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Abstract We present a Bayesian approach for making statistical inference about the accuracy
(or any other score) of two competing algorithms which have been assessed via cross-
validation on multiple data sets. The approach is constituted by two pieces. The first is a
novel correlated Bayesian ¢ test for the analysis of the cross-validation results on a single
data set which accounts for the correlation due to the overlapping training sets. The second
piece merges the posterior probabilities computed by the Bayesian correlated ¢ test on the
different data sets to make inference on multiple data sets. It does so by adopting a Poisson-
binomial model. The inferences on multiple data sets account for the different uncertainty
of the cross-validation results on the different data sets. It is the first test able to achieve this
goal. It is generally more powerful than the signed-rank test if ten runs of cross-validation
are performed, as it is anyway generally recommended.

Keywords Bayesian hypothesis tests - Signed-rank test - Cross-validation -
Poisson-binomial - Hypothesis test - Evaluation of classifiers

1 Introduction

A typical problem in machine learning is to compare the accuracy of two competing classifiers
on a data set D. Usually one measures the accuracy of both classifiers via k-folds cross-
validation. After having performed cross-validation, one has to decide if the accuracy of the
two classifiers on data set D is significantly different. The decision is made using a statistical
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hypothesis test which analyzes the measures of accuracy yielded by cross-validation on the
different folds. Using a ¢ test is however a naive choice. The ¢ test assumes the measures of
accuracy taken on the different folds to be independent. Such measures are instead correlated
because of the overlap of the training sets built during cross-validation. As a result the 7 test
is not calibrated, namely its rate of Type I errors is much larger than the nominal size! o of
the test. Thus the ¢ test is not suitable for analyzing the cross-validation results (Dietterich
1998; Nadeau and Bengio 2003).

A suitable approach is instead the correlated” ¢ test (Nadeau and Bengio 2003), which
adjusts the 7 test accounting for correlation. The statistic of the correlated ¢ test is composed
by two pieces of information: the mean difference of accuracy between the two classifiers
(computed averaging over the different folds) and the uncertainty of such estimate, known
as the standard error. The standard error of the correlated 7 test accounts for correlation,
differently from the ¢ test. The correlated ¢ test is the recommended approach for the analysis
of cross-validation results on a single data set (Nadeau and Bengio 2003; Bouckaert 2003).

Assume now that the two classifiers have assessed via cross-validation on a collection of
datasets D = {Dy, Dy, ..., Dg}. One has to decide if the difference of accuracy between the
two classifiers on the multiple data sets of D is significant. The recommended approach is the
signed-rank test (Demsar 2006). It is a non-parametric test. As such it is derived under mild
assumptions and is robust to outliers. A Bayesian counterpart of the signed-rank test (Benavoli
et al. 2014) has been also recently proposed. However the signed-rank test considers only the
mean difference of accuracy measured on each data set, ignoring the associated uncertainty.

Dietterich (1998) pointed out the need for a test able to compare two classifier on multiple
data sets accounting for the uncertainty of the results on each data set. Tests dealing with
this issue have been devised only recently. Otero et al. (2014) proposes an interval-valued
approach to considers the uncertainty of the cross-validation results on each data set. When
working with multiple data sets, the interval uncertainty is propagated. In some cases the
interval becomes wide, preventing to achieve a conclusion.

The Poisson-binomial test (Lacoste et al. 2012) performs inference on multiple data sets
accounting for the uncertainty of the result on each data set. First it computes on each data set
the posterior probability of the difference of accuracy being significant; then it merges such
probabilities through a Poisson-binomial distribution to make inference on D. Its limit is that
the posterior probabilities computed on the individual data sets assume that the two classifiers
have been compared on a single test set. It does not manage the multiple correlated test
sets produced by cross-validation. This limits its applicability, since classifiers are typically
assessed by cross-validation.

To design a test able to perform inference on multiple data sets accounting for the uncer-
tainty of the estimates yielded by cross-validation is a challenging task.

In this paper we solve this problem. Our solution is based on two main steps. First we
develop a Bayesian counterpart of the correlated ¢ test (its posterior probabilities are later
exploited to build a Poisson-binomial distribution). We design a generative model for the
correlated results of cross-validation and we analytically derive the posterior distribution of
the mean difference of accuracy between the two classifiers. Moreover, we show that for a
particular choice of the prior over the parameters, the posterior distribution coincides with
the sampling distribution of the correlated ¢ test by Nadeau and Bengio (2003). Under the

I Consider performing many experiments in which the data are generated under the null hypothesis. A test

executed with size « is correctly calibrated if its rate of rejection of the null hypothesis is not > «.

2 Nadeau and Bengio (2003) refer to this test as the corrected t test. We adopt in this paper the more informative
terminology of correlated t test.
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matching prior the inferences of the Bayesian correlated ¢ test and of the frequentist correlated
t test are numerically equivalent. The meaning of the inferences is however different. The
inference of the frequentist test is a p value; the inference of the Bayesian test is a posterior
probability. The posterior probabilities computed on the individual data sets can be combined
to make further Bayesian inference on multiple data sets.

After having computed the posterior probabilities on each individual data set through the
correlated Bayesian ¢ test, we merge them to make inference on D, borrowing the intuition
of the Poisson-binomial test (Lacoste et al. 2012). This is the second piece of the solution.
We model each data set as a Bernoulli trial, whose possible outcomes are the win of the first
or the second classifier. The probability of success of the Bernoulli trial corresponds to the
posterior probability computed by the Bayesian correlated ¢ test on that data set. The number
of data sets on which the first classifier is more accurate than the second is a random variable
which follows a Poisson-binomial distribution. We use this distribution to make inference
about the difference of accuracy of the two classifiers on D. The resulting approach couples
the Bayesian correlated ¢ test and the Poisson-binomial approach; we call it the Poisson test.

