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Abstract Metastases rather than primary cancers deter-

mine nowadays the survival of patients. One of the most

common primary malignancies is colorectal cancer and this

type of tumor is characterized by a high tendency to spread

metastases to the lung and liver. CD26/DPP4 is a trans-

membrane molecule with enzymatic functions which

cleaves biologically active peptides. Recently, CD26/DPP4

has become the focus of cancer research and it was shown

that CD26/DPP4-positive cancer cells display increased

metastatic activity. Here, we tested if the CD26/DPP4-in-

hibitor Vildagliptin suppresses the development and

growth of mouse colorectal lung metastases. This inhibitor

of CD26/DPP4 was employed on mouse (C57BL/6) col-

orectal lung metastases, established by intravenous injec-

tion of the syngeneic cell line MC38. For mechanistic

analysis, a subcutaneous tumor model was used. The

treatment with Vildagliptin significantly suppressed both,

the incidence and growth of lung metastases. Autophagy

markers (LC3, p62, and ATF4) decreased, apoptosis

increased (TUNEL, pH3/Ki-76), and the cell cycle regu-

lator pCDC2 was inhibited. In conclusion, we here showed

an anti-tumor effect of Vildagliptin via downregulation of

autophagy resulting in increased apoptosis and modulation

of the cell cycle. We therefore propose Vildagliptin for the

evaluation as a new therapeutic approach for the treatment

of colorectal cancer lung metastases.
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Introduction

The lung is one of the major sites of metastasis from col-

orectal cancer [1]. Colorectal cancer has a high tendency to

spread metastases with the second highest mortality in

Europe [2]. While primary cancers are under improved

control by multimodal therapy, the development of

metastases is considered the most important factor for the

patient’s survival. If untreated, patients suffering from

colorectal lung metastases have a median of 10 months

survival [3].

CD26/DPP4 is a multifunctional transmembrane glyco-

protein constitutively expressed on many cell types and

within body fluids in a soluble form [4]. CD26/DPP4

comprises an exopeptidase enzymatic activity and cleaves

off N-terminal dipeptides preferentially after Ala or Pro

[5]. Furthermore, CD26/DPP4 can associate with fibroblast

activation protein (FAP) and binds to extracellular matrix

collagen and fibronectin [6]. During the last decade,

diverse scientific disciplines have focused on CD26/DPP4,

describing its involvement in the fields of immunology,
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diabetology, cardiology and cancer [7]. The unique

enzyme-substrate specifications of CD26/DPP4 render

several key peptides susceptible to catalytic cleavage

which modulates their biological effects. The development

of potent CD26/DPP4-inhibitors has led to the identifica-

tion of CD26/DPP4 as a target for the successful treatment

of diabetes. Currently, various commercially available

CD26/DPP4-inhibitors including Vildagliptin (which we

employed in this study) are routinely used in clinical

practice. Remarkably, only mild side effects from the

treatment with these CD26/DPP4-inhibitors have been

observed up to the present [8].

A role of CD26/DPP4 in tumor biology has been sug-

gested according to its functional and enzymatic properties

in T cell lymphoma, mesothelioma, melanoma, renal car-

cinoma, colorectal cancer, and lung cancer [9–15].

Recently, a CD26/DPP4 antibody was employed as a

therapeutic measure in mesothelioma and T-cell lymphoma

showing down-regulation of RPB1 followed by inhibitory

DNA binding of CD26/DPP4 [16–18]. In a rat study, the

effect of CD26/DPP4-inhibition on colon carcinogenesis

was shown by a long term treatment with the CD26/DPP4-

inhibitor Sitagliptin [19]. These data emphasizes the

involvement of CD26/DPP4 in cancer biology.

By using an established orthotopic/simultaneous iv.-in-

jection model of syngeneic tumor development [20–22],

we report here (i) an in vitro mechanism of tumor growth

inhibition related to cell cycle, (ii) the prevention of

metastasis and inhibition of metastases growth from col-

orectal cancer by Vildagliptin in a syngeneic cell

line-induced lung tumor model, and (iii) the regulation of

tumor autophagy by Vildagliptin treatment, resulting in

apoptosis and less cell proliferation. As Vildagliptin is in

safe and effective clinical use for diabetic disease, this

therapeutic approach could be a novel concept in the

treatment of lung metatastic disease.

