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The p-ordinary Hasse invariant of
unitary Shimura varieties

By Wushi Goldring at Ziirich/St. Louis and Marc-Hubert Nicole at Marseille

Abstract. We construct a generalization of the Hasse invariant for any Shimura variety
of PEL-type A over a prime of good reduction, whose non-vanishing locus is the open and
dense p-ordinary locus.

1. Introduction

Let p be a prime number and let sh be a special fiber modulo p of a Shimura variety of
PEL-type at a neat level which is hyperspecial at p. The classical Hasse invariant H is, roughly
speaking, an automorphic form mod p of weight p — 1. The classical Hasse invariant satisfies
the following four properties:

(Hal) The non-vanishing locus of H is the ordinary locus of sh, namely the locus of points
where the underlying abelian variety is ordinary.

(Ha2) The construction of H is compatible with varying the prime-to-p level.
(Ha3) A power of H extends to the minimal compactification of sh.
(Ha4) A power of H lifts to characteristic zero.

The Hasse invariant is the main tool to construct congruences modulo powers of p, both
in the realms of automorphic forms and of Galois representations. However, when p is a prime
of the reflex field £ of the Shimura variety for which the p-adic completion Ey, is strictly larger
than Q,, the ordinary locus is empty and the Hasse invariant is identically zero.

To fix this, we construct a generalized Hasse invariant satisfying properties (Ha2)—(Ha4)
and a “u-ordinary” analogue of (Hal) for any Shimura variety Sh(G, X) of PEL-type such
that G is a group of unitary similitudes. The non-vanishing locus of our generalized Hasse
invariant is the p-ordinary locus, which, as Moonen has shown [13, Theorems 1.3.7, 3.2.7],
is simultaneously the largest stratum of the Newton and of the Ekedahl-Oort stratifications.
As an application, we use our new Hasse invariant to generalize the main result of [4], which
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concerns attaching Galois representations to automorphic representations whose archimedean
component is a holomorphic limit of discrete series.

The main idea in this paper is to use the action of Frobenius F on the crystalline coho-
mology of abelian varieties. The use of this cohomology theory allows us to divide by p, i.e., to
make sense of the operator “/\' F/ p/” for well-chosen positive integers i and ;, see below. In
the main body of the paper, we pursue the Newton point of view and apply the Newton—-Hodge
decomposition of Katz, a convenient tool in this context. In the first appendix, we illustrate how
we can retrieve most of our results purely from the Ekedahl-Oort point of view. In the second
appendix, we show how we can avoid the use of crystalline cohomology when the totally real
field F is equal to Q or, equivalently, that G(R) is isomorphic to the unitary group GU(a, b)
for some a,b € N~yg.

We note that this article is the result of merging our two arXiv postings [5] and [6]. We
also remark that, a little over one year after we posted [6] on arXiv, Koskivirta and Wedhorn
posted a preprint in which they construct generalized Hasse invariants for Shimura varieties of
Hodge type, see [9].

1.1. Main results. Throughout this paper, fix an isomorphism ¢ : 61, - C.

Suppose U = (B, V,* <,>,h) is a Kottwitz datum with associated Shimura variety
Sh(G, X) such that the center of the simple Q-algebra B is a totally imaginary quadratic field
extension F of a totally real field F T ([4, Section 3.1]). Let d be the degree of F * over Q.
Suppose p is a prime of good reduction for U (see [4, Section 3.3]) and K P) G(AJ’,’) is
a neat, open compact subgroup.

Let £ = E(G,X) be the reflex field of Sh(G, X). Let Sh := Shy(» be the Kottwitz
integral model of Sh(G, X) at level X (?) over Z(p) ® Of. Let p be a prime of E above p.
Denote by sh := shg ) , the special fiber of Shy(» at p. Let w be the Hodge line bundle
of sh as defined in Section 2.

Theorem 1.1. There exists an explicit positive integer m € Z=1 and a section
(1.1) “H e HO(sh, ™)

satisfying the following four properties:

(u-Hal) The non-vanishing locus of *H is the [t-ordinary locus of sh, as defined in [15,16].
(u-Ha2) The construction of "H is compatible with varying the level J 25

(u-Ha3) The section *H extends to the minimal compactification.

