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Abstract Using Semaev’s summation polynomials, we derive a new equation for the
Fq -rational points of the trace zero variety of an elliptic curve defined over Fq . Using this
equation, we produce an optimal-size representation for such points. Our representation is
compatible with scalar multiplication. We give a point compression algorithm to compute the
representation and a decompression algorithm to recover the original point (up to some small
ambiguity). The algorithms are efficient for trace zero varieties coming from small degree
extension fields. We give explicit equations and discuss in detail the practically relevant cases
of cubic and quintic field extensions.

Keywords Elliptic curve cryptography · Pairing-based cryptography · Discrete logarithm
problem · Trace zero variety · Efficient representation · Point compression · Summation
polynomials
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1 Introduction

Given a (hyper)elliptic curve defined over Fq and a field extension Fq |Fqn , consider the Fqn -
rational points of trace zero. They form a subgroup of the group of Fqn -rational points of
the curve, and can be realized as the Fq -rational points of an abelian variety built by Weil
restriction from the original curve, called the trace zero variety. The trace zero subgroup was

Communicated by S. D. Galbraith.

E. Gorla (B)
Institut de mathématiques, Université de Neuchâtel, Rue Emile-Argand 11,
2000 Neuchâtel, Switzerland
e-mail: elisa.gorla@unine.ch

M. Massierer
Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland
e-mail: maike.massierer@unibas.ch

123



336 E. Gorla, M. Massierer

first proposed for use in cryptography by Frey [15], and further studied by Naumann [35],
Weimerskirch [44], Blady [5], Lange [31,32], Avanzi-Cesena [1,8], and Diem-Scholten [12].
Trace zero subgroups are interesting because they allow efficient arithmetic, due to a speed-up
of the standard scalar multiplication using the Frobenius endomorphism. This is analogous
to the use of endomorphisms to speed up scalar multiplication on Koblitz curves (see [30])
and GLV–GLS curves (see [17,19]), which are the basis for several recent implementation
speed records for elliptic curve arithmetic (see [6,14,34]).

The trace zero subgroup is of interest in the context of pairing-based cryptography. Rubin
and Silverberg have shown in [37,40] that the security of pairing-based cryptosystems can
be improved by using abelian varieties of dimension greater than one in place of elliptic
curves. Jacobians of hyperelliptic curves and trace zero varieties are therefore the canonical
examples for such applications.

Since the trace zero subgroup is contained in the group of Fqn -rational points of the
(Jacobian of the) curve, the DLP in the trace zero subgroup is at most as hard as the DLP
in the curve. It is easy to show that in fact the DLP’s in the two groups have the same
complexity. From a mathematical point of view therefore, trace zero variety cryptosystems
may be regarded as the (hyper)elliptic curve analog of torus-based cryptosystems such as
LUC [43], Gong-Harn [25], XTR [33], and CEILIDIH [38].

The hardness of the discrete logarithm problem in a group is closely connected with the
size of the representation of the group elements. Usually, the hardness of the DLP is measured
as a function of the group size. However, for practical purposes, the comparison with the size
of the representation of group elements is a better indicator, since it quantifies the storage
and transmission costs connected with using the corresponding cryptosystem. Therefore, in
order to make the comparison between DLP complexity and group size a fair one, we are
interested in a compact representation that reflects the size of the group. Such an optimal-size
representation consists of log2 N bits, where N is the size of the group. See also [26] for a
discussion on the significance of compact representations.

An optimal-size representation for elliptic curves is well-known. In the cryptographic
setting, it is standard procedure to represent an elliptic curve point by its x-coordinate only,
since the y-coordinate can easily be recomputed, up to sign, from the curve equation. If
desired, the sign can be stored in one extra bit of information. Representing a point via its
x-coordinate gives an optimal representation for the elements of the group of Fqn -rational
points of an elliptic curve: Each of the approximately qn points can be represented by one
element of Fqn , or n elements of Fq after choosing a basis of the field extension. Notice
moreover that storing the sign of the y-coordinate is unnecessary, since this representation
is compatible with scalar multiplication of points: For any k ∈ Z, the x-coordinates of the
points k P and −k P coincide.

The trace zero variety of an elliptic curve with respect to a prime extension degree n has
dimension n −1, and we are interested in the Fq -rational points. Hence, an optimal represen-
tation should have log2 qn−1 bits, or consist of n − 1 elements of Fq . For practical purposes,
it is important that the representation can be efficiently computed (“compression”) and that
the original point can be easily recovered, possibly up to some small ambiguity, from the
representation (“decompression”). Naumann [35], Rubin-Silverberg [37,39,42], and Lange
[32] propose compact representations with compression and decompression algorithms for
genus 1 and genus 2 curves, respectively. The work by Eagle et al. [13] on point compression
methods for Koblitz curves is also related.

In this paper, we concentrate on extension fields of degree n = 3 or 5. This is due to
the fact that an index calculus attack [20] and a cover attack [9–11] apply to Tn , making it
vulnerable for large values of n. In this work we briefly discuss these attacks and come to
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the conclusion that there are no security issues for n = 3. For n = 5 the cover attacks can be
avoided by imposing extra conditions, and the known index calculus attacks do not threaten
the security of pairing-based cryptosystems involving trace zero subgroups of supersingular
curves.

The main purpose of this paper is introducing a new representation for the points on the
trace zero variety of an elliptic curve. The compression and decompression algorithms are
more efficient than that of [42], and points are recovered with smaller ambiguity. In addition,
our representation is (to the extent of our knowledge) the only one that is compatible with
scalar multiplication of points, which is the only operation needed in Diffie–Hellman-based
cryptographic protocols.

The paper is structured as follows: In Sect. 2, we fix the notation, give the relevant defin-
itions, and briefly recall the standard representation for points on the trace zero variety. We
also discuss the simple case of the trace zero variety for a quadratic field extension. Using
Semaev’s summation polynomials, in Sect. 3 we derive a single equation whose Fq -solutions
describe the Fq -points of the trace zero variety, up to a few well-described exceptions (see
Lemma 1 and Proposition 4). In Sect. 4, using the equation that we produced in the previ-
ous section, we propose a new representation for the points on the trace zero variety. The
size of the representation is optimal, and we give efficient compression and decompression
algorithms. In Sects. 5 and 6 we analyze in detail what our method produces for the cases
n = 3 and 5. We give explicit equations and concrete examples computed with Magma and
comment on security issues for these parameters. It is generally agreed that 3 and 5 are the
practically relevant extension degrees in the case of elliptic curves (see e.g. [32]).

2 Preliminaries

Let Fq be a finite field with q elements, and let E be an elliptic curve defined over Fq by
an affine Weierstraß equation. We consider the group E(Fqn ) of Fqn -rational points of E for
field extensions of prime degree n. The group operation is point addition, and the neutral
element is the point at infinity, denoted by O. We denote indeterminates by lower case letters
and finite field elements by upper case letters.

