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Abstract TIAM-MACRO (TM) is a mathematical pro-
gramming growth model where the global multi-region
bottom-up engineering model TIAM is linked with a top-
down macroeconomic module MACRO to maximize an
inter-temporal utility function for a single representative
producer-consumer agent in each region. The size of TM
is such that non-linear (NL) optimal solutions cannot be
obtained even when the best available personal computers
and solvers are used. Therefore, an alternative is proposed
based on decomposition methods converting TM to a
small-size NL macroeconomic model, called TIAM-
MACRO Stand-Alone (TMSA), and where the energy
model TIAM is substituted by appropriate quadratic cost-
supply functions (QSF). The TIAM model and the TMSA
are calibrated to the demands estimated with a scenario
generator and are then solved iteratively. This report con-
centrates on the description and foundation of the algo-
rithm and explains why an adjusted production function
is needed to allow for sectoral income and price elasticities
that reproduce/calibrate the baseline scenario. It is shown
that the decomposed problem for a single region is cali-
brated and solved to exactly the same results as the original
problem in 3 min of computer time instead of 2–3 h with-
out decomposition. Also, for the first time, we are able to
solve the global TM model with 15 regions in 1.5 h apply-
ing the approach based on TMSA (in Windows 7, 64-bit
workstation, solution in a single thread).

Keywords Climate change .Macroeconomic impacts .

Hybridmodels . Engineeringmodels . Decomposition
methods

1 Introduction

The representation of the interactions between the energy,
economy, and environment has been one of the key motiva-
tions in model development in the last decades. The world
challenges of two energy crises, together with the environ-
mental issues of climate change and the expected depletion
of fossil fuel resources, inspired the development of appropri-
ate technological fixes together with methods that simulate
mathematically the interactions and feedbacks between ener-
gy, economy, and environment for policy assessments and
recommendations. As expected, different methods have been
developed, classified as optimization or computable general
equilibrium models. Our work is focusing on integrated
energy-economymodels with a comprehensive representation
of the energy system. The interested reader is recommended to
consult also recent publications [1, 2] discussing integrated
assessment models for climate policy analysis and a compre-
hensive review of relatively recent developments in the field
of integrated assessment models [3].

It has been demonstrated [4] that Bcomputable general
equilibrium models (CGE) following the Arrow-Debreu [5]
equilibrium theory can also be obtained from global
(economy-wide) optimization that implements Pareto opti-
mality and uses the equilibrium characterization introduced
by Negishi^. An example of such optimization models is-
MARKAL-MACRO [6] of the IEA-Energy Technology
Systems Analysis Project (ETSAP) family of models, which
has the form of mathematical programming and is a hybrid
optimization equilibrium model. According to Capros et al.
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[4], the computable and the optimization equilibrium models
are equivalent as the former, represented as a system of simul-
taneous equations, corresponds to the first-order optimum
conditions of the mathematical programming problem and
includes prices as model variables. Prices as variables enable
a straightforward representation of policy instruments and
market-related institutional characteristics and are easily solv-
able while large-scale non-linear programming (NLP) optimi-
zation models are difficult to solve.

According to the classification described by Böhringer and
Rutherford [7], the TM model is a simple hybrid model. The
authors also proposed to use the mixed complementary format
to represent in the same mathematical formulation the process
oriented technological models like The IntegratedMARKAL-
EFOMSystem (TIMES) with a multi-agent and multi-sectoral
general equilibrium model of households, government, and
firms and the interplay of the primary production factors.
Although the authors give some pedagogic examples of their
approach, such generalized formulations linking top-down
with bottom-up models are not yet developed. Nevertheless,
quite a few efforts are undertaken to integrate, based on soft
linking methods, TIMES with general equilibrium models
like, e.g., GEMINI-E3 [8], GEM-E3 [9], in order to capture
sectoral impacts in terms of welfare and labor losses as func-
tion of stringent environmental policies1.

The MARKAL-MACRO model and its latest incarna-
tion of TIMES-MACRO have been developed as part of
the Implementing Agreement of the IEA-ETSAP to as-
sess, among others, the whole energy system and climate
change mitigation options and policies on the regional,
national, or global level. They establish a link between
the process engineering models MARKAL [10] or TIME
S [11] and the macroeconomic module MACRO.
MACRO maximizes an inter-temporal utility function
for a single representative producer-consumer agent. Key
variables in this module are production factors such as
capital stock, labor, and energy services, which together
determine the total output of the economy based on their
relative prices. The module obtains an endogenous speci-
fication of demands for energy services as function of
economic activity and relative prices, the specification of
substitution effects between the production factors, and
the assessment of the macroeconomic implications of en-
ergy and environmental policies. The module is a reduced
form representation of economic equilibria with a help of
production functions. The consequence of the non-linear

functions used to represent the economy and the climate
module is the excessive computer time needed to find an
optimal solution.

