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Abstract.—Our understanding of phenotypic evolution over macroevolutionary timescales largely relies on the use of
stochastic models for the evolution of continuous traits over phylogenies. The two most widely used models, Brownian
motion and the Ornstein–Uhlenbeck (OU) process, differ in that the latter includes constraints on the variance that a trait
can attain in a clade. The OU model explicitly models adaptive evolution toward a trait optimum and has thus been widely
used to demonstrate the existence of stabilizing selection on a trait. Here we introduce a new model for the evolution of
continuous characters on phylogenies: Brownian motion between two reflective bounds, or Bounded Brownian Motion
(BBM). This process also models evolutionary constraints, but of a very different kind. We provide analytical expressions
for the likelihood of BBM and present a method to calculate the likelihood numerically, as well as the associated R code.
Numerical simulations show that BBM achieves good performance: parameter estimation is generally accurate but more
importantly BBM can be very easily discriminated from both BM and OU. We then analyze climatic niche evolution in
diprotodonts and find that BBM best fits this empirical data set, suggesting that the climatic niches of diprotodonts are
bounded by the climate available in Australia and the neighboring islands but probably evolved with little additional
constraints. We conclude that BBM is a valuable addition to the macroevolutionary toolbox, which should enable researchers
to elucidate whether the phenotypic traits they study are evolving under hard constraints between bounds. [BBM; bounds;
evolutionary constraints; macroevolution; maximum likelihood estimation; phylogenetic comparative data.]

INTRODUCTION

Models for the evolution of continuous characters
on phylogenies are central to comparative analysis
and to the study of evolutionary processes over
macroevolutionary timescales (Harvey and Pagel 1991;
O’Meara 2012; Garamszegi 2014). Among many other
applications, these models are frequently used to infer
the character states of ancestral species (e.g., Guerrero
et al. 2013), identify correlated evolution between traits
(e.g. Beaulieu et al. 2007), or measure the effect of a
given environment on the evolution of species traits
(e.g., Edwards and Smith 2010; Price et al. 2011). The
basic model for the evolution of continuous characters on
phylogenies is Brownian Motion (hereafter BM; Edwards
and Cavalli-Sforza 1964; Felsenstein 1973), in which
characters follow a constant-rate random walk with
no trend. BM can model drift, drift-mutation balance,
or even selection in a rapidly changing environment
(Hansen and Martins 1996). In the past 20 years,
various extensions of BM have been proposed. The
most significant advance was the development of
the Ornstein–Uhlenbeck model (hereafter OU, Hansen
1997), which adds a pull toward a central value to
BM. OU was designed to model stabilizing selection
in an analogy with adaptive landscapes in population
genetics (Lande 1976), but is more generally assumed
to model adaptive evolution over phylogenies (Hansen
1997; Uyeda and Harmon 2014). Further extensions have
allowed the rate of BM to vary in different parts of
the tree (O’Meara et al. 2006), parameters of the OU
model to vary between clades (Butler and King 2004;
Beaulieu et al. 2012), and characters to evolve suddenly

by large jumps either at speciation (Bokma 2008) or
during anagenesis (Landis et al. 2013). Recently, complex
methods have been developed to detect heterogeneity in
the evolutionary processes acting across a clade with no
prior information (Ingram and Mahler 2013; Uyeda and
Harmon 2014).

Although all of these methods allow for various
hypotheses to be tested, the panoply of available models
is still limited (Pennell 2015). In particular, the OU model
is the only one in which the variance of a character in
a clade has limits and cannot grow indefinitely over
time (Hansen 1997; Ho and Ané 2014), but no model
can accommodate hard bounds on character values. This
is a clear lack given that hard bounds on the values
of some characters do exist in nature (Garland et al.
1993). Some characters indeed have an obvious lower
bound: this is the case for all characters that can only take
positive values, such as morphological measurements
(including traits that are heavily studied in comparative
studies, like body size and body mass) or durations (e.g.,
generation length, life expectancy). Other continuous
characters evolve between two hard boundaries. This
is obviously the case for proportions, which evolve
between 0 and 1 (e.g., allele frequencies, Edwards and
Cavalli-Sforza 1964, proportion of fast glycolytic fibers
in muscles, Scales et al. (2009), genomic GC content,
Mooers and Holmes (2000), overlap between breeding
and wintering climatic niches in migratory animals).
Limited genetic variation in a given lineage would also
lead the associated phenotypic characters to be confined
between two extreme values (Futuyma 2010; Nei 2013).
Another example concerns the evolution of species
environmental niches: in a given geographic region,
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FIGURE 1. Behaviour of the BBM model. The two panels show the evolution of a trait over time on a tree of three extant species. a) Brownian
Motion without bounds (BM). b) Brownian Motion with two bounds (horizontal black lines): the traits of two lineages cross the whole interval,
multiple hits on the bounds occur. Both plots were generated using the same value of the evolutionary rate, �2: the final variance of the trait is
higher in BM.