Definition 1 The Frobenius endomorphism on E is defined by

ϕ : E → E, (X, Y ) �→ (Xq , Y q), O �→ O.

One can define a trace map

Tr : E(Fqn ) �→ E(Fq), P �→ P + ϕ(P) + ϕ2(P) + · · · + ϕn−1(P),

relative to the field extension Fqn |Fq . The kernel of the trace map is the trace zero subgroup
of E(Fqn ), which we denote by Tn .

By the process of Weil restriction, the points of Tn can be viewed as the Fq -rational points
of an abelian variety V of dimension n −1 defined over Fq . V is called the trace zero variety.

In trace zero subgroups, arithmetic can be made more efficient by using the Frobenius
endomorphism, following a similar approach to Koblitz curves and GLV–GLS curves. They
turn out to be extremely interesting in the context of pairing-based cryptography, where they
achieve the largest security parameters in some cases, as discussed in [1,8,37,40].

It is easy to show that the DLP in E(Fqn ) is as hard as the DLP in Tn . An explanation is
given in [27] for the analogous case of algebraic tori: The trace maps a DLP in E(Fqn ) to a
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DLP in E(Fq). By solving it in the smaller group, the discrete logarithm is obtained modulo
the order of E(Fq). The remaining modular information required to compute the full discrete
logarithm comes from solving a DLP in Tn . A formal argument, which applies to any short
exact sequence of algebraic groups, is given in [18].

Proposition 1 Consider the exact sequence

0 −→ Tn −→ E(Fqn )
Tr−→ E(Fq) −→ 0.

Then solving a DLP in E(Fqn ) has the same complexity as solving a DLP in Tn and a DLP
in E(Fq).

In the conclusions of [1], large bandwidth is mentioned as the only drawback of using
trace zero subgroups in pairing-based cryptography. In this paper we solve this problem by
finding an optimal representation for the elements of the trace zero subgroup.

Definition 2 Let G be a finite set. A representation for the elements of G is a bijection
between G and a set of binary strings of fixed length �. Equivalently, it is an injective map
from G to F

�
2. A representation is optimal if |G| ∼ 2�, i.e. if we need approximately log2 |G|

bits to represent an element of G.
Abusing terminology, in this paper we call representation a map from G to F

�
2 with the

property that an element of F
�
2 has at most d inverse images, for some small fixed d . In this

case, we say that the representation identifies classes of at most d elements, namely those
that have the same representation. Notice that the number of classes is about |G|/d ∼ |G|,
if d is a small constant.

Remark 1 Since the elements of a finite field Fq can be represented via binary strings of
length log2 q , a representation for G can be given via a bijection between G and a subset
of F

m
q , for some m and some prime power q . Such a representation is optimal if and only if

|G| ∼ qm .

Representing points of an elliptic curve via their x-coordinate is a standard example of
optimal representation.

Example 1 It is customary to represent a point (X, Y ) ∈ E(Fqn )via its x-coordinate X ∈ Fqn .
The y-coordinate can then be recovered, up to sign, from the curve equation. If desired, the
sign can be stored in one extra bit of information. Such a representation is optimal, since by
Hasse’s Theorem |E(Fqn )| ∼ qn .

The representation from the previous example identifies pairs of points, since P and −P
have the same x-coordinate. We often say that the x-coordinate is a representation for the
equivalence class consisting of P and −P . The representation that we propose in this paper
identifies a small number of points as well. Before we discuss our representation, we notice
that representing a point P ∈ Tn via its x-coordinate is no longer optimal.

Remark 2 Since a point P = (X, Y ) ∈ Tn is an element of E(Fqn ), we can represent
P via X ∈ Fqn . Choosing an Fq -basis of Fqn , we can represent X ∈ Fqn as an n-tuple
(X0, . . . , Xn−1) ∈ F

n
q . Representing P ∈ Tn as X ∈ Fqn or as (X0, . . . , Xn−1) ∈ F

n
q

however is not optimal, since |Tn | ∼ qn−1.

In this paper we find a representation for the elements of Tn , via n − 1 coordinates
in Fq . Our representation is not injective, but it identifies a small number of points. Our
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approach is the following: We start from the representation of P ∈ Tn as an n-tuple ρ(P) =
(X0, . . . , Xn−1) ∈ F

n
q , and write an equation in Fq [x0, . . . , xn−1] which vanishes on ρ(P)

for all P ∈ Tn . This allows us to drop one coordinate of ρ(P) and reconstruct it using the
equation. Therefore, we can represent elements of Tn via n − 1 coordinates in Fq , which is
optimal.

We now fix some notation that we will use when writing explicit equations in Sects. 4, 5,
and 6. Let Fq be the finite field with q elements, n a prime. For the sake of concreteness,
we assume that n | q − 1. Due to its simplicity, we always consider this case when writing
explicit equations. All of our arguments however work for any n and q , see also Remark 3.
If n | q − 1, thanks to Kummer theory we can write the extension field as

Fqn = Fq [ζ ]/ (
ζ n − μ

)
,

where μ is not an nth power in Fq . Where necessary, we take 1, ζ, . . . , ζ n−1 as a basis of the
field extension.

When doing Weil restriction, we associate n new variables x0, . . . , xn−1 to the variable
x . They are related via

x = x0 + x1ζ + · · · + xn−1ζ
n−1. (1)

We abuse terminology and use the term Weil restriction not only for the variety, but also for
the process of writing equations for the Weil restriction. In particular for us, Weil restriction is
a procedure that can be applied to a polynomial defined over Fqn and results in n polynomials
with n times as many variables, and coefficients in Fq .

Remark 3 If n does not divide q − 1, we choose a normal basis {α, αq , . . . , αqn−1} of Fqn

over Fq and Weil restriction coordinates

x = x0α + x1α
q + · · · + xn−1α

qn−1
.

It is easy to show that the case n = 2 allows a trivial optimal representation for the
elements of Tn . Hence in the next sections we concentrate on the more interesting case of
odd primes n.

Proposition 2 The trace zero subgroup T2 of E(Fq2) can be described as

T2 = {
(X, Y ) ∈ E(Fq2) | X ∈ Fq , Y /∈ Fq

} ∪ E[2](Fq).

In particular, representing a point (X, Y ) ∈ T2 by X ∈ Fq yields a representation of optimal
size.

Proof We first prove that T2 is contained in the union of sets on the right hand side of the
equality. Let P ∈ T2, P �= O, so P = (X, Y ) ∈ E(Fq2). If P ∈ E(Fq), then 2P = O,
hence P ∈ E[2](Fq). If P /∈ E(Fq), then (X, Y ) = −(Xq , Y q). In particular X = Xq , so
X ∈ Fq , which also implies Y /∈ Fq .

