schizophrenia spec-
trum disorders according to the Diagnostic and Statistical 
Manual of Mental Disorders (DSM5) criteria and 25 
healthy control subjects matched for age, gender, and 

duration of education. Patients were recruited between 
December 2013 and November 2014 at the inpatient 
and outpatient departments of the University Hospital 
of Psychiatry, Bern. Healthy controls were recruited via 
advertisement and among staff and students. All partici-
pants were right-handed. General exclusion criteria were 
substance abuse or dependence other than nicotine, his-
tory of motor impairments such as dystonia, idiopathic 
parkinsonism or stroke, history of head trauma with con-
current loss of consciousness and history of electroconvul-
sive treatment. Exclusion criteria for controls were history 
of any psychiatric disorder, as well as any first-degree rela-
tives with schizophrenia or schizoaffective disorder. All 
participants provided written informed consent. The study 
protocol adhered to the declaration of Helsinki and was 
approved by the local Ethics Committee.

All patients received antipsychotic medication, average 
daily chlorpromazine equivalents (CPZ) during the last 
5  years were calculated.35 Symptom severity in patients 
was assessed with the Comprehensive Assessment of 
Symptoms and History (CASH)36 and the Positive And 
Negative Syndrome Scale (PANSS).37 All participants 
were further interviewed with the Mini International 
Neuropsychiatric Interview (MINI).38 In addition, fron-
tal lobe function, verbal working memory and nonverbal 
intelligence were assessed using the Frontal Assessment 
Battery (FAB),39 the digit span backwards (DSB) task 
(subtest from the Wechsler Memory Scale [WMS-
III]40 and the Test of nonverbal Intelligence [TONI]).41 
Assessment of symptoms was conducted on the day of 
MRI scan.

Experimental Procedures

Task: Gesture Performance on Verbal Command. We 
employed a modified instructed delay paradigm26,42,43 for 
pantomime gestures (figure 1). Participants performed 20 
novel and 20 familiar gestures in random order with their 
right hand in 2 runs. Instructions were presented visually 
as written commands. Familiar gestures included 10 tran-
sitive (tool related, eg, use of scissors) and 10 intransitive 

Fig. 1. Pantomime gesture task.
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symbolic actions (eg, waving good bye). Novel gestures 
are meaningless actions, such as spreading the little fin-
ger outward. During the linguistic control condition tri-
als (10 neutral sentences, eg, “The weather is cold during 
winter.”),44 participants were asked to relax and neither 
plan nor undertake any movements. Thus, linguistic con-
trol was matched for attention and visual processing, but 
lacked any specific demands in motor planning (figure 1). 
Within runs, gesture condition and linguistic control con-
dition were intermixed. Each command was presented 
twice. Each run started with the rest instruction followed 
by written movement commands or linguistic control 
for 3 seconds (figure 1). Next, a fixation cross was pre-
sented for 3 seconds, during which participants had to 
plan movements. Immediately after the planning phase, a 
round symbol indicated the execution phase of 3 seconds, 
which in turn was followed by a jittered interstimulus 
interval of 3–10 seconds. The total duration of the fMRI 
task was 13 minutes.

Participants performed gestures with the right hand and 
arm. Subjects lay horizontal in the MR scanner and their 
arms rested beside their trunk. To reduce head motion 
foam pads were placed around the participants’ head and 
we explicitly instructed participants to avoid head motion, 
in particular while performing gestures. Furthermore, most 
of the gestures involved the hand and forelimb in proximity 
to the hand. In case of movements including the arm par-
ticipants were explicitly asked to mainly use the forelimb.

An independent rater blinded for diagnosis and clinical 
status evaluated the video-recorded gesture performance 
according to the Test of Upper Limb Apraxia (TULIA)45 
criteria (eg, according to spatial, temporal or content 
errors, higher scores indicating better performance accu-
racy; full criteria see supplementary material).