It is worth discussing an important difference between the signed-rank and the Poisson
test. The signed rank test assumes the results on the individual data sets to be i.i.d. The
Poisson test assumes them to be independent but not identically distributed, which can be
advocated as follows. The different data sets Dy, ..., D, have different size and complexity.
The uncertainty of the cross-validation result is thus different on each data set, breaking the
assumption of the results on different data sets to be identically distributed.

We compare the Poisson and the signed-rank test through extensive simulations, per-
forming either one run or ten runs of cross-validation. When we perform one run of
cross-validation, the estimates are affected by important uncertainty. In this case the Poisson
behaves cautiously and it is less powerful than the signed-rank test. When we perform ten
runs of cross-validation, the uncertainty of the cross-validation estimate decreases. In this
case the Poisson test is generally more powerful than the signed-rank test. To perform ten
runs rather than a single one run of cross-validation is anyway recommended to obtain robust
cross-validation estimates (Bouckaert 2003). The signed-rank test does not account for the
uncertainty of the estimates and thus its power is roughly the same whether one or ten runs
of cross-validation are performed.

Under the null hypothesis, the Type I errors of both test are correctly calibrated in all the
investigated settings.

The paper is organized as follows: Sect. 2 presents the methods for inference on a single
data set; Sect. 3 presents the methods for inference on multiple data set; Sect. 4 presents the
experimental results.

2 Inference from cross-validation results on a single data set
2.1 Problem statement and frequentist tests

We want to statistically compare the accuracy of two classifiers which have been assessed
via m runs of k-folds cross-validation. We provide both classifiers with the same training and
test sets and we compute the difference of accuracy between the two classifiers on each test
set. This yields the differences of accuracy x = {x1, x2, . .., x,}, where n = mk. We denote
the sample mean and the sample variance of the differences as X and 6.

A statistical test has to establish whether the mean difference between the two classifier is
significantly different from zero, analyzing the vector of results x. Such results are correlated
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because of the overlapping training sets. Nadeau and Bengio (2003) prove that there is no
unbiased estimator of such correlation. They assume the correlation to be p = "nﬁ, where
nye, Ny and nyyy denote the size of the training set, of the test set and of the whole available
data set. Thus ns,; = ns + nse. The statistic of the correlated ¢ test is:

x x

= _ | M
Jr (b)) o (k)

Its sampling distribution is a Student with n — 1 degrees of freedom. The correlation heuristic
has proven to be effective and the correlated ¢ test is much closer to a correct calibration than
the standard ¢ test (Nadeau and Bengio 2003). The correlation heuristic of Nadeau and Bengio
(2003) is derived assuming random selection of the instances which compose the different
training and test sets used in cross-validation. Under random selection the different test sets
overlap. The standard cross-validation yields non-overlapping test sets. This is also the setup
we consider in this paper. The correlation heuristic of Nadeau and Bengio (2003) is anyway
effective also with the standard cross-validation (Bouckaert 2003).

The denominator of the statistics is the standard error, namely the standard deviation of
the estimate of X. The standard error increases with 2, which typically increases on smaller
data sets. On the other hand the standard error decreases with n = mk. Previous studies
(Kohavi 1995) recommend to set the number of folds to k = 10 to obtain a reliable estimate
from cross-validation. This has become a standard choice. Having set k = 10, one can further
decrease the standard error of the test by increasing the number or runs m. Indeed Bouckaert
(2003) and (Witten et al. 2011, Sec. 5.3) recommend to perform m = 10 runs of ten-folds
cross-validation.

The correlated ¢ test has been originally designed to analyze the results of a single run of
cross-validation. Indeed its correlation heuristic models the correlation due to overlapping
training sets. When multiple runs of cross-validation are performed, there is an additional
correlation due to overlapping test sets. We are unaware of approaches able to represent also
this second type of correlation, which is usually ignored.

2.2 Bayesian ¢ test for uncorrelated observations

Before introducing the Bayesian ¢ test for correlated observations, we briefly discuss the
Bayesian inference in the uncorrelated case. Assume we have a vector of independent and
identically distributed observations of a variable X, i.e., x = {x1, x2, ..., x,}, and that we
aim to test if the mean of X is positive. In the Bayesian ¢ test we assume that the likelihood
of the observations is Normal with unknown mean p and and unknown precision v (the
precision is the inverse of variance v = 1/0°2):

n
pxlp,v) =[N, 1/v). 2
i=1
Our aim is to compute the posterior of p (here v is a nuisance parameter). A natural prior
for w, v is the Normal-Gamma distribution (Bernardo and Smith 2009, Chap. 5), which is
conjugate with the likelihood model:

ko
p(i, vipo, ko, a, b) = N (u; 10, 7) G (v;a,b) = NG(u, v; o, ko, a, b).