Materials and methods

Animal care

Male wild type (C57BL/6 Charles River, Germany) mice

were used for all experiments (n[ 5). Breeders of CD26/

DPP4-/- mouse (based on C57BL/6 strain) were obtained

from the European Mouse Mutant Archive (Orleans,

France) and maintained in the Biological Central Labor,

University Hospital Zurich. Animals were fed a standard

laboratory diet with water and food ad libitum and were

kept under constant environmental conditions. All experi-

mental procedures were approved by the Swiss animal

welfare authorities and performed in accordance with the

institutional animal care guidelines.

Lung metastasis mouse model

Green fluorescence protein (GFP) labelled syngeneic

mouse colorectal cancer cells (MC38: 100 9 103 cells/g

mouse) were prepared in serum free DMEM (100 ll) and
injected into the inferior vena cava after middle line

laparotomy under isoflurane anesthesia. After checking

relevant vital signs (e.g. respiration rate, organ color) and

integrity of vasculature at injection site, the abdominal wall

was closed by a running suture. Vildagliptin was admin-

istered via two different routes in order to test the effect as

a preventive treatment against lung metastases of colorectal

cancer (pre-treatment) or a treatment for the developed

lung metastases of colorectal cancer (post-treatment). Prior

to injection of tumor cells (MC38, 100 9 103 cells/g

mouse), subcutaneous pre-treatment of Vildagliptin was

performed for 3 days (100 mg/kg) to test the incidence of

metastasis (Suppl. 1a). Post-treatment was performed by

adding Vildagliptin into drinking water (*40 mg/kg/day)

10 days after tumor cell injection in order to inhibit the

growth of established tumors (Suppl. 1b). Three weeks

after tumor cell injection, total lungs were weighed and

homogenized for quantification of GFP labeled tumor cells.

Animals were sacrificed by exsanguination followed by

flushing with saline and en bloc resection of thoracic

organs including bilateral lungs, heart, and thymus. The

whole lung was frozen for the quantification of tumor load,

and heparinized plasma was collected for the measurement

of CD26/DPP4 activity.

Tumor cell lines

NCI-60 cell lines (A549, H460, and Ekvx) were obtained

from Charles River (Boston, USA) under material transfer

agreement with the National Cancer Institute (Bethesda,

USA). HT29, LLC and CT26 cell lines were purchased

from American Type Culture Collection (Manassas, USA).

Authenticated cell lines by both providers were stored at

early passages (\3) in liquid nitrogen and were used in the

experiments for no more than 6 months. MC38 and GRX

cell lines were kind gifts of Dr. Lubor Borsig and Dr.

Radovan Borojevic, respectively. Both cell lines were

stored in liquid nitrogen and were used in the experiment

no more than 6 months. All cell lines were cultivated in

DMEM containing 10 % FBS and penicillin/streptomycin

within a 5 % CO2 chamber.

Subcutaneous tumor model

We employed the model of subcutaneous (sc.) tumor

development by injection of the cell line sc. in order to

prove the effects and mechanisms of this study how the

growth of metastases is inhibited (post-treatment
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iv. model). Cell lines (MC38) (1 9 106 cells/mouse) were

injected under the skin of mice (back) in serum free

DMEM. Vildagliptin was given in drinking water

(0.2 mg/ml) for 2 weeks. Following exsanguination, the

tumor was isolated from skin and weighed.

DPP4 assay

CD26/DPP4 enzymatic activity was analyzed in mouse

plasma using glycyl-prolyl-4-methoxy-b-naphthylamide

(Gly-Pro-4-Me-b-NA) as a fluorogenic substrate as

described previously [23]. Briefly, in a 96-well plate, 10-ll
samples were mixed with 0.5 mM Gly-Pro-4-Me-b-NA in

50 mM Tris buffer, pH 8.3, in a final volume of 110 ll.
CD26/DPP4 activity was determined kinetically for 10 min

at 37 �C by measuring the velocities of 4-Me-b-NA release

(kex = 340 nm, kem = 430 nm) from the substrate (all

reagents are from Sigma-Aldrich, Germany).

In vitro experiments

Both mouse and human cell lines were maintained in

DMEM containing 10 % FBS, penicillin/streptomycin. The

cell lines were seeded into 24-well plates to reach 70 %

confluence. Two days after cell seeding, media were

exchanged with serum-free one. Twelve hours later, cells

were exposed according to the experimental conditions.