To prove the other inclusion, observe that by definition P ∈ E[2](Fq) satisfies 2P = O,
so P ∈ T2. Let P = (X, Y ) ∈ E(Fq2) with X ∈ Fq , Y /∈ Fq . Since X ∈ Fq , the points
(X, Y ) and ϕ(X, Y ) = (X, Y q) are distinct points on E which lie on the same vertical line
x − X = 0. Hence (X, Y ) + ϕ(X, Y ) = O and (X, Y ) ∈ T2. �	

The next proposition will be useful when writing equations for the Fq -rational points of
the trace zero variety. For a multivariate polynomial h, we denote by degxi

(h) the degree of
h in the variable xi .
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Proposition 3 Let h ∈ Fq [x0, . . . , xn−1] be a polynomial with h(X0, . . . , Xn−1) = 0 for all
(X0, . . . , Xn−1) ∈ F

n
q , and assume that degxi

(h) < q for i ∈ {0, . . . , n − 1}. Then h is the
zero polynomial.

Proof Write

V (h) =
{
(X0, . . . , Xn−1) ∈ F

n
q

∣
∣
∣h (X0, . . . , Xn−1) = 0

}
⊆ F

n
q

for the zero locus of h over the algebraic closure of Fq and

I (V ) =
{

f ∈ Fq
[
x0, . . . , xn−1

] ∣
∣
∣ f (X0, . . . , Xn−1) = 0 for all (X0, . . . , Xn−1) ∈ V

}

for the ideal of the polynomials vanishing on some V ⊆ F
n
q .

First we show that I (Fn
q) = Jn where Jn = (xq

0 − x0, . . . , xq
n−1 − xn−1). We proceed

by induction on n. The claim holds for n = 1, since the elements of Fq are exactly those
elements of Fq that satisfy the equation xq

0 −x0. Assuming that the statement is true for n−1,
we have

I (Fn
q) =

⋂

(α0,...,αn−1)∈Fn
q

(x0 − α0, . . . , xn−1 − αn−1)

=
⋂

α0∈Fq

⋂

(α1,...,αn−1)∈F
n−1
q

(x0 − α0, . . . , xn−1 − αn−1)

=
⋂

α0∈Fq

(
x0 − α0, xq

1 − x1, . . . , xq
n−1 − xn−1

)

=
⎛

⎝
∏

α0∈Fq

(x0 − α0), xq
1 − x1, . . . , xq

n−1 − xn−1

⎞

⎠

= Jn .

Now we show that h = 0. Since h vanishes on F
n
q , we have F

n
q ⊆ V (h) ⊆ F

n
q , which

implies h ∈ I (V (h)) ⊆ I (Fn
q) = Jn . The leading terms of xq

0 − x0, . . . , xq
n−1 − xn−1 with

respect to any term order are xq
0 , . . . , xq

n−1, in particular they are pairwise coprime. Hence the
polynomials xq

0 − x0, . . . , xq
n−1 − xn−1 are a Gröbner basis of Jn . Therefore, h ∈ Jn implies

that h reduces to zero using the generators of Jn , i.e. if we divide h by xq
i − xi whenever the

leading term of h is divisible by xq
i , we must obtain remainder zero when no more division

is possible. But since degxi
(h) < q for all i, h is equal to the remainder of the division of h

by xq
0 − x0, . . . , xq

n−1 − xn−1, hence h = 0. �	

3 An equation for the trace zero subgroup

In this section we use Semaev’s summation polynomials [41] to write an equation for the set
of Fq -rational points of the trace zero variety. The equation involves the x-coordinates only
and will help us in finding a better representation for the elements of the trace zero subgroup.

Semaev introduced the summation polynomials in the context of attacking the elliptic
curve discrete logarithm problem. They give polynomial conditions describing when a num-
ber of points on an elliptic curve sum to O, involving only the x-coordinates of the points.
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Point compression for the trace zero subgroup 341

Definition 3 Let Fq be a finite field of characteristic different from 2 and 3 and let E be a
smooth elliptic curve defined by the affine equation

E : y2 = x3 + Ax + B,

with coefficients A, B ∈ Fq .
Define the mth summation polynomial fm recursively by

f3(z1, z2, z3) = (z1 − z2)
2z2

3 − 2 ((z1 + z2)(z1z2 + A) + 2B) z3

+ (z1z2 − A)2 − 4B(z1 + z2)

fm(z1, . . . , zm) = Resz ( fm−k(z1, . . . , zm−k−1, z), fk+2(zm−k, . . . , zm, z))

for m ≥ 4 and m − 3 ≥ k ≥ 1.

We briefly recall the properties of summation polynomials that we will need.

Theorem 1 ([41], Theorem 1) For any m ≥ 3, let Z1, . . . , Zm be elements of the algebraic
closure Fq of Fq . Then fm(Z1, . . . , Zm) = 0 if and only if there exist Y1, . . . , Ym ∈ Fq such
that the points (Zi , Yi ) are on E and (Z1, Y1) + · · · + (Zm, Ym) = O in the group E(Fq).
Furthermore, fm is absolutely irreducible and symmetric of degree 2m−2 in each variable.
The total degree is (m − 1)2m−2.

Remark 4 Definition 3 is the original definition that Semaev gave in [41]. Semaev polyno-
mials can be defined and computed also over a finite field of characteristic 2 or 3. Although
the formulas look different, the properties are analogous to those stated in Theorem 1. Hence
all the results that we prove in this paper hold, with the appropriate adjustments, over a finite
field of any charasteristic.

Since the points in Tn are characterized by the condition that their Frobenius conjugates
sum to zero, we can use the Semaev polynomial to give an equation only in x . It is clear
that (X, Y ) ∈ Tn implies fn(X, Xq , . . . , Xqn−1

) = 0. The opposite implication has some
obvious exceptions.

Lemma 1 For any prime n, let Tn denote the trace zero subgroup associated with the field
extension Fqn |Fq . We have

� n
2 −1⋃

k=0

(
E[n − 2k](Fq) + E[2] ∩ Tn

)

⊆
{
(X, Y ) ∈ E(Fqn )

∣∣ fn

(
X, Xq , . . . , Xqn−1

)
= 0

}
∪ {O}.

Proof Let k ∈ {0, . . . , � n
2 }, and let P = Q + R with Q ∈ E[n − 2k](Fq), R ∈ E[2] ∩ Tn .