the realized niche of a species (i.e., the environment
it actually experiences, Hutchinson 1957) is bounded
between the environmental extremes that exist in the
region (Boucher et al. 2014; Wüest et al. 2015). In addition,
some characters might have less obvious limits: for
example, morphological and physiological processes
might impose an upper bound on plant height (Koch
et al. 2004), a lower limit on leaf mass per area in
plants (Donovan et al. 2011), and an upper limit on
insect body size (Kaiser et al. 2007). Taking again the
example of species environmental niches, it is likely that
biotic interactions frequently limit the amount of niche
space that can be used by members of a lineage, for
instance when the presence of a competitor or predator
prevents a species from occupying some environments
(Soberón 2007). This short overview suggests that limits
on phenotypic evolution might be rather common in
nature, leading some authors to consider the recognition
of constraints as one of the main paradigm shifts in
evolutionary biology (Futuyma 2010).

In light of this, being able to detect bounds on the
value of a character would be very useful. Unfortunately,
the current toolbox does not allow researchers to do so.
As a result, traits that have evolved between bounds
are currently inferred to have evolved under an OU
model, since it is the only model available in which the
variance of a trait in a clade does not grow indefinitely
over time and reaches stationarity (Revell et al. 2008;
Boucher et al. 2014). This is quite worrying since these
two models have totally different interpretations: OU
would be interpreted as evidence for adaptive evolution
towards an optimal value, whereas BM with two bounds
would be seen as a rather neutral mode of evolution
under hard constraints, which might themselves be set
by selection or not.

Here we introduce a new model in which the value
of the character of interest evolves under BM with two
hard bounds, which we call Bounded Brownian Motion
(BBM). In the first section, we detail the general behavior
of this model. We then present analytical expressions for
the likelihood of BBM given a phylogeny and character
values observed at the tips. Finally, we present an
algorithm to calculate the likelihood of BBM and assess
its performance in model comparison and parameter
inference. Our results show that BBM can be easily
discriminated from BM, and more importantly from OU,
using likelihood. This should make BBM an essential
tool for identifying the presence of hard bounds on the
evolution of phenotypic traits.

ANALYTICAL TREATMENT OF THE BBM MODEL

We introduce a new model for the evolution of
continuous characters that is a simple extension of the
classic constant-rate Brownian Motion (BM). Under BM,
the value of the character, x, is governed by the following
stochastic differential equation: dx(t)∼N(0,�2dt), where
�2 is the evolutionary rate (Fig. 1a). It follows that the
variance of the character grows linearly with time under
BM. To model the evolution of a continuous character in
bounded space, we assume that the character evolves
according to BM, except that there are two reflective
bounds (Fig. 1b).

Calculation of the Probability Density
In this section, we consider a continuous trait x starting

at x(t=0)=x0 and derive its probability density after
a time t has elapsed, p(x,x0,t). In the remainder of
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this article, we call this probability density function
the propagator to reflect the fact that it propagates the
probability density of the trait along one branch of the
tree (see below). Without bounds, the probability density
of a BM process starting at x0 is given at time t by a
Gaussian with mean x0 and variance �2t:

p(x,x0,t)= 1√
2�t�

exp

(
− (x−x0)2

2�2t

)
. (1)

If only one reflective bound is placed at x=0, and x0 >
0, the probability density for x>0 can be obtained by
the method of images (see Jackson 1998, Chap. 2.1). It
effectively produces a mirror image Gaussian centered
at −x0:

p(x,x0,t)= 1√
2�t�

[
exp

(
− (x−x0)2

2�2t

)
+exp

(
− (x+x0)2

2�2t

)]
,

(2)
where we only consider values of x>0. This is equivalent
to saying that the part x<0 of the probability density
given in Equation (1) is cut out, horizontally reflected,
and added to the part x>0 (see Fig. 2). To prove that
the probability density is indeed given by Equation (2),
it is enough to check that this expression satisfies
the diffusion equation with the appropriate boundary
conditions.