The treatment was performed after dilution of stock solu-

tions including Vildagliptin, Cisplatin, Gefitinib, 3

methyladenine (3MA) (Sigma-Aldrich), SP600125 (Tocris)

by serum free media (DMEM). Daily metabolic activity

was assessed by the methylthiazolyldiphenyl-tetrazolium

bromide (MTT, Sigma-Aldrich) assay. For western blotting

assays, cell lines were prepared in 10 cm dishes. These

experiments were triplicated.

Protein expression analysis

Samples were homogenized in lysis buffer containing a

protease inhibitor cocktail (Roche Diagnostics GmbH,

Mannheim, Germany), phosphatase inhibitor cocktail 3,

50 mM Tris, 150 mM NaCl, 5 mM EDTA, and 0.5 % NP-

40 (Sigma-Aldrich). The protein concentration was deter-

mined using the Bradford protein assay (BioRad, Hercules,

USA). Reducing SDS-PAGE was performed and samples

were blotted onto a PVDF-membrane. p62 (MBL), CDC2,

pCDC2, PTEN, Cleaved caspase3, LC3, ATF4, AKT,

pAKT (Cell signaling), E-cadherin, N-cadherin, Vimentin

(Abcam) and ID1 [24] antibodies were tested. Loading

control was a rabbit anti-GAPDH (Abcam) and anti-beta

actin (Sigma-Aldrich). Secondary antibody binding and

detection was performed according to standard protocols

with the ECL detection reagent (BioRad).

Histology

Formalin fixed and paraffin embedded samples were

stained by antibodies against Ki67, p-Histon3, and GFP.

TUNEL stain was used for detection of apoptotic cells

within the tumor.

Statistical analysis

Data were presented as mean ± SD. Groups were com-

pared with the Student t-test for unpaired samples using

Prism 4.0 (GraphPad Software, San Diego, CA, USA). A

two-sided p value\ 0.05 was considered to be statistically

significant.

MTT

0 24 48 72
0

25

50

75

100

125

150

656 μM
1.31 mM
2.62 mM
5.24 mM
10.5 mM

hours

%
 O

D
 (5

70
nm

) o
f v

eh
ic

le 164 μM
328 μM

Daily treatment

Vildagliptin (mM)

%
 O

D
 (5

70
nm

) o
f v

eh
ic

le

0.082 0.164 0.328 0.656 1.31
0

20

40

60

80

100

A

B

Fig. 1 In vitro cytotoxicity test of Vildagliptin. Various doses

(164 lM—10.5 mM) of Vildagliptin were administered to the

MC38 cell line grown in 24 well plates to test the metabolic activity

of tumor cells. The metabolic activity was shown by MTT assay

measured at 24, 48, 72 h (A), and 7 days (B). Vildagliptin was given

one time after 12 h of serum free medium to test the cytotoxicity

during 3 days (A). The treatment of Vildagliptin showed a pro-

nounced cytotoxicity in a dose-dependent manner, also confirmed in

other cell lines (Suppl. 2). Similar to the single treatment with high

doses, continued daily treatment with non-cytotoxic doses

(0.082–1.31 mM) (in vivo-situation) of Vildagliptin reduced the me-

tabolic activity of the tumor cell line MC38 in vitro (B)
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Results

Cytotoxicity test of Vildagliptin in tumor cell lines

To test the effect of Vildagliptin directly on tumor cells

first in vitro, we tested different doses (from\ 164 lM to

10.5 mM) (Fig. 1A) on various cell lines with existing

resistance to conventional chemotherapeutics (cisplatin and

gefitinib) (Suppl. 2a). The IC50 for MC38 cell line (mouse

colorectal cancer) after 3 days was 5.24 mM (Fig. 1A).

Regardless of critical mutations of KRAS, EGFR, and

BRAF in those cell lines (Suppl. Table 1), Vildagliptin

treatment showed a cytotoxicity in a dose-dependent

manner. To mimic the in vivo situation, we tested daily

Vildagliptin treatment for 7 days by giving non-cytotoxic

doses similar to the dose used in the in vivo experiments

(40 mg/kg/day). Interestingly, these non-cytotoxic doses of

Vildagliptin (doses below 2.62 mM, see Fig. 1A)

decreased the metabolic activity of MC38 cell line in vitro

(Fig. 1B). This effect could be confirmed in various mouse

and human cell lines (Suppl. 2). Taken together, we found

a cytotoxic effect of Vildagliptin in tumor cell lines as well

as after repeated treatment of non-cytotoxic doses of Vil-

dagliptin, mimicking the in vivo situation. However, of

note, there is still the possibility that under these high

concentrations of Vildagliptin, also cytoplasmatic enzymes

are prone to inhibition by Vildagliptin.

