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BACKGROUND: Obesity is caused by an imbalance between energy intake, i.e. eating and energy expenditure (EE). Severe obesity is
more prevalent in women than men worldwide, and obesity pathophysiology and the resultant obesity-related disease risks differ in
women and men. The underlying mechanisms are largely unknown. Pre-clinical and clinical research indicate that ovarian hormones may
play a major role.

OBJECTIVE AND RATIONALE: We systematically reviewed the clinical and pre-clinical literature on the effects of ovarian hormones
on the physiology of adipose tissue (AT) and the regulation of AT mass by energy intake and EE.

SEARCH METHODS: Articles in English indexed in PubMed through January 2016 were searched using keywords related to: (i) repro-
ductive hormones, (ii) weight regulation and (iii) central nervous system. We sought to identify emerging research foci with clinical transla-
tional potential rather than to provide a comprehensive review.

OUTCOMES: We find that estrogens play a leading role in the causes and consequences of female obesity. With respect to adiposity,
estrogens synergize with AT genes to increase gluteofemoral subcutaneous AT mass and decrease central AT mass in reproductive-age
women, which leads to protective cardiometabolic effects. Loss of estrogens after menopause, independent of aging, increases total AT
mass and decreases lean body mass, so that there is little net effect on body weight. Menopause also partially reverses women’s protective
AT distribution. These effects can be counteracted by estrogen treatment. With respect to eating, increasing estrogen levels progressively
decrease eating during the follicular and peri-ovulatory phases of the menstrual cycle. Progestin levels are associated with eating during the
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luteal phase, but there does not appear to be a causal relationship. Progestins may increase binge eating and eating stimulated by negative
emotional states during the luteal phase. Pre-clinical research indicates that one mechanism for the pre-ovulatory decrease in eating is a
central action of estrogens to increase the satiating potency of the gastrointestinal hormone cholecystokinin. Another mechanism involves
a decrease in the preference for sweet foods during the follicular phase. Genetic defects in brain α-melanocycte-stimulating hormone–
melanocortin receptor (melanocortin 4 receptor, MC4R) signaling lead to a syndrome of overeating and obesity that is particularly pro-
nounced in women and in female animals. The syndrome appears around puberty in mice with genetic deletions of MC4R, suggesting a
role of ovarian hormones. Emerging functional brain-imaging data indicates that fluctuations in ovarian hormones affect eating by influencing
striatal dopaminergic processing of flavor hedonics and lateral prefrontal cortex processing of cognitive inhibitory controls of eating. There
is a dearth of research on the neuroendocrine control of eating after menopause. There is also comparatively little research on the effects
of ovarian hormones on EE, although changes in ovarian hormone levels during the menstrual cycle do affect resting EE.

WIDER IMPLICATIONS: The markedly greater obesity burden in women makes understanding the diverse effects of ovarian hormones
on eating, EE and body adiposity urgent research challenges. A variety of research modalities can be used to investigate these effects in
women, and most of the mechanisms reviewed are accessible in animal models. Therefore, human and translational research on the roles
of ovarian hormones in women’s obesity and its causes should be intensified to gain further mechanistic insights that may ultimately be
translated into novel anti-obesity therapies and thereby improve women’s health.

Key words: obesity / ovarian hormones / women / adipose tissue / weight regulation / central nervous system / estrogens / proges-
tins / eating / energy expenditure

Introduction
That obesity is pandemic is well known. (Obesity is typically defined as
BMI [weight in kg/height in m2] ≥30.) In contrast, the importance of
gender as a variable in obesity is less well appreciated. In fact, world-
wide, about twice as many women as men suffer from severe obesity
(i.e. grades 2 and 3 obesity, BMI ≥35 and 40 kg/m2, respectively)
(Fig. 1). Although social factors, especially gender inequality, certainly
contribute to male–female differences in obesity prevalence (Kautzky-
Willer et al., 2016), the consistent worldwide disparity in prevalence of
severe obesity strongly suggests that biological factors, i.e. physiological
sex differences, also contribute. In support of this, pre-clinical and clin-
ical studies have revealed women-specific factors in the two physio-
logical determinants of obesity, the level of energy intake, which is to
say eating, and the level of energy expenditure (EE). Furthermore, this
work indicates that ovarian hormones, in particular estrogens, influence
both eating and EE in women. Finally, data also implicate ovarian hor-
mones in the metabolic function of adipose tissue (AT). In light of
these considerations, the goal of this review is to provide a critical
update on the roles of ovarian hormones on the principle components
of obesity, i.e. eating and EE, and on AT physiology.

Methods
Articles in English indexed in PubMed through January 2016 were searched
using the following keywords related to: (i) ‘reproductive hormones’:
estrogen, estradiol, estrone, estriol, estrogen receptors 1 and 2 (ESR1 and
ESR2 in humans, Esr1 and Esr2 in mice and rats; formerly known as ERα
and ERβ, respectively), progesterone, progesterone receptor, androgen
and androgen receptors, (ii) ‘weight regulation’: food intake, AT, adiposity,
adipocyte, hunger, flavor hedonics, satiation, satiety, EE, physical activity,
resting energy expenditure (REE), diet-induced EE, insulin, leptin, inflam-
mation, ghrelin, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1)
and peptide YY(3-36) and (iii) ‘central nervous system (CNS)’: neuropep-
tide Y (NPY), α-melanocycte-stimulating hormone (α-MSH), dopamine,
serotonin, melanocortin 3 or 4 receptor (MC3R, MC4R), agouti-related

protein (AgRP), nucleus of the solitary tract (NTS), striatum, putamen,
nucleus accumbens, caudate nucleus, frontal cortex and functional MRI
(fMRI). Searches were of the form: body weight OR obesity AND
(a ‘reproductive hormone’ set element) AND (a ‘weight regulation’ or
‘CNS’ set element), where capital letters indicate Boolean connectors.
We sought to identify emerging research foci with clinical translational
potential rather than to provide a comprehensive review.

Adipose tissue physiology

Measurement of body adiposity
Anthropomorphic adiposity measures, such as BMI, waist circumfer-
ence (WC) and waist–hip ratio (WHR) are simple and inexpensive,
but relatively imprecise measures of body adiposity. Errors are intro-
duced by sex, age, ethnicity and individual differences in body compos-
ition, such as muscle mass. For example, in one study, BMI
misclassified the adiposity of one-third of young adult female athletes
(Ode et al., 2007). Furthermore, BMI systematically over-estimates
the adiposity of shorter people and under-estimates the adiposity of
taller people. Although both BMI and WC are better predictors of
total-visceral AT (defined below) than WHR (Pouliot et al., 1994;
Kamel et al., 2000; Koren et al., 2013), in women, WC and WHR
predict cardiovascular disease better than BMI (Goh et al., 2014).
With respect to clinical practice, however, an expert panel (Klein
et al., 2007) concluded that additional anthropomorphic measures are
unlikely to affect clinical management if BMI and standard cardiometa-
bolic risk factors are considered (Kiernan and Winkleby, 2000).

Numerous other methods more accurately detect whole-body adi-
posity. Some, including air displacement plethysmography and hydro-
static weighing (Silver et al., 2010; Moon et al., 2011; Fields et al.,
2015), are limited in their ability to measure regional AT differences.
Dual-energy X-ray absorptiometry (DEXA) can detect regional fat
and bone-mineral density and with the aid of a special algorithm can
distinguish intra-abdominal and subcutaneous fat (Kaul et al., 2012),
but DEXA does not measure AT volume or distinguish water and
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other lean-tissue mass (Santen et al., 2010). MRI and computed tom-
ography (CT) are the best available methods to measure AT volume
and regional distribution in vivo. Whole-body imaging (i.e. axial images
every few cm) is most accurate. Single-level, cross-sectional images
are more common, but which abdominal level best estimates central
subcutaneous and total-visceral AT is controversial (Kuk et al., 2006;
Shen et al., 2012).

Histological or plasma assays may soon provide suitably accurate and
clinically practical measures of specific AT depots. For example, Lê
et al. (2011) found that the degree of macrophage infiltration in sub-
cutaneous AT biopsies predicted total-visceral AT volume, intrahepatic
lipid content and several plasma markers of cardiometabolic-disease
risk. Therefore, such methods may provide safe and cost effective ways
to measure AT compartments relevant for health in the future.

General aspects of AT
Energy is stored for long periods as intracellular droplets of triacylgly-
cerol within adipocytes, which are mostly organized in discrete AT
depots (Rosen and Spiegelman, 2014). Preadipocytes are pluripotent
cells that can differentiate into white or brown adipocytes, macro-
phages, or muscle and bone progenitors (Tchkonia et al., 2013). The
differentiation of adipocytes from preadipocytes is controlled by
insulin-like growth factor, glucocorticoids, and other growth factors
and hormones (Cristancho and Lazar, 2011; Tang and Lane, 2012).
Although the roles of gonadal hormones in this process remain
obscure, the important role of estrogens is indicated by the effect of
estrogenic endocrine disruptors, such as bisphenol, which disrupt
normal pre-adipocyte differentiation in vitro and by their association

with obesity (Vom Saal et al., 2012; Boucher et al., 2014; Ohlstein
et al., 2014).

The traditional view was that AT is a passive storage depot. AT
energy storage is indeed long term; the half-life of individual triacylgly-
cerol molecules in the subcutaneous AT of healthy humans is 1.6 years,
which is orders of magnitude more than that of any other energy
metabolite (Arner et al., 2011). Nevertheless, contemporary research
clearly indicates, first, that AT is a dynamic organ that contributes to
metabolic homeostasis in multiple ways, and, second, that in obesity,
AT becomes dysfunctional and contributes to whole-body pathophysi-
ology and health risk. These pathophysiological processes are mediated
both by free fatty acids (FFA) and other metabolites released by AT
and by signaling molecules secreted by adipocytes, called adipokines,
which have local (paracrine) and endocrine signaling functions (Lee
et al., 2013; Tchkonia et al., 2013). Additional signaling molecules are
secreted by AT endothelial cells and AT-resident immune cells.