The case with two bounds at x=a and x=b with a≤
x0 ≤b requires the introduction of an infinite set of mirror
images, because the set of images (including the original
Gaussian) must be symmetric with respect to the two
bounds. This leads to the following expression

p(x,x0,t) = 1√
2�t�

×
∞∑

k=−∞

[
exp

(
−[x−x0 −2k(b−a)]2

2�2t

)

+exp

(
−[x+x0 −2a−2k(b−a)]2

2�2t

)]
, (3)

where we only consider values of x in the interval [a,b].
This sum is equivalent to successive cuts and reflections
of the Gaussian probability density (1), in a similar
fashion as shown for one bound on Figure 2. k represents
half the number of reflections and the two terms in the
sum are for the even and odd numbers of reflections,
respectively. We then check that Equation (3) gives the
probability density of BBM (Appendix I, available on
Dryad at http://dx.doi.org/10.5061/dryad.k974s).

Properties of the Probability Density
The probability density (3), which is written as

an infinite sum of Gaussian functions, has simple
properties:

• Over short time intervals, that is t→0, it is close
to a Gaussian since the trait most likely did not

a)

b)

c)

FIGURE 2. Illustration of the method of images for calculating
the probability density of a BM model with one bound: the bound is
placed at 0 (vertical line) and the trait x can only take positive values.
a) Probability density of a BM model without bounds starting from
x0 =0.2, curves for positive and negative values of x are shown in
different shades of grey. b) The probability density of a BM model
without bounds is cut to consider only positive values of x (left); the
probability density of BM for negative values (dashed line) is ‘folded’
to positive values (dark grey area). c) The probability density of BM
with one bound is obtained by summing the two probability densities
obtained in B. The intuitive way to understand the method of images
is to imagine that all traits that would have crossed 0 in BM (dashed
line in B-right) have bounced back in the interval (dark grey area in
B-right). The probability of BBM is obtained in the same manner except
that we have to ’fold’ the density an infinite number of times at the two
bounds since x might cross the interval an infinite number of times.

hit the bounds yet (Fig. 3): the terms coming
from the images, which lie outside the interval,
become infinitely small. The process still behaves
qualitatively as BM without bounds. This is normal
since BM is a special case of BBM where the bounds
tend to infinity.

• Over long time intervals, that is t→∞, the density
becomes uniform because the bounds have most
likely been hit multiple times (Fig. 3). It can
be checked that the uniform distribution on the
interval [a,b] is the unique stationary distribution
for the diffusion equation.

The crossover between behaviors over “short” and
“long” time intervals occurs at a characteristic time �,
which is the typical time that it takes for the trait to cross
the interval between the two bounds a and b. Because the
typical displacement of the trait over a time t is �

√
t, the

http://dx.doi.org/10.5061/dryad.k974s
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FIGURE 3. Probability density of the BBM model. The probability density of a trait X evolving under BBM over the interval [0,1] is shown for
different times since the initiation of the process. The dashed line shows the initial value of the trait, and � was set to 0.1 units. As time increases,
the probability density flattens and converges to a uniform distribution, reflecting the fact that the value of X cannot be predicted anymore when
bounds have been hit multiple times.

characteristic time � is given by

�= (b−a)2

�2 . (4)

Over short time intervals t��, the trait does not have
time to hit the bounds, and over long time intervals t	�,
the trait crosses the whole interval many times and the
probability density reaches its stationary form.

This behavior of the BBM process on one branch of
the tree extends to the whole tree: BBM produces a
distribution of trait values at the tips of a phylogeny
which flattens as total tree depth increases (Appendix
II available on Dryad).

LIKELIHOOD ESTIMATION AND PARAMETER INFERENCE

Computation of the Likelihood
We want to compute the likelihood of observing values

for the trait at the tips of a tree for two given bounds a
and b, an evolutionary rate �, and an initial value of the
trait at the root x0. The likelihood is given by

L=
∫ b

a

⎛
⎝ ∏

i∈I∪T

p(xi,xparent(i),ti −tparent(i))

⎞
⎠∏

i∈I

dxi, (5)

where I is the set of internal nodes (excluding the root), T
is the set of tips, xi is the value of the trait at the node i, ti
is the time at node i and parent(i) is the parent of the node
i. This expression is the product of the propagators, p, on
all the branches of the tree, integrated over the values of
the trait at the internal nodes.

