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Abstract: Apolipoprotein nanodiscs are a versatile tool 
in nanotechnology as membrane mimetics allowing, for 
example, the study of membrane proteins. It has recently 
been discovered that the Parkinson’s disease associated 
protein α-synuclein (α-Syn) can also form discoid-like 
lipoprotein nanoparticles. The present review highlights 
the observation that α-Syn has the properties to define 
stable and homogeneous populations of nanoparticles 
with diameters of 7–10  nm and 19–28  nm by modifying 
lipid vesicles or encapsulating lipid bilayers in a nanodisc-
type fashion, respectively. In contrast to apolipoprotein 
nanodiscs, α-Syn nanoparticles can incorporate entirely 
negatively charged lipids emphasizing their potential use 
in nanotechnology as a negatively charged membrane 
mimetic.
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1  Introduction
The protein α-synuclein (α-Syn) is associated with 
Parkinson’s disease (PD) [1, 2]. Its conformational plastic-
ity appears to be of key importance for the physiological 
functions. Whereas monomeric α-Syn is largely disor-
dered [3–5] in an aqueous solution, membrane mimic
king environments containing anionic detergents [3] or 
phospholipids [5–7] trigger a disorder-to-helix transition. 

The structural transition towards an α-helical state is 
mediated by seven imperfect 11 amino acid long amphip-
athic repeats in the N-terminal region of α-Syn that bear 
resemblance to the amphipathic helical repeats found in 
apolipoproteins [3, 6, 8]. Notably, the C-terminal residues 
remain unstructured during in vitro experiments since 
they do not seem to interact with anionic membranes [5, 
9]. Still highly debated is the in vivo structure of α-Syn. 
In 2011, two groups reported that cellular α-Syn exists as 
a helical tetramer when purified under non-denaturing 
conditions [10, 11]. However, these results were recently 
challenged by in-cell nuclear magnetic resonance (NMR) 
and electron paramagnetic resonance (EPR) studies of 
α-Syn electroporated into mammalian cells [12]. The 
in-cell NMR spectra showed protein signals that over-
lapped with those NMR signals observed for disordered 
in vitro α-Syn, therefore excluding the possibility of a 
major tetrameric folded species under these experimen-
tal conditions [12, 13].

A structure-function relationship has not yet been 
established because the physiological role of α-Syn is 
still unknown [14–16]. There is, however, growing evi-
dence that α-Syn-membrane interactions form the basis 
of multiple in vivo functions such as synaptic vesicle pool 
maintenance [17, 18], regulation of dopamine neurotrans-
mission [19, 20], transport of lipids and fatty acids [21–25], 
membrane trafficking [26–28], synaptic plasticity [29, 
30], and assistance in SNARE complex formation [31–34]. 
Moreover, membranes also seem to influence the patho-
logical aggregation of α-Syn towards amyloid fibrils with 
β-sheet structure, the hallmark of PD [35–43]. Although 
the physiological function(s) of α-Syn remain elusive, the 
seven imperfect 11 amino acid long amphipathic repeats 
in the N-terminal region of α-Syn and their capability to 
interact both with negatively charged and zwitterionic 
phospholipids allows for the in vitro formation of discoid-
like lipoprotein nanoparticles, so-called α-Syn lipoprotein 
nanoparticles [44–46]. These α-Syn lipoprotein nanopar-
ticles are the focus of this review with an emphasis on 
their potential use in nanotechnology as a membrane 
container comprising negatively charged lipids or a mem-
brane mimetic for the study of membrane proteins with 
properties distinct from the usually used apolipoprotein 
nanodiscs.
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2  �Formation of stable α-synuclein 
lipoprotein particles