Although large-scale versions of multi-regional models
like RMARKAL or TIMES integrated assessment model
(TIAM) [11–13] linked and driven by regional MACRO-
economic modules have been generated in the past, one
had difficulties to solve them even when the most power-
ful commercial solvers and state-of-the-art computers are
used. This situation appears already with the medium-size
multi-regional global MARKAL-MACRO (GMM) trade
model [14, 15] with five world regions and becomes even
worse when the other versions of the global regionalized
MARKAL (RMARKAL) or TIAM models are used that
have a detailed regional representation of 15 world re-
gions or more. On the other hand, the well-known
MESSAGE-MACRO model of International Institute for
Applied Systems Analysis (IIASA) [16] is an established
but similar model assessing global scenarios of climate
change mitigation. This large-scale model is successfully
and efficiently solved by decomposition methods. In this
paper, we describe the formulation and solution of TIAM-
MACRO following a decomposition and iterative ap-
proach similar to MESSAGE-MACRO. Another effort to
define decomposition methods solving multi-regional
MARKAL-MACRO models with global trade has been
undertaken by Büeler [17], described also in [18], but it
has taken hours of computing time to converge with the
consequence that the method was not followed further in
the ETSAP community.

In summary, this paper formulates the TIAM-MACRO
model as mathematical programming problem and applies
decomposition methods converting the model to an equivalent
macroeconomic module called TIAM-MACRO Stand-Alone
(TMSA) where the energy model TIAM is substituted by
appropriate quadratic cost-supply functions (QSF). The
TIAM model and TMSA are calibrated to the demands of a
scenario generator and solved iteratively.

The rest of the report is organized as follows: A simple
scenario generator (SG) is described in Section 2;
Section 3 explains the calibration procedure where the
demand decoupling factors (ddf) introduced in TMSA re-
produce the demand developments for the baseline case;
Section 4 defines the first single region TMSA model,
followed by an example where the baseline and the
CO2-constrained cases are solved using the algorithm;
Section 5 explains the multi-regional TMSA, the Negishi
[19] welfare function, and the iterative procedure based
on the sequential equilibrium algorithm of Rutherford
[20] while we discuss the precision obtained and the com-
puting time needed to solve the global and multi-regional
model under the carbon constraint. Finally, conclusions
are given in the last section.

1 The link of such models with TIMES goes in two directions; first, the
CGE model is used to generate a consistent set of drivers which together
with income and price elasticities define demands for energy services.
Then, a TIMES solution returns final energy flows per industrial sectors,
households, services, and transportation, over-writing the Leontief rela-
tions of the CGE model until all sectorial markets clear and equilibrium
prices are defined.
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2 The Scenario Generator

The scenario generator describes a scenario-storyline quanti-
fying key socioeconomic developments like population, eco-
nomic growth, lifestyle changes, energy intensity, policies to
favor technological innovations and global diffusion of tech-
nological change, degree of environmental policy legislation
introduced, and the dynamics towards urbanization (mega-
cities) and globalization versus decentralized developments.
Based on these scenario assumptions and eventually the use of
computable general equilibrium models for checking the in-
ternal consistency of the socioeconomic assumptions, TIAM
specifies the time-dependent demand for energy services.
Solving the partial equilibrium engineering model TIAM,
we satisfy the equilibrium demand for energy services and
their prices and complete the description of the energy system
development in consistency with the socioeconomic assump-
tions and the technological options that correspond to the
scenario-storyline as represented in the database of TIMES.