It is the product of a Normal distribution over p (with precision v/kg proportional to v)
and a Gamma distribution over v and depends on four parameters (o, ko, a, b. Updating
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Table 1 Posterior parameters for

Parameter  Analytical expression Under matching
the uncorrelated case .
prior
ko+n¥ =
tn Mo/l 0+nx %
%-Fn
1 1
kn I =
%‘Fn n
—1
n ats T
1 5 2 %"@_’40)2 1 5 -2
by, b+jzi:1(x,- X))+ jzizl(x,-—x)

2<%+n>

the prior-normal gamma with the normal likelihood, one obtains a posterior normal-gamma
joint distribution with updated parameters (i, ky,, a,, b,), whose values are reported in first
column of Table 1 (see also Murphy 2012, Chap. 4). Marginalizing out the precision from
the Normal-Gamma posterior one obtains the posterior marginal distribution of the mean,
which follows a Student distribution:

. bukn
p(pL|x,,u0,k(),a,b):St ,uszan’/fbns a .

n

Then, the Bayesian ¢ test for the positiveness of ju is:

e bnky Hn
P(/’L>O|xa M05k05a7b):/ St M;zanv Mn, — dM:7—2a,, bk > 1 -,
0 An nkn

3

where T, (z) denotes the cumulative distribution of the standardized Student distribution
with 2a, degrees of freedom computed at z. By choosing o« = 0.05, we can assess the
positivity of p with posterior probability 0.95. If the prior parameters are set as follows: {ip =
0,ko — 00,a = —1/2,b = 0}, from Eqn.(3) it follows that P(u > Olx, o, ko, a,b) =
1 — p, where p is the p value of the frequentist ¢ test. See Murphy 2012, Chap. 4 for
further details on the correspondence between frequentist and Bayesian ¢ tests. In fact, for
these values, the posterior reduces to St (pL; n—1,%, 02 / n), as shown also in the second
column in Table 1. Therefore, if we consider this matching (improper) prior, the Bayesian
and frequentist ¢ test coincide.

2.3 A novel Bayesian ¢ test for correlated observations

Assume now that the observations of the variable X, x = {x1, x2, ..., x,}, are identically
distributed but dependent. In particular, consider the case in which the observations have the
same mean /4, the same precision v and are equally correlated with each other with correlation
p > 0. This is for instance the case in which the n observations are the n differences of
accuracy among two classifiers yielded by cross-validation. The data generating process can
be modelled as follows:

x=Hu+v “

where H,,,.; is a vector of ones (H,;, = 1.x1) and v is a noise vector with zero mean and
covariance matrix X,,, patterned as follows: each diagonal elements equals cr=1 /v; each
non-diagonal element equals po 2. This is the so-called intraclass covariance matrix (Press
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2012). We define ¥ = o2M, where M is the (n x n) correlation matrix. As an example,
with n = 3 we have:
2 2 2 1

o~ po~ po b P
Y =|po? o2 po? M=|p 1 P (5)
po? po? ol p P 1

To allow for X to be invertible and positive definite, we require 6> > 0 and 0 < p < 1.
The correlation among the cross-validation results is positive anyway (Nadeau and Bengio
2003). These two conditions define the admissibility region of the parameters.

In the Bayesian ¢ test for correlated observations, we assume the noise vector v to be
follow a multivariate Normal distribution: v ~ MVN(0, X'). The likelihood corresponding
to (4) is:

s, 5) = =2 (-3 -Hw'2Z '(x —Hp)
P @n) 2 T3]
Equation (6) reduces to Eq. (2) in the uncorrelated case (p = 0). Asin the previous section,

our aim is to test the positivity of u. To this end, we need to estimate the model parameters:
w, 02 and p.

6)

Theorem 1 The maximum likelihood estimator of (11,02, p) from the model (6) is not asymp-
totically consistent: it does not converge to the true value of the parameters as n — oo.

The proof is given in “Appendix”. By computing the derivatives of the likelihood w.r.t.
the parameters, it shows that the maximum likelihood estimate of 1, o2 is /i = 1 4 D1 Xi
and, respectively, 62 = tr(M~'Z), where Z = (x — H2)(x — H2)” . Thus 62 depends on
p through M. By plugging these estimates into the likelihood and computing the derivative
w.r.t. p, we show that the derivative is never zero in the admissibility region. The derivative
decreases with p and does not depend on the data. Hence, the maximum likelihood estimate
of p is p = 0 regardless the observations. When the number of observations n increases,
the likelihood gets more concentrated around the maximum likelihood estimate. Thus the
maximum likelihood estimate is not asymptotically consistent whenever p # 0. This will
also be true for the Bayesian estimate, since the likelihood dominates the conjugate prior for
large n. This means that we cannot consistently estimate all the three parameters (1, o2, p)
from data.

2.4 Introducing the correlation heuristic

To enable inferences from correlated samples we renounce estimating p from data. We adopt
instead the correlation heuristic of (Nadeau and Bengio 2003), setting p = ”r”t where n;,
and ny,, are the size of test set and of the entire data set. Having fixed the value of p, we can

derive the posterior marginal distribution of .

Theorem 2 Choose p(u, v|io, ko, a, b) = NG (i, v; no, ko, a, b) as joint prior over i, v
Update it with the likelihood of Eq. (6). The posterior distribution of the parameters is
p(u, vIX, wo, ko, a, b, p) = NG(u, v; iy, kn, dn, b n) and the posterior marginal over | is
a Student distribution:

. . byky
p(IX, o, ko, a, b, p) = St w; 2ay, fin, — |- 7

an

The expression of the parameters and their values are reported in Table 2.
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Table 2 Posterior parameters for the correlated case

Parameter Analytical expression Under matching prior
T a1 Ko
N H M™'x+ ¢ PR
Mn 0 M—H 1 n
M + %
k —_— 1
" H M- TH HTM~TH
- n n n—1
a a+ -
" 2 2

2
N %((x—Hﬁ)TM_l(X—H/))-‘er—l;—g

1 AT ag—1 ~
L —HY M x ~H)
—22HT M + 32 (HTM—1H+ %))

Corollary 1 Under the matching prior (;uo = 0, kg — 0o, a = —1/2, b = 0), the posterior
marginal distribution of u simplifies as:

|
St (u; n—1,%, (f n L) &2) 8)
n l—p

n . n 2
where x = % and 6% = ZL::1(+X) and, therefore,

Pli > Olx. o, ko a. b p) = Tyt | ———— ©)
o P + ﬁ

The proof of both the theorem and corollary are given in “Appendix”. Under the matching
prior the posterior Student distribution (9) coincides with the sampling distribution of the
statistic of the correlated ¢ test by Nadeau and Bengio (2003). This implies that given the
same test size «, the Bayesian correlated ¢ test and the frequentist correlated ¢ test take the
same decisions. In other words, the posterior probability P(u > O|x, wo, ko, a, b, p) equals
1 — p where p is the p value of the correlated ¢ test.