Functional Magnetic Resonance Imaging. Imaging was 
performed on a 3T MRI scanner (Siemens Magnetom 
Trio; Siemens Medical Solutions) with a 12-channel radio 
frequency headcoil for signal reception. 3D-T1-weighted 
(Modified Driven Equilibrium Fourier Transform Pulse 
Sequence; MDEFT) images for each subject have been 
obtained,46 providing 176 sagittal slices with 256  ×  256 
matrix points with a non-cubic field of view (FOV) of 
256 mm, yielding a nominal isotopic resolution of 1 mm3 
(ie, 1 mm × 1 mm × 1 mm). Further scan parameters for 
the anatomical data were 7.92 ms repetition time (TR), 
2.48 ms echo time (TE) and a flip angle of 16° (FA).

For functional sequences, 390 T2*-weighted echo pla-
nar single-shot images (EPI) were acquired. Further scan 
parameters for the functional images were 38 slices, and 
slice thickness = 3 mm, 64 × 64 matrix size, 3.59 mm × 
3.59 mm × 3 mm voxel dimension, FOV 230 mm, TR = 2 
seconds and TE = 30 ms. In addition the acquisition of 
a B0 image was performed in order to quantify inhomo-
geneity within the echo planar imaging (EPI) images. 
The following parameters were used: 38 axial slices with 

slice thickness  =  3.0  mm, interslice distance  =  0  mm, 
FOV  =  230  ×  230  mm2, matrix size  =  64  ×  64; 
TR = 488 ms, TEshort = 4.92 ms, TElong = 7.38 ms, gra-
dient-EPI readout, interleaved order, acquisition time 65 
seconds, number of measurements N = 1, Flow compen-
sation pulse, Bandwidth 260 Hz/Px and effective Echo 
spacing 0.215 ms. These images were positioned exactly 
as the fMRI images.

Statistical Analysis

Statistical tests of behavioral, clinical and demographic 
data were performed using SPSS 22.0 (IBM SPSS 
Statistics: IBM Corp). Two-sample t tests and chi-square 
tests (χ2) were used to test for group differences in clinical 
and demographic data. Gesture performance data were 
normally distributed. A repeated measure ANOVA tested 
the effects of category, group and their interaction on 
gesture performance applying Greenhouse-Geisser cor-
rection. Level of significance was set at P < .05, 2-tailed.

Missing trials and trials with severe gesture errors (eg, 
unrecognizable or movement present, but hard to deci-
pher) were excluded from further fMRI analysis. To assess 
planning- and execution-related increases in blood oxygen-
ation level dependent (BOLD) signal we used Statistical 
Parametric Mapping (SPM8) software (Wellcome 
Department of Imaging Neuroscience, University of 
London). Preprocessing included slice time correction, 
realignment, coregistration, normalization, and spatial 
smoothing with a Gaussian kernel of 8 mm full-width at 
half-maximum. In addition, preprocessing included correc-
tion of distortion of EPI images due to possible regional 
variations of the static magnetic field (eg, B0).

Statistical analysis of the preprocessed data was con-
ducted via a 2-stage mixed effects model. At the single 
subject level, the activity for planning and execution 
of familiar and novel gestures as well as the linguis-
tic controls was modeled in one General Linear Model 
(GLM) using the standard SPM canonical hemodynamic 
response function. For each participant, realignment 
parameters were included in the GLM as regressors of 
no interest to correct for residual motion. In order to 
identify brain areas specifically associated with planning 
and execution of familiar and novel gestures, gesture con-
ditions (familiar and novel) were contrasted against the 
linguistic control condition at the single subject level (eg, 
planning familiar gestures vs linguistic control; execution 
novel gestures vs linguistic control).

Next, contrasts from each single subject were entered 
into second-level random effects analyses. Whole brain 
effects were calculated using 2 flexible factorial designs 
with the factors group, planning and execution for each 
of the 2 gesture categories (familiar and novel) separately. 
Between group effects were calculated comparing both con-
ditions (planning and execution) between patients and con-
trols within the factorial designs (eg, patients vs controls: 
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planning familiar gestures; controls vs patients: planning 
familiar gestures). We report results with a uniform thresh-
old of P ≤ .001 and a minimum cluster size of 180 voxels.