The ETSAP family of models defines demands that reflect
past trends and exogenous assumptions on population, GDP,
energy intensity, and technology penetration based on demand
drivers and their elasticities. As most of the efficiency im-
provement options are included in the database of the engi-
neering model explicitly, the specific selection of autonomous
efficiency improvement factors (aeeif) applied below reflects
mainly lifestyle changes. A simple but useful relation for de-
mand projections will be the following:

Dit

Di1
¼ drit

dri1

� �αi

⋅
Pit

Pi1

� �−σi
⋅ ∏
τ¼1;t

1−aeeif iτð Þyppτ ð1Þ

Here, Dit is the demand projection for commodity
(sector) i and period t; Di1 is the same demand for the
initial year of analysis calibrated to energy statistics for
the socioeconomic assumptions and representative effi-
ciencies of the end-use devices valid for this year; drit is
the demand driver; αi is the driver elasticity; σi is the price
elasticity; aeeifit is the autonomous efficiency improve-
ment factor per demand commodity; yppτ is the years per

period; and Pit
Pi1

is the index of relative price of demand for

commodity i. TIAM assumes different growth rates and
elasticities of demand drivers for each individual demand
category. Usually, some consistency checks of economic
assumptions and the demand projections generated based
on Eq. 1 must be completed. If for some regions the cali-
bration is not feasible for the same growth rates as the one
assumed, this indicates the existence of a basic inconsis-
tency in key assumptions and the need for revision. This is
done with the help of a growth model like MERGE [21] or
with a CGE model like GEM-E3. IIASA for example

adjusts projections to the results of MERGE while ETSA
P is using GEM-E3.

3 The Calibration Method

Next, we discuss the procedure applied to calibrate TM to the
demand projections and the macroeconomic assumptions for
both, the initial year and the time-dependent developments
such that energy statistics of the starting year together with
the demand and GDP projections of the scenario generator are
reproduced. Notice that only when this work is concluded
successfully, the model is ready to assess the implication of
environmental policies like, e.g., a carbon constraint.

3.1 Benchmarking the Production Function

The production function applied in TM is a constant elasticity
of substitution (CES) function between the value-added pairs
capital K and labor l and the demands for energy servicesD to
describe the economic output production Y, with α being the
capital value share. The CES production function allows sub-
stitution between the pair capital-labor and the energy services
when the relative prices change, (the time index is dropped for
simplicity):

Y ¼ a Kα⋅l 1 − αð Þ
� �ρ

þ
X

i

bi⋅Dρ
i

" #1=ρ

the CES elasticity is σ with ρ

¼ σ−1ð Þ=σ σ≠0; 1 ð2Þ

Applying the first-order optimality condition for the
starting year, we are able to benchmark the parameters a and
bi of this function and to derive the implicit demand function
which is valid when the maximization conditions are satisfied.
The unit change of the economic output per unit of energy
services is the price of services Pit, and this defines the implicit
demand function:

Dit ¼ Y t⋅ Pit=bið Þ−σ ð3Þ

With known values of demands and their prices from the
TIMES solution as well as the initial values of the macroeco-
nomic activities, one is able to benchmark the coefficients of
the production function.

3.2 Demand Decoupling Factors

The implicit demands for energy services based on Eq. 3
depend on the economic output, the price per unit of
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services Pit, and the CES elasticity of substitution and
have a unitary income elasticity not able to distinguish
for any structural change in economic growth and apply
the same Bprice^ elasticity for all demand categories. A
flexible production function can be specified in TM to
overcome these drawbacks when one takes into consider-
ation some annual demand decoupling factors (ddf) for
each demand category, e.g.:

DMit ¼ Dit⋅ ∏
τ¼1;t

1−ddf iτð Þypp≡Dit⋅Fit ð4Þ

The variable DMit refers to the demand constraints of
the energy model while Dit is the primary input factors of
production associated with the energy services. Finally,
the production function adopted in TM assumes a factor-
augmenting coefficient ddf that represents price-
independent technological progress like efficiency im-
provement as it decouples energy demand from economic
growth. The coefficients of the adopted production func-
tion can be estimated applying the first-order optimality
conditions in a CES formulation that explicitly considers
the ddf and the demand constraints of the energy model
TM:

Y t ¼ a Kt
α⋅lt 1 − αð Þ

� �ρ
þ
X

i

bi⋅ DMit=Fitð Þρ
" #1=ρ

and if f t≡a Kt
α⋅lt 1 − αð Þ

� �ρ
þ
X

i

bi⋅ DMit=Fitð Þρ

then Y ¼ f 1=ρ

ð5Þ

Applying the first-order optimality condition for each peri-
od, we get an implicit demand function able to benchmark the
equation at the starting year first and then the ddf. The implicit
demand function is as follows:

DMit ¼ F1−σ
it ⋅Y t⋅ Pit=bið Þ−σ ð6Þ

With known constants bi, one can specify the factor a based
on Eq. 5 as in the first year l1=1 and Fi1=1, then

a ¼ Y ρ
1−
X

i

bi⋅ DMi1ð Þρ
" #

= K
α⋅ρ

1

� � ð7Þ

In the following section, we describe how TM can be dis-
aggregated into an energy model (i.e., TIMES) and a macro-
economic module called TIMES-MACRO Stand-Alone
(TMSA) and explain how the ddf are calibrated.