(u-Had) A power of *H lifts to characteristic zero.

We call “H the p-ordinary Hasse invariant.

Remark 1.2. The exponent m in Theorem 1.1 is explicitly defined in Definition 3.5, in
terms of the action of Frobenius on the embeddings of F. In case p remains prime in F, the
formula one finds there simplifies to m = p2d - 1.

By ampleness of the Hodge line bundle @ on the minimal compactification (cf. [10, Theo-
rem 7.2.4.1, no. 2]), we deduce the following corollary.
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,u—ord

Corollary 1.3. The u-ordinary locus sh™" in the minimal compactification sh™"

is affine.

1.2. Application to Galois representations. We also obtain an application to the con-
struction of automorphic Galois representations which generalizes [4, Theorem 1.2.1]. To state
the result we need some notation.

Suppose 7 is a cuspidal automorphic representation of G(A) with v-adic component 7,
for every place v. Given a prime p, let PP be the set of primes v different from p such that
Ty is unramified and G is unramified at v. Let TP) be the set of primes of F that are split
over F1 and lie over some v € PP,

Assume w € EB(I’). One has a decomposition G(Qy) = GL(n, Fy) X Gy, e, for some
group Gy, rest, Where n is given by n? = dimg Endg V. Write 7y 2 1y ® Ty, rest, With 1Ty,
a representation of GL(n, Fyy) and 7y rest @ representation of Gy rest-

Theorem 1.4. Suppose w is a cuspidal automorphic representation of G(A) whose
archimedean component mwo is an X-holomorphic limit of discrete series representation
of G(R) (see [4, Section 2.3]). Assume p is a prime of good reduction for U. Then there
exists a unique semisimple Galois representation

(1.2) Rp, () : Gal(F /F) — GL(n,Q,)
satisfying the following two conditions:

(Gall) Ifv e PP and w is a prime of F dividing v, then Ry, (1) is unramified at w. In par-
ticular, Ry () is unramified at all but finitely many places.

(Gal2) Ifw € ‘-‘B(p ), then there is an isomorphism of Weil-Deligne representations

1—n
(1.3) (Rpu (70) | Wy, )™ 2 Mrec(my ® |- |u? ).

where WE,, is the Weil group of Iy, the superscript ss denotes semi-simplification and
rec is the local Langlands correspondence, normalized as in [7].

Remark 1.5. The argument given in [4, Section 6] carries over almost verbatim (see
Section 5 for a minor correction) and shows that our main result Theorem 1.1 implies our
application Theorem 1.4.

2. Preliminaries on F -crystals and the Hodge filtration

Let E C E’ C C, where E’ is a finite extension of E such that B is split over E’ and
for every embedding 7 : F < C, one has t(F) C E’. Denote by p a prime of E over p,
and by p’ a prime of E’ over p. Pick « to be the smallest finite field containing the residue
fields O g /p’, for all p’ over p. Via ¢ : Gp = C, there is a bijection 7 — 1~ ! o 7 between the
set of complex embeddings 7 : F < C and the set of p-adic embeddings t"' o7 : F — Gp
and we denote either type of embedding simply by t. After fixing an embedding W (k) — C,
there is further a bijection with the set of embeddings of O into W(k), and also with the
set of homomorphisms to «, noted Hom(O r, x). The absolute Frobenius, noted o, acts via
composition on Hom(OF, k).
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Let 7 be the set of complex embeddings of F. Let r be the rank of B over F. From
here onwards, fix the prime p in Og. Let S be a smooth Spec(Of /p)-schemeand 7 : A — S
a UP) -enriched abelian scheme [4, Section 3.4]. Let

top
o= N\" s

be the Hodge bundle, i.e., the determinant of the pushforward of the sheaf of relative differ-
entials on A. After extending scalars to «, the Hodge bundle decomposes according to the
embeddings T € 7 and the standard idempotents in M, (x):

w = ®a)§’r.
el

The Dieudonné crystal H. .(A) also decomposes accordingly:

crys(A) @ crys (A)GBr

teT

crys

Similarly for de Rham cohomology, one has

Hig(4) = P Hip(4)2".
el
Put J
crys(A)fz /\ crys(A)fz H(ﬁ{(A)ri = /\ Hle(A)ri-

Let Fil® denote the Hodge filtration on the de Rham cohomology. Put
Fill = Fil' Hfz(4) N Hz(A)-.