A rough categorization of human AT includes five major depots
(Shen et al., 2003). (i) Subcutaneous AT can be found from the head
to foot in obese individuals. Subcutaneous AT includes superficial and
deep sections separated by a fascial plane (Scarpa’s fascia) in the low-
er trunk and gluteofemoral areas. As described below, the different
components of subcutaneous AT are separately regulated. (ii) Visceral
or intraperitoneal AT includes the omental (attached to the stomach),
mesenteric (attached to the small intestine) and epiploic (attached to
the large intestine) depots. These depots contain numerous lymph
nodes and are especially prone to infiltration by macrophages during
hypertrophy (Gabrielsson et al., 2003; Lee et al., 2013; Tchkonia
et al., 2013). In addition, mesenteric AT is exposed to absorbed lipids
as they drain through the lymphatics. Finally, the vasculature of visceral

Figure 1 Sex differences in prevalences of severe obesity (BMI ≥35 kg/m2) in representative population samples of adults aged ≥18 years in 200
countries worldwide. From NCD Risk Factor Collaboration, represented by Ezzati (2016), used with permission.
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AT drains into the hepatic-portal vein, exposing the liver to increased
levels of the FFA, adipokines and immune mediators that it releases.
(iii) Retroperitoneal and pelvic AT are separate depots, but are often
categorized together with visceral AT because they cannot be easily
distinguished with imaging; we refer to this sum as ‘total-visceral AT’.
(iv) Intra- and extra-pericardial AT are found around the heart and
great vessels. (v) Intramuscular AT lies between the muscle fascicles.
Subcutaneous and visceral AT have received the most research atten-
tion and are the focus of this review. Visceral fat is associated with
impaired health, while other AT compartments contribute to a lower
degree or may even have a protective effect (Després and Lemieux,
2006).

Vague (1947) first noted that, compared with men, women tend
to have relatively more gluteofemoral AT and relatively less centrally
located AT, i.e. abdominal subcutaneous and total-visceral AT. More
recent studies have confirmed this notion and indicate that these
effects are evident across a wide range of BMI (Gallagher et al.,
2005). Nevertheless, there is substantial individual variation in obesity
habitus. Indeed, some obese women have a male-typical, central AT
distribution (Karpe and Pinnick, 2015).

Female-typical adiposity
Puberty and young adulthood
The typical female pattern of regional AT distribution emerges during
puberty (Shen et al., 2009; Taylor et al., 2010). In healthy weight
females, the greater absolute AT mass becomes obvious only after
puberty (healthy weight is BMI 18.5–24.9 kg/m2). As a result, a norma-
tive young adult woman in the USA (height 1.6 m, BMI 22.5 kg/m2)
has ~18 kg body fat (~30% of body weight), of which only ~5% is
total-visceral AT (Gallagher et al., 1996; Shen et al., 2009; Camhi et al.,
2011), whereas a normative male (height 1.8 m) has ~12 kg body fat
(~15% body weight), of which ~11% is total-visceral AT.

Female-typical AT results from differences among the AT depots in
the balance of uptake and release of FFA (Santosa and Jensen, 2015).
FFA uptake and triacylglyceride synthesis are greater in women’s glu-
toefemoral than abdominal subcutaneous AT, and lipolysis rates are
lower, thus selectively increasing the relative size of the gluteofemoral
depot. These processes are controlled by complex interactions of
genes and ovarian hormones that are only beginning to be understood,
for example, through recent studies of differential AT gene expression
(Gesta et al., 2006; Fried et al., 2015; Friedl et al., 2015; Karpe and
Pinnick, 2015). One study (Karastergiou et al., 2013) found that of 284
genes that were differentially expressed in gluteofemoral compared
with abdominal subcutaneous AT in overweight (mean BMI, 27 kg/m2)
adults, 159 were differentially expressed only in women. Furthermore,
many of the genes were homeobox-family (HOX) genes, which are
involved in cell differentiation. Thus, a parsimonious hypothesis is that
increased levels of estrogens or other reproductive hormones during
puberty differentially activate HOX and other genes to determine
regional AT distribution and physiology.

Mouse models provide further evidence that abdominal and glu-
teofemoral subcutaneous adipocytes differentiate in a sex-dependent,
cell-autonomous fashion (Fried et al., 2015). For example, Esr1 was
necessary for establishing the identity of mouse white-adipocyte pro-
genitor cells (Lapid et al., 2014), and female transgenic mice lacking

Esr1 selectively in adipocytes became obese due to expansion of
gonadal AT, whereas additional knockout of Esr2 had no effect
(Davis et al., 2013). Although this result cannot be translated simply
to humans because humans do not have gonadal AT depots, the
similar gene-expression patterns of mouse gonadal AT and human
omental AT (Gesta et al., 2006) encourages the view that estrogen-
ESR1 signaling contributes similarly to the development of human vis-
ceral AT. Finally, when the testes-determining Sry gene was trans-
planted from the Y chromosome to an autosome in order to yield
XX or XY mice with either male or female gonads, XX mice had
twice as much AT as XY mice independent of gonadal status, indicat-
ing an important contribution of sex-linked genes to the sex differ-
ence in total body fat (Chen et al., 2012). Ongoing research is
translating these kinds of data into human AT physiology
(Karastergiou et al., 2013).

The search for genes mediating the high heritability of human obesity
and regional AT distribution has not yet been successful. The failure of
most studies to take into account the age of onset of obesity, in par-
ticular pubertal development, may contribute to this lack of success.
A recent large (n = 224 459) genome-wide association study identified
49 single-nucleotide DNA polymorphisms (SNP) related to WHR phe-
notypes, with 19 expressed more in women (Shungin et al., 2015).
Overall, most SNP were in or near genes expressed by adipocytes or
related to insulin resistance, suggesting that their analysis might lead to
a better understanding of regional fat distribution and related patho-
physiology. None was apparently related to ESR1, ESR2, androgen
receptor or synthesis of estrogens or androgens, which might be
expected to be especially important in the development of obesity dur-
ing puberty. Interestingly, however, SNPs associated with fat distribu-
tion had little overlap with those found in a similar analysis to be
associated with BMI, which were predominately expressed in the brain
(Locke et al., 2015). This suggests that different biological processes
underlie the accumulation and distribution of excess body fat (Lee and
Mattson, 2014; Fu et al., 2015). Moreover, epigenetic regulatory
mechanisms, which are not revealed in SNP analyses, are also involved
in the development of obesity (Dalgaard et al., 2016).

Other methods have revealed some genes apparently involved in
the estrogenic regulation of total adiposity. A study of SNP rs7757956
in intron 4 of ESR1 indicated that an activational effect of estrogen sig-
naling via ESR1 influences the development of obesity in pubertal girls
(Tobias et al., 2007). Girls, but not boys, on average 12 years old, who
were in Tanner stages 3–5 and bore a TT genotype at rs7757956 had
9% more body fat, as measured by DEXA, than TA- or AA-genotype
girls. They also had 18% more height-adjusted body fat than TT-
genotype girls in Tanner stages 1–2. As the TT genotype is common
(75%), this may be an important contributor to female obesity. The
influence of this SNP at later ages remains to be investigated.

Studies of hormonal contraception have failed to reveal significant
effects on body weight. Gallo et al. (2014) screened 734 English-language
reports of effects of combination oral hormonal contraceptives or com-
bination skin patches on body weight in healthy reproductive-age
women and found 49 that met their quality criteria (inclusion of at least
three cycles, inclusion of effect means and variabilities, etc.). These failed
to show any consistent effect of combination contraceptive use or its dis-
continuation on body weight, although the amount and quality of data
were not judged to be of the highest quality. For example, only four
studies included placebo-treated or no-intervention groups. A similar
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review of the effects of progestin-only contraceptives on body weight
identified only 15 studies, most of moderate to low quality (Lopez et al.,
2013). Of these, 12 failed to detect weight changes, but in three studies
there were weight gains of ~2 kg/y. Percent body AT was also increased
in two studies in which body composition was measured. Thus,
progestin-only contraception may slightly increase body weight and adi-
posity, but the available evidence does not establish this unambiguously.

Gonadotropin-releasing hormone (GnRH) agonists are often used
to treat early or precocious puberty. Studies of the effect of GnRH-
agonist treatment on weight gain are mixed, with some studies sug-
gesting a small increase (Aguiar et al., 2006; Wolters et al., 2012),
some showing a decrease (van der Sluis et al., 2002) and others indi-
cating no effect (Głab et al., 2009; Ko et al., 2011). Interestingly,
weight increase seems to occur only in girls who are healthy-weight
when initiating treatment, but not in girls who are already overweight
(Wolters et al., 2012). GnRH agonists are also used in the treatment
of endometriosis, but this is rarely done for more than 6 months in
adult women due to deleterious effects on bone metabolism.
Unfortunately, to the best of our knowledge, none of the studies
investigating the use of GnRH agonists in women with endometriosis
have described effects on body weight.

Menopause and hormone therapy
Aging per se increases adiposity, which complicates the estimation of
the effects of menopause. Age and menopause are best segregated
with multiple regression or similar statistical analyses, and therefore
we consider only such studies. Table I shows data from five such
cross-sectional studies, four in which DEXA was used to estimate
whole-body lean and fat masses (Ley et al., 1992; Svendsen et al.,
1995; Panotopoulos et al., 1996; Trémollieres et al., 1996) and one in
which whole-body MRI was used (Phillips et al., 2008). Strikingly,
these studies indicate that in both healthy-weight and mildly obese
women, menopause increases body fat by ~5% of body weight and
decreases fat-free body mass by a slightly smaller amount. These
opposing changes explain why menopause has no marked effect on

body weight or BMI in most studies. The obvious clinical implication
of these data is that women should be advised to lose several kilo-
grams of body fat during the menopausal transition in order to main-
tain cardiometabolic health.

Menopause appears to preferentially increase total-visceral AT,
although the magnitude of the effect is uncertain. In two studies
(Kanaley et al., 2001; Franklin et al., 2009) in which several axial MRI
scans were made between the head of the femur and the kidneys in
white US American women, both abdominal subcutaneous and total-
visceral AT increased after menopause, with a slightly greater relative
increase in total-visceral AT. In another MRI study (Phillips et al.,
2008), however, the relative increase in total-visceral AT was twice
that of total AT. Several studies using DEXA confirmed a correlation
between postmenopausal status and increased total-visceral AT
(Svendsen et al., 1995; Trémollieres et al., 1996; Gambacciani et al.,
1999; Lovejoy et al., 2008). Even in non-obese women, significant
increases in total-visceral fat (Abdulnour et al., 2012) and percent
body lipid (Ho et al., 2010) occurred during the menopausal transi-
tion. Moreover, in BMI-matched (~25 kg/m2) pre- and postmeno-
pausal women, percent visceral AT was significantly lower in the
premenopausal group, whereas no association of age and total-
visceral AT was detected (Kanaley et al., 2001).