Then we have

P + ϕ(P) + · · · + ϕn−2k−1(P)
︸ ︷︷ ︸

n−2k summands

+ϕn−2k(P) − ϕn−2k+1(P) + · · · − ϕn−1(P)
︸ ︷︷ ︸

2k summands with alternating signs

= Q + · · · + Q︸ ︷︷ ︸
n−2k summands

+ Q − Q + · · · − Q︸ ︷︷ ︸
2k summands with alternating signs

+R + ϕ(R) + · · · + ϕn−1(R)

= (n − 2k)Q + Tr(R)

= O,

where for the first equality we use that Q ∈ E(Fq) and R ∈ E[2], and for the third equality
we use that Q ∈ E[n − 2k] and R ∈ Tn . �	
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Notice that the points of the form P = Q + R with Q ∈ E[n−2k](Fq) and R ∈ E[2]∩Tn

are not trace zero points if Q �= O and 3 ≤ n − 2k ≤ n − 2. For the interesting cases n = 3
and 5 we prove that these are the only exceptions.

Proposition 4 Let Tn be the trace zero subgroup associated with the field extension Fqn |Fq .
We have

T3 =
{
(X, Y ) ∈ E(Fq3)

∣
∣ f3

(
X, Xq , Xq2

)
= 0

}
∪ {O}

T5 ∪ (E[3](Fq) + E[2] ∩ T5) =
{
(X, Y ) ∈ E(Fq5)

∣
∣ f5

(
X, Xq , . . . , Xq4

)
= 0

}
∪ {O}.

Proof Let P = (X, Y ) ∈ E(Fq3) with f3(X, Xq , Xq2
) = 0. Then by the properties of the

Semaev polynomial, there exist Y0, Y1, Y2 ∈ Fq such that (X, Y0)+ (Xq , Y1)+ (Xq2
, Y2) =

O. Obviously we have Yi = ±Y qi
, i = 0, 1, 2, so P ± ϕ(P) ± ϕ2(P) = O. We have

to show that all signs are “+”. Suppose P − ϕ(P) + ϕ2(P) = O. By applying ϕ, we get
ϕ(P)−ϕ2(P)+ P = O. Adding these two equations gives 2P = O, implying that P = −P ,
hence P + ϕ(P) + ϕ2(P) = O. In particular, P ∈ T3. The rest follows by symmetry.

Now let P = (X, Y ) ∈ E(Fq5) with f5(X, Xq , . . . , Xq4
) = 0. Then as before, P ±

ϕ(P) ± ϕ2(P) ± ϕ3(P) ± ϕ4(P) = O. If all signs are “+”, then P ∈ T5. We treat all other
cases below.

[One minus] Assume P+ϕ(P)+ϕ2(P)+ϕ3(P)−ϕ4(P) = O. Applying ϕ to the equation
and adding the two equations, we get 2ϕ(P) + 2ϕ2(P) + 2ϕ3(P) = O, and by substituting
into twice the first equation, 2P = ϕ4(2P). Hence 2P ∈ E(Fq4) ∩ E(Fq5) = E(Fq), so
2P ∈ E[3](Fq). Now P = Q + R ∈ E[6] is the sum of Q ∈ E[3] and R ∈ E[2]. We have
Q = −2Q = −2P ∈ E[3](Fq). From the original equation P + ϕ(P) + ϕ2(P) + ϕ3(P) −
ϕ4(P) = O, we get an analogous equation in R, which together with R ∈ E[2] gives R ∈ T5.

[Two minuses in a row] Assume P + ϕ(P) + ϕ2(P) − ϕ3(P) − ϕ4(P) = O. Applying
ϕ2 and adding, we get 2ϕ2(P) = O, hence P = −P and therefore P ∈ T5.

[Two minuses not in a row] Finally, assume P + ϕ(P) − ϕ2(P) + ϕ3(P) − ϕ4(P) = O.
Applying ϕ and adding, we get 2ϕ(P) = O, hence P = −P and therefore P ∈ T5.

The other cases follow by symmetry, thus proving the claim. �	

Remark 5 In the sequel, we use fn as an equation for Tn . In practice however, for any root
X ∈ Fqn of fn(x, xq , . . . , xqn−1

)we need to be able to decide efficiently whether (X, Y ) ∈ Tn .
For n = 3 we only need to check that Y ∈ Fq3 . This guarantees that (X, Y ) ∈ T3, by

Proposition 4.
For n = 5, by Proposition 4 we have to exclude from the solutions of f5 = 0 the

points (X, Y ) ∈ E such that Y /∈ Fq5 and the points of the form Q + R where O �=
Q ∈ E[3](Fq) and R ∈ E[2] ∩ T5. Let L be the set of the x-coordinates of the elements
Q + R ∈ E[3](Fq) + E[2] ∩ T5 with Q �= O. Then L has cardinality at most 16. A root

X ∈ Fq5 of f5(x, xq , . . . , xq4
) corresponds to a point (X, Y ) ∈ T5 if and only if X /∈ L and

Y ∈ Fq5 .

The x-coordinates of the points of Tn correspond to zeros of the Weil restriction of
fn(x, . . . , xqn−1

). Since E is defined over Fq , then fn(x, . . . , xqn−1
) ∈ Fq [x]. Therefore,

for any α ∈ Fqn we have

fn

(
α, . . . , αqn−1

)q = fn

(
αq , . . . , αqn−1

, α
)

= fn

(
α, . . . , αqn−1

)
,
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Point compression for the trace zero subgroup 343

where the second equality follows from the symmetry of the Semaev polynomial. It follows
that

fn

(
α, . . . , αqn−1

)
∈ Fq for all α ∈ Fqn . (2)

We use the relations 1 to write equations for the Weil restriction. Notice that since we are only
interested in the Fq -rational points of the Weil restriction, we may reduce the equations that
we obtain modulo xq

i −xi for i = 0, . . . , n−1. Hence we obtain equations in x0, . . . , xn−1 of
degree less than q in each indeterminate. Now 2 together with Proposition 3 implies that the
last n − 1 equations are identically zero. Therefore, although Weil restriction could produce
up to n equations, by reducing modulo the equations xq

i − xi we obtain only one equation at
the end. We denote this new equation by

f̃n (x0, . . . , xn−1) = 0.

We stress that its Fq -solutions correspond to the elements of Tn , together with some extra
points described in Lemma 1 and Proposition 4. In Remark 5 we discussed how to distinguish
the extra solutions. Since we reduce the Weil restriction of fn(x, xq , . . . , xqn−1

) modulo
xq

i − xi , the qth powers disappear, and we are left with an equation f̃n of the same degree as
the original Semaev polynomial fn .

Concerning the representation, we now have an equation that is compatible with dropping
the y-coordinate. It is a natural idea to drop one Xi in order to obtain a compact representation,
mimicking the approach of [32,35,42]. The decompression algorithm could then use f̃n to
recompute the missing coordinate. However, since f̃n has relatively large degree, this would
identify more points than desired. Moreover, the computation of the Weil restriction of the
Semaev polynomials requires a large amount of memory. It is already very demanding for
n = 5. We present a modified approach to the problem in the next section.