Then (rank Fili,rank Fil%) is the signature corresponding to the conjugate pair of embed-
dings (7, 7).

Given 7 € T, define o; to be the orbit of T under the action of the absolute Frobenius o.
Let e; denote the cardinality of the orbit o,. Write 0 = {r1,..., 7, } in such a way that
rank Fll1 - > rank F111 . The rank of H le(A), is independent of t; we call it n. Define
the multlphcatlon type f : ot {0,1,...,n} associated to o, by f(z;) = rank Fil;,. To the
pair (n, ) depending on o, Moonen [13, 1.2.5] associates a polygon ord,, (1, f) that we call
the p-ordinary polygon associated to o.. Recall that the slopes a;, 1 < j < n, of ord,, (1, T)
are defined by

2.1 aj = card({t' € o7 | (') > n—j}).

Now suppose S = Spec k, where k is an algebraically closed field, so that A represents
a geometric point of sh. Put M = Crys(A) (resp. M, = Hclrys(A)r). Define the Hodge (resp.

Newton) polygon of M to be the Hodge (resp. Newton) polygon of (M, F¢7). Note that in
general the Newton polygon of M; does not depend on t but the Hodge polygon does.

Lemma 2.1. Let J = [ [ o be the orbit decomposition of T according to the action
of Frobenius. Let M = Cryg (A). Then the Newton polygon of (M, F) is the Newton polygon
NP(sh*~°Y) of the p-ordinary locus (i.e., A is p-ordinary) if and only if for all T € T the
Newton polygon of My is the p-ordinary polygon ord,_ (n, T).

Proof. See[16,2.2.1]. D
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Lemma 2.2. Suppose the Newton polygon of M is the ji-ordinary polygon ord,_ (n, ).
Then the Hodge polygon of M. also coincides with ord,_(n, f).

In particular, under the assumption of being p-ordinary, the Hodge polygon of M,
depends only on the orbit o;.

Proof. This follows from the proof of [13, 1.3.7]. O

Suppose A is p-ordinary. Combining Lemmas 2.1 and 2.2, both the Newton polygon
and the Hodge polygon of M. are equal to ord,, (1, T). By the Hodge—Newton decomposition
[8, 1.6.1], one can write

(24
(2.2) M, = MY,
Jj=0

where Mr[j Vis an isoclinic subcrystal of slope ;.

Theorem 2.3. One has

(2.3) Fill, = M.

J=i

Proof. By the explicit description of ordy, (1, f), we see that the two sides of (2.3) have
the same dimension. Hence it suffices to show the inclusion

(2.4) Fil!, > @@ M.
j>i

To this effect, our main tool will be Mazur’s theorem which we recall now.

Theorem 2.4 (Mazur). Let A be an abelian variety over an algebraically closed field k
of characteristic p. Denote by O the reduction modulo p of 0. Then for all j,m € Zsy,
one has

(2.5) Fil/ HT(A) = F~1(p/ H™ (A)),

crys

where F is the canonical lifting of Frobenius on crystalline cohomology.

Proof. Let A be an abelian variety over an algebraically closed field of characteristic 0.
Since the Hodge—de Rham spectral sequence of A degenerates at £ and since the crystalline
cohomology of A torsion-free, the theorem is a special case of [1, 8.26]. m|

Theorem 2.3 will now be proved as follows: Lemma 2.5—-Corollary 2.9 are of a prepara-
tory nature. The crux of the proof of Theorem 2.3 is contained in Lemmas 2.10 and 2.11.