We explored potential influences of motion on the BOLD 
signal. Neither group nor phase of the experiment had an 
influence on head motion during the scan (see supplemen-
tary material: Analysis S1, table S1). Finally, we calculated 
post hoc Spearman’s rank correlations (2-tailed) to assess 
the relationship between performance ratings (TULIA 
scores), psychopathological characteristics of delusional 
experience from the CASH present state and neural activity 
during gesture planning. Therefore, we extracted mean beta 
estimate values of full brain clusters differentially activated 
during the planning condition as regions of interest (ROIs) 
for each subject using a toolbox for SPM (MarsBaR).47

Results

Behavioral and Clinical Data

Demographic and clinical data are given in table 1. Patients 
performed poorer than controls in both gesture catego-
ries (familiar and novel, see table  1 and supplementary 

material: figure S1). The gesture deficit comprised tempo-
ral, spatial, semantic and content errors. We found signif-
icant effects of gesture category (F(1/45) = 67.1, P < .001), 
and group (F(1/45)  =  20.0, P < .001), but no category × 
group interaction (F(1/45) = .1, P = .70). However, the pro-
portion of excluded trials (missing trials and trials with 
severe errors) did not differ between patients and controls 
(table 1).

fMRI Results

Planning Novel and Familiar Gestures. Within-group 
results are given in the supplementary material (supple-
mentary material: Analyses S2 and S3, figure S2 and 
table S2). During planning of novel gestures between-
group contrasts indicated reduced activation in patients 
in brain areas commonly related to gesture planning, ie, 
in the ventral and dorsal stream, the motor cortex and 
the right dorsolateral prefrontal cortex (DLPFC) (con-
trols > patients) (figure 2A and table 2A). Furthermore, 
we detected abnormal bilateral activation in tempo-
ral pole, amygdala and hippocampus in schizophrenia 

Table 1. Demographic and Clinical Data

Controls Patients Tests

Gender (No [%)])

Men/Women Men/Women P

13 (52%)/ 12 (48%) 14 (64%)/ 8 (36%) .421

M SD M SD P

Age (y) 39.2 14.0 37.5 9.8 .63
Education (y) 14.1 2.7 13.5 3.1 .68
TONI index score 109.8 10.9 99.7 9.1 .002
DSB 5.5 0.7 4.6 0.9 .003
FAB 17.5 0.7 16.7 0.9 <.001
Gesture performance total 163.4 15.9 137.6 21.8 <.001
Familiar gestures 89.5 7.8 77.3 16.8 <.001
Novel gestures 74.0 10.1 60.4 9.8 .004
Gestures missing (%) 1.6 2.5 1.5 8.4 .45
CPZ (mg) — — 397.5 406.1 —
Schizophrenia patients (n) — — 16 —
Schizophreniform disorder (n) — — 4 —
Schizoaffective disorder (n) — — 2 —
PANSS total (range) — — 73.0 (43–103) 17.8 —
PANSS pos (range) — — 17.5 (7–26) 6.7 —
PANSS neg (range) — — 18.8 (11–27) 4.5 —
CAINS Expression (range) — — 4.2 (0–10) 3.6 —
CAINS Motivation/Pleasure (range) — — 16.5 (4–29) 7.3 —
CASH delusions (range) — — 2.3 (0–5) 2.0 —
Number of episodes — — 5.7 6.3 —
DOI (y) — — 11.2 9.3 —

Note: TONI index score, Test of nonverbal Intelligence index score; DSB, digit span backwards; FAB, Frontal Assessment Battery; 
Gesture performance total, total scores of gesture performance; Familiar gestures, performance scores of performance of familiar 
gestures; Novel gestures, performance scores of performance of novel gestures (performance ratings refer to gesture performance inside 
the scanner); CAINS, Clinical Assessment Interview for Negative Symptoms (Factor 1 Expression; Factor 2 Motivation/Pleasure); 
CPZ, chlorpromazine equivalents; PANSS, Positive And Negative Syndrome Scale; pos, positive; neg, negative; CASH, comprehensive 
assessment of schizophrenia history (delusions, global rating of severity of delusions); DOI, duration of illness. P values correspond to 
2-sample t tests for continuous variables and χ2 tests for categorical variables.
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(patients > controls). In addition, patients demonstrated 
increased activation in the middle frontal gyrus (dor-
somedial frontal cortex: DMPFC; patients > controls)  
(figure 2B and table 2A). Likewise, during planning of 
familiar gestures patients showed hypoactivation in the 
praxis network, the motor cortex and the DLPFC, while 
again patients presented abnormal bilateral activation 
in the temporal pole and amygdala (figures 2C and 2D). 
The full list of between group results (controls > patients 
and patients > controls) is given in table 2A. To rule out 
the putative effects of frontal lobe function on our whole 
brain findings we provide additional analyses with fron-
tal lobe function (FAB) as covariate. The analyses yielded 
substantially the same results independent of frontal lobe 
function (see supplementary material, table S3).