4 An optimal representation

As the Semaev polynomials are symmetric in nature, they can be written in terms of the
symmetric functions. We write

fn(z1, . . . , zn) = gn (e1(z1, . . . , zn), . . . , en(z1, . . . , zn)) , (3)

where ei are the elementary symmetric polynomials

ei (z1, . . . , zn) =
∑

1≤ j1<···< ji ≤n

z j1 · · · z ji ,

and call gn the “symmetrized” nth Semaev polynomial. The advantage over the original
Semaev polynomial is that gn has lower degree (e.g. 2 instead of 4 for n = 3, and 8 instead of
32 for n = 5) and fewer Fqn -solutions, as it respects the inherent symmetry of the sum (i.e.
where fn has as solutions all permutations of possible x-coordinates, gn has only one solution,
the symmetric functions of these coordinates). See [29] for how to efficiently compute the
symmetrized Semaev polynomials. In this sense,

gn (s1, . . . , sn) = 0 (4)

also describes the points of Tn via the relations

si = ei

(
x, xq , . . . , xqn−1

)
, i = 1, . . . , n.
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Notice that for X ∈ Fqn , we have ei (X, Xq , . . . , Xqn−1
) ∈ Fq . Summarizing, gn is a poly-

nomial with Fq -coefficients by Eq. 3, as well as the polynomials ẽi that we obtain by Weil
restriction from the symmetric functions in the q-powers of x :

si = ẽi (x0, . . . , xn−1) , i = 1, . . . , n. (5)

Furthermore, we get exactly one new relation per equation (reducing modulo xq
i − xi and

applying Proposition 3, as before). Hence we have a total of n equations in the Weil restriction
coordinates describing the symmetric functions. The qth powers in the exponents disappear
thanks to the reduction, and each ẽi is homogeneous of degree i . A combination of the Eqs. 4
and 5 enables us to give a compact representation of the affine points of Tn = V (Fq). It can
be computed with the compression algorithm, the full point can be recovered (up to some
small ambiguity) with the decompression algorithm.

Compression.

Input: P = (X0, . . . , Xn−1, Y0, . . . , Yn−1) ∈ V (Fq)

Compute the symmetric functions of the Frobenius conjugates of X : Si = ẽi (X0, . . . , Xn−1),

i = 1, . . . , n − 1

Output: (S1, . . . , Sn−1) ∈ F
n−1
q

Decompression.

Input: (S1, . . . , Sn−1) ∈ F
n−1
q

Solve gn(S1, . . . , Sn−1, t) = 0 for t .
For each solution τ , find a solution (if it exists) of the system

S1 = ẽ1(x0, . . . , xn−1)
...

Sn−1 = ẽn−1(x0, . . . , xn−1)

τ = ẽn(x0, . . . , xn−1).

(6)

For the found solution (X ( j)
0 , . . . , X ( j)

n−1), recompute one of the y-coordinates Y ( j) belonging

to X ( j) = X ( j)
0 + · · · + X ( j)

n−1ζ
n−1 using the curve equation.

If (X ( j), Y ( j)) ∈ Tn , then add ±P = (X ( j),±Y ( j)) and all their Frobenius conjugates to the
set of output points.

Output: All points of Tn = V (Fq) that have (S1, . . . , Sn−1) as compact representation

Remark 6 Because of Lemma 1, in the last step of the decompression algorithm, for each
root X ( j) of the polynomial fn one needs to check that the point (X ( j), Y ( j)) ∈ Tn . This step
can in practice be eliminated for n = 3, 5, as discussed in Remark 5.

For a small set of points, Eq. 4 vanishes when evaluated in the given S1, . . . , Sn−1. For
such points P , any t ∈ Fq solves the equation gn(S1, . . . , Sn−1, t) = 0, making the com-
putational effort for decompressing Compress(P) very large. Therefore, our decompression
algorithm is not practical for such points. However, for almost all points P ∈ V (Fq) the
polynomial gn(S1, . . . , Sn−1, t) has only a small number of roots in t (upper bounded by
the degree of gn in the variable t). For our analysis, we assume that we are in the latter
case. We have P ∈ Decompress(Compress(P)), since the points of V (Fq) are described by
gn(ẽ1(x0, . . . , xn−1), . . . , ẽn(x0, . . . , xn−1)). The relevant question is how many more points
the output may contain.
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First of all, by compressing a point, we lose the ability to distinguish between Frobenius
conjugates of points, since for each solution of system 6, all Frobenius conjugates are also
solutions. This can be compared to the fact that when using the “standard” compression,
we lose the ability to distinguish between points and their negatives. If desired, a few extra
bits can be used to remember that information. Alternatively, we can think of working in Tn

modulo an equivalence relation that identifies the Frobenius conjugates of each point and its
negative. This reduces the size of the group Tn by a factor 2n, which is a small price to pay
considering the amount of memory saved by applying the compression, especially since n is
small in practice. Notice also that it is enough to compute one solution of system 6, since the
set of all solutions consists precisely of the Frobenius conjugates of one point. This is because
any polynomial in n variables which is left invariant by any permutation of the variables can
be written uniquely as a polynomial in the elementary symmetric functions e1, . . . , en .

Now, how many different equivalence classes of points can be output by the decompression
algorithm depends only on the degree of gn in the last indeterminate. For n = 3 the degree
is one and decompression therefore outputs only a single class. As n grows, the degree of
the Semaev polynomial also grows, thus producing more ambiguity in the recovery process.
This also reflects the growth in the number of extra points which satisfy the equation coming
from the Semaev polynomial, as seen in Lemma 1.

Notice moreover that there may be solutions τ of gn(S1, . . . , Sn−1, t) = 0 for which sys-
tem 6 has no solutions, and that not all the solutions of system 6 produce an equivalence class
of points on the trace zero variety. Example, if X ∈ Fqn satisfies fn(X, Xq , . . . , Xqn−1

) = 0,
the corresponding point P = (X, Y ) ∈ E may have Y ∈ Fq2n \ Fqn . In this case P /∈ Tn .

Since our algorithms are most useful for n = 3 and 5, an asymptotic complexity analysis
for general n does not make much sense. In fact, it is easy to count the number of additions,
multiplications, and squarings in Fq needed to compute the representation just from looking
at the formulas for s1, . . . , sn−1. We do this for the cases n = 3 and 5 in Sects. 5 and 6,
respectively. There, we also discuss the efficiency of our decompression algorithm and how
it compares to the approaches of [35,42].