We are not aware of imaging studies on the effects of surgical
menopause by ovariectomy on AT. Although results have to be inter-
preted with caution due to methodological limitations, such as lack of
control for the indications for surgery or for hysterectomy versus
ovariectomy, the available data support an association between surgi-
cal menopause and increased weight gain (Sowers et al., 1996;
Matthews et al., 2001; Tom et al., 2012), in line with the importance
of ovarian hormones for obesity.

In younger postmenopausal women (age 50–59 y), estrogenic hor-
mone therapy (HT) reduces fat mass, improves bone-mineral density,
appears to preserve fat-free mass (FFM), reduces the risk of type-2 dia-
betes mellitus, retards atherosclerosis and reduces all-cause mortality
(Santen et al., 2010; Manson et al., 2013; Manson and Kaunitz, 2016).

.................................... .................................... ................................

.............................................................................................................................................................................................

Table I Menopause-associated increases in adiposity, measured with DEXA or CT and dissociated from the effect of
aging with multiple-regression analysis.

Study Lean mass (kg) Fat mass (kg) % Fat

Menopausal status: Pre- Post- Pre- Post- Pre- Post-

Panotopoulos et al. (1996) 43 41* 30 31* ~41 ~44*

Ley et al. (1992) 38 ± 3 38 ± 3 19 ± 6 23 ± 5* 32 36*

Trémollieres et al. (1996) 36 ± 3 36 ± 3a 18 ± 5 18 ± 5a 32 32a

35 ± 3b* 20 ± 5b* 35b*

Phillips et al. (2008) 41 37 22 ± 1 32 ± 2* ~35 ~46

Svendsen et al. (1995) Δ = −4.0* Δ = 3.1* Δ = 5.4 ± 1.6*

Data are means ± SEM; lean mass does not include bone; ~ indicates estimated from data given. Subject characteristics (mean ± SD) were: Panotopoulos et al. (1996): French
women, 26 premenopausal, aged 43 ± 4 y, BMI 31 ± 3 kg/m2, and 73 postmenopausal, aged 54 ± 4 y, BMI 31 ± 4 kg/m2; data are sums of arms, trunk and legs, not whole body;
variabilities of sums not given; Ley et al. (1992): British women, 61 premenopausal, aged 32 ± 6 y, BMI 22 ± 2 kg/m2, and 70 postmenopausal, aged 53 ± 5 y, BMI 24 ± 2 kg/m2;
(Trémollieres et al., 1996): French women, 68 premenopausal, aged 49 ± 3 y, BMI 22 ± 2 kg/m2; (Phillips et al., 2008): US American women, 58 premenopausal, aged 39 ± 1 y,
BMI 24 ± 1 kg/m2, and 20 postmenopausal, aged 61 ± 2 y, BMI 28 ± 1 kg/m2, not all variability or statistics reported; (Svendsen et al., 1995): Swedish women collated by age dec-
ade; overall n = 407, age range 18–80 y, mean BMI per decade, ~22–25 kg/m2; data are estimated menopause effect (Δ). *Significant menopause effect. DEXA, dual-energy X-ray
absorptiometry; CT, computerized tomography.
aIn total, 100 younger postmenopausal, aged 54 ± 3 y, BMI 22 ± 2 kg/m2.
bIn total, 37 older postmenopausal, aged 64 ± 4 y, BMI 23 ± 2 kg/m2.
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At least in the case of atherosclerosis, benefits occur only if estrogenic
HT is begun within less than ~6 y of menopause (Hodis et al., 2016). In
addition, estradiol treatment, but not progestin or testosterone treat-
ment, was shown to lower plasma very low-density lipoptrotein-trigly-
ceride concentrations by ~30% in healthy postmenopausal women by
increasing their plasma clearance (Smith et al., 2014).

Santen and colleagues reviewed 13 placebo-controlled DEXA or
CT studies in which unopposed estrogen HT or estrogen plus pro-
gestin HT reduced body fat. HT with progestins alone increased adi-
posity (Clark et al., 2005; Dal’Ava et al., 2014), indicating that the
effects of HT on adiposity loss are purely estrogenic. Santen et al.
(2010) also reviewed eight studies in which estrogenic HT reduced
the tendency of postmenopausal women to develop more central
obesity, versus two in which this was not the case, consistent with
the data reviewed above indicating that estrogens contribute to the
determination of regional adiposity distribution.

That observation that estrogen levels are higher in non-obese than
obese premenopausal women also supports a role of estrogens in
restraining AT. Age-corrected early-follicular estradiol levels were
40 pg/ml in healthy-weight women versus 33 pg/ml in obese women,
with no overlap in 95% confidence intervals (95% CI) (Freeman et al.,
2010). In contrast, after menopause estradiol levels were lower overall,
although higher in obese than in non-obese women (21 vs 12 pg/ml,
no overlap in 95% CI). After menopause, estradiol originates mainly in
the AT and appears to have no endocrine function.

It is important to emphasize that as a result of the opposite effects
of HT on adiposity and FFM, HT leads to little or no change in total
body weight. According to a Cochrane meta-analysis (Norman et al.,
2000), unopposed estrogen treatment had no significant effect on
total weight (nine randomized controlled trials [RCTs], mean differ-
ence vs no HT, 0.0 kg, 95% CI: −0.6 to 0.7 kg) or BMI (two RCTs,
mean difference −0.1 kg, 95% CI: −0.4 to 0.1 kg); similarly, estrogen
plus progestin treatment had no significant effect on weight (10 RCTs,
mean difference, 0.0 kg, 95% CI: −0.4 to 0.5 kg) or BMI (10 RCTs,
mean difference −0.1 kg, 95% CI: −0.3 to 0.1 kg). Thus, the fear of
some women that estrogenic HT leads to weight gain (Légaré et al.,
2000) is unfounded. Rather, the likelihood of beneficial changes in
body composition and metabolic health with estrogenic HT should be
considered by women deciding on postmenopausal HT.

Obesity pathophysiology
Simple obesity
Obesity causes progressive cardiometabolic dysfunction (Lumeng
et al., 2007; Mauvais-Jarvis et al., 2013; Tchkonia et al., 2013).
Expanded AT depots release more FFA, which increase insulin secre-
tion, decrease insulin sensitivity and increase hepatic production of
very low-density lipoproteins. In addition, hypertrophic adipocytes
attract macrophages into the AT, which induces a sterile inflammation-
like state characterized by secretion of numerous proinflammatory
cytokines and adipokines. Finally, AT vasculature often fails to expand
sufficiently in obesity, leading to local hypoxia that exacerbates the
inflammatory state (Pasarica et al., 2009; Sun et al., 2013).

These processes are influenced importantly by ovarian hormones.
For example, in rats, ovariectomy increases immune-cell infiltration into
the AT and increases insulin resistance even if adiposity is controlled

(Rogers et al., 2009; Vieira Potter et al., 2012). Increases in circulating
adipokines and immune factors in postmenopausal women suggest simi-
lar effects contribute to increased risk of cardiometabolic disease in
these women (Pfeilschifter et al., 2002; Polotsky and Polotsky, 2010).
Conversely, in younger postmenopausal women, HT reduces or delays
these pathological processes (Santen et al., 2010; Manson et al., 2013;
Manson and Kaunitz, 2016). Thus, studies of the roles of estrogens are
an emerging theme in obesity-related cardiometabolic disease
(DeClercq et al., 2008; Monteiro et al., 2014; Blenck et al., 2016).

An additional potential mechanism through which estrogens
improve AT function is related to the ‘browning’ of white adipocytes
(Palmer and Clegg, 2015), i.e. increased expression of uncoupling
protein-1 (UCP-1), which generates heat without synthesizing ATP,
thus increasing EE, and reduces cardiometabolic risk (Rosen and
Spiegelman, 2014). Estrogens may induce browning in two ways. First,
estrogens act in the heart to increase the secretion of cardiac natri-
uretic peptides (Jankowski et al., 2001; Wang et al., 2002), which in
turn act in the AT to increase browning (Collins, 2014). Second, estro-
gens may increase hypothalamic expression of brain-derived neuro-
trophic factor, which increases sympathetic outflow to the AT and
increases browning (Cao et al., 2011; Palmer and Clegg, 2015).

Different AT depots are differentially predisposed to obesity-related
pathophysiology (Lee et al., 2013; Tchkonia et al., 2013; Fried et al.,
2015; Karpe and Pinnick, 2015) (Fig. 2). Centrally located AT, espe-
cially visceral AT, brings the greatest health risk (Wang et al., 2005;
Després and Lemieux, 2006; Pischon et al., 2008). A variety of data
indicate that this is related to the direct delivery of FFA and proinflam-
matory immune mediators to the liver (Bergman et al., 2006; Rytka
et al., 2011; Item and Konrad, 2012). Indeed, omental AT resection
added further metabolic benefits to Roux-en-Y gastric bypass surgery
(Dillard et al., 2013). Mesenteric AT appears to be even more toxic, as
in comparison to subcutaneous or omental AT, it is more densely
innervated by sympathetic efferents, expresses more glucocorticoid
receptors and is more prone to macrophage migration (Tchkonia
et al., 2013). Abdominal subcutaneous AT also has adverse metabolic
characteristics (Tchkonia et al., 2013), especially deep abdominal sub-
cutaneous AT (Smith et al., 2001; Koster et al., 2010).