3 Inference on multiple data sets

Consider now the problem of comparing two classifiers on g different data sets, after having
assessed both classifiers via cross-validation on each data set. The mean difference of accuracy
on each data set are stored in vector X = {X1, X2, ..., X4 }. The recommended test to compare
two classifiers on multiple data sets is the signed-rank test (Demsar 2006).

The signed-rank test assumes the X;’s to be i.i.d. and generated from a symmetric distribu-
tion. The null hypothesis is that the median of the distribution is M. When the test accept the
alternative hypothesis it claims that the median of the distribution is significantly different
from M.

The test ranks the X;’s according to their absolute value and then compares the ranks of
the positive and negative differences. The test statistic is:

= > n(mh= D, T

{i: x;>0} I<i<j=n
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where r; (|x;]) is the rank of |x;| and

N {1 if % =%,

1o otherwise.

For a large enough number of samples (e.g., ¢ > 10), the sampling distribution of the statistic
under the null hypothesis is approximately normal with mean 1/2. Being non-parametric,
the signed-rank test does not average the results across data sets. This is a sensible approach
since the average of results referring to different domains is in general meaningless. The test
is moreover robust to outliers.

A limit of the signed-rank test is that does not consider the standard error of the Xx;’s. It
assumes the samples to be i.i.d and thus all the X;’s to have equal uncertainty. This is a ques-
tionable assumptions. The data sets typically have different size and complexity. Moreover
one could have performed a different number of cross-validation runs on different data sets.
For these reasons the X;’s typically have different uncertainties; thus they are not identically
distributed.

3.1 Poisson-binomial inference on multiple data sets

Our approach to make inference on multiple data sets is inspired to the Poisson-binomial
test (Lacoste et al. 2012). As a preliminary step we perform cross-validation on each data
set and we analyze the results through the Bayesian correlated 7 test. We denote by p; the
posterior probability that the second classifier is more accurate than the first on the ith data
set. This is computed according to Eq.(9): p; = p(u; > 0|x;, po, ko, a, b, p). We consider
each data set as an independent Bernoulli trial, whose possible outcome are the win of the
first or of the second classifier. The probability of success (win of the second classifier) of
the ith Bernoulli trial is p;.

The number of data sets in which the second classifier is more accurate than the first clas-
sifier is a random variable X which follows a Poisson-binomial distribution (Lacoste et al.
2012). The Poisson-binomial distribution is a generalization of the binomial distribution in
which the Bernoulli trials are allowed to have different probability of success. This proba-
bilities are computed by Bayesian correlated ¢ test and thus account both for the mean and
the standard error of the cross-validation estimates. The probability of success is different
on each data set, and thus the test does not assume the results on the different data sets to be
identically distributed.

The cumulative distribution function of X is:

k

k
PX<k=>¢eb=> > [Ir]]O0-r> (10)
i=0

i=0 \AeF;icA i€AC

where £(i) = P(X = i), F; is the set of all subsets of i integers that can be drawn from
{1,2,3,..., q}and A¢ is the complement of A: A° = {1, 2, 3, , g}\ A. Hong (2013) discusses
several methods to exactly compute the Poisson-binomial distribution. We adopt a sampling
approach. We simulate ¢ biased coin, one for each data set. The bias of the ith coin is
pi. We simulate the ¢ coins 100,000 times. We count the proportion of times in which
x=1,x=2,..., X = g out of the 100,000 trials. This yields a numerical approximation
of the Poisson-binomial distribution.

The Poisson binomial test declares the second classifier significantly more accurate than
the first classifier if P(X > ¢/2) > 1 — «, namely if the probability of the second classifier
being more accurate than the first on more than half the data sets is larger than 1 — «.
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Table 3 Example of comparison

R . . Dataset i i
of two classifiers in multiple atasets Hi %
datasets Case 1 Di.....Ds 0.1 0.05

D¢, ...,Dio —0.1 0.05
Case 2 Dy, ..., Ds 0.1 0.05
Ds. ..., Do ~0.1 0.15
1200 b 1000
1000 800 [
800 600 |
600
400
400
200 | 200 ¢
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
(@) (b)
1000 ] 500 — ]
800 400
600 || 300 b
400 200
200 100 |
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0
(© (d)

Fig. 1 Distribution of P(X > ¢/2) for the Poisson test and distribution of the p values for the Wilcoxon
signed-rank test in the two cases. a Wilcoxon case 1. b Wilcoxon case 2. ¢ Poisson case 1. d Poisson case 2

3.2 Example

In order to understand the differences between the Poisson test and the Wilcoxon signed-rank
test, consider the artificial example of Table 3.

In case 1, classifier A is more accurate than classifier B on five data sets. Classifier B is
more accurate than classifier A on the remaining five data sets. Parameter 1; and o; represent
the mean and the standard deviation of the actual difference of accuracy among the two
classifiers on each data set. The absolute value of u; is equal on all data sets and o; is equal
on all data sets.