Vildagliptin suppresses the incidence of colorectal

lung metastases in mice

Next, we aimed to prevent the development of lung

metastases of colorectal cancer cells in mice by the pre-

treatment with Vildagliptin. Vildagliptin (100 mg/kg) or

saline (vehicle) was administered for 3 days by subcuta-

neous injection into mice before the injection of the syn-

geneic cell line (MC38). The cell line (100 9 103 cells/g

mouse) was intravenously injected into the inferior vena

cava of C57BL/6 and CD26-/- mice and harvested 1 day or

three weeks after injection in order to test the metastatic

activity of colorectal cancer cells. The cell line injection

was performed 3 h after the last administration of Vilda-

gliptin to obtain an optimal effect of the treatment towards

the injected cells (Fig. 2A). One day after injection,
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Fig. 2 Prevention of lung

metastases by Vildagliptin pre-

treatment in the MC38 cell line.

Prior to injection of tumor cells

(MC38, 100 9 103 cells/g

mouse), subcutaneous pre-

treatment of Vildagliptin was

performed for 3 days

(100 mg/kg) in order to test the

incidence of metastasis. The

CD26/DPP4 activity was

measured serially 1, 3, and 5 h

after Vildagliptin treatment

(100 mg/kg) (A) (n = 4). The

immunohistochemistry of GFP

showed tumor cell foci one day

after injection (arrow) (B),
counted histologically (9200)

through all lobes of lungs from

control, pre-treatment of

Vildagliptin, and CD26-/- mice

(n = 3) (C). EMT markers were

significantly modulated by the

pre-treatment of Vildagliptin

in vitro (D) (Suppl. 3a–c)
(*p\ 0.05; **p\ 0.01;

***p\ 0.001)
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metastatic tumor cells were counted under the microscope

(9200) throughout all lobes of the lung (Fig. 2B, C). Here,

pretreatment of Vildagliptin significantly decreased

metastases. However, compared to controls, CD26-/- mice

showed a similar number of metastases. Of note, the

in vitro treatment of low doses of Vildagliptin to the MC38

cell line significantly decreased markers of EMT (Fig. 2D,

Suppl. 3a–c).

In order to quantify the tumor that had grown within the

lung for three weeks, we homogenized the total lung and

measured the fluorescence (Excitation 485 nm and Emis-

sion 508 nm) (Fig. 3A). Tumor size estimated by fluores-

cence was significantly reduced by Vildagliptin pre-

treatment which correlated with the macroscopic observa-

tion (Fig. 3C) and the wet weight of total lung (Suppl. 3).

Collectively, we found that pre-treatment of tumors with

Vildagliptin prevents the incidence of colorectal cancer

metastases in the lungs.

Vildagliptin suppresses the growth of lung

metastases in mice

In order to test the effect of Vildagliptin against an

established tumor in the lung, we induced lung tumor -

growth by intravenous injection of syngeneic cell line

(MC38) as the metastasis model and started post-treat-

ment of Vildagliptin (*40 mg/kg/day in drinking water)

10 days after cell line injection. Three weeks after cell

line injection, we harvested the tumor developed in the

lungs. Measured GFP and total lung weight were signif-

icantly reduced by post-treatment with Vildagliptin

(Fig. 3B, C). This inhibitory effect of Vildagliptin was

confirmed by testing it in the subcutaneous tumor model

(Fig. 4A): TUNEL positive cells were significantly

increased in Vildagliptin-treated tumors compared to

controls (Fig. 4B–D). In line with the growth of metas-

tases, the size of the subcutaneously developed tumor
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Fig. 3 Vildagliptin treatment reduced lung metastases growth. Post-

treatment was performed by administering Vildagliptin into drinking

water (*40 mg/kg/day) 10 days after tumor cell injection in order to

inhibit the established tumor. We performed pre-treatment of

Vildagliptin (100 mg/kg) by subcutaneous injections for 3 days. Three

weeks after tumor cell injection, the total lung was weighed and

homogenized for quantification ofGFP labeled tumor cells presented by

fluorescence unit per body weight (FU/BW). Both, pre- and post-

treatment of Vildagliptin significantly decreased the size of tumor in

mice (A,B)without change of bodyweightwithin these 3 weeks (Suppl.