In contrast to all other AT depots, superficial gluteofemoral subcuta-
neous AT actually reduces cardiometabolic-disease risk (Snijder et al.,
2004; Yusuf et al., 2005; Koster et al., 2010; Lee et al., 2013). Indeed,
women with marked gluteofemoral obesity often remain metabolically
healthy (Karpe and Pinnick, 2015). Many factors appear to contribute
to the development of larger gluteofemoral subcutaneous AT depots in
women and to this depot’s protective nature (Santosa et al., 2008; Lee
et al., 2013; Tchkonia et al., 2013; Karpe and Pinnick, 2015).
Gluteofemoral subcutaneous AT releases more of the insulin-sensitizing
adipokine palmitoleate than abdominal subcutaneous AT (Pinnick et al.,
2012). Adipocytes in gluteofemoral subcutaneous AT also have greater
lipoprotein-lipase (LPL) activity in women than men, indicating that they
more effectively clear triacylglyceride after meals (Votruba and Jensen,
2007). Moreover, uptake of plasma FFA, lipogenesis and triacylglycerol
re-esterification is greater in women’s gluteofemoral subcutaneous AT
than in their abdominal subcutaneous AT, whereas the opposite is true
in men (Koutsari et al., 2011; Søndergaard et al., 2012). Together, these
characteristics of women’s gluteofemoral subcutaneous AT contribute
to the greater size of this depot, the greater stability of stored triacylgly-
cerol, and the lower plasma FFA levels.
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Another factor relevant to sex differences in AT function is the
greater proliferative potential of preadipocytes in subcutaneous versus
visceral AT. For example, Tchoukalova et al. (2010) overfed healthy-
weight men and women (mean BMI, 22.1 kg/m2) for 8 weeks, leading
to a gain of 3.8 kg fat mass and an increase in mean BMI to 23.6 kg/m2.
Strikingly, women displayed greater AT hyperplasia, so that their aver-
age adipocyte size decreased with weight gain. This was most evident
in femoral fat samples and was associated with relatively greater expan-
sion of gluteofemoral than central AT. In addition, women with larger
baseline abdominal subcutaneous adipocytes also displayed marked
hyperplasia in that depot. This suggests that as AT expands in obesity,
the larger number of gluteofemoral adipocytes in women permits them
to store more triacylglycerol before reaching dysfunctional degrees of
hypertrophy (Tchkonia et al., 2013). Unfortunately, the specific effects
of ovarian hormones on AT cell biology have not yet been intensively
researched. This is a major challenge facing women’s health research.

Polycystic ovary syndrome
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogen-
ism, chronic anovulation and polycystic ovaries (Dumesic et al., 2015;

McCartney and Marshall, 2016). One of the primary pathological
changes thought to lead to PCOS is increased ovarian androgen
secretion. Indeed, increased androgen production occurs even in the-
ca cells cultured from women with PCOS (Nelson et al., 1999). This
pathology may be caused in some women by polymorphisms of
DENND1A, which encodes a protein affecting the placement of cell-
surface receptors (McAllister et al., 2014).

Although the prevalence of PCOS is similar in healthy-weight,
overweight and obese women (Yildiz et al., 2008), about 40–50% of
PCOS patients are obese (Carmina et al., 2009; Teede et al., 2010).
Some studies suggest that PCOS is associated with greater abdominal
obesity (Carmina et al., 2007), but this is controversial (Barber et al.,
2008). Although obesity pathophysiology related to PCOS is poorly
understood, several results support key roles of increased estrogen
and androgen secretion. Androgens can lead to dyslipidemia indir-
ectly by exacerbating insulin resistance, leading to altered lipid metab-
olism and body composition, and directly, through effects in the AT
(Diamanti-Kandarakis, 2007). Whether AT dysfunction is primary or
secondary to hyperandrogenism or other abnormalities in PCOS,
however, remains unknown (Villa and Pratley, 2011). Women with
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Figure 2 Female-typical adiposity and associated cardiometabolic risk. Following puberty, girls and women (F) tend to deposit excess triacylglycer-
ol as gluteofemoral SC AT, whereas males (M) tend to deposit it as abdominal SC AT; males also have more visceral AT, i.e. AT whose vasculature
enters the portal vein and liver. Gluteofemoral AT is cardiometabolically benign (green) because it traps triacylglycerol, so contributes little to plasma
lipid levels, and because it is resistant to inflammation. In contrast, abdominal SC AT and visceral AT are cardiometabolically toxic (red) because
they have higher relative rates of lipolysis, which increases plasma lipids, and because they are prone to inflammation, which leads to increased levels
of circulating proinflammatory molecules. The relative amounts of upper-body SC AT are variable, and its cardiometabolic consequences are poorly
understood (blue). For further explanation, see text. SC AT, subcutaneous adipose tissue.
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PCOS have lower LPL expression in subcutaneous AT than healthy
women (Mannerås-Holm et al., 2014). Both androgens and estrogens
inhibit AT LPL activity (Pedersen et al., 2004; Blouin et al., 2010), and
even after controlling for BMI, expression of LPL in the subcutaneous
AT correlated negatively with plasma estradiol (Mannerås-Holm et al.,
2014). Excessive visceral-fat distribution (Diamanti-Kandarakis, 2007;
Escobar-Morreale and San Millán, 2007) and disturbed adipokine
release seem to influence PCOS development (Torres-Leal et al.,
2010; Villa and Pratley, 2011). For example, in women with PCOS,
leptin expression was reduced in the subcutaneous AT, adiponectin
expression was reduced in both subcutaneous and omental AT and
adiponectin receptor-2 expression was reduced in subcutaneous AT
(Carmina et al., 2008; Mannerås-Holm et al., 2014). These and other
adipokines may modulate the hypothalamic-pituitary-gonadal axis
through receptors in pituitary FSH, LH and TSH cells (Sone et al.,
2001; Taheri et al., 2002; Psilopanagioti et al., 2009) so as to increase
ovarian hormone secretion in patients with PCOS (Olszanecka-
Glinianowicz et al., 2011, 2013). In addition, some adipokines may
directly influence ovarian steroidogenesis (Tersigni et al., 2011). Con-
sistent with a link between decreased adipokines and increased ovar-
ian hormone secretion, plasma estradiol levels were found to be
negatively correlated with adiponectin receptor-1 in the subcutaneous
AT of women with PCOS independent of BMI; testosterone levels,
however, were not significantly correlated with adiponectin receptor-1
(Mannerås-Holm et al., 2014). Interestingly, although AT inflammation
was not different in women with PCOS and BMI-matched control
women (Lindholm et al., 2011), adiponectin release in response to the
proinflammatory cytokine tumor necrosis factor-α was decreased in
adipocytes obtained from overweight or obese women with PCOS
(Chazenbalk et al., 2010).

Eating

General aspects of the control of eating
The intake of metabolic energy occurs mainly in the form of meals
(including snacks). Meals and the surrounding affective and cognitive
processes are the products of a widely distributed information-
processing network in the brain, described below, that produces con-
scious and unconscious responses that underlie planning to obtain
food, motivational urges to eat, eating per se, the pleasurable, or
hedonic, aspects of eating, satiation and the effects of nutrient reple-
tion on learning.

The primary internal stimuli controlling eating include the subjective
value assigned to food and neural and endocrine feedbacks from the
gastrointestinal (GI) tract, from AT, and from metabolic processes.
‘Food value’ in this context refers to reinforcement, i.e. the ability of
food stimuli to support learning, to generate approach behavior and
to elicit emotional responses, including flavor hedonics (Schultz,
2015). Beyond these, there are several secondary or modulatory
internal factors, ranging from circadian rhythm to psychological fac-
tors and motivators such as stress, emotional state, cognitive control,
etc. As reviewed below, reproductive hormones importantly modu-
late these physiological controls of eating (Asarian and Geary, 2013;
Mauvais-Jarvis et al., 2013; López and Tena-Sempere, 2015). External
stimuli, in particular stimuli with learned cognitive and affective mean-
ings, also play important modulatory roles in eating (French et al., 2012;

Higgs et al., 2012). There is a dearth of research on the influence of
reproductive hormones on these controls of eating. This is unfortu-
nate because, for example, estrogens and their lack after menopause
can influence affective (Joffe et al., 2011; Schmidt et al., 2015) and
cognitive (Hara et al., 2015) functions in women.

Roles of ovarian hormones
The best-established effect of ovarian hormones on eating is the pro-
gressive decrease in eating during the follicular phase of the menstrual
cycle. In healthy-weight cycling women, food intake decreases ~200–
300 kcal/d from the luteal maximum to the peri-ovulatory minimum
(Fig. 3), an amount relevant to body-weight regulation (Hall et al.,
2011; Asarian and Geary, 2013). Available data indicate that eating
does not decrease during anovulatory cycles (Barr et al., 1995; Rock
et al., 1996), and that the decrease in ovulatory cycles is due to
decreased meal size rather than decreased meal frequency (Pohle-
Krauza et al., 2008; Brennan et al., 2009) and is related to a decrease
in the intake of sweet foods (Bowen and Grunberg, 1990; Fong and
Kretsch, 1993). Old-world monkeys and apes (Parvorder Catarrhini),
which have ovarian cycles similar to those of women (Zeleznik and
Pohl, 2006), as well as mice, rats and many other species, display
comparable cyclic decreases in meal size and food intake. Loss of

Figure 3 Daily food intake during the ovarian cycle in women.
Note the progressive decrease in energy intake during the follicular
phase, the nadir around ovulation and the high level during most of
the luteal phase. Data are amounts eaten per day (kcal, means and
standard errors of the mean) calculated from three studies in which
food intake was measured by weighing and the cycle phase was
monitored with urinary luteinizing hormone tests and reports of
menses in a total of 34 women. In each study, data were averaged
across the early-follicular (eF; 4 d), midfollicular (mF; ~9 d), peri-
ovulatory (PO; 4 d) and luteal (L; ~11 d) phases. *Significantly differ-
ent from luteal phase. Original data are from Fong and Kretsch
(1993), Gong et al. (1989) and Lyons et al. (1989), and the figure is
reprinted from Asarian and Geary (2013); used with permission.
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estrogens after ovariectomy increases meal size, food intake and
body weight in old-world monkeys, rats and mice (Bellino and Wise,
2003; Sullivan et al., 2005; Asarian and Geary, 2013), suggesting that
increased eating contributes to the increase in AT after menopause
in women, but whether this is true is unknown.