Computing the likelihood numerically is challenging.
Indeed, this expression involves integrating over all

possible values of the trait at internal nodes of the
tree, but computing the value of the integrand for all
values at the internal nodes taken in a discrete set
results in a computational time that is exponential in
the number of branches. The problem is the same for
other evolutionary models like BM, OU, or their various
extensions, but in these cases numerically integrating
over all possible ancestral values can be avoided by
inverting the variance–covariance matrix produced by
the model at the tips of the tree (Generalized Least-
Squares method, Grafen 1989) or using even faster
algorithms like phylogenetic independent contrasts
(PICs, Felsenstein 1973; Freckleton 2012), which saves
substantial computing time. However, these techniques
can only be applied to traits that have a multivariate
normal distribution. As we have seen above, this is
obviously not the case for BBM given that trait space is
bounded. Below we present an algorithm for computing
the likelihood in which computational time is linear in
the number of branches.

Algorithm.—We organize the different terms in the
integral (5). First, we notice that we can integrate over the
value of the trait at all the nodes, including the tips, if we
introduce for each tip i the weight function Wi(xi)=�(xi −
yi), where � is the Dirac distribution and yi is the actual
value of the process at the tip i. This weight function
exactly represents the probability density of the trait at
the tip. The Dirac distribution is zero everywhere except
when xi =yi and has an integral of one: it formalizes the
fact that we know with certainty the value of the trait at
the tips of the tree.

As an example, we write it explicitly for a subtree
consisting of one parent node with trait value x0 and
two descendant nodes with observed trait values x1 and
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x2, sustained by two branches of lengths t1 and t2:

L = p(x1,x0,t1)p(x2,x0,t2) (6)

=
∫ b

a
W1(x′

1)W2(x′
2)p(x′

1,x0,t)p(x′
2,x0,t2)dx′

1dx′
2 (7)

=
[∫ b

a
p(x0,x′

1,t2)W1(x′
1)dx′

1

]

×
[∫ b

a
p(x0,x′

2,t2)W2(x′
2)dx′

2

]
, (8)

where Wi(x′
i)=�(x′

i −xi), and we have used the symmetry
of the propagator, p(x,x0,t)=p(x0,x,t). This expression
has a simple interpretation: the weight function of each
node is “propagated” to its parent via the BBM process.
One can then define the weight function of the parent
node by combining the weights propagated along the
two descendant branches

W0(x0) =
[∫ b

a
p(x0,x′

1,t)W
1(x′

1)dx′
1

]

×
[∫ b

a
p(x0,x′

2,t)W
2(x′

2)dx′
2

]
. (9)

We then find the root value that maximizes the weight
function and obtain the likelihood

max
x0

[L]=max
x0

[
W0(x0)

]
, (10)

which should be maximized over �, a, and b. This
procedure generalizes to any tree: starting from the tips,
the weight functions are propagated down the branches
following the pruning algorithm (Felsenstein 1973) and
multiplied at the internal nodes down to the root. The
likelihood is finally obtained by maximizing the weight
function of the root.

Implementation.—To implement the algorithm, we
discretize the value of the trait at the nodes by
considering only a set of n points equally spaced between
a and b. We introduce a transition matrix specifying
the probability for the trait to evolve from one of these
n values to another during an infinitesimal time step
according to the BBM model. Our algorithm is thus
similar to the one commonly used for fitting models of
evolution for discrete traits (Lewis 2001), see details in
Appendix I available on Dryad). In the rest of the article,
we focus on BBM but Appendix III available on Dryad
shows how to calculate the likelihood of the most general
model possible, allowing any kind of force (i.e., selection
of any shape and strength) to be exerted on trait values
in addition to drift between bounds.

Likelihood calculations are done for given values of a,
b, and �, but we still need to optimize over these three
parameters to obtain the global likelihood of the BBM
model. Although there is no rigorous proof that the

minimum and maximum of the trait values at the tips are
the ML estimators of a and b, there are strong arguments
suggesting that it might be the case. First, the minimum
and maximum of a sample of uniformly distributed
values are the ML estimators of the bounds of an uniform
distribution. Second, we verified numerically that the
minimum and maximum of the trait values at the tips are
indeed the ML estimators of a and b, using simulations
over a wide range of parameters (Appendix IV available
on Dryad). Moreover, fixing a and b at the extremes of
the observed trait distribution enables optimizing over
� only, which leads on average to a 7-fold reduction in
computational time but also reduces optimization errors
(Appendix IV available on Dryad). In the rest of this
article, we thus fit the BBM model by fixing the values of
a and b to the minimum and maximum of the trait values
observed at the tips of the tree. The most time consuming
part of this algorithm is to apply the propagator to weight
vectors, which reduces to matrix multiplications. The
number of such multiplications is proportional to the
number of branches, so that the computational time is
linear in the number of branches.