Remark 7 In order to compute with points of Tn , we suggest to decompress a point, perform
the operation in E(Fqn ), and compress again the result. Since compression and decompression
is very efficient, this adds only little overhead. In an environment with little storage and/or
bandwidth capacity, the memory savings of compressed points may well be worth this small
trade-off with the efficiency of the arithmetic. Also notice that scalar multiplication of trace
zero points in E(Fqn ) is more efficient than scalar multiplication of arbitrary points of E(Fqn ),
due to a speed-up using the Frobenius endomorphism, as pointed out by Frey [15] and studied
in detail by Lange [31,32] and subsequently by Avanzi and Cesena [1].

Our recommendation corresponds to usual implementation practice in the setting of point
compression: Even when a method to compute with compressed points is available, it is
usually preferable to perform decompression, compute with the point in its original repre-
sentation, and compress the result. For example, Galbraith and Lin show in [16] that although
it is possible to compute pairings using the x-coordinates of the input points only, it is more
efficient in most cases (namely, whenever the embedding degree is greater than two) to
recompute the y-coordinates of the input points and perform the pairing computation on the
full input points. As a second example, let us consider the following two methods for scalar
multiplication by k of an elliptic curve point P = (X, Y ) when only X is given:

1. Use the Montgomery ladder, which computes the x-coordinate of k P from X only.
2. Find Y by computing a square root, apply a fast scalar multiplication algorithm to (X,Y),

and return only the x-coordinate of the result.
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All recent speed records for scalar multiplication on elliptic curves have been set using
algorithms that need the full point P , in other words with the second approach, see e.g.
[4,14,34,36]. Timings typically ignore the additional cost for point decompression, but there
is strong evidence that on a large class of elliptic curves the second approach is faster. This is
the basis for our suggestion to follow the second approach when working with compressed
points of Tn .

5 Explicit equations for extension degree 3

We give explicit equations for n = 3, where we write Fq3 = Fq [ζ ]/(ζ 3 −μ) and use 1, ζ, ζ 2

as a basis for Fq3 |Fq . For completeness, we start with the standard equations for the trace
zero variety (see [15]), although we do not make further use of them in our approach. They
describe an open affine part of the trace zero variety (i.e. they hold when x1, x2 �= 0):

y2
0 + 2μy1 y2 = x3

0 + μx3
1 + μ2x3

2 + 6μx0x1x2 + Ax0 + B (7)

2y0 y1 + μy2
2 = 3x2

0 x1 + 3μx0x2
2 + 3μx2

1 x2 + Ax1

2y0 y2 + y2
1 = 3x2

0 x2 + 3x0x2
1 + 3μx1x2

2 + Ax2

x1 y2 = x2 y1.

The equation that we found in Sect. 3 only involves the x-coordinate and is

f3

(
x, xq , xq2

)
= x2q2+2q − 2x2q2+q+1 + x2q2+q − 2xq2+2q+1 − 2xq2+q+2 − 2Axq2+q

−2Axq2+1 − 4Bxq2 + x2q+2 − 2Axq+1 − 4Bxq − 4Bx + A2.

For Weil restriction, we write x = x0 + x1ζ + x2ζ
2 and get

x = x0 + x1ζ + x2ζ
2

xq = x0 + μbx1ζ + μ2bx2ζ
2

xq2 = x0 + μ2bx1ζ + μbx2ζ
2,

where b = q−1
3 . The second and third equalities follow from observing that we can substitute

xi for xq
i when looking for Fq -solutions. This gives

f̃3(x0, x1, x2) = −3x4
0 − 12μ2x0x3

2 − 12μx0x3
1 + 18μx2

0 x1x2

+ 9μ2x2
1 x2

2 − 6Ax2
0 + 6Aμx1x2 − 12Bx0 + A2. (8)

The symmetrized third Semaev polynomial is

g3(s1, s2, s3) = s2
2 − 4s1s3 − 4Bs1 − 2As2 + A2 (9)

and describes the trace zero subgroup via

s1 = x + xq + xq2 = 3x0 (10)

s2 = x1+q + x1+q2 + xq+q2 = 3x2
0 − 3μx1x2

s3 = x1+q+q2 = x3
0 − 3μx0x1x2 + μx3

1 + μ2x3
2 .

So for compression of a point (x0, x1, x2, y0, y1, y2), we use the coordinates

(s1, s2) = (
3x0, 3x2

0 − 3μx1x2
)
,
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Table 1 Average time in milliseconds for compression/decompression of one point when n = 3

q 210 − 3 220 − 3 240 − 87 260 − 93 279 − 67

Compression si 0.007 0.014 0.028 0.039 0.064

Compression ti 0.002 0.007 0.008 0.010 0.015

Decompression si 0.124 0.159 0.731 0.987 1.586

Decompression ti 0.090 0.132 0.610 0.956 1.545

and for decompression, we have to solve g3(s1, s2, s3) = 0 for s3, where g3 is given by
Eq. 9. Since the equation is linear in s3, the missing coordinate can be recovered uniquely,
except when s1 = 0. This is the case only for a small set of points. Notice moreover that the
points (0, s2, s3) with s2

2 − 2As2 + A2 = 0 satisfy Eq. 9 for every s3. The only ambiguity
in decompression comes from solving system 10, which yields the Frobenius conjugates
x, xq , xq2

of the original x . So for n = 3 this gives an optimal representation in our sense.
The following representation is equivalent to the above, but easier to compute. Set

t1 = x0, t2 = x1x2, t3 = x3
1 + μx3

2 , (11)

and take (t1, t2) as a representation. The relation between the two sets of coordinates is

s1 = 3t1, s2 = 3t2
1 − 3μt2, s3 = t3

1 − 3μt1t2 + μt3.

In this case, we recover t3 from the equation

−3t4
1 + 18μt2

1 t2 + 9μ2t2
2 − 12μt1t3 − 12Bt1 − 6At2

1 + 6Aμt2 + A2.

The equation is linear in t3, thus making point recovery unique whenever t1 �= 0, but the
total degree is higher. Compared to the representation (s1, s2), fewer operations are needed
for compression and for computing the solutions of the system during decompression. Thus,
compression and decompression for this variant of the representation are more efficient. We
give timings for 10, 20, 40, 60, and 79 bit fields in Table 1, where we see that compression
is about a factor 3 to 4 faster and decompression is slightly faster for the second method.
Notice that decompression timings are for recomputing the x-coordinate only.

All computations were done with Magma version 2.19.3 [7], running on one core of
an Intel Xeon Processor X7550 (2.00 GHz) on a Fujitsu Primergy RX900S1. Our Magma
programs are straight forward implementations of the methods presented here and are only
meant as an indication. No particular effort has been put into optimizing them.

We give a concrete example, before concluding the section with a more detailed analysis
of the efficiency of our algorithms.