4 TIMES-MACRO Stand-Alone

We explain the decoupling of TM into the linear energy
model TIMES and the NLP MACRO starting first with a
single region model before going to the more complex
regionalized global model with trade. In the subsequent
model formulations, we accept the energy demand projec-
tions of a scenario generator related to the socioeconomic
development and all other assumptions underlying the
baseline case. Then, a set of ddf consistent to this devel-
opment will be defined and the decomposition approach
will be explained.

4.1 The Specification of TMSA

The TMSA model includes only the macroeconomic
(non-linear) part of TM. Energy demand is usually a
function of price and income, Dit= f(Pit,Yt), but we apply
a quadratic supply-cost function to correlate demand to
the energy cost ECt substituting for the full energy mod-
el representation. The TMSA problem for a single region
is defined by maximizing the utility function U of the
region:

Max U ¼
X
t¼1;T

dfactt⋅lnCt that subjects to the following constraints :

ð8Þ

Y t ¼ a Kt
α⋅lt 1 − αð Þ

� �ρ
þ
X

i

bi⋅Dit
ρ

" #1=ρ
production function;

ð9Þ

Y t ¼ Ct þ I t þ ECt use of output ð10Þ

Kt ¼ 1 − δð Þyppt−1Kt−1

þ 1

2
yppt⋅I t þ yppt−1⋅I t−1 1−δð Þyppt−1½ � capital formation

ð11Þ

KT ⋅ grT þ δð Þ≤ IT terminal condition ð12Þ

ECt ¼ qat þ
X

i

qbit⋅DM
2
it quadratic supply function ð13Þ

DMit ¼ Dit⋅ ∏
τ¼1;t

1−ddf iτð Þyppτ demand decoupling function

ð14Þ
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where

Ct Annual consumption in period t (variable)
Yt Annual production in period t (variable)
Kt Total capital in period t (variable)
It Annual investments in period t (variable)
DMit Annual demand in TIMES for commodity i in period t

(variable)
Dit Annual energy service demand in MACRO for

commodity i in period t (variable)
ECt Annual energy system costs in MACRO in period t

(variable)
dfactt Discount factor per period for the utility function
a Production function constant (benchmarked)
bi Demand coefficient for demand commodity i

(benchmarked)
ddfit Demand decoupling factor for demand commodity i

in period t (calibration parameter)
yppt Number of years per period in period t
δ Capital depreciation rate
grt Growth rate in period t (calibration parameter)
α Capital value share
lt Annual labor growth index in period t (exogenous

parameter)
qat Constant term of the quadratic supply-cost function

(derived from TIMES)
qbit Coefficient for demand i of the quadratic supply-cost

function (derived from TIMES)

The TIMES demands DMit and the equilibrium price Pit
established in the solution of the partial equilibrium version of
the model describe the reference development and are corre-
lated with the production function demands for energy ser-
vices as defined in Eq. 14:

DMit ¼ Dit⋅ ∏
τ¼1;t

1−ddf iτð Þypp≡Dit⋅Fit ð14Þ

while the implicit demand function given in Eq. 6 can be
approximated using labor growth instead of the economic out-
put:

DMit ¼ Y t⋅F1−σ
it ⋅ Pit=bitð Þ−σ≅lt⋅F1−σ

it ⋅ Pit=bið Þ−σ ð15Þ

This equation allows for an initial approximation of the
parameters Fit (or ddf) in TIMES in agreement with the pro-
jections of the scenario generator as demands, labor growth,
and prices are known, once the model is solved. Therefore, an
iterative procedure is needed to estimate the equilibrium ddf
and to calibrate the baseline demands to the demands of the
scenario generator that was first introduced in Kypreos [22]
and is described by Remme and Blesl [23] in details.