Prior to all analyses done below, we ran preliminary
tests to determine which level of discretization is needed
to calculate the likelihood of BBM with a reasonable
precision. We found that increasing the number of points
used for discretizing the interval of trait values (i.e.
[a,b]) leads to a higher precision in the estimation of the
likelihood (Appendix V available on Dryad); on the other
hand, the computing time grows quadratically with the
number of points used in the discretization (because
of the matrix products). Based on these observations,
we decided to use a discretization of 100 points in all
following analysis since this generally gives a value
closer than 0.2 log-likelihood points to the most precise
value that we obtained (with 200 points), but we
recommend that empiricists working on only one or a
few data sets use discretizations of at least 200 points.

Using traits simulated under a BM process with no
bounds, we verified that the log-likelihood of the BBM
model calculated using our algorithm was generally
closer than 0.5 points to the log-likelihood of the BM
model calculated by the fitContinuous function in the
geiger package (Pennell et al. 2014, see Appendix IV
available on Dryad). Thus, our implementation of BBM
is compatible with all models implemented in geiger.

R code.—R code to fit the BBM model to
empirical data can be freely downloaded from
https://github.com/fcboucher/BBM, last accessed
February 23, 2016. The code can either estimate the
values of a and b along with other parameters or
fix them to the minimum and maximum of the trait
values observed at the tips of the tree. This later option
yields an important reduction in computational time
and an increased accuracy of parameter estimation
(see Appendix IV available on Dryad). The likelihood
function cannot be approximated by a Gaussian around
the ML parameter estimates since it is one-sided around
the ML estimates of the bounds and often highly

http://github.com/fcboucher/BBM


656 SYSTEMATIC BIOLOGY VOL. 65

asymmetric around the ML estimate of �2, hence
extracting standard errors using the Hessian matrix of
the system is not possible. Instead, we report confidence
intervals that contain the 95% highest probability
density around parameter estimates while fixing other
parameters to their maximum likelihood estimate. This
is technically done by removing the lowest 2.5% density
regions on each side of the MLE for sigma and the
root value when its MLE does not lie in one of the
bounds of the trait interval and removing the lowest 5%
density region for the bounds and the root value when
its MLE lies in one of the bounds of the trait interval.
These confidence intervals can be returned along with
likelihood profile plots around parameter estimates.
The code only depends on the ape package (Paradis et al.
2004).

Accuracy of Parameter Estimation
In order to measure the accuracy with which

parameters of BBM are estimated, we used data sets
simulated under BBM and inferred parameters using our
algorithm. We simulated phylogenetic trees of varying
sizes (15, 50, 100, and 200 tips) under a pure birth model
using the geiger package. All trees were rescaled to a total
arbitrary depth of Ttot =100 time units. Continuous traits
evolving under BBM on the trees were simulated with
bounds located at −5 and +5 so that total tree depth
divided by the characteristic time of the process, �, was
Ttot/�=�2. The ancestral value was uniformly drawn
from the interval and the value of � was varied in order
to explore situations where Ttot/� equalled 1E−6, 1E−5,
1E−4, 1E−3, 1E−2, 1E−1, 1, 10 and 100, thus ranging
from BM with no bounds (Ttot/��1) to BBM with many
reflections (Ttot/�	1). For each combination of a value
of Ttot/� and a tree size, 100 simulations were performed.

Simulations showed that the root value, x0, can only be
estimated accurately when Ttot/��1. This corresponds
to cases in which the trait did not hit the bounds and
thus behaves as BM. However, when Ttot/� increases,
information is rapidly lost and x0 is often estimated to
lie at the middle of the interval regardless of its actual
value, leading to very low precision (Fig. 4).

In contrast, simulations showed that � can be
estimated with high accuracy for a wide range of values
of Ttot/�, even on relatively small trees (Fig. 4). The only
cases where � is rather poorly estimated correspond to
simulations with Ttot/�	1. This is not a serious issue
since in this case the estimated value of � essentially
inform us that the trait interval has been crossed several
times, the exact number of times this has happened being
of minor biological importance.