4). Gross anatomy of metastases developed byMC38 cell line injection

is shown (C, arrows indicate tumor) 3 weeks after injection of the

MC38 cell line (100 9 103 cells/g mouse) into the inferior vena cava

(n = 5); L lung, H heart, T tumor. (**p = 0.0042, *p = 0.041)
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grown in CD26-/- mice was not changed (Fig. 4E).

However, the additional treatment of Vildagliptin on

CD26-/-KO mice increased the TUNEL positivity in these

tumors, indicating that CD26-bearing cancer cells were

indeed targeted in contrast to CD26-/- mice which do have

to a much lesser degree CD26 activity (Fig. 4F).
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Fig. 4 Reduction of tumor size in the subcutaneously implanted

MC38 tumor cell line by Vildagliptin treatment. MC38 cells (1 9 106

cells/mouse) were injected underneath the skin of syngeneic mice.

Vildagliptin was administered in drinking water (*40 mg/kg/day).

Two weeks after tumor cell injection, the subcutaneously developed

tumor was excised to measure the wet weight. Macroscopic picture of

tumors separated from mice and weight of tumors (A). Compared to

control (B), Vildagliptin increased apoptotic cells (C and D) shown
by TUNEL stain (n = 4). Tumor in CD26-/- mice showed no

difference from control (E), however, the treatment of Vildagliptin on

tumors developed in CD26-/- mice showed significantly more TUNEL

positive cells (F) (n = 5 for each group) (*p = 0.0113, **p = 0.007)
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Vildagliptin exerts its effect via decreased autophagy

Autophagy is recognized for its importance in maintaining

tumor metabolism, resistance to chemotherapeutics, and

survival under stress condition [25, 26]. Therefore, we

analyzed markers that are related to autophagy in mouse

tumor samples which developed upon MC38 cell line

injection. The autophagy markers LC3, p62, and ATF4

were consistently decreased by Vildagliptin treatment

within lung metastases and also in subcutaneously grown

tumors. (Figure 5A, B; Supple. 3D–I). To test the effect of

autophagy inhibition directly on the metabolic activity of

cell lines in vitro, we challenged the cell lines by autop-

hagy inhibitors in serum free condition for 3 days. Both

autophagy inhibitors (3MA and SP600125) significantly

decreased the metabolic activity of MC38 cell line

(Fig. 5C). In parallel with the regulation of autophagy by

Vildagliptin treatment, the levels of inhibitor of differen-

tiation 1 (ID1) and its downstream target, metabolism

determinant, AKT were downregulated by Vildagliptin

treatment (Suppl. 5).

Vildagliptin downregulates cell cycle mediators

in vitro and in vivo

In order to elucidate mechanisms through which the effect

of Vildagliptin was exerted, we tested Vildagliptin on cell

cycle mediators in non-cytotoxic concentrations. Vilda-

gliptin (82 and 164 lM respectively) was incubated with

the MC38 cell line. This treatment modulated the cell

cycle-determining factor pCDC2 (Fig. 6A). Consistent

with these in vitro results, phosphorylation of CDC2 was

observed in subcutaneously induced tumors by Vildagliptin

treatment (Fig. 6B). As a consequence of cell cycle
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Fig. 6 Inhibition of the cell cycle by Vildagliptin treatment in vitro

and in vivo. To show an effect of Vildagliptin on tumor cell growth,

we added Vildagliptin to the MC38 cell line. After 8 h of Vildagliptin

treatment, tumor cells were harvested for western blotting analysis of

the G2/M phase driver pCDC2, CDC2, and GAPDH. By Vildagliptin

treatment, CDC2 was inhibited by phosphorylation at the Tyr15 site

(A). Consistent with the in vitro data, pCDC2 level was significantly

elevated in subcutaneous tumor samples (B). Moreover, the ratio of

pH3/Ki-67 as a mitosis marker was significantly decreased in

Vildagliptin-treated tumor samples in vivo (C) (*p\ 0.05,

**p\ 0.01, ***p\ 0.001)
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interruption by Vildagliptin treatment, there was a signifi-

cant modulation of the mitotic activity as reflected by a

decreased pH3/Ki-67 ratio (Fig. 6C). Conclusively, cell

cycle progression and proliferation in both, in vitro and

in vivo, seems to be negatively regulated by Vildagliptin

treatment.

