3D ActionSLAM: wearable person tracking in multi-floor environments

Hardegger, Michael ; Roggen, Daniel ; Tröster, Gerhard

In: Personal and Ubiquitous Computing, 2015, vol. 19, no. 1, p. 123-141

Add to personal list
    Summary
    We present 3D ActionSLAM, a stand-alone wearable system that can track people in previously unknown multi-floor environments with sub-room accuracy. ActionSLAM stands for action-based simultaneous localization and mapping: It fuses dead reckoning data from a foot-mounted inertial measurement unit with the recognition of location-related actions to build and update a local landmark map. Simultaneously, this map compensates for position drift errors that accumulate in open-loop tracking by means of a particle filter. To evaluate the system performance, we analyzed 23 tracks with a total walked distance of 6,489 m in buildings with up to three floors. The algorithm robustly (93% of runs converged) mapped the areas with a mean landmark positioning error of 0.59m. As ActionSLAM is fully stand-alone and not dependent on external infrastructure, it is well suited for patient tracking in remote health care applications. The algorithm is computationally light-weight and runs in real-time on a Samsung Galaxy S4, enabling immediate location-aware feedback. Finally, we propose visualization techniques to facilitate the interpretation of tracking data acquired with 3D ActionSLAM.