Finally, simulations showed that the bounds of the trait
interval are poorly estimated when Ttot/��1 (Fig. 4c–d).
This is again because the trait did not hit the bounds
and the process effectively is BM with no bounds: in
these cases, both bounds are estimated to be closer than
they really are, that is at the minimum and maximum
of the trait values observed at the tips of the tree. When

Ttot/�≥0.1 the bounds have most often been hit and a
and b are then estimated with high accuracy. The quality
of the estimation dramatically increases with the number
of tips in the tree because as the number of extant species
increases, it is more and more likely that the traits of some
species are very close to the actual bounds.

Comparison to Other Models of Character Evolution
Simulation study.—In order to see whether BBM can
be discriminated from other simple models like BM
and OU with a single optimum (hereafter OU1), we
compared the likelihoods of BBM, BM, and OU1 on traits
simulated under a BBM model. To do so, we used the
same simulations of BBM as above, that is trees of 15, 50,
100, and 200 tips and values of Ttot/� of 1E−6, 1E−5,
1E−4, 1E−3, 1E−2, 1E−1, 1, 10 and 100 (100 repetitions
for each combination).

Simulations showed that in situations where the trait
did not hit the bounds of the interval (i.e., Ttot/��1)
BBM has a likelihood close to that of BM and OU1 (Fig. 5a
and b). This is expected since BM is a special case of
both BBM and OU1: in this case, the three models should
have the same likelihood, that is the one of BM, and the
Akaike Information Criterion (AIC) would identify BM
as the best-fitting model given that it has less parameters,
which is satisfactory since the trait evolved under BM in
practice. However, as Ttot/� increases BBM gets more and
more likely compared to both BM and OU1. As soon as
Ttot/�>0.1, BBM was most often at least twice as likely as
OU1 and four times as likely as BM (Fig. 5a and b), which
means that BBM would be selected as the best-fit model
using AIC (BBM has two more parameters than BM and
one more than the implementation of OU1 in geiger, in
which the root value and the optimum are equated). In
simulations where Ttot/�>1, BBM was often at least 10
times as likely as OU1 and 20 times as likely as BM. The
fact that OU1 is a much more likely model than BM on
simulations with Ttot/�≥1 comes from the fact that it has
a stationary variance, like BBM but not BM. Tree size had
a strong effect on model discrimination, with larger trees
giving more statistical power to discriminate BBM from
other models when trait evolution was actually bounded.
However, even on trees with only 15 tips, BBM most often
had a higher AIC than both BM and OU1 as soon as
Ttot/�≥0.1 (Fig. 5a and b).

Conversely, we also compared the fit of BBM with traits
simulated under an OU1 model. We simulated traits
evolving under OU1 on trees of 15, 50, 100, and 200 tips,
always using �=1 and an optimum value �=0. Values of
the attraction strength, �, equalled 1E−4, 1E−3, 1E−2,
1E−1, and 1, which correspond to phylogenetic half-
lives ranging from 0.69 to 6900 time units (the total
tree depth was again arbitrarily fixed at 100 time units).
The value of the trait at the root of the tree, x0, was
randomly drawn from the stationary distribution of the
OU1 process, that is a Gaussian with mean �and variance
�2/(2�).
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Simulations showed that BBM and OU1 have very
similar AICs for values of �≤0.001 (Fig. 5c). This is
normal since in these situations the actual process is very
similar to BM. However, for values of �≥0.01, OU1 most
often had a higher AIC than BBM (Fig. 5c). Although
tree size again had an effect on model discrimination,
OU1 could usually be discriminated from BBM even
on trees with 15 tips (Fig. 5c). Put together, these two
sets of simulations show that BBM can be effectively
discriminated from BM and OU1: whichever one of these
three models is simulated, it is most often the one that
gets the highest AIC.

Empirical example.—Finally, we investigated an empirical
data set. The data set consisted of measurements of
the realized climatic niches (mean annual temperature
and sum of annual precipitation) for species of the
marsupial order Diprotodontia (kangaroos, wallabies,
wombats, koalas, and relatives). We chose this clade
since diprotodonts occur all over Australia (plus several
neighboring islands), hence their realized climatic niches
might be bounded by the climate that is available in
this region (Boucher et al. 2014; Wüest et al. 2015).
This data set should ensure reasonable statistical power
since it contains 110 species (out of the 120 described).
The phylogeny came from Fritz et al. (2009) and
realized climatic niches were measured using range
maps from the IUCN realist assessment and climatic
data from the Worldclim database (10 arc-minutes
resolution, Hijmans et al. 2005). Each species’ climatic
niche was measured as the mean value of both climatic
variables (temperature and precipitation) across the
species’ range. We then fitted BBM (using 200 points for
the discretization), BM, and OU1 to both climatic niche
axes.