Discussion

In this pre-clinical study, we found that a clinically

established CD26/DPP4-inhibitor, namely Vildagliptin, has

an anti-tumor effect against colorectal lung metastases in

mice. Vildagliptin exerted its effects via a reduction of

autophagy with the consequence of a decreased prolifera-

tion of cells and an increase of tumor apoptosis.

CD26/DPP4 have been described before to be involved

in lung metastatic disease either in CD26/DPP4-deficient

animal models or by using neutralizing CD26/DPP4 anti-

bodies: when blocking CD26/DPP4 on lung endothelial

cells, the interaction between lung-metastatic rat breast

cancer cells and fibronectin was shown to be inhibited thus

reducing at least in part the adhesion to endothelium and

thereby the metastatic spread of cancer cells [27]. Alter-

natively, the development of lung metastases from breast

adenocarcinoma cells have been described to be reduced,

also via decreased adhesion of cancer cells in CD26/DPP4-

deficient F344 rats [28]. Pang et al. identified a subpopu-

lation of CD26-positive cells uniformly presenting in both

primary and metastatic tumors in colorectal cancer patients

suffering from liver metastases, showing that CD26-posi-

tive cancer cells were associated with enhanced invasive-

ness and chemoresistance [13]. Authors showed in CD26-

positive cells that mediators of epithelial to mesenchymal

transition (EMT) contribute to the invasive phenotype and

metastatic capacity. These results show that if CD26/DPP4

is expressed on cells, this molecule can be targeted for

metastatic disease therapy. In line with the findings of Pang

et al., we could also observe a reduction of EMT markers,

suggesting that the EMT status of MC38 cells were at least

in part affected by Vildagliptin, consecutively diminishing

the growth of metastases. However, in order to strengthen

this hypothesis, the effect of Vildagliptin on the growth of

metastases needs to be evaluated by more mechanistic

studies unraveling the extra- or intra-cellular modulation

of the metastatic machinery targeted.

With regard to the growth of existing metastases, we

found that autophagy played a key role. Autophagy is an

active cellular response to intra- or extra-cellular stress

including stress to the endoplasmic reticulum, deprivation

of nutrient, and reactive oxygen species. Autophagy in

oncology includes multiple modes depending on the cancer

type and its environment. On the one hand, the inhibition of

autophagy has been shown to promote tumor development

which has been tested in various malignancies such as lung

cancer, hepatocellular cancer, and lymphoma [29, 30]. On

the other hand, autophagy can prevent the development of

tumor. Indeed, our data suggest that the CD26/DPP4-in-

hibitor Vildagliptin induces autophagy. In consequence,

there was an increased apoptosis of tumor cells as reflected

by increased TUNEL staining.

Another key mechanism during tumor development, at

the same time as another consequence of autophagy is the

reduced proliferation of tumor cells. In this context,

phosphorylation (p) of CDC2 represents the state of arrest

of cell cycle before the start of mitosis. [31] Together with

increased pCDC2 levels, we found a decreased ratio of

pH3/Ki67, both supporting the hypothesis that the inhibi-

tion of autophagy results in cell cycle arrest.

Even though Vildagliptin is commercially employed as

a CD26/DPP4-inhibitor for the safe treatment of type II

diabetes, it is also known to inhibit DPP8 and 9, and FAP.

[32, 33] A recent study showed a synergistic effect of

Vildagliptin on the anti-leukemic action of parthenolide

that was completely mediated through its inhibition of

DPP8/9 and not of CD26/DPP4 [34]. Although it is well

possible that the effects of Vildagliptin shown in this study

are not only mediated through CD26/DPP4, we could not

detect any DPP8/9 activity in the metastases samples

(Supple. 6).

With regard to the employment of Vildagliptin in rou-

tine clinical use for diabetic disease since years without

showing relevant side effects (50–100 mg/person/day) and

in the light of the data presented in this study, Vildagliptin

seems to be a promising drug to also employ in metastatic

disease. Yet, the concentrations given to mice here

(40 mg/kg/day) were 100 times higher than applied in dia-

betic patients. However, when considering the activity of

CD26/DPP4 and for an effective inhibition of CD26/DPP4

activity, exactly 100 times more Vildagliptin is necessary to

inhibit the same activity in humans and mice. [35].

In conclusion, Vildagliptin decreased the growth of lung

metastases by downregulating autophagy, increasing

apoptosis, and arresting the cell cycle. On the base of these

data, we suggest Vildagliptin for further clinical evaluation

for the treatment of lung metastatic disease.
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