In case 2, the mean differences p; are the same as in case 1, but the standard deviation in
De, ..., D is three times larger. We have generated observations as follows

xji ~ N (ni.07).

fori =1, ..., 10 (ten-folds cross-validation) and for the j = 1, ..., 10 datasets (here p = 0
but the results are similar if we consider a correlated model). Figure 1 shows the distribution
of P(X > q/2) (classifier A is better than B) for the Poisson test and the distribution of the

@ Springer



294 Mach Learn (2015) 100:285-304

p values for the Wilcoxon signed-rank test in the two cases (computed for 5000 Monte Carlo
runs). It can be observed that the distribution for Wilcoxon signed-rank test is practically
unchanged in the two cases, while the distribution of the Poisson test is very different. The
Poisson test is thus able to distinguish the two cases: it takes into account the variance of
the mean accuracy in the ten-folds cross-validation of each dataset, while the Wilcoxon
signed-rank test does not.

4 Experiments

The calibration and the power of the correlated ¢ test have been already extensively studied
by (Nadeau and Bengio 2003; Bouckaert 2003) and we refrain from doing it here. The same
results apply to the Bayesian correlated ¢ test, since the frequentist and the Bayesian correlated
t test take the same decisions. The main result of such studies is that the rate of Type I errors
of the correlated ¢ test is considerably closer to the nominal test size « than the rate of Type I
error of the standard ¢ test. In the following we thus present results dealing with the inference
on multiple data sets.

4.1 Two classifiers with known difference of accuracy

We generate the data sets sampling the instances from the Bayesian network C — F, where
C is the binary class with states {co, c1} and F is a binary feature with states { fo, f1}. The
parameters are: P(co) = 0.5; P(folco) = 6; P(folc1) = 1 — 6 with 6§ > 0.5. We refer to
this model with exactly these parameters as BN.

Notice that if the BN model is used both the generate the instances and to issue the
prediction, its expected accuracy is> 6.

Once a data set is generated, we assess via cross-validation the accuracy of two classifiers.
The first classifier is the majority predictor also known as zeroR. It predicts the most frequent
class observed in the training set. If the two classes are equally frequent in the training set,
it randomly draws the prediction. Its expected accuracy is thus 0.5.

The second classifier is BN, namely the Bayesian network C — F with parameters
learned from the training data. The actual difference of accuracy between the two classifiers
is thus approximately §,. = 6 — 0.5. To simulate the difference of accuracy é,.. between
the two classifiers we set 6 = 0.5 + 4. in the parameters of the BN model. We repeat
experiments using different values of 8.

We perform the tests in a one-sided fashion: the null hypothesis is that zeroR is less or
equally accurate than BN. The alternative hypothesis is that BN is more powerful than
zeroR. We set the size of both the signed rank and the Poisson tests to o = 005. We measure
the power of a test as the rate of rejection of the null hypothesis when 84, > 0.

We present results obtained with m = 1 and m = 10 runs of cross-validation.

4.2 Fixed difference of accuracy on all data sets

As a first experiment, we set the actual difference of accuracy §,.. among the two classifiers
as identical on all the ¢ data sets. We assume the availability of ¢ = 50 data sets. This is a

3 The proof is as follows. Consider the instances with F = f{. We have that P(cg|fo) = 6 > 0.5, so the
model always predicts cq if F = fp. This prediction is accurate with probability 6. Regarding the instances
with F = f1, the most probable class is c1. Also this prediction is accurate with probability 6. Overall the
classifier has probability 6 of being correct.
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bace equal on all data sets

Power

Cauchy-distributed 6g.cc

1 T T I
—m— Poisson (m=10)
0.8 |- .
- ®- signed-rank (m=1)
E 0.6 |- —e— signed-rank (m=10)
£ 04| -®- Poisson (m=1)
0.2
e
0 1 2 3 4 5
) 10-2

Fig.2 Power and calibration of the tests over multiple data sets. The plots share the same legend. The Poisson
test has squared marks. The signed-rank test has circle marks. Dashed lines refer to one run of cross-validation,
solid lines refer to ten runs of cross-validation. The plots refer to the case ¢ = 50. a Difference of accuracy
(8acc)- b Mean difference of accuracy Bace)

common size for a comparison of classifiers. We consider the following different values of
8ace: {0,0.01,0.02, ...,0.1}.

For each value of §,.. we repeat 5000 experiments as follows. We allow the various data
sets to have different size s = s1,52,. . .,5,. We draw the sample size of each data set uniformly
from S = {25, 50, 100, 250, 500, 1000}. We generate each data set using the BN model; then
we assess via cross-validation the accuracy of both zero R and BN. We then compare the
two classifiers via the Poisson and the signed-rank test.

The results are shown in Fig. 2a. Both tests yield Type I error rate lower than 0.05 when
8ace = 0; thus they are correctly calibrated. The power of the tests can be assessed looking
at the results for strictly positive values of 8,... If one run of cross-validation is performed,
the Poisson test is generally less powerful than the signed-rank test. However if ten runs
of cross-validation are performed, the Poisson is generally more powerful than the signed
rank. The signed-rank does not account for the uncertainty of the estimates and thus its
power is roughly the same regardless whether one or ten runs of cross-validation have been
performed.

The same conclusions are confirmed in the case g = 25.