Execution Novel and Familiar Gestures. We analyzed 
between group effects during gesture execution to deter-
mine the relationship of actual gesturing and brain activ-
ity. Groups did not differ in neural activation during 
performance of novel gestures (controls > patients and 
patients > controls). However, patients displayed hypoac-
tivation during execution of familiar gestures within the 
premotor cortices (bilateral SMA, pre-SMA and cingu-
late motor areas; see table 2C).

Association of Gesture Behavior With Neural Activation 
During Gesture Planning. Accuracy of gesture perfor-
mance was associated with the right DLPFC (middle 
frontal gyrus) activation during gesture planning in con-
trols but with left inferior parietal lobe (IPL) activation in 

patients (figure 3 and supplementary material: table S4). 
Moreover, the abnormal BOLD activity in limbic regions 
(right temporal pole, amygdala and hippocampus) dur-
ing planning was significantly associated with the level of 
delusions in patients (figure 3 and supplementary mate-
rial: table S4).

Discussion

Defective gesture performance in schizophrenia substan-
tially hampers social interaction, predicting poor func-
tional outcome.11 Thus, investigating gesture behavior 
provides a window to social communicative impairments 
in schizophrenia.14 During social interaction gestures sub-
stitute or support verbal information. When encountering 
subjects with schizophrenia, both faulty or reduced nonver-
bal expression and biased nonverbal perception may con-
tribute to poor understanding. While gesture impairments 
are currently being explored in schizophrenia spectrum 
disorders, very little is known on the neural underpinnings 
of this deficit.14 Here we investigated neural correlates of 
gestural deficits in schizophrenia patients and well-matched 
healthy controls using fMRI. Results indicate aberrant neu-
ral activity most prominent during planning of gestures, 
which may contribute to poor gesture performance.

In line with previous studies, participants activated the 
praxis network when planning and executing hand ges-
tures.26–28 However, neural activation was generally less 
prominent and more left-lateralized in patients, which 
may explain behavioral gestural deficits. Furthermore, 
patients demonstrated aberrant activation of the bilateral 

Fig. 2. Neural activity during gesture planning in schizophrenia patients and healthy controls. Between group effects of planning novel 
(A and B) and familiar (C and D) gestures. The bars indicate T-values. The images are depicted at standard MNI-templates (threshold of 
P < .001, minimum voxel size 180).
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amygdala, hippocampus and temporal pole during ges-
ture planning. Involvement of limbic areas such as amyg-
dala in gesture performance has not been reported before, 
neither in studies in healthy subjects26,28 nor in lesion 
studies.29,30 Strikingly, limbic activation was associated 
with delusion severity in patients.

Altered Activation of the Action Network and Mirror 
System in Patients

Several factors may contribute to poor gesture processing 
in schizophrenia, eg, impaired action planning, working 
memory deficits, and motor abnormalities.14 Therefore, 
one would expect aberrant brain activity in patients 

Table 2. Neural Activity During Planning and Execution of Novel and Familiar Gestures in Schizophrenia Patients and Healthy 
Controls

A Planning Novel Gestures

Controls > Patients

Cluster Peak MNI Coordinates

Brain Region P(FWE-corr) k P(FWE-corr) T(90) x y z

L IPL extending to SPL, L/R SMA, L IFG and STG <.001 15 297 <.001 8.3 −38 −36 48
R IFG extending to STG <.001 1522 <.001 6.6 58 16 −4
Left MTG and ITG/STG <.001 1079 .001 6.3 −58 −52 2
R/left occipital gyrus/lingual gyrus/V1 <.001 3732 .03 5.5 20 −94 −10
L/R thalamus and L/R caudate head .002 317 .04 5.4 10 2 8
R MFG (DLPFC) and IFG <.001 738 .10 5.2 38 42 28