Incubation of monomeric α-Syn with preformed negatively 
charged lipid vesicles at high protein-to-lipid ratios (1 : 10 
and higher) results in reshaping of negatively charged 
giant lipid vesicles and small unilamellar vesicles (SUVs, 
diameter ~ 25 nm) into discoid-like lipoprotein nanoparti-
cles with a diameter of 7–10 nm [44, 45]. Interestingly, incu-
bation of α-Syn with multilamellar vesicles composed of 
lipids commonly used to mimic mitochondrial membranes 
leads to a disruption of the vesicles and subsequent for-
mation of lipid nanoparticles, indicating a link between 
overexpressed α-Syn and loss of mitochondrial membrane 
integrity [45]. In these particles the protein-to-lipid molar 
mass ratio is found to be in the range of 1 : 1.4 (protein-
to-lipid molar ratio of 1 : 20–25), and EPR data show that 
α-Syn adopts a broken helical state with a partially disor-
dered second helix [45]. Notably, this approach does not 
allow the formation of α-Syn nanoparticles with zwitteri-
onic phosphatidylcholine-containing vesicles [45].

Recently, another method was established to generate 
α-Syn lipoprotein nanoparticles with negatively charged as 
well as zwitterionic phospholipids using a low protein-to-
lipid ratio of 1 : 40 [46]. Mixing 500 μm α-Syn with 2 mm of 
the desired lipids dissolved in sodium cholate followed by 
detergent removal results in the formation of discoid-like 
α-Syn lipid nanoparticles of 19–28 nm diameter. A protein-
to-lipid ratio higher than 1 : 40 leads to residual amounts 
of free monomeric α-Syn when incubated with negatively 
charged lipids. Importantly, using the nanodisc approach 
with the same protein-to-lipid ratio, stable α-Syn lipo-
protein particles of similar size can also be formed in the 
presence of the natural zwitterionic lipid sphingomyelin. 
Remaining residual amount of monomeric α-Syn in the 
latter sample preparation, as evidenced by size exclusion 
chromatography, indicates that the α-Syn-derived lipo-
protein particles with negatively charged lipids are more 
stable than particles comprising zwitterionic lipids (Figure 
1A). The circular dichroism (CD) spectrum of α-Syn 1-pal-
mitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (DOPS) lipo-
protein particles (Figure 1B) shows the characteristics of 
α-helical proteins, with two negative [Θ]MRW peaks at ~ 210 
and 221 nm, respectively, and one positive [Θ]MRW peak at 
~ 195 nm, resembling CD spectra of α-Syn bound to anionic 
lipid vesicles and anionic detergents [3, 5, 6].

Cryo-electron microscopy images of these α-Syn lipo-
protein nanoparticles show a low-density inner region 
(~ 10  nm) attributed to the lipid bilayer, which is sur-
rounded by a 6–7  nm wide higher density belt of α-Syn 

molecules (Figure 1C) [46]. Similar to the architecture of 
lipoprotein particles formed by the apolipoprotein A-1 
(ApoA-1) [47–49], the higher density features at the periph-
ery of the discs are compatible with the interpretation 
that α-Syn molecules are wrapped around the lipids in a 
ring-like manner. The core structure of these particles is 
formed by the first ~ 100 amino acid residues of α-Syn in 
a helical conformation (Figure 1B), while ~ 40 C-terminal 
residues remain flexible and do not interact with the lipid 
bilayer (Figure 1D) [45, 46], as previously documented for 
α-Syn in the presence of sodium dodecyl sulfate micelles 
or SUVs containing anionic phospholipids [5, 9].