4.3 Difference of accuracy sampled from the Cauchy distributions

We remove the assumption of §,. being equal for all data sets. Instead for each data set
we sample §,. from a Cauchy distribution. We set the median and the scale parameter of
the Cauchy to a value §,. > 0. A different value of §,.. defines a different experimental
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Table 4 Comparison of the

decision of the Poisson and the Naive 148 Jag-gr AODE HNB

signed-rank test on real data sets Bayes
Data sets 1-27
Naive Bayes - 1/0 1/0 171 171
J48 - - 1/1 1/0 0/0
J48-gr - - - 1/0 0/0
AODE - - - - 0/0
Data sets 28-54
Naive Bayes - 1/0 1/0 171 171
The entries of the table have the J48 - - 11 1/0 0/0
following meaning: J48-gr - - - 1/0 0/0
< Poisson decis.iqn >/ < AODE _ _ _ _ 0/0
signed-rank decision >. The
decision is about the classifier of ~ Data sets 1=54
the current column being Naive Bayes - 1/0 1/0 1/1 1/1
significantly more accurate than 748 _ _ /1 /1 o/l
the classifier of the current row.
For instance the entry 1/0 means J48-gr - - - 1/0 01
that only the Poisson test claims AODE - - - - 0/0

the difference to be significant

setting. We consider the following values of Sace: {0,0.01,0.02, ..., 0.05}. We run 5,000
experiments for each value of §,... We assume the availability of ¢ = 50 data sets.

Sampling from the Cauchy one sometimes obtains values of §,.. whose absolute value is
larger than 0.5. It is not possible to simulate difference of accuracy that large. Thus sampled
values of §,. larger than 0.5 or smaller than —0.5 are capped to 0.5 and —0.5 respectively.

The results are given in Fig. 2b. Both tests are correctly calibrated for §,. = 0. This is
noteworthy since values sampled from the Cauchy are often aberrant and can easily affect
the inference of parametric tests.

Let us analyze the power of the tests for §,.. > 0. If one run of cross-validation is
performed, the Poisson test is slightly less powerful than the signed-rank test. If ten runs of
cross-validation are performed, the Poisson test is more powerful than the signed-rank test.

Such findings are confirmed by repeating the simulation with a number of data sets ¢ = 25.

4.4 Application to real data sets

We consider 54 data sets* from the UCI repository. We consider five different classifiers:
naive Bayes, averaged one-dependence estimator (AODE), hidden naive Bayes (HNB), J48
decision tree and J48 grafted (J48-gr). All the algorithms are described in (Witten et al. 2011).
On each data set we run ten runs of ten-folds cross-validation using the WEKA? software.

We then compare each couple of classifiers via the signed-rank and the Poisson test.

We sort the data sets alphabetically and we repeat the analysis three times. The first time
we compare the classifiers on data sets 1-27; the second time we compare the classifiers on
data sets 28-54; the third time we compare the classifiers on all data sets. The results are
given in Table 4. The zeros and the ones in Table 4 indicate respectively that the null or the
alternative hypothesis has been accepted.

4 Available from http://www.cs.waikato.ac.nz/ml/weka/datasets.html.

5 Available from http://www.cs.waikato.ac.nz/ml/weka.
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The Poisson test detects seven significant differences out of the ten comparison in all
the three experiments. It consistently detects the same seven significances in all the three
experiments. The signed-rank test is less powerful. It detects only three significances in the
first and in the second experiment. When all data sets are available its power increases and
it detects three further differences, arriving to six detected differences. Overall the Poisson
test is both more powerful and more replicable.

The detected differences are in agreement with what is known in literature: both AODE
and HNB are recognized as significantly more accurate than naive Bayes, J48-gr is recognized
as significantly more accurate than both naive Bayes and J48. The two tests take different
decisions when comparing couples of high-performance classifiers such as HNB, AODE and
J48-gr.

4.5 Software

At the link www.idsia.ch/~giorgio/poisson/test-package.zip we provide both the Matlab and
the R implementation of our test. They can be used by a researcher who wants to compare any
two algorithms assessed via cross-validation on multiple data sets. The package also allows
reproducing the experiments of this paper.

The procedure can be easily implemented also in other computational environments. The
standard 7 test is available within every computational package. The frequentist correlated
t test can be implemented by simply changing the statistic of the standard ¢ test, according
to Eq. (1). Under the matching prior, the posterior probability of the null computed by the
Bayesian correlated ¢ test correspond to the p value computed by the one-sided frequentist
correlated ¢ test. Once the posterior probabilities are computed on each data set, it remains
to compute the Poisson-binomial probability distribution. The Poisson-binomial distribution
can be straightforwardly computed via sampling, while exact approaches (Hong 2013) are
more difficult to implement.

5 Conclusions

To our knowledge, the Poisson test is the first test which compares two classifiers on multiple
data sets accounting for the correlation and the uncertainty of the results generated by cross-
validation on each individual data set. The test is usually more powerful than the signed-rank
if ten runs of cross-validation are performed, which is anyway common practice. A limit
of the approach based on the Poisson-binomial is that its inferences refer to the sample of
provided data sets rather than to the population from which the data sets have been drawn.
A way to overcome this limit could be the development a hierarchical test able to make
inference on the population of data sets.

Appendix: Proof of Theorem 1
Preliminaries

The symmetry of the correlation matrix M implies that M~ is symmetric too. Assuming
n = 3 as an example, its structure is:
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1 o p | L B B
M=|p 1 p| M'=_ZAdM =——"|§8 B
M| M|
e p 1 o
where «, 8 are the entries of the adjugate matrix.
We get:
|M]| |M|
HTM—IX — Z?:l (Dt + (Yl - 1),3))(', (12)
M|
Moreover,
1
Ty—lg _gly—1, _ .
xX'x'H=H"Z x_02|M|[oz—|—(n—1)ﬁ]Zi:x,. (13)
Estimating

From (6), the log-likelihood is:
2 1 T el n 1
L(u, 0%, p) = _E(X —Hw)' ¥ (x—Hp) — Elog(Zﬂ) - Elog(lzl)-

Its derivative w.r.t. p is:

—8 —fleZ 1(X—H —1—71 r Ix —
7)) H X (x—Hup)
I 2 2

d (1 ;e Lor w1y Lo oo
= 2 (X" "Hu + ~H us 'x— ~HT 4z 'H
au(zx T

1 1
= 5xT):*lH + EHT):*lx —pH'S " H=H"z 'x— puH'='H

where in the last passage we have used the first equality in (13).