Lemma 2.5. Suppose, fori € {1,2}, that (M;,¥;) is a W(k)-module which is an ordi-
nary Fi-crystal, i.e., the Hodge and Newton polygons of (M;,F;) coincide. Let
¢ 1 (M1,F1) > (M2, F>)

be an isogeny, so in particular the Newton polygon of (M1, ¥1) is the same as that of (M», F»).
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Let0 < Ay < --- < Ag be the slopes of (M;, F;) with multiplicities my, ..., ms. Let
N
(2.6) M; =P M,
=1

be the Newton—Hodge decomposition [8, 1.6.1] applied to (M;,¥;) so that (M; ;,F;) is an
isoclinic subcrystal of rank m; and slope A;. Then ¢(M1,;) C M ;

Proof. Since ¢ is an isogeny and M ; is an Fy-subcrystal of M, the image ¢ (M1, ;) is
an F>-subcrystal of M5. Since the Newton polygon is invariant under isogeny, (¢(M7,;),F2) is
isoclinic of slope A; with multiplicity m ;. Let M’ denote the F, subcrystal of M, generated by
(M, ;) and M ;. Then M’ is isoclinic of slope A, so the rank of M is m;. Since M/ M5 ;
is free, we conclude that M’ = M, _;. Therefore (M, ;) C M3 ;. m

Remark 2.6. Lemma 2.5 also follows more generally from the fact that homomorphisms
of F-crystals respect the slope decomposition, see 2, Property e), p. 81].

Lemma 2.7. Let M = H} (A), where A is an abelian variety. Suppose k € Z,

crys

x € M and F(x) € p*M. Then x € p*~'M.

Proof. Since F(x) € p¥ M, Mazur’s theorem entails that X € Fil*M. But k > 2, so
Fil* M = {0}. Hence ¥ =0, so x € pM. If k =2, we are done. So assume k > 2 and
write x = py, for some y € M. Then F(x) = F(py) = pF(y) and F(x) € p* M implies
F(y) € p*~'M . By induction on k, one has y € pK=2M, whence x € p*~' M. o

Cprollary 28. Let M = HclryS(A). Suppose j.k € L>>, x € M and F/(x) € pkM.
Then F/=1(x) € pk—1M.

Proof. Write F/ (x) = F(F/~1(x)) and apply Lemma 2.7. m]

Corollary 2.9. Let M = Hclrys(A). Supposek € Z>1, x € M and F¥(x) € pX M. Then
X e Fil'M.

Proof.  Applying Corollary 2.8 repeatedly k — 1 times gives F(x) € pM. Then the con-
clusion follows from Mazur’s theorem. O

Lemma 2.10. The following inclusion holds:
2.7) Fill > Ml

Proof. Since M,[ie’] is isoclinic of slope e, we have
Fer (Mr[[er]) C per Mt[[er] .

Suppose x € Mr[ft]. Then
Fé7 (x) € p°r Mt[l_ef],

so the conclusion follows from Corollary 2.9. O
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Lemma 2.11. Letv € {0,1,...,e; — 1}. Then for alli < ey — v, one has
(2.8) Fill, > Ml

Proof. The proof is by induction on v. The case v = 0 is Lemma 2.10. Suppose (2.8)
holds up to v — 1. Then we have

File, , = @ ML,
jzer—p
forall g <v—1.
Consider the diagram

F F F F
My, —> Mg —> - —> Myer1y, —> My,

Lett; > t, > --->1t, such that for all @, 1 <« < v, one has o’*1; = Tj, and jo > e; —v.
Letx € M7~ ". Then Fé* (x) € p® " My,. By Corollary 2.9, we can subtract e; —  — 1 from
the exponents on both sides, thus obtaining

Firl(x) e p" 1 "My

Writing

F
F(ptl—v (x)) € pMth+1,l_,

we see by Mazur’s theorem that

15}

h (%) € Fil,y, . = Filg, .

Since j; > e; — v, by the induction hypothesis and equality of dimensions, we have
a1 [/]
Fil;, = €D My,
J=]
On the other hand, by assumption, x € M,[f’ =1 Since F" /p'' ™V is an isogeny, Lemma 2.5

implies that
131

er—v
(x) € Mtj1 .

t1—v
pl

Hence
F

t1—v
pl

&) e MgV n @ M) = (o).
J=j

Therefore F'1 (x) € p’l_"‘HMrjl.