In TMSA, we substitute the full-scale TIMES model
representing the ECt as a quadratic energy supply function
(Eq. 13) of demands such that two key variables of TMSA
are correlated to each other. As the energy system of both
models should be the same at the end of the iterations, the
partial derivative of ECt in respect to demands should be equal
to the shadow prices of demands Pti in TIMES. ∂ECt /∂Di=
Pit=2⋅qbit⋅DMitwhile the coefficients of Eq. 13 are related to
the activities of a TIMES solution as follows:

qbit ¼
Pit

2⋅DMit
and qat ¼ ECt−

X
i

qbit⋅DM
2
it ð16Þ

With all input data known, the TMSA model is solved
iteratively. The reporting routine after solving TMSA provides
new demands and labor growth and the growth of the gross
economic output. These parameters are used to determine a
new set of ddf and the QSF. With these new ddf, the QSF, and
the new labor growth rates, we reformulate the TMSA model
and a new run starts. This sequential execution of TIMES and
TMSA models adjusting demands and the ddf continues until
the demands calculated in TMSA sufficiently match the spec-
ified demands in TIMES and the GDP growth estimated in
TMSA matches the user-specified GDP projection. The num-
ber of iterations in the calibration routine can be controlled by
a tolerance error while the NLP solution is rapidly converging
as the size of the model is small.

4.2 First Applications of the Algorithm with MARK
AL-MACRO

We have proposed and applied for the first time the approach
using the MARKAL-MACRO (MM) model of Switzerland
[24] solving the model either directly or with the MACRO
Stand-Alone (MSA) version comparing the differences in
the obtained results. The first iteration with MSA for the base-
line case gives GDP errors in the order of 2 %, but adjusting
for the labor growth rates, we have an excellent model cali-
bration for the GDP development. The relative GDP error was
below 10–4, while the computation time is a fraction of
seconds.

After calibrating the baseline, we rerun the partial equilib-
rium MARKAL assuming for example a 20 % reduction of
carbon emissions and return to MSA. For that run, we keep
unchanged the calibration constants of the CES function, the
labor productivity, and the ddf as in the baseline but we define
a new cost-supply function to represent the equilibrium of the
energy system under the carbon constraint. Then, the MSA is
re-solved to estimate the GDP reduction. This is shown in
Fig. 1 concluding that the quadratic cost function approxi-
mates well the energy system behavior and the GDP losses.
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4.3 Recent Applications of the Algorithm for TM

After the formulation of the NLP multi-regional model of
TM, we have tested the algorithm for a single region
(USA) comparing computing times and solution accuracy.
Test results indicate that TMSA is able to identify the same
solution as TM being more than 100 times faster. The cal-
ibration run has taken less than 1 min solved with the new
TMSA algorithm versus 150 min for the full TM model.
Solving a CO2 cumulative constrained case has taken
2 min for TMSA versus 200 min for TM. Thus, it takes
3 min CPU time with a modern (but not a premium PC) to
solve the overall constrained problem (calibration and a
policy case) versus 350 min without applying the decom-
position method. This computer time requirements explain
also the unpopularity of TM model among the ETSAP
users. Figure 2 presents the errors in terms of GDP and
the GDP differences between the two solution approaches
for the baseline and the policy case. The calibration error
for the GDP in the baseline case is below 10–8. The error
for the GDP differences remains as shown in Fig. 2 and is
for sure well below 10–4 in both bases. Notice that this
level of accuracy was obtained after adjusting some
discounting discrepancies between TIMES linear program-
ming (LP) and TMSA.

5 Extension to Multi-regional TIAM-SA Model

In the following, we decompose the global and multi-regional
macroeconomic growth model TIAM-MACRO into a multi-
regional partial equilibrium energy problem, e.g., TIAM and a
multi-regional macroeconomic model called TMSAmaximiz-
ing the global welfare function.

5.1 The TIAM-MACRO Stand-Alone Formulation

For the new stand-alone MACRO formulation, the orig-
inal MACRO had to be generalized to support multiple
regions. In the multi-regional case, the model is solved
by maximizing the Negishi-weighted sum of regional
utilities, iterating between the stand-alone TM model
(TMSA) and the standard TIAM model. The TMSA
model explicitly considers only the trade of the
numéraire good, as the trade in all energy products is
defined in the TIAM model. The formulation of the
stand-alone MACRO implementation, applied in the de-
composition approach, can be described with the follow-
ing equations:

Max U ¼
XT
t¼1

X
r

nwtr⋅pwtt⋅dfactr;t⋅ln Cr;t

� � ð17Þ

Y r;t ¼ Cr;t þ I r;t þ ECr;t þ NTX nmrð Þr;t ð18Þ

Fig. 1 GDP change relative to
baseline in percent for a carbon
emission reduction constraint of
20 % below the 1990’s emission
levels. There is an increasing error
over time in MSA due to light
differences in discounting
methods between the two
versions of the models applied at
that time