Substituting ¥ with o2M, equating the derivative to 0 and using equations (11) and (12)
we get:.
_ H 'z !x Y=Y
T HTET'H n

)

n

which is the traditional maximum likelihood estimator of the mean. It does not depend on

a2 orp.

Estimating o2

Recalling that ¥ = o2M and thus | X| = (02)” |M |, the log-likelihood is:

1 _ 1 n n
L(p, 0%, p) = =5 (x = Huw)"' M~ (x — Hp) — 5 log (()"|M]) — 3 log(27)

L xH) T M7 (x—H)— 1 log ((0)7) — 2 log (M) — + log(2n)
202 2 2 2 ’

not depending on o2
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Only the first two terms of the above expression are relevant for the derivative. Thus, by
replacing 1 with /i and by equating to zero the derivative. we obtain

n(o,2)n—l — O

0 L.o%p)  x—H) M (x —H) —
— , 07, p) = ——5X— X — - =
g2 WP =S ’ W=5 o

Finally, we get:

_,  (x—HH'M 'x—Hj)
o =
n

The product (x —HQ)" M ! (x — H[),., yields a scalar. The trace of a scalar is the scalar

itself. The trace is invariant under cyclic permutations: tr (ABC) = tr(BCA). We thus have:
x—HL M~ 'x—HQ) =[x —HY' M~ (x — H@)] =
M 'x—HU)E-HY) 1 =tr(M~'Z)
where Z = (x — Hi1)(x — H)T and so
22 tr(M~'7)

n

(14)
Thus &2 depends on the correlation p through M.

Useful lemmas for estimating p

Lemma 1 The determinant of M is: (1 + (n — 1)p)(1 — p)" 1.

Proof Consider the ith and the jth (i # j) row of matrix M,,,, containing elements
{mi1,miz, ..., my,yand{m 1, mjz, ..., mj,}respectively. The value of | M| does not change
if we substitute each element of the ith row as follows:

mig <= mi +b-mj, Vk € {1,2,...,n}

where b is any scalar weight and in particular for » = 1. Then, consider the matrix N obtained
by adding the second row to the first row (b = 1), then the third row to the first row, ... then
the nth row to the first row:

1 L P ... p
M= p 1 p ... p
p p p ... 1
I+4m—1Dp 1+m—Dp 14+m—-1p ... 14+m—-1p
N — P 1 P P
PO ) 0 1
Consider now matrix O defined as follows:
1 1 1 ... 1
0 — p 1 p ... p
p o p ... 1
Then, |[M| = |[N| = (1 + (n — 1)p) - |O|. Consider now adding the elements of the first
row of | O] to the second row of | 0|, using the scalar weight b = —p. Then add —p times
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the first row to the third, to the fourth, ... to the nth row of |Q|. This yields matrix P, with
|P|=10]:

111 1
p_|0 1=p 0 0
0 0 0 1—p

We have |P| = (1 — p)"~! and thus:
IM|=IN|=0+@®m—-1p|0|=1+n—-Dp)|P|=1+@n—1Dp)1—p)""

[m}
Lemma 2 The entries ofM_1 area =1+ mn—-2p)1—p)" 2and p = —p(1 — p)" 2.

Proof By definition of adjugate matrix, « is the determinant of each principal minor of M.
Consider the principal minor obtained by removing the first row and the first column from
M. This sub-matrix has the same structure of M, but with dimension (n — 1) x (n — 1). Its
determinant is thus (1 + (n — 2)p)(1 — ,0)”_2, which gives the value of «. The same result
is obtained considering any other principal minor.

Parameter B corresponds instead to the determinant of any non-principal minor of M,
multiplied by —1%/, where i and j are respectively the index of the row and the column
removed from M to obtain the minor. Consider the minor obtained by removing the first row
and the second column:

p PP o
p 1 p P
Q:
p p 1 P
0 eooop 1

By subtracting the first row (i = 1) from the second row (j = 2), the first row from the third
row, the first row from the nth row we get:

pp o . P
0 1—p 0 ... 0
R= P
0 0 1-p ... 0
0 ... ... 0 1-p

whose determinant is (1 — p)"~2p. The value of 8 is thus —p(1 — p)"~2, the minus sign
being due to the sum of i and j being an odd number. The same result is obtained considering
any other principal minor. O

Estimating p

The log-likelihood evaluated in /i, 52 is:

Lp. . 0% 52

= —i<x —HL)" M~ (x - Hi) — = log(27) — llog (G |1M])
252 2 2
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s 1 n ! 2
= =5 Tr(M™'2) — 2 log(2m) — - log ()| M])
~D 1

not depending on p

where in the last passage we have exploited that G2 =Tr(M~'Z) /n as shown in (14).
The derivative w.r.t. p is:

_i(_ll ((_2)”|M|))—i _11 (W_lz))n|M|
asr o\ 208 T\ 28 n

1 Tr(M~'2) 1
——nlog [ ———=2 ) — —log|M|
2 n 2

1 1 1
——nlog (Tr(M_]Z)) + —nlog(n) — <-log|M|
2 2 2
]

ap

d 2
—L(u, 0%, p)
ap

)
ap
K2

ap

1 19
(nlog (Tr(M~'Z))) 29 (logIM|)

— N =

n 3 4 11 8
= — (Tr(M7'2)) — 5 — — (IM))
2Tr(M~'Z) dp 2|M| dp
Let us now consider Tr (M~'Z) = Wl‘Tr (Adj(M) Z) and define § = Adj(M) Z.
Let us denote the difference between an observation and the maximum likelihood mean as
8; = x; — [i;. The ith diagonal element of S is