Experiments in rats and mice indicate that estrogens signaling via
Esr1 mediate the cyclic change in eating in those species. This cyclic
effect appears to correspond to the decrease in eating during the
human follicular and peri-ovulatory phases (Asarian and Geary, 2013).
Rats and mice do not have luteal phases, however, and the control of
eating in this phase of the menstrual cycle is less well understood.
Although it is reasonable to hypothesize that progestins oppose the
inhibitory effects of estrogens during the luteal phase, data fail to sup-
port this. Physiological doses of estradiol were shown to inhibit eating
in ovariectomizued rhesus macaques, and this was not affected by pro-
gesterone treatment (Czaja, 1978). Similarly, estrogen together with
escalating progestin doses failed to affect eating in women (Eck et al.,
1997), although the experiment was limited because the participants
were cycling, so that the treatment effects may have been obscured by
the effects of endogenous hormones, and because diet records, rather
than measure of actual eating, were used. Yet in addition, depot
medroxyprogesterone failed to affect food intake in an adequately
powered, prospective, placebo-controlled study in cycling women
(Pelkman et al., 2001).

Binge eating, referring to eating an abnormally large amount of
food on a single occasion with a feeling of loss of control overeating,
is a dysregulated form of eating especially prevalent in girls and
women (Reichborn-Kjennerud et al., 2003; Hilbert et al., 2012).
Binge eating is prodromal to bulimia nervosa, binge-eating disorder
and obesity. It is also highly heritable (Davis, 2015). Female rats are
much more prone than male rats to develop binge-like eating
(Klump et al., 2013). Related to binge eating is emotional eating, i.e.
eating in response to negative emotions, and this is also more preva-
lent in girls and women.

Binge eating develops most often during puberty, in association
with higher estrogen levels (Klump et al., 2010). In addition, binge
and emotional eating vary through the menstrual cycle, with lower
rates in the late-luteal through the peri-ovulatory phases and higher
rates during the mid-luteal phase (Culbert et al., 2016). A time-series
analysis of binge tendencies and ovarian hormone levels through the
cycle suggested that estrogens inhibit emotional and binge eating and
progestins oppose this effect of estrogens, i.e. indirectly stimulate
emotional and binge eating (Klump et al., 2014). This is the strongest
indication that progestins are clinically important in dysregulated eat-
ing in human females. Estradiol, but not progesterone, was shown to
reduce amounts eaten during binge-like episodes in rats (Yu et al.,
2011), but whether this is a useful model of binge size or frequency
in women is not known.

Peripheral mechanisms
Taste. Although the perception of sweet and creaminess differs in
men and women (Bartoshuk et al., 1994; Hayes and Duffy, 2008) and
women’s intake of sweet food increases during the luteal phase
(Bowen and Grunberg, 1990) and during pregnancy (Belzer et al.,
2010), the roles of ovarian hormones in these phenomena have not
been carefully investigated (Asarian and Geary, 2013).

GI signals. A variety of GI neural and endocrine signals are candidate
meal-control mechanisms (Camilleri, 2015; Steinert et al., 2016).
Unfortunately, research on their operation in women remains sparse
(Asarian and Geary, 2013). Ghrelin, a hormone secreted by the stom-
ach, stimulates meal initiation and increases meal size. In rats, there
was an estradiol-dependent increase in ghrelin’s eating-stimulatory
effect during the first 2 days of the 4-day ovarian cycle (ovulation
occurs on the last night), and ghrelin levels increased after ovariectomy
in parallel to the increase in eating (Clegg et al., 2007). The small-
intestinal hormone CCK reduces meal size by hastening meal termin-
ation, i.e. by producing satiation. CCK is the only endocrine meal-control
signal that can be considered to have a proven normal or ‘physiological’
role in humans. That is, intravenous infusion of CCK in amounts that
mimic prandial changes in plasma levels is sufficient to reduce meal size;
CCK-receptor antagonists reduce the satiating potency of intraduodenal
fat infusions and CCK-receptor antagonists administered alone increase
meal size (Steinert et al., 2016). In rats, estrogens act via Esr1 in the
caudal medial NTS (cmNTS) to increase CCK’s satiating action (see
below). Unfortunately, whether estrogens affect CCK satiation in
women is unknown. The intestinal hormones GLP-1 and peptide YY
(3-36) are also candidate eating-inhibitory signals, and estradiol
increases the GLP-1 satiating action in ovariectomized rats (Asarian
and Geary, 2013).

Leptin. Endocrine signals related to AT mass, notably leptin and insu-
lin, contribute to the control of eating (Levin et al., 2011; Le Foll
et al., 2014). Leptin is secreted by white adipocytes, and basal (fast-
ing) plasma leptin levels are highly correlated with AT mass.
Interestingly, for a given level of fat mass, leptin levels are higher in
women than men, and this difference decreases after menopause.
Estrogen levels and differences in intra-abdominal and subcutaneous
AT distribution contribute to these effects (Rosenbaum and Leibel,
1999; Rosenbaum et al., 2001). Originally hypothesized to be the cru-
cial link between body adiposity and the controls of eating and EE,
leptin is now considered to defend only against reductions in body
weight, not against weight increases (Ravussin et al., 2014). Whether
estrogens interact with leptin to control eating are controversial. In
ovariectomized rats, estradiol increased the eating-inhibitory potency
of acute leptin injections (Clegg et al., 2003), but not that of chronic
leptin treatment (Chen and Heiman, 2001). Furthermore, food intake
was not correlated to plasma leptin levels in cycling women (Paolisso
et al., 1999). None of these studies, however, was done in the
weight-reduced state, when leptin’s contribution to eating is greatest.

The brain mechanisms mediating potential interactive effects of
leptin and estrogens on eating are also uncertain. In mice and rats,
Esr1 is expressed in ~10% of neurons that express the signaling leptin
receptor (Leprb) in the arcuate nucleus of the hypothalamus (ARC),
the cmNTS and several other areas thought to mediate the control
of eating (Asarian, unpublished data; Kim et al., 2016). Esr1/Leprb
co-expression is much higher, ∼80%, in the preoptic area (Kim et al.,
2016), one of the brain sites containing the GnRH neurons that con-
trol FSH and LH secretion (Herbison, 2006). Kim et al. (2016)
reported that although food intake was increased in transgenic mice
lacking Esr1 in Leprb neurons globally, estradiol treatment did not
activate Leprb neurons in the ARC of ovariectomized mice, suggest-
ing that estrogens and leptin do not affect ARC Esr1/Leprb neurons
to inhibit eating. In contrast, Asarian (unpublished data) found that
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knockdown of Leprb neurons in the mNTS with RNA interference
increased eating and completely prevented estradiol from inhibiting
food intake in ovariectomized rats, suggesting that an Esr1/Leprb
interaction in the mNTS is necessary for the normal control of
eating.

Insulin. Basal plasma levels of insulin also correlate with body fat
mass, and insulin may act in the brain to control eating and EE.
Estrogens appear to regulate the effects of insulin on eating. Central
administration of insulin was found to inhibit eating more in ovariec-
tomized than in intact rats, and this was reversed by central estradiol
administration (Clegg et al., 2006). These effects do not occur in peri-
pubertal rats (Keen-Rhinehart et al., 2009), further suggesting an acti-
vational role of estradiol. Interestingly, female, but not male,
transgenic mice with brain-specific null mutations of the insulin recep-
tor are hyperphagic, which in females was related to profound reduc-
tions of LH and signs of defective ovarian follicle maturation,
indicating a role for neural insulin receptors in the normal function of
the hypothalamic-pituitary-gonadal axis (Brüning et al., 2000).

Intra-nasal insulin delivery has been used to selectively stimulate
brain insulin receptors in humans. Similar to the rat studies, intra-
nasal insulin before meals decreased eating more in men than in
reproductive-age women (Benedict et al., 2008). In apparent contrast
to the findings of Clegg et al. (2006) in rats described above, premeal
intra-nasal insulin failed to inhibit eating in postmenopausal women
(Krug et al., 2010). In contrast, intra-nasal insulin given after meals
reduced subsequent intake of preferred snack foods in young women
taking high-estrogen contraceptives, suggesting that insulin increases
postprandial satiety in women (Hallschmid et al., 2012). These data
suggest that central insulin-based pharmacotherapy might be an
effective obesity treatment in women.

Central mechanisms
A widely distributed central neural network controls eating (Berthoud,
2002; Shin et al., 2009; Grill and Hayes, 2012; Castro and Berridge,
2014; Schultz, 2015; Val-Laillet et al., 2015; Farr et al., 2016; Geary and
Moran, 2016). Local circuits in the caudal brainstem integrate a variety
of sensory inputs, including gustatory, vagal afferent, spinal-visceral
afferent and many GI-hormone signals, and also produce the consum-
matory behaviors of eating. Animal studies indicate that the hypothal-
amus plays the leading role in homeostatic eating, i.e. eating stimulated
by nutrient depletion. Additional cerebral regions involved in eating
include primary and secondary gustatory regions (insula and orbito-
frontal cortex, OFC) as well as regions involved in memory (hippocam-
pus) and cognitive control (dorsolateral prefrontal cortex, inferior
frontal cortex and cingulate cortex). Neuropharmacological and
molecular-genetic studies in animals and fMRI studies in humans indi-
cate that the striatum (which consists of the nucleus accumbens, caud-
ate nucleus and putamen), the OFC, the amygdala and the midbrain
dopamine neurons perform neural computation of the subjective value
of food stimuli (‘value’ was defined above). Estrogens and other
gonadal steroids diffuse freely through the blood–brain barrier
(Pardridge et al., 1980), act on cognate receptors in several of these
areas and through them affect eating-related neural information pro-
cessing in these areas and in areas linked to them via neural projections
(López and Tena-Sempere, 2015) (Fig. 4).
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Figure 4 Some brain areas where estrogens affect the control of eat-
ing, based on animal (A) and human (B) research. Shown in red are
brain areas where estrogens act directly via estrogen receptor 1 (Esr1)
to affect eating; in blue are areas where estrogen may affect neural
processing directly or indirectly through actions in other brain areas.
(A) A schematic mid-sagittal section of the human brain highlighting
areas in which estrogens affect eating. In the cmNTS, estrogen actions
on Esr1 reduce meal size, in part by increasing the satiating potency of
CCK; in the dorsal raphe nucleus (DR), estrogens bind to Esr1 to
change serotonergic (5HT) neurotransmission so as to reduce binge-like
eating. In the ARC (just lateral to the third ventricle, 3V) estrogens affect
the activity of neurons expressing AgRP to reduce food intake during
the early phase of the ovarian cycle. In the paraventricular nucleus of the
hypothalamus (just lateral to the 3V), estrogens affect the activity of neu-
rons expressing MC4R to reduce food intake in females (♀) more than
in males (♂). Numerous fMRI studies implicate the OFC and lPFC (out
of sight on the lateral surface of the cerebral hemisphere) in the neural
computation of the value of food stimuli, which, as explained in the text,
includes reinforcement, approach generation and affect. Ovarian hor-
mones influence these processes. For example, visual food stimuli eli-
cited larger responses in the lPFC in sated than in hungry women when
tested during the late follicular phase, but not when tested during the
early-follicular phase. (B) A schematic frontal section of the ventromedial
area of the frontal lobes at the level shown by the green line in A. fMRI
studies implicate the dorsal striatum (which consists of the head of the
caudate and the putamen), the nucleus accumbens and the globus palli-
dus in the neural computation of food value. Again, ovarian hormones
influence these processes; for example, pictures of high energy-foods eli-
cited larger responses in women tested during the peri-ovulatory phase
than during the luteal phase. See text for details. Abbreviations: LV,
lateral ventricle; CC, corpus callosum; EC, extreme capsule; IC, internal
capsule; SP, septum pellucidum; ARC, arcuate nucleus of the hypothal-
amus; CCK, cholecystokinin; lPFC, lateral prefrontal cortex; fMRI,
functional MRI. Brain schematics are from http://www.clker.com/
clipart-90953.html; the frontal lobe section was originally published in
Haines (2012); used with permission.
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Studies in rats indicate that estrogen-Esr1 signaling in neurons in
the cmNTS in the caudal brainstem controls the estrogenic inhibition
of normal eating (Asarian and Geary, 2013). That is, knockdown of
cmNTS Esr1 with RNA interference increases eating and body weight
and completely blocks the usual eating-inhibitory effect of estradiol in
ovariectomized rats. No other brain site has been similarly linked to
the estrogenic control of eating (e.g. ARC data were discussed in the
leptin sections) (Asarian and Geary, 2013). The network effects of
cmNTS estrogen stimulation, of course, may involve the hypothal-
amus and other forebrain sites. For example, expression of the
neurotransmitter AgRP in ARC neurons changes across the ovarian
cycle in mice, and transgenic lesions of AgRP neurons prevent the
cyclic decrease in eating; these neurons do not express Esr1, how-
ever, indicating that these effects are functionally downstream of
estrogens’ neural actions (Olofsson et al., 2009).