Fig. 2 Errors in GDP calibration and in GDP differences for the baseline
and the policy case obtained for the single region TM model of the USA
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Y r;t ¼ ar⋅K
αr ⋅ρr
r;t ⋅l 1−αrð Þρr

r;t þ
X

i

br;i⋅DM
ρr
r;t;i

 ! 1
ρr

ð19Þ

Kr;tþ1 ¼ 1−δrð Þyppt ⋅Kr;t

þ 1

2
yppt⋅ 1−δrð Þyppt ⋅I r;t þ ypptþ1⋅I r;tþ1

� 	 ð20Þ

Kr;T ⋅ grr;T þ δr
� �

≤I r;T ð21Þ

DTr;t;i ¼ aeeifacr;t;i⋅DMr;t;i ð22Þ

ECr;t ¼ qar;t þ
X
k

qbr;t;k ⋅ DTr;t;i

� �2 þ ampr;t ð23Þ

X
r

NTX nmrð Þr;t ¼ 0 ∀ tf g ð24Þ

aeeifacr;t;i ¼ ∏
t

τ¼1
1−ddf r;τ ;i
� �yppt þ ypptþ1

2 ð25Þ

lr;1 ¼ 1 and lr;tþ1 ¼ lr;t⋅ 1þ growvr;t
� �yppt þ ypptþ1

2 ð26Þ

where

Cr,t Annual consumption in period t (variable)
Yr,t Annual production in period t (variable)
Kr,t Total capital in period t (variable)
Ir,t Annual investments in period t (variable)
DMr,t,i Annual demand in MACRO for commodity i

in period t (variable)
DTr,t,i Annual demand in TIMES for commodity i in

period t (variable)
ECr,t Annual energy system costs in MACRO in

period t (variable)
NTX(nmr)r,t Net exports of the numéraire good for region r,

in time period t (variable)
ar Production function constant for region r
αr Capital value share in region r
ampr,t Corrects for the annualized investment cost of

existing capacities in starting period
br,i Demand coefficient for demand

commodity i
aeeifacr,t,i Autonomous energy efficiency improvement

factor

ddfr,τ,i Demand decoupling factor (calibration
parameter)

δr Capital depreciation rate per region
dfactr,t Utility discount factor for period t and

region r
grr,T Growth rate in last period and region r

(calibration parameter)
lr,t Annual labor growth index in period t and

region r
nwtr Negishi weight for region r (defined

iteratively)
pwtt Period-length-dependent weights in the

utility function (these multipliers are
introduced in cases where the period
lengths are not equal)

qar,t Constant term per period of the quadratic
supply-cost function

qbr,t,i Coefficient for demand commodity i in
the quadratic supply-cost function, period
t

yppt Number of years per period in period t
ρr Substitution constant
T Number of periods in the model horizon

The primary differences in relation to the standard
MACRO formulation are the following:

& The use of Negishi weights in the objective function
when the model is multi-regional. Negishi iterations
balance for inter-temporal discounted trade deficits
of a region over the full time horizon of the
analysis;

& The inclusion of trade of the numéraire good NTX(nmr)r,t
in the production function;

& The introduction of the trade balance of the numéraire
good (Eq. 24);

& The replacement of the full TIAM LP cost accounting by
quadratic supply-cost functions for each demand com-
modity (Eq. 23).

5.2 The Standard TIMES LP Formulation

The second part of the decomposed model, the TIAM LP
model, uses the standard TIAM formulation, which can be
written in short as follows:

Min NPV ¼
XR
r¼1

X
y∈T

1 þ dr;y
� �re f−y⋅AECr;y ð28Þ

A⋅x ¼ b and x≥0 ð29Þ
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where

NPV Net present value of all energy system costs
T The set of years within the model horizon
ref Reference year for discounting
dr,y Capital discount factor for region r in year
AECr,y Annual energy system cost in region r and year y
A Coefficient matrix for all other model equations
x Vector of all model variables
b RHS constant vector for all other model equations
R Number of internal regions in the model

For a comprehensive treatment of the standard TIAM
LP formulation, see Loulou et al. (2005). In order to
make the LP formulation more analogous with the
MACRO objective function, the objective function of
the standard TIAM code can be rewritten in terms of
period-wise average annual costs and period-specific
discount factors, as follows:

Min NPV ¼
XR
r¼1

XT
t¼1

pvf r;t⋅ECr;t ð30Þ

where

pvfr,t Present value factor for period t in region r
ECr,t Period-wise average annual energy system costs in

region r and period t
T Number of periods t in the model horizon

5.3 General Specifications of the Decomposition Algorithm

5.3.1 Algorithm for Baseline Calibration

In both MACRO formulations, the use of the MACRO
mode for evaluating policy scenarios requires that the
demand decoupling factors (ddf) and labor growth rates
have first been calibrated with the baseline scenario
and the corresponding GDP growth projections. The
core part of the calibration procedure is the updating
of the demand decoupling factors and labor growth
rates between successive iterations of the calibration
algorithm.