An exact mass and composition determination of 
the α-Syn DOPS lipoprotein particles using size exclu-
sion coupled multiangle static light scattering (MALS) 
combined with refraction index measurements indicates 
a total molecular weight of ~ 982 kDa for the α-Syn-lipid 
entity, ~ 865  kDa for the DOPS lipids, and ~ 116  kDa for 
the protein component (Figure 2A). Moreover, chemical 
cross-linking experiments with the disuccinimidyl glutar-
ate (DSG, spacer length 7.7 Å) linker show at higher DSG 
concentration a predominant single ~ 150  kDa species 
(Figure 2B). These findings suggest that α-Syn DOPS lipo-
protein particles are composed of approximately 8–10 
α-Syn and ~ 1070 DOPS molecules with a protein-to-lipid 
molar mass ratio of ~ 1 : 8–10 [46] in line with theoretical 
calculations following a procedure established for mem-
brane scaffold protein (MSP) nanodiscs [50]. By com-
parison, ~ 160 lipid molecules are observed in nanodiscs 
made of 1,2-dimyristoyl-sn-glycero-3-phosphocholine 
(DMPC) and two copies of the protein MSP1D1 (Table 1), 
a truncated version of ApoA-1 [47–52]. In contrast to α-Syn 
lipoprotein nanoparticles, fully negatively charged lipids 
cannot be incorporated into MSP nanodiscs (Table 1).

3  �Biophysical and physiological 
relevance of α-synuclein 
lipoprotein nanoparticles

The apolipoprotein-like lipid-binding capabilities, 
sequence similarities to apolipoproteins, and the seven 
imperfect 11 amino acid long amphipathic repeats stim-
ulated the speculation that α-Syn might be capable of 
forming lipid-protein nanoparticles, but only recent 
studies confirmed these speculations with experimental 
evidence as discussed above [44–46].

From a biological point of view, α-Syn nanoparticles 
might be involved in lipid transport and storage [45, 46]. 
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Figure 1: Structural characterization of α-Syn lipoprotein particles. (A) Size-exclusion gel chromatography (Superdex 200 10/300GL) of 
α-Syn DOPS (black), α-Syn POPS (green), and α-Syn sphingomyelin (red) lipoprotein particles. Monomeric (gray) α-Syn elutes at ~ 14.3 ml. 
(B) CD indicates that α-Syn adopts a helical secondary structure within α-Syn DOPS lipoprotein particles. (C) Cryo-electron microscopy 
images (top and side view) of α-Syn DOPS lipoprotein particles. (D) Solution state NMR shows that the ~ 40 C-terminal residues of α-Syn are 
flexible in α-Syn DOPS lipoprotein particles (red). Figure adapted from ref. [46].

Figure 2: Protein-lipid composition of α-Syn lipoprotein particles. (A) Molecular weight analysis of the α-Syn DOPS lipoprotein complex by 
MALS coupled with size-exclusion gel chromatography and refractive index measurements. The black line corresponds to the static light 
scattering signal at 454 nm of DABMI-labeled α-Syn(C141) in the presence of DOPS lipids; red, blue, and green lines show average molar 
masses of the complex, the lipid component, and the protein component in the lipoprotein particle, respectively. Following these investiga-
tions, the protein mass is ~ 116 kDa indicating that α-Syn is of octameric nature in DOPS lipoprotein particles. (B) Cross-linking studies of 
α-Syn DOPS lipoprotein particles. Lane 1, molecular weight marker (MW, SeeBlue plus2 prestained standard, Invitrogen). Lanes 2–4, cross-
linked α-Syn DOPS lipoprotein particles (final concentration 83 μm) with increasing concentrations of DSG as indicated. Presumed α-Syn 
monomer and oligomers are indicated by arrowheads. Figure adapted from ref. [46].
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The reviewed in vitro reconstitution of α-Syn nanoparti-
cles may allow to test, under experimentally controlled 
conditions, whether and how α-Syn nanoparticles are 
involved in lipid transport, lipid metabolism with the 
help of (unknown) enzymes, synaptic plasticity, synaptic 
vesicle pool maintenance, SNARE complex formation or 
mitochondrial membrane disruption, etc.

From a biophysical perspective, α-Syn lipoprotein 
particles may serve as a complementary tool to study 
membrane proteins in a native-like bilayer environment 
since α-Syn lipoprotein particles allow the incorporation 
of negatively charged lipids that are incompatible with 
other self-assembling lipid bilayer nanodiscs.�
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