Example 2 Let E be the curve y2 = x3 + x + 368 over Fq , where q = 279 − 67 is a 79-bit
prime, and μ = 3. The trace zero subgroup of E(Fq3) has prime order of 158 bits. We choose
a random point (to save some space, we write only x-coordinates)

P = 260970034280824124824722 + 431820813779055023676698ζ

+ 496444425404915392572065ζ 2 ∈ T3
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and compute

Compress(P) = (178447193035157787121145, 159414355696879147312583)

Decompress(178447193035157787121145, 159414355696879147312583)

= {260970034280824124824722 + 431820813779055023676698ζ

+ 496444425404915392572065ζ 2,

260970034280824124824722 + 318397306102476549147695ζ

+ 124410673032925784958936ζ 2,

260970034280824124824722 + 458707699733097601881649ζ

+ 88070721176787997175041ζ 2}
where the results of decompression are exactly the Frobenius conjugates of P . In our Magma
implementation, we solve system 10 over Fq similarly to how one would do it by hand, as
described below. Note that the solutions could also be found by computing the roots of the
polynomial x3 − s1x2 + s2x − s3 over Fq3 , but since the system is so simple for n = 3,
solving the system directly is faster in all instances.

When using the second variant of the representation, we compute

(t1, t2) = (260970034280824124824722, 492721032528256431308437)

and naturally get the same result for decompression by solving system 11 in a similar way.

Operation count for representation in the si Where possible, we count squarings (S),
multiplications (M), and divisions (D) in Fq . We do not count multiplication by constants,
since they can often be chosen small (see [32]), and multiplication can then be performed by
repeated addition. Compressing a point clearly takes 1S+1M. Decompression requires the
following steps.

– Evaluating g3(s1, s2, s3) in the first two indeterminates and solving for the third indeter-
minate means computing s3 = 1

4s1
(s2(s2 − 2A) − 4Bs1 + A2), which takes 1M+1D.

– Given s1, s2, s3, we need to solve system 10 for x , or for x0, x1, x2. The most obvious way
would be to compute the roots of the univariate polynomial x3 −s1x2 +s2x −s3 over Fq3 .
Finding all roots of a degree d polynomial over Fqn takes O(nlog2 3d log2 3 log d log(dqn))

operations in Fq using Karatsuba’s algorithm for polynomial multiplication (see [22]).
In our case, the degree and n are constants, and hence factoring this polynomial takes
O(log q) operations in Fq . However, since the system is so simple, in practice it is better to
solve directly for x0, x1, x2 over Fq . We know that the system has exactly three solutions
(except in very few cases, where it has a unique solution in Fq , i.e. x1 = x2 = 0). We
get x0 from s1 for free. Assuming that x1 �= 0 (the special case when x0 = 0 is easier
than this general case), we can solve the second equation for x2, plug this into the third
equation, and multiply by the common denominator 27μ3x3

1 . In this way, we obtain the
equation

27μ4x6
1 + 27μ3 (

x0(s2 − 2x2
0 ) − s3

)
x3

1 + μ2(3x2
0 − s2)

3,

which must be solved for x1. The coefficient of x6
1 is a constant, the coefficient of x3

1 can
be computed with 1S+1M, and the constant term can then be computed with 1S+1M.
Now we can solve for x3

1 with the quadratic formula, which takes 1S and a square root
in Fq for the first value, which will have either no or three distinct cube roots. In case
it has none, we compute the second value for x3

1 , using only an extra addition, and the
three distinct cube roots of this number. This gives a total of three values for x1. Finally,
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we can compute x2 = 3x2
0−s2

3μx1
, which takes 1D for the first, and a multiplication by the

inverse of a cube root of unity for the other two values. Altogether, solving system 10
takes a total of at most 3S+2M+1D, one square root, and two cube roots in Fq .

– Finally, for each of the at most three values for x , we recompute a corresponding y-
coordinate from the curve equation and check that it belongs to Fq3 . Since these are
standard procedures for elliptic curves, we do not count operations for these tasks.

Therefore, the decompression algorithm takes at most 3S+3M+2D, one square root, and
two cube roots in Fq . The cost of computing the roots depends on the specific choice of the
field and on the implementation, but it clearly dominates this computation.

Operation count for representation in the ti In this case, compression takes only 1M. For
decompression, we proceed as follows.

– Given t1 and t2, we recover t3 from the equation t3 = 1
12μt1

(−3t4
1 + (18μt2

1 + 9μ2t2 +
6Aμ)t2 − 12Bt1 − 6At2

1 + A2). This takes 2S+1M+1D.
– To solve system 11), again assuming x1 �= 0, we have to find the roots of the equation

x6
1 − t3x3

1 + μt3
2 .

The coefficients of this equation can be computed with a total of 1S+1M. We proceed as above
to compute three values for x1 using 1S, one square root, and two cube roots. Finally, we
compute x2 = t2

x1
using 1D. Thus, solving the system takes a total of at most 2S+1M+1D, one

square root, and two cube roots. In total, decompression takes at most 4S+2M+2D, one square
root, and two cube roots. The cost of this computation is comparable to the decompression
using si . This corresponds to our experimental results with Magma (see Table 1).

Comparison with Silverberg’s method The representation of [42] consists of the last n −1
Weil restriction coordinates, together with three extra bits, say 0 ≤ ν ≤ 3 to resolve ambiguity
in recovering the x-coordinate and 0 ≤ λ ≤ 1 to determine the sign of the y-coordinate. So
in our notation, Silverberg proposes to represent a point (x, y) ∈ T3 is via the coordinates
(x1, x2, ν, λ). The compression and decompression algorithms (in characteristic not equal to
three) carry out essentially the same steps:

– Compute a univariate polynomial of degree 4. The coefficients are polynomials over Fq

in two indeterminates of degree at most four.
– Compute the (up to four) roots of this polynomial. During compression, this determines

ν. During decompression, ν determines which root is the correct one, and it is then used
to compute x0 via addition and multiplication with constants.

– During decompression, compute the y-coordinate from the curve equation, using λ to
determine its sign. We disregard this step when estimating the complexity.

Since [42] does not contain a detailed analysis of the decompression algorithm, we cannot
compare the exact number of operations. However, the essential difference with our approach
is that Silverberg’s compression and decompression algorithms both require computing the
roots of a degree 4 polynomial over Fq . For compression, this is clearly more expensive than
our method, which consists only of evaluating some small expressions. For decompression,
this is also less efficient than our method, which computes only a root of a quadratic polyno-
mial, since running a root finding algorithm, or using explicit formulas for the solutions (i.e.
solving the quartic by radicals), is much more complicated than computing the roots of our
equation.