In the TMSA implementation, all the basic mathematical
formulas for updating the demand decoupling factors and la-
bor growth rates are fully equivalent to those in the standard
TM formulation and have been explained previously and are
therefore omitted here. The reader is advised to consult the
documentation of Remme and Blesl [23] for the details on
those parts. The overall algorithm for calibrating the baseline
is given below:

& Step 1: Solve the baseline TIAM LP model:

(a) Minimize thepartial equilibriumLPobjective function:
Min ObjZ ¼ ∑

r;t
pvf r;t ⋅ECr;t

(b) Calculate quadratic supply-cost functions QSF for
the demands

& Step 2: Solve the stand-alone MACRO model (TMSA):

(c) Calculate new ddf and labor growth rates
(d) Maximize the total utility: U ¼ ∑

r;t
pwtt⋅dfactrt⋅

ln Y rt−I rt−ECrtð Þ
(e) If max. error in demands and GDP are above toler-

ance, go to Step 2c
& Step 3: If multi-regional, iterate TMSA with Negishi

weights

(f) Calculate initial Negishi weights nwtr
(g) Solve TMSAwith the modified objective:

U ¼
X
r;t

nwtr⋅pwtt⋅dfactrt⋅ln Yrt−I rt−ECrt−NTX nmrð Þrt
� �

(h) Calculate new nwtr, and if difference is above toler-
ance, update the ddf and labor growth rates, and go
back to Step 3g

& Step 4: Write final calibration parameters into the data
dictionary (DD) file of TIAM

5.3.2 Algorithm for Policy Scenarios

The main purpose of using TM is, of course, in running
policy scenarios. The multi-regional TIMES-MSA model
is solved by maximizing the Negishi-weighted sum of
regional utilities while we iterate between the two models
on the Negishi weights and demand levels in all periods,
until they converge. The decomposition algorithm
employed in TMSA for the policy scenarios can be
outlined as follows:

& Step 1: Solve the policy scenario TIAM LP model:

(a) Minimize the partial equilibrium LP objective func-
tion: Min ObjZ ¼ ∑

r;t
pvf r;t ⋅ECr;t

(b) Calculate the QSF. Read the calibrated ddf and labor
growth factors from the DD file that was saved when
the calibration run was terminated.

& Step 2: Solve TMSA (with Negishi loop if multi-regional)

(c) Calculate initial Negishi weights nwtr
(d) Maximize the total utility U: U ¼ ∑

r;t
nwtr⋅pwtt⋅

dfactrt⋅ ln Y rt−I rt−ECrt−NTX nmrð Þrt
� �
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(e) Calculate the new nwtr, and if change is above toler-
ance, go to Step 2d

(f) If the error in demand levels is below tolerance, go to
Step 3

(g) Update the LP demands according to the TMSA re-
sults and then resolve the standard TIMESmodel LP
using the ObjZ objective

(h) Calculate new QSF and go back to Step 2d
& Step 3: Calculate all model results and finish

The initial Negishi weights are set as being propor-
tional to the regional output share. To balance for inter-
temporal trade deficits, we need to properly adjust the
weights in an iterative approach following the sequential
optimization algorithm of Rutherford [20]. As the global
net exports, per traded product trd, are balanced to zero
at each time period, we can use the dual of this con-
straint to define the price of traded products πtrd,t. The
weights are adjusted using the normalized price of the
traded products, the trade excess, and the inverse of the
marginal regional utility, i.e.,

NWr ¼
X
t;trd

πtrd;t⋅NTXr;t;trd

þ
X

t

πnmr;t⋅Cr;t with nwtr

¼ NWr

.X
r

NWr ð31Þ

According to Rutherford, if the weights are inversely pro-
portional to the marginal utility per region, the solution is
Pareto optimal.