Repeating the same argument with 7, we obtain F2(x) € ptz_""'zM,jz. Continuing

in this way we finally arrive at Fv(x) € p™ M-, and one last application of Corollary 2.9

yields X € Fil .. o

Lemma 2.11 completes the proof of Theorem 2.3. o



144 Goldring and Nicole, The p-ordinary Hasse invariant of unitary Shimura varieties

3. The generalized Hasse invariants

Based on the results and notation of the previous section, we are in position to define the
desired generalized Hasse invariants.
Let A — sh be a representative of the universal isogeny class. The absolute Frobenius
morphism
F:A— A

induces a o-linear map

(3.1 F:HL (A) > HL (A).

crys crys

As we have seen in Section 2, this map permutes non-trivially the factors indexed by
the embeddings t. This permutation can be decomposed into cycles according to the orbits o;.
Consider such an orbit 0 = {71,..., 7¢, }. Let Gr% = Hle(A),[ /Fil%l_. Setd; = dim Gr(r)l_ and
¢ = (i = 1)d; — (di + -+ di).

Lemma 3.1. The map
d; . .
(3.2) N\ F s HE (A)g, —> HE (A)-,

is divisible by p©i.

Proof. Since the p-ordinary locus sh*°™ is open and dense [16, Theorem 1.6.2], it
suffices to prove the divisibility for every p-ordinary geometric point A. (We thank David
Geraghty for pointing out to us that this follows from [3], specifically remarks in [3, Sec-
tions 1.1-1.2 and Section 2.3.4], using the fact that our Shimura variety sh is smooth over
a field.) By Lemma 2.2 we know that the Hodge polygon of M, is ordy, (n,{). Since the
smallest slope of the Hodge polygon of /\di M, is the sum of the d; smallest slopes of
the Hodge polygon of M., , the smallest slope of the Hodge polygon of /\di M-, is

i—1
(3.3) > i —dj) =i,
j=1
so the lemma follows from [8, 1.2.1]. D

Lemma 3.2. The restriction of the map

/\di Fer

Ci

(3.4)  HE (A)r, — HE (A,

to Fil! H(ﬁ{ (A)<; is zero.

Proof. Again, because the p-ordinary locus is open and dense [16, Theorem 1.6.2], it
suffices to prove the vanishing for every p-ordinary geometric point A. Let

Wy, = P MUl
j<i
By Theorem 2.3, we have a decomposition

M, =Fil;, & Wy,
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Thus
di K di—s
1 pydi . i —
Fill U (), = (N Fil, @ \™ Wa).
s=1

Therefore Lemma 3.2 is equivalent to showing that the restriction of (/\di Fé7)/pci) to
S =1l di—s 77 : S =1l di—s 77—
/\"Fil, ® A\ Wy, is zero for all s > 1. So fix s and let x € A" Fil;, ® /\ Wr,.

Let
w=N(@u)e N (D)
Jj=>i J<i

By Theorem 2.3, there exists a lift X of x to Hg§s(A)ti which lies in M’. The smallest
slope Amin of the crystal (M, (/\d[ F¢7)) is, by definition, the sum of the s smallest slopes
of Eszl- Mr[ij] plus the sum of the d; — s smallest slopes of EBj<i Mr[ij]. Since s > 1, Apmin 18
strictly bigger than the sum of the d; smallest slopes of M, and the latter is precisely ¢; by
definition. Thus, by [8, 1.2.1],

d; - .
(/\ Fer)(x) € pxmmMri
and therefore (/\df Fér /p©i)(X) € pMy,. o

By Lemma 3.2, we get an induced map

d.
/\ i Fer d,‘ dl‘
Tk GO H i (A)r, — GrOHE (A)y; .
Since Gr’ H (ﬁ{ (A)r; = g, we obtain a section
T 0 peT—1
H € H (sh, 0, ).

Definition 3.3. The section “H is called the 7;-Hasse invariant of sh.

As in [4, Theorem 4.2.1], the t;-Hasse invariant is compatible with isogenies in the sense
that if ¢ : 4 — B is an isogeny preserving the U P -structure, then ¢* (%H(B)) = “H(A).
Therefore the t;-Hasse invariant is well-defined.