AgRP neurons appear to be selectively involved in the aversive,
homeostatic hunger produced by prolonged food deprivation, in con-
trast to the incentive-state like hunger that is more operative in spon-
taneous eating (Betley et al., 2015). AgRP neurons secrete the
neurotransmitters NPY and glutamate as well as AgRP, and these
molecules appear to make temporally distinct contributions to hunger
(Krashes et al., 2013). Unfortunately, the roles of ovarian hormones
in these effects have not yet been tested. It is important to note in
this regard that specific aspects of eating are likely to involve Esr in
different sites. For example, binge-like eating in mice apparently
depends on estrogen-Esr1 signaling in serotoninergic neurons in the
dorsal raphe nuclei (Cao et al., 2014). This is especially interesting
because women with bulimia nervosa have reduced serotonin-
transporter binding in the dorsal raphe both during active bulimia ner-
vosa and after recovery (Pichika et al., 2012).

Pro-opiomelanocortin neurons, which release the neurotransmit-
ters α-MSH and β-endorphin, also may be involved in the estrogenic
inhibition of eating. Brain α-MSH neurons signal mainly via MC3R in
the ARC and via MC4R in the paraventricular nucleus of the hypo-
thalamus (Biebermann et al., 2012), and loss-of-function polymorph-
isms of human MC4R lead to voracious appetite and obesity
(Dempfle et al., 2004; Stutzmann et al., 2008; Valette et al., 2013).
MC4R defects have a prevalence of ∼2–5% in obese Europeans, mak-
ing it one of the commonest of all genetic diseases (O’Rahilly and
Farooqi, 2006; Tao, 2010). Importantly, weight gain is about twice as
much in women as in men, ∼8–9 kg/m2 versus ∼4–5 kg/m2. Mice
with null mutations of this gene (Mc4r−/− mice) show a similar syn-
drome, again with a marked sex difference that begins around
puberty, suggestive of activational effects of reproductive hormones
(Huszar et al., 1997). In contrast, obesity was already present in pre-
pubertal boys and girls with either of two MC4R polymorphisms
(Vogel et al., 2011). Separate analyses of just one of these, SNP
rs17782313, however, unveiled a pronounced sex difference. In
women bearing this SNP, but not in men, there were increases in the
eating traits disinhibition and emotional eating as well as differences in
gray-matter volume in eating-related areas including the right amyg-
dala, right hippocampus and medial OFC (Horstmann et al., 2013).
The effects of estrogens on pro-opiomelanocortin (POMC) neurons
may be mediated by both Esr1 (Xu et al., 2011) and the recently dis-
covered Gq-coupled membrane estrogen-receptor (Smith et al.,
2013). Whether estrogens act directly or indirectly on POMC neu-
rons and the sites involved, however, are unknown.

Human functional neuroimaging studies converge with animal stud-
ies in identifying subcortical and cortical brain structures that are
involved in the control of eating. Typically, these studies localize
regions that respond differently to food and non-food stimuli, to hun-
ger and satiety, and in obese and normal-weight women (Morris and
Dolan, 2001; Wang et al., 2004; Small and Prescott, 2005; Stoeckel
et al., 2008; Schur et al., 2009; Salem and Dhillo, 2015). Both animal
and human receptor expression studies suggest that reproductive
hormones may affect the function of these regions. For example, in
humans, ESR1 are abundant in the hypothalamus, amygdala, hippo-
campus, nucleus accumbens and several cortical regions (Hara et al.,
2015). Importantly, this includes membrane estrogen receptors,
which mediate rapid effects on neural activity, as well as classical
nuclear estrogen receptors (Almey et al., 2015). Furthermore, estro-
gens are required to maintain dopamine innervation of the striatum,
and estrogen and/or progesterone replacement can rescue
ovariectomy-induced reductions in caudate dopamine (Kritzer et al.,
2003). Progesterone receptors are also expressed in food-related
regions beyond the hypothalamus, including the caudate (Zhu et al.,
2003), amygdala, hippocampus and frontal cortex (Brinton et al.,
2008). Although the exact role of hormones in many of these regions
is not entirely clear, the widespread distribution of their receptors in
areas mediating hedonics, motivation and cognition reinforces the
notion of their involvement in non-reproductive neural functions, par-
ticularly in the control of normal and dysregulated eating.

There are sex-related structural differences in brain areas involved
in processing food-related information (Ruigrok et al., 2014); for
example, women compared with men express relative increases in
regional gray-matter volume or density in frontal cortex, dorsal stri-
atum and right insula, but relative reductions in ventral striatum,
amygdala, hippocampus and left insula. Sex modulates the functional
activation of these regions in a corresponding way. Obese women
show different neural responses to pictures of high energy-food than
lean women or obese men. For example, dorsal-striatal activity to
high energy-food pictures is enhanced in obese women (Rothemund
et al., 2007; Geliebter et al., 2013). Rodent research implicates the
dorsal striatum in the development of inflexible, habitual control of
eating (Furlong et al., 2014). Accordingly, eating habits may be par-
ticularly inflexible in obese women.

Changes in neural responses to food pictures through the menstrual
cycle suggest a role of ovarian hormones in processing food-related
information. Accordingly, the reduced food intake in the peri-
ovulatory phase of the menstrual cycle is reflected in changes in the
responses of eating-related regions. Specifically, the ventral striatum
shows enhanced activity to high versus low energy-food pictures dur-
ing the peri-ovulatory compared with the luteal phase (Frank et al.,
2010), in line with the notion of enhanced dopaminergic reward activ-
ity during the peri-ovulatory phase (Dreher et al., 2007; Frank et al.,
2010). In a separate group of subjects, these neural effects were mir-
rored by reduced appeal of high energy-food pictures during the peri-
ovulatory phase compared with the luteal phase, with unchanged
appeal of low energy-food pictures. Thus, the meal size-limiting effects
of estrogens during the peri-ovulatory phase are mediated by
increased ventral striatal responses to high-calorie food, reflecting
increased reward sensitivity induced by higher levels of estrogens.
Indeed, separate research showed a positive correlation between
estradiol levels and amphetamine-induced euphoria in women during
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the follicular, but not the luteal, phase, suggesting that estrogens make
women more sensitive to (striatal) dopamine (Justice and de Wit,
1999). These findings converge with reports of reduced reward sensi-
tivity and dopamine release in obesity and therefore conceptualize
increased food intake as an attempt to compensate for reduced
reward value of food (for review, see Val-Laillet et al., 2015).

Moreover, neural responses to food pictures reflect interactions
between prandial state and menstrual-cycle phase. Specifically,
responses to food pictures in the lateral prefrontal cortex (lPFC) are
enhanced in the fed compared with the hungry state during the late-
follicular (high-estrogen), but not the early-follicular (low-estrogen),
phase (Alonso-Alonso et al., 2011). Thus, estrogens may act in the
prefrontal cortex to facilitate cognitive control over appetite in the
fed state, i.e. reduce the tendency to ‘eat in the absence of hunger,’ a
trait associated with increased obesity risk (French et al., 2012). In
line with this notion, the lPFC is less activated after meals in obese
women than in healthy-weight or formerly obese women (Le et al.,
2007). Furthermore, stronger lateral prefrontal responses to food
pictures predict reduced subsequent energy intake (Cornier et al.,
2010), and these responses are smaller in obese compared with
healthy-weight individuals (Batterink et al., 2010).

Although converging evidence from human neuroimaging studies
identifies regions involved in mediating the influence of ovarian hor-
mones on processing food-related stimuli, there is a dearth of studies
that directly investigate the effects of sex and ovarian hormones on
precisely defined components of neural processing related to eating.
Addressing this gap would involve using real food rather than pictures
and using paradigms established in the fields of reinforcement learn-
ing, affective neuroscience and decision neuroscience. For example, it
would be interesting to directly test the effects of estrogens on the
neural mechanisms underlying Pavlovian and goal-directed aspects of
eating. One hypothesis would be that estrogens act in the striatum to
make eating behavior flexible and goal-directed.