Patients > controls

Cluster Peak MNI coordinates

Brain region P(FWE-corr) k P(FWE-corr) T(90) x y z

L IPL < .001 1705 < .001 6.9 −58 −58 46
L mid cingulum/precuneus < .001 1014 < .001 6.8 −4 −56 26
L temporal pole < .001 1059 .001 6.3 −38 16 −34
R hippocampus, temporal pole < .001 1383 .04 5.4 46 −4 −34
L hippocampus/amygdala .001 349 .69 4.4 −30 −34 −18
L superior frontal gyrus (DMPCF) extending to the ACC < .001 439 .77 4.4 −8 64 10

B Planning familiar gestures

Controls > patients

Cluster Peak MNI coordinates

Brain region P(FWE-corr) k P(FWE-corr) T(90) x y z

L/R SMA <.001 19 257 <.001 7.7 36 −18 66
L STG extending to MTG and IFG .004 290 .008 5.8 −58 16 −4
L IOG and MOG <.001 2762 .02 5.6 −42 −86 −16
R MFG (DLPFC) <.001 1186 .25 4.8 32 42 42
R IFG and OFG <.001 804 .28 4.8 10 34 −18
Left IPL .02 227 .4 4.7 −60 −26 32
R ITG and MTG <.001 525 .67 4.4 58 −66 −14
Patients > controls
L temporal pole extending to hippocampus and amygdala <.001 1487 .04 5.4 −46 10 −28
R temporal pole extending to hippocampus and amygdala <.001 919 .06 5.3 46 0 −30

C Execution familiar gestures

L/R SMA, pre-SMA and mid cingulum < .001 510 .50 4.578 −12 4 46
R/L cingulate motor areas .006 269 .92 4.170 6 22 40

Note: (A) Between group effects of planning of novel and familiar gestures; (B) Between group effects of execution of familiar gestures. 
MOG, middle occipital gyrus; IOG, inferior occipital gyrus; IPL, inferior parietal lobe; SPL, superior parietal lobe; MTG, middle 
temporal gyrus; ITG, inferior temporal gyrus; STG, superior temporal gyrus; IFG, inferior frontal gyrus; SMA, supplementary motor 
area; PMv, ventral premotor area; OFG, orbitofrontal gyrus; MFG, middle frontal gyrus; DLPFC, dorsolateral prefrontal cortex; 
DMPFC, dorsomedial prefrontal cortex; ACC, anterior cingulate cortex; M1, primary motor cortex.
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particularly in the IPL and frontal lobe including premo-
tor cortex and areas of cognitive control. Here, patients 
demonstrated a relative hyperactivation of the IPL and 
the DMPFC as well as a relative hypoactivation of the 
DLPFC when planning novel gestures. In fact, this pat-
tern contributed to the actual gesture accuracy: in patients 
performance was associated with left IPL activation, but 
in controls performance relied on right DLPFC activa-
tion. Thus, patients seem to engage the parietal compo-
nents of the action network instead of the DLPFC. The 
frontal lobe is relevant for higher order motor control 
including action planning and execution.48 In line with 
this, impaired gesturing in schizophrenia was linked to 
impaired frontal lobe function.3,4 The DMPFC has been 
suggested to elaborate the meaning of communicative and 
social ambiguous stimuli.49,50 Thus, the DMPFC hyperac-
tivity in patients planning novel gestures may indicate the 
unsuccessful search for meaning in meaningless gestures.

Our results substantiate earlier findings demonstrating 
aberrant mirror neuron activation within the IPL during 
both action observation and action execution in schizo-
phrenia.21 The IPL contains so-called mirror-neurons.51 
Gesture performance and gesture perception are tightly 
coupled in schizophrenia.4 In order to perform a gesture 
correctly, we need to integrate action planning and the 
semantic meaning. The mirror neuron system provides 
topographical overlap of motor and semantic representa-
tions.52 Therefore, our results suggest that defective mirror 
system contributes to gestural deficits in schizophrenia.