Remark 3.4. Compatibility with [5]: If F* = Q, then "'H is equal to the p-Hasse
invariant of [5] (see Appendix B).

We are now in a position to define the p-ordinary Hasse invariant in complete generality
for unitary Shimura varieties.

Definition 3.5. Let m = lemyeq{p® — 1}, and let m; = m/(p®* — 1). We define the
w-ordinary Hasse invariant “H as the product

(3.5) "H = [[(H)"* € H(sh.o™).

el
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4. The non-vanishing loci of the Hasse invariants

We will describe the non-vanishing locus of the 7-Hasse invariant one embedding 7 at
a time. In the end, the non-vanishing locus of the p-ordinary Hasse invariant will easily be read
off as the p-ordinary locus.

Theorem 4.1.  Let A be a geometric point of the special fiber shgp) ,,. Then
YH(A) #0

if and only if the Newton polygon of My, meets ordy. (n,T) at (di,c;) in the notation of
Section 3.

Proof. By Rapoport—Richartz’s version of Mazur’s inequality (see [13, Lemma 1.3.4]),
the Newton polygon of My, sits on or above the ordinary polygon ord,., (n, ). Let (d;, g;) be
the unique point on the Newton polygon of M;; whose first coordinate is d;. Since the point
(d;, ci) lies on the polygon ordy,, (n,7), the point (d;, g;) is on or above (d;, ¢;), meaning
that g; > ¢;. The rational number g; is the sum of the first d; slopes of the Newton poly-
gon of M, , hence g; is the smallest slope of the Newton polygon of /\di M, . Therefore the

smallest Newton slope of
d.
d[ i Fe,
(N )
is gi — c;. By [8, 1.3.3] the action of A% F¢7/p¢ on A% M., is nilpotent if and only if this
smallest slope is positive, i.e., if and only if g; > ¢;.
Since GrOH(ﬁ{ (A); is a line, /\di F¢r /p€i acts on it by a scalar, namely “H(A). By

Lemma 3.2, the action of A% F* /p¢ on A% Mo, is nilpotent if and only if “"H(A) = 0. ©

Corollary 4.2.  Let A be a geometric point of the special fiber shg ) ,,. Then
KH(A) #0
if and only if A is p-ordinary.

Proof. By definition, *H(A) # 0 if and only if “H(A) # 0 for all t € 7. By Theo-
rem 4.1, for every orbit o, we have that “H (A) # 0 for all T’ € o, if and only if the Newton
polygon of M; meets ord,, (n,{) at every breakpoint of ord,, (1, ), so “H (A) # 0 for all
7’ € o, if and only if the Newton polygon of M; equals ord,, (1, f). An application of Lem-
ma 2.1 completes the proof. m]

Proof of Theorem 1.1. Corollary 4.2 establishes (u-Hal). Properties (u-Ha2)—(u-Ha4)

are proved in exactly the same way as in [4, Lemma 4.4.1, Theorem 6.2.1] m)
5. Correction to [4]

Thanks to Jay Pottharst for pointing out the need to make the following minor modifica-

tions in [4, Section 6.2]: In the second and third sentences of the proof of [4, Theorem 6.2.1],
the phrase “is non-zero” (resp. “is also non-zero”) should be replaced with the phrase “is
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a non-zero divisor” (resp. “is also a non-zero divisor”). Moreover, in the third sentence, the
word “separable” should be replaced with the word “finite”. Finally, in the fifth sentence, the
phrase “Since the product of two sections that are each non-zero modulo A” should be replaced
with the phrase “Since the product of a section which is non-zero modulo A with section which
is a non-zero divisor modulo A”. It should have also been pointed out in loc. cit. that the integral
models defined there using normalization have the same number of connected components as
the Kottwitz integral model, because this is so for the generic fibers.

Acknowledgement. We thank G. Faltings for suggesting the idea of using crystalline
cohomology to the second author. We are grateful to P. Deligne for his correspondence with
the first author showing how to implement this idea in a concrete example.