For both niche axes, BBM had the best fit to
the evolution of realized climatic niches. OU1 was
always the second model with the best fit (�AIC =
5.1 for temperature and �AIC =15.5 for precipitation),
and BM came last (�AIC =63.3 for temperature
and �AIC =20.7 for precipitation). Estimated rates of
evolution were 5.18◦C2/myr (confidence interval: 3.67–
8.91) for mean annual temperature and 44,053 mm
of rain2/myr (39,647–127,753) for annual precipitation,
which correspond to rather high expected numbers of
crossings of the climate interval for both niche axes
(Ttot/�=0.72 and 0.15, respectively). Bounds on the
trait intervals were estimated to be 7.4◦C (3.8–7.4) and
27.2◦C (27.2–30.8) for mean annual temperature, and
245 mm (125–245) and 4,195 mm (4195–4314) for annual
precipitation. These estimated values correspond to
the minimum and maximum climates experienced by
species in Diprotodontia.

These results suggest that species’ niches in this
clade are likely constrained by the temperature and
precipitation extremes that are present in Australia
and neighboring islands, but are probably not selected
toward an “optimal” climatic niche, as already suggested
by Boucher et al. (2014).

DISCUSSION

The development of the BBM model was needed since
none of the various models available in the toolbox of
comparative analysis so far could accommodate bounds
on the value of a character (O’Meara 2012), a situation
that could be common in nature (Futuyma 2010). We
discuss below the opportunities brought by this new
model for comparative analysis, as well as its limitations.

Strengths and Weaknesses of the BBM Model
Our simulations have shown that BBM can easily

be discriminated from other models using likelihood.
Although we expected that BBM and BM should be
easy to discriminate, this was less intuitive for BBM
and OU1, since these two models have qualitatively
similar behaviors. Ultimately, it is most probably the
flattening of the probability density under BBM (Fig. 3)
that brings the information necessary to discriminate it
from OU1, as can be seen from the fact that these two
alternative models produce trait distributions at the tips
of a phylogeny with very different values of kurtosis
(Appendix I available on Dryad).

Parameter inference under BBM has both exciting and
disappointing aspects. First of all, since the probability
density of BBM rapidly converges to a uniform, ancestral
character estimation under BBM is extremely limited:
apart from a few very recent nodes for which some
information may still exist, values of the trait at internal
nodes will often be estimated to lie in the middle of the
interval. This is exemplified by the rather poor estimation
of x0 as soon as the bounds of the interval have been
reached (Fig. 4a). Intuitively, this makes perfect sense:
when the trait starts to hit the bounds repeatedly, most of
the information on the trait values of ancestors is rapidly
lost. This could seem like bad news but we rather see
that as being positive: under BBM researchers will not
be tempted to estimate and then interpret the ancestral
values of their character of interest in a group, a practice
that has already been shown to be associated with high
estimation errors for models which retain relatively little
phylogenetic information, like OU1 (Martins 2000; Ané
2008).

Although we lack a rigorous proof of it, we have
argued that the ML estimators for the bounds of a
BBM process should be the minimum and maximum
values of the trait in a clade and ran extensive numerical
simulations to verify it (Appendix IV available on
Dryad). Although this saves a lot of computational time,
this is rather disappointing since no situation where a
trait is “getting close to a hard bound but not there yet”
or where a trait “has just bounced back on the bound”
can be recovered. Indeed, simulations have shown that
as long as the bounds of the interval have not been
reached, their estimation is really inaccurate since they
are estimated to lie much closer than in reality (Fig. 4c
and d). Bounds estimated using BBM should thus not be
interpreted per se ; rather, the good fit of BBM relative
to BM or OU1 indicates that the trait has most likely
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reached the bounds already and that the traits of some
species in the clade are probably not very far from the
bounds.

Finally, we have shown that the estimation of
�2 generally achieves good performance. However,
variance in the estimation increases for high values of �2

and typically spans several orders of magnitude (Fig. 4b).
This is of little biological concern since in these situations
we have an expected number of crossings of the trait
interval, Ttot/�, higher than one: we essentially infer
that the bounds of the interval of possible trait values
have been hit, even though it is difficult to infer the
evolutionary rate with precision. Although Ttot/� suffers
exactly from the same estimation errors than �2 (it is
linearly related to it), we recommend that researchers
interpret this parameter rather than �2 since we feel it
has a more straightforward biological meaning.