Sii = Ol(siz +ﬂ Zsiaj
i#]

Notice that 8? + (Zi;,E j 8;6 j) = 0, due to the following relation:

S+ (D8 | =68 8+ D8 =6i(2x,~—nﬁ)=0
i

i#j i#]
We can then rewrite s;; = (¢ — 8 )812. Summing over all the elements of the diagonal, we

get:

@=PX 8 _@-Bf®

Tr (M™'Z) =
|M]| |M]|

where f(x) = >1_, 51'2 depends only on the data.
By equating to zero the derivative of the log-likelihood w.r.t. p, we obtain:

0_—ELE(T;"(M_IZ))—ELEQMD
T 2TrM'Z) 0p 2 |M| dp
n|Mj| 0 1 1 9
= — —_— _ —— D — M
W5, BRa) + g, (M0
9/ 1 19
=n( =05 (725) + iagi 5, (M
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where we have exploited that « — 8 = |[M|/(1 — p). Since

1 9 -1
vy = D
M| dp I+ @m—-Dp)d—p)
it can easily be shown that
3/ 1 1 9 n
0=nl—p)—(+—)+ = — (M) =
n =05 (75)+ 5% M0 = Gohar o

Thus, there is no value p € [0, 1) which can make the derivative equal to zero and the
derivative is always decreasing in p. Thus the maximum likelihood estimate of p is p = 0.
For any fixed p, it can easily be shown that the Hessian of the likelihood w.r.t. 11, o> computed
at [i, o2is negative definite. In fact, we have that

2

WL(M, 02» £)

=—-H"M'HT iL(u ) __ L
Coae»2 T 2(52)?

1,62

.52

2 A =D A . R . .
and 3;)Z—BML(/L, o2, p)|ﬂy52 = 0. Thus, [, 52, p is the maximum likelihood estimator. Since

0 = 0, this estimator is not consistent whenever the true correlation is not zero (strictly
positive).

Proof of Theorem 2
n
Let us define 1t = % > x;. Then:
i=1

x-H) ' Z'x—-Hw =x-Hup -4+ 2" x—Hpu -+ Q)
=x-HL)'Z'x—HL) + (n — pHT Z7H(1 - Q).

Let us define v = 1/0°2, then we can rewrite the likelihood as:

/2172 v N R
Pl v, p) = o e (-3 —HD M x—Hp)
v ~ _ ~
xv!exp (=3 (u— "M~ H(u - 1)) (15)

Given p, the likelihood (15) has the structure of a Normal-Gamma distribution. Therefore,
for the unknown parameters ., v, we consider the conjugate prior:

p(ulv, p) = N(u; po, ko/v), p(vlp) = G(v;a,b), (16)
with parameters 119, ko, a, b. By combining the likelihood and the prior, we obtain the joint:

p(u, v, x|p) = p(X|u, v, p) p(rlv, p)p(v|p)

nt2a
5 1

v

X ——— X
PTIRENG T

x v exp (== — 2H M H — (1 — )2 ).
2 2ko

(—%(x ~HLO'M'(x - HQ) — bv)

Let us define the posterior mean

1 —1
i = (HTM’IH + 7) (HTM*IX n @),
%o %o
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then
. B 1
(- M 'H+ P 10)?

1 2
2 (B Ht =) —ou (WM HA + M)+ 2aT M
ko ko ko

1 2
2 (amH =) — o (WM e+ B2} 2T M TH 4 O
ko ko ko

N 1 R _ zo _ 1
- (AT H+ =)+ 2H M 1H+@_M2 H' M 'H+ — ).
ko ko ko

Thus, we can rewrite the joint as p(u, v, X|p) o £1€> with

1 1 1\
bo=vPexp(—2u-p*(B"MH+ —)) N ;1. - (AT M 'H+ —
2 k() 1% ko

and

n+2a
|

V v
b= — -l x—-H)'M'x—Hj) +2b
2 Q)2 /[M] exp( 3 ((X ) (x ) +

2 ~

Aoy T ar—1 Mo | ~2 (qTas-1 1 1 . = '@
—-u*H'MH - — H M H+ — —G(v;a,b)——
o ! ( +ko)))o‘<2n>"/2wM| Va0

with @ = a + 5 and

~ 1 T 1 N ~2yxT 1 :“(2) -2 T 1 1

b=§ x—Hp)' M (x—Hi)+2b - 4°H M‘H—k——i—u (H M‘H—i—kf) .
0 0

Hence, it follows that the posterior is

1 1\! .
p(p, vix, p) =N(u; i, = (HTM‘1H+—) )G(v;&,b).
v

The marginal posterior of u can be obtained by marginalizing out v:
1 s 1 \ —Qa+1)/2
X, 0) X ————— - ({H'M "H+ — ) +2b
PR 0) o ool it ((“ & ( ko) )

- b 1\~
xSt w;2a,p, —({H M "H+ — . 17
a ko

Proof of Corollary 1

Let us consider the matching prior no = 0, ko — 0o, a = —1/2, b = 0, then (17) becomes

(18)

x—HHTM'(x - Hm)

x,p) xSt win—1, 14,
p(ulx, p) (M i (- 1) (M H)
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By exploiting (x — HW)'M~'(x —HQ) = Tr(M~'Z) = % St 8 andH' M~ 'H =
(an 4 Bn(n — 1))/|M| , then we have that

-HY'MIx—HY _ @=-PXi & 1 @=p .,
(n—1) (H" M~'H) (n—ND(an+pnn—1)) n@+pn—-1)
where 62 = n]_] >, 8i. Hence, one gets

1 — —
n(a+pmn—-1) n 1—0p
which ends the proof.
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