Energy expenditure

General aspects of human EE
EE is energy lost in work or heat (urinary nitrogen and glucose losses
can also contribute in pathological situations). Total EE includes REE,
the postprandial increase in EE due to digestive and metabolic handling
of ingesta (known as diet-induced thermogenesis (DIT) or the thermic
effect of food), thermoregulatory responses, weight-regulatory EE
responses and physical-activity EE. REE is also known as the resting or
basal metabolic rate and is sometimes subdivided into sleeping and
awake, resting components. In moderately active individuals in a ther-
moneutral environment, REE usually accounts for ~60–70% of total
EE (Levine, 2004), DIT for ~10–15% (D’Alessio et al., 1988; Reed and
Hill, 1996) and physical activity for the rest. Physical-activity EE can be
further subdivided into exercise or sports activities (including walking
for exercise) and non-exercise-activity thermogenesis, which is the
energetic cost of occupational physical activity and incidental daily
activities, such as sitting, talking, standing, fidgeting, etc.

REE is strongly correlated with FMM (r2 ~0.6–0.7), with no sex differ-
ence (Johnstone et al., 2005; Blundell et al., 2010). Individuals with lower
REE/FFM values are at increased risk for weight gain (Ravussin et al.,
1988), suggesting that genetic differences in the cellular components of

REE may contribute to individual differences in obesity risk (Konarzewski
and Książek, 2013). About half of REE is due to membrane processes,
mainly Na+/K+-ATPase and UCP-mediated mitochondrial-proton
leak (Hulbert and Else, 2005). A decline in UCP activity may explain
the decrease in REE with aging (St-Onge and Gallagher, 2010; Saito,
2013) which, as reviewed below, complicates studies of menopausal
effects on REE.

The much lower requirement for physical-activity EE in developed
societies is thought to contribute to the obesity epidemic and to dis-
ease risk (Woolf et al., 2008). Physical activity not only directly
increases EE, but also increases REE (Gilliat-Wimberly et al., 2001;
Van Pelt et al., 2001). Physical-activity EE can be expressed as
metabolic-energy equivalents (MET), the ratio of the rate of EE during
the activity and a standard rate, which was originally based on EE
while sitting quietly (ASHRAE standard 55, 2016). Only a few physical
laborers or athletes regularly exceed a daily average level of 2 MET
(Levine, 2004). The recommended minimal level of physical activity
for good health in the USA is 500 MET-min/wk (ODPHP, 2016). As
moderate-intensity activity, such as walking at ~5 km/h, expends
~3.3 MET and vigorous-intensity activity, such as jogging at ~8 km/h,
expends ~6 MET, this recommendation can be met by walking for
~150 min/wk or jogging for ~75 min/wk. Epidemiological data indi-
cate that any level of physical activity reduces adult all-cause mortality
risk and that exceeding the MET recommendation 2-fold or more
reduces it by ~30–40% (Arem et al., 2015b). Only 40% of US
Americans, however, meet this recommendation.

Increased physical-activity EE improves cardiovascular fitness and
reduces all-cause mortality independent of BMI (Barry et al., 2014).
Furthermore, higher levels of physical-activity EE predict success in
maintaining diet-induced weight loss (Phelan et al., 2006). Thus,
women should be encouraged to increase physical-activity EE,
especially after menopause and in societies in which they tend
to be less active (Ford et al., 1991; Livingstone et al., 2001;
Sadarangani et al., 2014). The physiological mechanisms mediating
these mortality effects are not known. Unfortunately, the substan-
tial error in available methods for measuring habitual physical-
activity EE (Arem et al., 2015a; Lim et al., 2015) impedes research
progress in this area.

Finally, alterations in total EE contribute to body-weight regulation
(Leibel et al., 1995; Hall et al., 2011; Dhurandhar et al., 2015). If body
weight decreases, total EE decreases markedly more than predicted
by the lower body mass, thus strongly resisting further weight loss.
This adaptive reduction in EE is one reason that weight loss is so diffi-
cult. For example, a reduction in habitual intake by 200 kcal/d will
lead to 19 kg weight loss in 3 y, versus a predicted weight loss of
78 kg if there were no adaptation in EE (Hall et al., 2011). The under-
lying mechanisms are not fully understood. Changes in the amount or
efficiency of physical-activity EE (Leibel et al., 1995; Levine et al.,
1999; Levine, 2004) and in UCP-1 expression in brown AT (Fromme
and Klingenspor, 2011; Morrison et al., 2014) appear to contribute.

Roles of ovarian hormones
Resting energy expenditure
REE per kg body mass is lower in women due to their higher percent
AT, but REE per kg FFM does not appear to differ between the sexes
(Buchholz et al., 2001; Johnstone et al., 2005). This deserves more
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research, however, with more accurate measurement methods; in the
studies cited, residual variability was ~25% of REE, i.e. ~300–400 kcal/d
(Wang et al., 2011). Interestingly, women’s AT is more metabolically
active and ~10 fold more variable than men’s (Buchholz et al., 2001).
This is due in part to a 5-fold higher expression of UCP-1 in women’s
brown adipocytes (Nookaew et al., 2013).

REE varies over the menstrual cycle, from a minimum in the early-
follicular phase to a maximum ~50–100 kcal/d more in the luteal
phase (Day et al., 2005). Administration of a GnRH antagonist during
the mid-luteal phase reduced REE to the early-follicular level, indicat-
ing a role of ovarian hormones (Day et al., 2005). Progestins seem
not to be involved because high-progestin contraceptives have little
effect on REE (Pelkman et al., 2001). Estrogens may be the cause
because transdermal estrogen treatment increases REE in premeno-
pausal women in whom endogenous ovarian hormones are sup-
pressed by GnRH antagonism for either 6 days or 5 months (Day
et al., 2005; Melanson et al., 2015; Van Pelt et al., 2015).

The effect of menopause on REE has not received much investiga-
tion. In one 4-year longitudinal study beginning with regularly cycling
women at least 43 years of age, sleeping REE decreased by 7.9% in
the women who became postmenopausal during the study compared
with 5.3% in those who remained premenopausal, but the difference
was not statistically significant (Lovejoy et al., 2008). In a 2-week
study of postmenopausal women, estrogen treatment did not affect
REE (Bessesen et al., 2015). Three-month treatment with a selective
estrogen-receptor agonist also failed to increase REE in ovariecto-
mized old-world monkeys (Sullivan et al., 2012). In contrast, estro-
gens clearly increase REE in laboratory rodents (Rogers et al., 2009),
and REE is decreased in Esr1 knockout mice of both sexes, although
not in Esr2 knockouts (reviewed in Mauvais-Jarvis, 2011; Van Pelt
et al., 2015).

Dietary-induced thermogenesis
Studies of reproductive hormonal effects on DIT are contradictory.
DIT has been found to increase, decrease or not to change in the
luteal phase of the menstrual cycle compared with the follicular phase
(Piers et al., 1995; Melanson et al., 1996; Tai et al., 1997; Li et al.,
1999). Estrogen treatment did not affect DIT in premenopausal
women in whom endogenous ovarian hormones were suppressed by
GnRH antagonism (Melanson et al., 1996). We know of no studies of
DIT across menopause.

Physical-activity EE
Estrogens increase physical activity in rats, mice and monkeys, but
whether this is so in humans is unknown (Asarian and Geary, 2013).
One study found that healthy-weight and overweight women walked
~1600 more steps/day (~100–200 kcal/d) during the early-follicular
phase compared with the mid-luteal phase (Day et al., 2005). It is inter-
esting to note that physical-activity EE decreased during the luteal
phase, whereas REE increased. Estrogen treatment, however, did not
affect physical-activity EE in premenopausal women in whom endogen-
ous ovarian hormones were acutely suppressed by GnRH antagonists
(Melanson et al., 1996). Around the age of menopause, physical-activity
EE tends to decrease substantially, but similarly in women who become
postmenopausal and those who do not (30% and 39%, respectively)

(Lovejoy et al., 2008). Even if menopause is not the cause, the magni-
tude of the average decrease in physical-activity EE in aging women is
clearly clinically relevant (Woolf et al., 2008).

Surprisingly, most studies indicate that acute physical activity results
in negative energy balance, i.e. energy intake either does not change or
is reduced following increased physical activity (King et al., 2011;
Deighton et al., 2013; Howe et al., 2014; Blundell et al., 2015). This
was recently confirmed in a study in which participants expended ∼1.3
MET for two consecutive days with no change in food intake (Douglas
et al., 2015). Obviously, at some point regular moderate or high inten-
sity physical activity EE must lead to increase energy intake to avoid
weight loss, but how this occurs is also unknown (Stensel, 2010).

Central mechanisms
REE. Genetic and physiological studies in mice and rats indicate that
estrogens acting via Esr1 in the ventromedial nucleus of the hypothal-
amus increase EE by increasing hypothalamic sympathetic outflow,
resulting in increased brown-AT UCP-1 activity (Musatov et al., 2007;
Xu et al., 2011; Martínez de Morentin et al., 2014). Because the ani-
mals were maintained below thermoneutrality in these studies, how-
ever, it is difficult to distinguish REE from thermoregulatory EE.
Pronounced species differences also complicate EE research. For
example, glucocorticoids decrease brown-AT UCP-1 activity in mice,
but stimulate it in humans (Ramage et al., 2016).

Physical-activity EE. Female rats and mice are much more spontan-
eously active than their male conspecifics. Estrogens appear to act in
at least three brain areas to stimulate physical activity in mice and
rats. First, Fahrbach et al. (1985) found that estradiol injections into
the medial preoptic area increase physical activity in rats. Second,
Musatov et al. (2007) found that knockdown of Esr1 in the VMH
reduces physical activity in female rats. Using complementary site-
specific knockout and pharmacogenetic stimulation of Esr1, Correa
et al. (2015) demonstrated that VMH Esr1 neurons stimulate physical
activity in female, but not in male, mice and are a distinct subpopula-
tion not involved in controlling eating, brown-AT activation or fertil-
ity, as indicated by the maturation of corpora lutea. Finally, using site-
specific Esr1 knockout or knockdown, Xu et al. (2015) found that
Esr1 neurons in the medial nucleus of the amygdala also control phys-
ical activity, but do so similarly in male and female mice.