Biological Interpretation of Limits on Trait Evolution
Importantly, BBM is not the only way to model limits

on phenotypic evolution. BBM indeed assumes that
bounds on the phenotypic character can be reached and
are reflective. This might be the case for some characters,
like realized climatic niches for example (Boucher et al.
2014), and under some circumstances. Indeed, we have
shown here that the evolution of realized climatic niches
in Diprotodontia is better fit by BBM than by BM or OU1.
However, these assumptions might not hold for some
characters. First, bounds on the character might not be
reachable. This is the case for body mass: this character is
actually forced to be positive but a value of zero cannot be
reached. In this case, the most straightforward solution
is to log-transform body mass: the new variable is not
bounded anymore and can be analyzed with standard
BM or OU models (e.g., Garland et al. 1992; Harmon et al.
2010). This transformation in addition has the advantage
of being more biologically realistic: one would expect
that doubling its body mass is as likely for any organism,
whether it weights 10 g or 1000 kg, something that would
be adequately modeled using BM on log-transformed
body mass. The same logic can also apply to traits having
both a lower and an upper bound, and some authors have
used a logit transformation in this case (Scales et al. 2009).
A second situation in which BBM would not be suited
is when bounds on the character are absorbing. One
good example of such a phenomenon is the evolution of
allele frequencies: once one allele gets lost (frequency=
0) or fixed (frequency=1) in a population its frequency
does not evolve anymore, unless mutation or gene flow
modify this situation. Thus, it is extremely important
that researchers first evaluate the nature of the bounds
their character of interest is confronted with before using
BBM to model its evolution.

BBM and OU1: Two Very Different Kinds of Constraints
BBM and a single optimum OU model share an

important feature: they both impose a limit on the total

variance that a trait can accumulate in a clade over time.
As a result, they are rather close in essence in that they
describe constraints on trait evolution or phylogenetic
niche conservatism (PNC, Harvey and Pagel 1991; Wiens
et al. 2010). However, these two models have radically
different interpretations. The OU model is specifically
designed to model adaptation in the form of stabilizing
selection around an optimal value (Hansen 1997). In
contrast, BBM would describe a scenario in which traits
can drift freely over time in phenotypic space, except
that they are confined between two bounds. These
bounds might be imposed by any kind of constraints,
selective or otherwise. Several authors have warned
against purely adaptive interpretations of the good fit
of an OU1 model to a data set (Revell et al. 2008;
Boucher et al. 2014), arguing that many other processes
than stabilizing selection, including evolution between
bounds, can produce phylogenetic patterns of traits that
are very similar to those yielded by an OU1 model.
Using simulations, we have shown that BBM and OU1
can indeed be discriminated based on their likelihoods:
this opens the way to refining hypotheses about the
processes that might have lead to PNC in a clade. Indeed,
stabilizing selection might be rejected in some cases in
favor of more neutral processes, leading to some kind of
“artefactual” PNC, for example resulting from dispersal
limitation (Crisp and Cook 2012). In other cases BBM
might be rejected, giving more evidence for the role
played by stabilizing selection in promoting PNC.

Conclusion and Future Directions
We believe that the development of the BBM model

is an important step in comparative analysis. We
acknowledge that BBM is a rather simple process, but
it could be extended in several different directions.
First, we have assumed BBM to be homogeneous across
an entire clade. Although our simulation study has
shown that parameter estimation and discrimination
from alternative models is best achieved on relatively
large trees (i.e., of more than 100 tips, Figs. 4 and 5), it is
rather unlikely that processes act homogeneously over
clades of this size (O’Meara 2012; Rabosky et al. 2013;
Uyeda and Harmon 2014). Because we have provided a
closed formula for the likelihood of BBM and an efficient
algorithm to calculate it, extending it to a version where
traits evolve in different bounded intervals for different
subclades is straightforward. More importantly, we have
provided in the Appendix III available on Dryad a very
general formula to include a force acting on trait values
in addition to diffusion between bounds. This force can
be of any shape, like a directional trend toward one of
the bounds, attraction towards one central value (i.e.,
an Ornstein–Uhlenbeck process with bounds), attraction
toward several intermediate values, repulsion from one
or several values, or even a combination of these. This
opens the way to identifying complex scenarios of
evolution between bounds, for example using a MCMC
framework.
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