5.4 Climate Policy Test Runs

Two scenarios have been estimated for testing the algorithm
with a time horizon until 2060:

Case A: This case represents regional CO2 targets resem-
bling the long-term pledges of the Copenhagen ac-
cord; various countries have committed in the
COP15 and COP16 in Cancun.

Case B: A global target for radiative forcing is imposed that
should correspond to a concentration limit of
550 ppm CO2 equivalent.

These cases have been solved with the global TIAM-
MACRO model, and the key results of regional GDP
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Fig. 3 Regional GDP losses for the constrained cases for a moderate
(left) and a stringent policy case (right). The maximum losses take
place in the fast growing and developing economies of China (CHI)

and India (IND) and South Korea (SKO) and the energy-exporting
region of the former Soviet Union (FSU)

Table 1 Performance of the TMSA algorithm (2005–2060)

TIAM-MACRO Model size Run time (min)

Test model Equations Variables Calibration Policy run

TIAM-USA 305,00 52,800 1 2

TIAM-6R 199,800 508,300 4 28

TIAM-10R 318,200 678,100 7 59

TIAM-15R 457,600 864,000 11 89
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losses versus the baseline are presented in the subse-
quent Fig. 3.

5.5 Performance of the Algorithm

A few runs with TMSA have been executed to test the perfor-
mance and accuracy of the algorithm. Themost significant test
was the solution of TM for a single region as the code could be
solved with both model formulations while results are directly
comparable. The USA TMSA model validated well against
TM as the solution was identical. Interesting is to report the
computer time needed to solve the calibration and the policy
analysis case of TMSA as function of the number of regions
(see Table 1). As explained before, for a single region, the
model is calibrated in less time than 1 min while a policy case
takes 2 min, i.e., more than 100 times faster than TM. The
calibration time is increased to 4 and 7 min when the number
of regions increases to six and 15, respectively, while the
policy cases need 28 and 89 min with a time horizon of
2005 to 2060. The modest increase in computing time which
is almost linear with the number of regions is partly explained
as the whole TIAM model was defined when solving the
regional subset cases, with the excluded TIAM regions fixed
to the levels of the full 15 region solution.

During 2014 the model has been applied in the ETSAP
project imposing stringent concentration levels like those cor-
responding to the policy target of 2 ° C warming, confirming
the accuracy and performance of the algorithm for different
ranges of carbon emission reduction [25].

6 Final Conclusions

The large-scale general equilibrium growth model TM is solv-
able only when decomposed to the linear energy model TIAM
and a non-linear macroeconomic stand-alone model (TMSA)
where quadratic supply functions substitute for the energy
system represented in TIAM. Associated with that problem
is the need to develop a scenario generator that allows elabo-
rating simple but consistent scenarios for TIAM.

We have presented herein the methodology that allows
projecting demands for energy services for a postulated set
of macroeconomic assumptions, lifestyle changes, and energy
intensities with a help of a scenario generator based on sector-
al drivers and income and price elasticities. Then, we ex-
plained why the demand decoupling factors (ddf) need to be
defined for TIAM-MACRO as this model uses unitary income
elasticity and the same elasticity of substitution across all sec-
tors. The model can be calibrated such that the postulated
GDP growth and the demands for energy services assumed
in the scenario generator are reproduced in TMSA. This is
done with a minimum investment in respect of computation
time. We have also presented the theoretical foundation of this

calibration as well as the decomposition algorithm and the
execution times needed for low tolerance errors obtained dur-
ing the calibration itself and when applying the model for a
policy case. This is done for a single country model first and
then, after the approach is extended to the multi-regional TM
model, for the global and regionalized model.

Although the quadratic supply-cost function is a simple and
approximate meta-model that substitutes for the full-scale sup-
ply model and the marginal costs for some demand categories
are sensitive to small demand changes, the algorithm is able to
give an exact calibration for the baseline case followed by
good results for the carbon-constrained case as the tolerance
error in demand evaluation is below 10–4. The prerequisite for
a successful application of the QSF is to have all the important
and linearized constraints determining the restructuring of the
energy system included in the linear model TIAM. This is
because the quadratic formulation of these functions allows
for small changes around the demand variables when
searching for optimal solutions and converges in small steps.
Finally, the single region TM model run is reduced to 2 min
when decomposition is applied while the direct method for
calibration and policy analysis needs a few hours of computer
time. Also, for the first time, we are able to solve the global
TIAM-MACRO model with 15 regions in 1.5 h applying the
approach based on TMSA (in Windows 7, 64-bit workstation,
solution in a single thread).
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