A. The point of view of Ekedahl-Oort

We keep the notation introduced in the main text. In particular, recall that o, denotes the
orbit of embeddings of  under Frobenius and e; denotes the cardinality of this orbit.

We begin by recalling Moonen’s definition of ‘“standard ordinary objects” [13, 1.2.3].
Given an orbit o, and its type (1, T), we have a Dieudonné module M ez (1, ) defined as fol-
lows: As W(k)-module, let M°™ez (1, ) be the free module generated by the basis consisting
of symbols €, ; such that 7; € o, and 1 < j < n. On this basis, Frobenius acts by

(A.1) Fleg j) = {Gﬂw‘ if f(z) <n—j,

Péoy.j iff(m)>n—j,

and Verschiebung is given by

pey,j iff(n) =n—j,
(A2) Vieog,j) =1 " ,

€, iff(y) >n—J.
Put

M (n,§) = span({eg;,; | 1 < j <n}).
Note that the module Mfl.rdori (n, ) is stable under F*7i .
The key role played by the modules M °or (n, ) and M;’irdow (n,T) stems from the

following result of Moonen:

Theorem A.1 (Moonen [13, Theorem 1.3.7]). Let A be a geometric point of the special
fiber sh. Then A is w-ordinary if and only if the Dieudonné module of A is isomorphic to

(A.3) P mor(n. H®.

orbits 07

Henceforth assume A is a p-ordinary geometric point of the special fiber shg ) .
We identify the Dieudonné module (A.3) with Hclrys (A) in such a way that the Frobenii F and F
correspond to one another. Then the submodule M,"l,rd"rf (n, {) corresponds to HCIrys (A)z;.

In the basis

c’@d,- = {E‘Ei,j | 1<y Sl’l},

the matrix of F¢% acting on M;’l,rd"ri (n, 1) is the diagonal matrix diag(p®!,..., p%"), where
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the a; are the slopes of ordo, (1, f), whose definition was recalled in (2.1). Therefore the
matrix of /\ i Flow | in the basis

Bi;, = {eq A Negjg, | 1= J1 <+ < jg; =n}

is the diagonal matrix with entry
aj, +~~~+ajdi

corresponding to the basis vector
Erixil ARRRRAN efi,jdi :

Since ¢; is the sum of the d; smallest slopes of Mfird% (n, 1), we see that /\d[ F¢7i is divisible
by p€i, thus reproving Lemma 3.1.
Applying Mazur’s theorem (Theorem 2.4) to (A.1), we see that

Fil;, = span({er,,; | f(zi) > n — j}).

Hence

(A4) Fil' HY (A)r, = span(Bg, — leg 1 A A €g.a,})

It follows from the descrlptlon of the matrix of /\d’ Fl°w| in the basis By, that p© 1 divides
/\ P Fui (span(Byg, — {€r;,1 A+ A €g g, })). Combining this with (A.4) reproves Lemma 3.2.
We also get that /\d’ Féti / pcl is non-zero on GrOHdlé (A); , from which we recover the “if”
part of Corollary 4.2.

B. An elementary construction for the case F+ = Q

Suppose that F* = Q, and therefore G(R) = GU(a, b) for some positive integers a, b.
Assume henceforth, without loss of generality, that a < . The assumption of Section 1.1 that p
is a prime of good reduction for U implies that p is unramified in E. If a = b, then £ = Q,
so p is necessarily split in £ and the classical ordinary locus is open dense. Hence we assume
from now on thata < b and that p is inert in E. It follows that the Hodge bundle €2 decomposes
over E as

(B.1) Q=% g%,

where Q, (resp. 2p) has rank a (resp. b) and r is the rank of B over F. Let w, (resp. wp) be
the determinant of 2, (resp. 2p).

Let A be an abelian scheme representing the universal isogeny class above sh. The
Verschiebung Ver : #4(?) — A induces a map

(B.2) Ver* : Q — Q)
Since p is inert, the restrictions of Ver* to £, (resp. Q2 5 (») ) have the form
(B.3) Verf 1 Q24— Q) and  Verly, : 2 — QP
Therefore, if (Ver*)? denotes the composite of Ver* with itself, then we have

(B.4) (Ver*)%, 1 Q4 — Q.
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Let
2
(B.5) Fh(A) : wg — of
2 2
be the top exterior power of that map, where we have used that a)L(lp ) = wl” since w, is a line

bundle. The map “4(+4) induces a global section
(B.6) HH(A) € HO(sh, w?”71).