Physical activity-induced increases in EE affect activity of reward
regions of the brain in humans. For example, an escalating 6-month
daily treadmill regimen reduced insula responses to highly valued
food pictures (vs non-food) in overweight and obese subjects in the
fasted state, and this reduction in insula activation correlated with
reduction in fat mass and body weight (Cornier et al., 2012;
McFadden et al., 2013). Moreover, after an acute 60-minute exercise,
normal-weight subjects showed increased dorsolateral prefrontal
activity and reduced insula, putamen, orbitofrontal and hippocampal
activity to pictures of high-calorie food (vs non-food) (Evero et al.,
2012; Crabtree et al., 2014). These data suggest that exercise down-
regulates the food-related responses of cortical and subcortical
reward regions and upregulates the responses of prefrontal control
regions. How ovarian hormones influence the relation between exer-
cise and central food processing, however, remains largely unknown.
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Discussion
Obesity results from tonically greater energy intake than EE. This sim-
ple truth belies the facts that the controls of eating and EE, the devel-
opment of obesity, and the cardiometabolic consequences of the
amount and distribution of AT are each multifactorial processes involv-
ing genetic, epigenetic, metabolic, endocrine, psychological, social and
cultural factors, most of which are poorly understood. Because obesity
remediation is a worldwide health challenge and because current strat-
egies for weight reduction, other than bariatric surgery, have limited
efficacy, there is an urgent need for research aimed at developing, first,
further preventive and therapeutic strategies to achieve and maintain
healthy levels of adiposity, and second, to minimize cardiometabolic
and other risks of increased adiposity. Physiological sex differences are
important variables in these processes. This should be clear from the
marked sex differences in obesity prevalence, especially prevalence of
severe obesity (BMI ≥35 kg/m2).

We find that sex-specific physiological mechanisms, especially
estrogen-mediated effects, play significant roles in the development
of obesity in women as well as in its pathophysiological conse-
quences. Table II summarizes well-established and probable female-
specific obesity-related mechanisms, based on a wide variety of
human and animal research. Estrogens act in the brain, in the AT and
in other peripheral sites to affect: (i) the proximal causes of obesity,
i.e. relative increases in eating and decreases in EE, (ii) the amount
and regional distribution of AT and (iii) AT depot-specific patho-
physiological changes that lead to morbidity. As a result, estrogens
contribute both to male–female sex differences in obesity and obesity
co-morbidities and to changes in obesity and obesity co-morbidities
throughout women’s lives (Fig. 5). Therefore, understanding the full
impact of AT on women’s health will require consideration of hor-
monal status on each of these processes. Currently astonishingly few
data are available to address the normal physiology of these

processes, much less the effects of surgical and hormonal treatments
on female overweight and obesity or the pathophysiology of endo-
crine disorders with obesity as a frequent co-morbidity.

Many of the effects described in Table II may appear to be small.
For example, changes in food intake and EE through the menstrual
cycle are on average only a few hundred kcal/d. It should be realized,
however, that regular small changes in energy balance can lead to
substantial differences in body weight and, therefore, be of consider-
able physiological relevance. The best available estimates indicate
that an average increase of only 240 kcal/d in energy intake over EE
is sufficient to produce the mean increase in average body weight
that underlies the obesity epidemic in the USA (Hall et al., 2011).
Thus, the phenomena reviewed here are medically relevant and
worthy of increased basic and clinical research.

It is also clear that obesity-related physiological characteristics vary
widely across individual women. For example, as reviewed above,
although most obese women display the female-typical pattern of
relatively more gluteofemoral AT than central AT, some women
have male-typical, central AT distribution (Karpe and Pinnick, 2015).
The effects of menstrual cycle on flavor preferences also display great
inter-subject variability (Bartoshuk et al., 1994, 2006). Such variability
may arise for many reasons, ranging from psychological, social and
cultural influences on one side to genetic and epigenetic effects on
the other side (Shepard et al., 2009). Inter-subject variability together
with the modest effect sizes mentioned above is a great challenge for
research and an impediment to translation of research data into clin-
ical practice. Research can meet this challenge in a variety of ways.
Sample sizes should be based on power calculations taking effect size
and variability into account. In addition, special care is required in sex
research to consider subject characteristics, including age, race, alco-
hol use, stress levels or ‘allostatic load’, psychological traits such as
tendencies for emotional or binge eating, etc., that can alter the sex-
specific influences on AT physiology, eating and EE. In such cases,

Table II Sex differences and effects of estrogens on adiposity, eating and EE in women.

Adiposity

♦ Beginning at puberty, positive energy balance leads to female-typical AT distribution, i.e. greater accretion of gluteofemoral subcutaneous AT and less
accretion of visceral AT.

◊ Estrogens and adipocyte genes synergize to produce female-typical AT distribution.

◊ Loss of estrogens after menopause increases total adiposity and decreases lean body mass, and estrogenic HRT prevents this.

◊ Loss of estrogens after menopause partially reverses female-typical regional AT distribution, and estrogenic HRT prevents this.

Eating

♦ Increasing estrogen secretion through the follicular phase progressively reduces daily food intake.

○ Estrogens act on Esr1-expressing neurons in the cmNTS to increase CCK-mediated satiation; several other meal-control mechanisms may participate.

◊ Sex differences in gustatory sensory function affect eating.

♦ Genetic defects in brain α-MSH–MC4R signaling lead to a more marked overeating and obesity syndrome in females than males.

◊ Neuroimaging studies indicate that estrogens increase the activity of striatal dopaminergic neurons that processing of flavor hedonics.

◊ Neuroimaging studies indicate that estrogens increase lPFC processing of cognitive controls inhibiting eating.

EE

◊ Estrogens increase REE during the luteal phase.

○ Estrogens act in several brain sites to increase physical-activity EE in rats and mice.

Note: ♦ indicates well-established effects in humans with proven or likely clinical relevance, as reviewed in text; ○ indicates effects apparent effects in humans with as yet uncertain
clinical relevance; ◊ indicates effects established in animal research. Abbreviations: α-MSH, α-melanocyte-stimulating hormone; MC4R, melanocortin 4 receptor; lPFC, lateral pre-
frontal cortex; REE, resting energy expenditure; CCK, cholecystokinin; cmNTS, caudal medial nucleus of the solitary tract.
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appropriate statistical tools are helpful; for example, the multiple-
regression analyses described above that parse the separate effects
of aging and menopause on AT. Finally, researchers should avail
themselves of the many methodological improvements that can
increase the efficiency and meaning of pre-clinical and clinical sex-
related research (Rubinow and Schmidt, 2002; Keitt et al., 2003;
Becker et al., 2005; Greenspan et al., 2007; McCarthy et al., 2012).

The homogeneity of study groups with respect to reproductive
physiology status itself is another important issue that is often over-
looked, in part because findings in one domain fail to reach researchers
in other domains. This is one of many reasons that inter-disciplinary
investigator groups should be facilitated. Thus, postmenopausal study
participants should be characterized, menstrual cycles should be evalu-
ated more accurately in both obese and non-obese women, and
effects of the type and duration of HT, including the interval between
menopause and beginning HT, should be assessed. In women with sur-
gical menopause, the indication for ovariectomy and whether hysterec-
tomy was also done should be considered. In addition, as it is likely
that indications for gynecological surgery differ in obese and non-obese
women, due, for example to the higher prevalence of endometrial can-
cer and disturbed bleeding patterns in obese women (Madsen et al.,
2013; Crujeiras and Casanueva, 2015), associations between surgical
menopause and adiposity and AT distribution need to be explored.
A related issue is that reproductive physiology, in particular estrogens,
also may influence experimental outcomes via ‘off-target’ physiological
functions. For example, pharmacological data in women may be influ-
enced by differences in the bioactivity of many drugs due to sex differ-
ences in cytochrome p450 enzyme activity, effects of estrogens on
hepatic drug metabolism and effects of estrogens on plasma levels of
sex-hormone binding globulin and other globulins (Soldin and Mattison,
2009; Spoletini et al., 2012).

We acknowledge weaknesses of the review. We focused on the
classical AT depots, although excess adiposity is also associated with
increased hepatic, intramuscular and cardiovascular fat, which are

independently associated with cardiometabolic risk and appear to be
affected by hormonal status in women (Oosthuyse and Bosch, 2012;
El Khoudary et al., 2015; Marino and Jornayvaz, 2015). We focused
mainly on pre-clinical whole-body mechanistic studies, at the expense
of detailed reviews of cell- and tissue-level studies, genome-wide
gene association studies and epidemiological studies, despite the
many plausible mechanistic hypotheses that these suggest. We did
not consider pregnancy, although postpartum weight gain is an
important obesity risk (Gore et al., 2003). We did not consider
tissue-specific synthesis of estrogens in the brain or AT or production
of neurally active estrogen metabolites or other neurosteroids
(Azcoitia et al., 2011; Do Rego et al., 2012; Porcu et al., 2016).

In conclusion, current human and animal research supports signifi-
cant roles of ovarian hormones, especially estrogens, in the regulation
of female AT. These involve influences on eating, EE, AT amount,
regional AT distribution and the physiological function of adipocytes in
the various AT depots. In the coming years, improvements in research
design and analyses and the development of additional powerful meth-
odologies should lead to important progress across the range of
diverse influences of female physiology on adiposity. Continued animal
research should better characterize, for example, the site and nature
of estrogen receptors in the brain that affect eating and EE. Animal
research should also lead the way to identifying the downstream
molecular mechanisms responding to the activation of estrogen
response elements in the DNA, which contribute the hormone’s
effects on gluteofemoral AT and on most, if not all, of its neural
effects. A pressing issue in this connection is the better understanding
of the interaction of estrogenic and genetic controls leading to the
protective cardiometabolic effects of gluteofemoral AT. Similarly,
improvements in the design of fMRI studies should help specify the
neural information-processing mechanisms underlying sex-related
hedonic and cognitive controls of eating. Progress in these and other
research directions described here should lead to better understand-
ing of female obesity, including clinically challenging syndromes such as

Figure 5 Summary of the principal effects of estrogens, represented by relative estradiol concentrations, on eating, EE and AT through women’s
life cycles. Note: Estradiol concentrations and durations of epochs are not to scale. See text for details. EE, energy expenditure; AT, adipose tissue.
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PCOS, and, ultimately, to better strategies to maintain and improve
women’s health in the face of the obesity epidemic.
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