Furthermore, our results complement reports investi-
gating gesture perception in schizophrenia. In particular, 
gesture perception and planning of gesture performance 
engage overlapping brain areas (ie, the inferior fron-
tal gyrus).13,16,34 However, gesture execution demon-
strated hypoactivation within the cingulate motor areas 
in patients, which is in contrast to previous reports on 
gesture perception. Finally, previous work suggested 
hand gesture performance to be linked to general sever-
ity of positive or negative symptoms with some incon-
sistency.4–6,11–13 However, we detected no such association 
in our study. In conclusion, the combined investiga-
tion of neural correlates during gesture perception and 

performance would be the next endeavor. Furthermore, 
we need to test whether aberrant neural activity in schizo-
phrenia during gesture processing would indicate subjects 
with particularly poor social outcome.

Aberrant Limbic Activation in Patients

Our main results extend previous findings by showing 
that patients activate amygdala and temporal pole not 
only in response to affective stimulation53–55 but also dur-
ing gesture planning. We may speculate that the patho-
logical activation of key emotion processing areas may 
distract gesture performance. Likewise, amygdala activity 
may drive emotional interference on cognitive process-
ing.56 Furthermore, the limbic cluster of activity includ-
ing amygdala was associated with delusion severity. 
Limbic brain areas are critical for incentive salience and 
the evolution of delusions in schizophrenia.18,57–60 Thus, 
our findings suggest incentive salience even during plan-
ning of socially relevant action. Indeed, perception and 
interpretation of gestures may be biased by delusions 
of reference or hallucinatory experience, particularly in 
socially ambiguous situations.17,61

The aberrant activation of limbic brain areas in 
patients was exclusively correlated with delusion severity 
but unrelated to gesture performance.

Limitations

In addition to patient status, other factors may have 
influenced brain activation in the current fMRI study 
including differences in task performance and medication 
effects. In order to account for performance differences, 
we excluded trials with major errors in both groups. 
Major errors comprised movements without temporal or 
spatial association with the requested gesture. Medication 
effects on the fMRI signal are equivocal, eg, antipsychot-
ics may normalize limbic neural activity or have no effect 
at all.62,63 In addition, medication may affect gesture per-
formance. However, in our study gesture performance 
was not associated with dosage of antipsychotic medica-
tion (data not shown).

Fig. 3. Association between gesture performance, delusion severity and neural activity in differentially activated brain areas. Spearman’s 
rank correlation analysis of the neural activity in (A) the left IPL, (B) the right middle frontal gyrus and (C) association of neural activity 
in the right amygdala, hippocampus and temporal pole and severity of delusions within patients. MFG—middle frontal gyrus (DLPFC), 
IPL—inferior parietal lobe.
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The group of schizophrenia patients presented with 
typical neurocognitive impairments which may affect ges-
ture performance.4,64 However, introducing frontal lobe 
function as a covariate to our imaging analyses, yielded 
substantially the same results. Our task was designed to 
investigate action planning and the execution of hand ges-
tures, but does not allow contrasting the 2 conditions, as 
the execution phase directly followed the planning phase 
without jittering interval. Therefore, we do not directly 
compare brain activation during planning and execution. 
In fact, hemodynamic response functions in the bilateral 
SMA as shown in the supplementary material indicate 
that both conditions may elicit a neural response at sin-
gle-subject level regardless of the absent jittering interval 
between the 2 experimental conditions (supplementary 
material: Analysis S4, figure S3).

Finally, our paradigm included a linguistic control task. 
While this control was useful to correct for unspecific 
semantic associations, it may at the same time hamper the 
detection of relevant neural signal in brain areas of the lan-
guage network. In fact, some brain areas are active during 
both language and gesture processing, eg, the IFG.10,34,65 
Despite the linguistic control task, we detected brain activ-
ity during gesture planning in the IFG in both groups.

Conclusion

In summary we demonstrated an aberrant pattern of 
brain activation during social action planning in schiz-
ophrenia, ie, gesture planning and execution. Patients’ 
gesture performance relied on IPL instead of DLPFC 
activity, which is in line with the association of poor ges-
ture performance and frontal lobe dysfunction. Finally, 
we observed aberrant limbic activity in patients during 
gesture planning, which was linked to delusion severity. 
Thus, the pathophysiology of gesture performance in 
schizophrenia involves reduced DLPFC impact and lim-
bic interference. These functional alterations may contrib-
ute to poor gesture performance, poor social interaction 
and poor functional outcome in schizophrenia.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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