If 8B is another representative of the universal isogeny class above sh and ¢ : A — B is
an isogeny compatible with the endomorphism actions of 4, B, then as in [4, Section 4.2], the
compatibility of Verschiebung with isogenies ([4, Lemma 4.2.3]) implies that

¢*("H(B)) = "H (A).
Hence we may omit reference to the representatives + or 8 and we have a section
“H e HO(sh, wé’z_l).
Remark B.1. Note that applying the above construction is entirely done modulo p.

Applying it to wp gives nothing but the zero section. With hindsight, this shows the necessity
to lift our setup to characteristic zero to divide by higher powers of p.

Lemma B.2. The Newton polygon N°9 of the underlying isogeny class of abelian
schemes of a -ordinary geometric point of sh has the following slopes:

0 2ar
1/2 with multiplicity 2(b—a)r
1 2ar.

Proof. The case r = 1 follows from [16, 2.3.2]. The case of general r follows subse-
quently from [13, 1.3.1 and 3.2.9]. |

Proposition B.3. The u-ordinary locus is the maximal p-rank stratum of sh.

Proof. The key point is that, by [15, Proposition 2.4 (iv) and Theorem 4.2], the Newton
polygon N °¢ described in Lemma B.2 is the lowest among the Newton polygons of the
underlying isogeny classes of abelian schemes corresponding to geometric points of sh. Let
A be an abelian scheme with Newton polygon N (A). Then N (A) is symmetric and the p-rank
of A is the multiplicity of O (= the multiplicity of 1) as a slope of N (A). But if the multiplicity
of 0in N (A) is at least the multiplicity of 0 in N ° and N (A) lies on or above N ™9, then by
Lemma B.2 we must have N (4) = N9, m]

Corollary B.4. The maximal p-rank stratum of sh has p-rank 2ar.
Proof.  This follows directly from Lemma B.2 and the proof of Proposition B.3. ]
Lemma B.5. Suppose A is an abelian scheme which is a representative of the under-

lying isogeny class of a geometric point of sh. Then *H(A) # 0 if and only if the p-rank of A
is equal to 2ar.
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Proof.  One has
HY(A,04) = H°(A,Q))

and under this isomorphism the action of Frobenius on H (A4, ©4) corresponds to that of
Verschiebung on H%(A4, Q}l). Hence [14, Section 15] implies that the p-rank of A equals
the semisimple rank of (Ver*)/ : @ — Q’) forall j € N. Since dim A = (a + b)r, keeping
in mind (B.1) and using [14, last corollary in Section 14], (Ver*)/ is semisimple for j > a + b.
Therefore the p-rank of A equals the rank of (Ver*)/ for j > a + b. We take the (a + b)th
power of the section “H (A), see (B.5). It is clear that “H (A) # 0 if and only if *“H(A)" # 0
for any n € N~, in particular forn = a + b.
Since a < b, both Ver|*9a and Ver‘*Qh have rank at most a. So also

*\J *yJ
rank(Ver )|QJ<<p),a <a and rank(Ver )‘me,b <
By (B.1), (Ver*)/ has rank at most 2ar.
The p-rank of A equals 2ar if and only if the rank of (Ver*)/ is 2ar for j > a + b. In
turn, the rank of (Ver*)/ is 2ar if and only if both Ver};, and Ver;, have rank a. Since Q,

(p2(a+b)y T 1R 125 '
and Q are rank a vector bundles, the determinant of a map between them is nonzero
if and only if it has rank a. O

The main properties of the Hasse invariant follow by standard arguments. For the lifta-
bility to characteristic zero, we may cite [12, Proposition 7.14] (or [11] in the compact case),

. 2 . .
to argue that there exists k € N such that a)"f (P™=1) jtself extends to an ample line bundle on
the minimal compactification sh™".
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