One might argue that it is possible to represent (x, y) via the coordinates (x1, x2) only. In
such a case, compression would consist simply of dropping y and x0 and would therefore have
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no computational cost. Without remembering ν and λ to resolve ambiguity, this representation
would identify up to four x-coordinates and up to eight full points. This is not much worse than
our representation, which identifies up to three x-coordinates and six full points. However, it is
not clear that this identification is compatible with scalar multiplication of points. Therefore,
one may want to use at least ν to distinguish between the recovered x-coordinates. This is
in contrast with our situation, where we know exactly which points are recovered during
decompression (i.e. the three Frobenius conjugates of the original point). Identifying these
three points is compatible with scalar multiplication, since P = ϕi (Q) implies k P = ϕi (k Q)

for all k ∈ N and P, Q ∈ T3, and so no extra bits are necessary.
Comparison with Naumann’s method Naumann [35] studies trace zero varieties for n = 3.

He does not give explicit compression and decompression algorithms, but he derives an
equation for the trace zero subgroup that may be used for such. In fact, his equation is
identical to our Eq. 8), the Weil restriction of the (unsymmetrized) Semaev polynomial.
However, he obtains it in a different way, namely, by eliminating from system 7).

Naumann suggests a compression method analogous to the one of Silverberg: A point is
represented via the coordinates (x1, x2, ν, λ). For decompression, x0 is recomputed from a
quartic equation, 0 ≤ ν ≤ 3 determines which root of the equation is the correct x0, and
0 ≤ λ ≤ 1 determines the sign of the y-coordinate. Hence the quartic equation must be
solved during both compression and decompression. Naumann’s equation is different from
Silverberg’s, yet the analysis of his method is analogous to that of Silverberg’s method, and
the conclusions are the same. In particular, his algorithms are less efficient than ours, and
it is not clear whether it is possible to drop ν from the representation and still have a well
defined scalar multiplication.

Security issues To the extent of our knowledge, there are no known attacks on the DLP in
T3 whose complexity is lower than generic (square root) attacks, provided that one chooses
the parameters according to usual cryptographic practice. In particular, the group should have
prime or almost prime order and be sufficiently large (e.g. 160 or 200 bits). We stress that
index calculus methods, as detailed in [20] among many other works, do not yield an attack
which is better than generic (square root) attacks in this setting, since the trace zero variety
has dimension two.

6 Explicit equations for extension degree 5

The fifth Semaev polynomial is too big to be printed here, but a computer program can easily
work with it. It has total degree 32 and degree 8 in each indeterminate. The symmetrized
fifth Semaev polynomial has total degree 8 and degree 6 in the last indeterminate. In fact,
it has degree 6 in the first, third and fifth indeterminate, and degree 8 in the second and
fourth indeterminate. We can compute it efficiently with Magma. It has a small number
of terms compared to the original polynomial, but printing it here would still take several
pages.

The fact that we recover the missing coordinate from a degree 6 polynomial introduces
some indeterminacy in the decompression process. However, extensive Magma experiments
for different field sizes and curves show that for more than 90 % of all points in T5, only
a single class of Frobenius conjugates is recovered. For another 9 %, two classes (corre-
sponding to 10x-coordinates) are recovered. Thus the ambiguity is very small for a great
majority of points. In any case, this improves upon the approach of [42], where the missing
coordinate is recovered from a degree 27 polynomial, thus possibly yielding 27 different
x-coordinates.
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The Weil restriction of the symmetric functions is

s1 = 5x0

s2 = 10x2
0 − 5μx1x4 − 5μx2x3

s3 = 10x3
0 + 5μ2x2

3 x4 + 5μ2x2x2
4 + 5μx1x2

2 + 5μx2
1 x3 − 15μx0x1x4 − 15μx0x2x3

s4 = 5x4
0 − 15μx2

0 x1x4 − 15μx2
0 x2x3 − 5μx3

1 x2 − 5μ2x1x3
3 − 5μ2x3

2 x4 − 5μ3x3x3
4 + 5μ2x2

2 x2
3

+ 5μ2x2
1 x2

4 + 10μx0x2
1 x3 + 10μx0x1x2

2 + 10μ2x0x2
3 x4 + 10μ2x0x2x2

4 − 5μ2x1x2x3x4

s5 = x5
0 + μ3x5

3 + μ4x5
4 + μx5

1 + μ2x5
2 − 5μ2x1x3

2 x3 − 5μ3x1x2x3
4 − 5μ3x2x3

3 x4 − 5μx0x3
1 x2

− 5μ2x0x1x3
3 − 5μ2x0x3

2 x4 − 5μ3x0x3x3
4 − 5μ2x3

1 x3x4 − 5μx3
0 x1x4 − 5μx3

0 x2x3

+ 5μx2
0 x2

1 x3 + 5μx2
0 x1x2

2 + 5μ2x2
0 x2x2

4 + 5μ2x2
0 x2

3 x4 + 5μ2x0x2
1 x2

4 + 5μ2x0x2
2 x2

3

+ 5μ2x2
1 x2

2 x4 + 5μ2x2
1 x2x2

3 + 5μ3x1x2
3 x2

4 + 5μ3x2
2 x3x2

4 − 5μ2x0x1x2x3x4.

The compression algorithm computes s1, . . . , s4 according to these formulas over Fq . The
decompression algorithm solves a degree 6 equation for s5 and then recomputes the x-
coordinate of the point. For the last step, we test two methods: We compute x by factoring
the polynomial x5 − s1x4 + s2x3 − s3x2 + s4x − s5 over Fq5 , and we compute x0, . . . , x4

by solving the above system over Fq with a Gröbner basis computation. Our experiments
show that polynomial factorization can be up to 20 times as fast as computing a lexicographic
Gröbner basis in Magma for some choices of q , and the entire decompression algorithm can
be up to a factor 6 faster when implementing the polynomial factorization method. We give
some exemplary timings for both methods for fields of 10, 20, 30, 40, 50 and 60 bits in Table 2.
However, these experimental results can only be an indication: In Magma, the performance of
the algorithms depends on the specific choice of q . In addition, any implementation exploiting
a special shape of q would most likely produce better results.

As for n = 3, we suggest an equivalent representation (t1, t2, t3, t4) where

t1 = x0 (12)

t2 = x1x4 + x2x3

t3 = x2
1 x3 + x1x2

2 + μx2
3 x4 + μx2x2

4

t4 = μx2
2 x2

3 + μx2
1 x2

4 − μx1x3
3 − x3

1 x2 − μx3
2 x4 − μ2x3x3

4 + μx1x2x3x4

t5 = x5
1 + μx5

2 + μ2x5
3 + μ3x5

4 + 5μx2
1 x2x2

3 + 5μx2
1 x2

2 x4 + 5μ2x2
2 x3x2

4

+ 5μ2x1x2
3 x2

4 − 5μx3
1 x3x4 − 5μ2x2x3

3 x4 − 5μ2x1x2x3
4 − 5μx1x3

2 x3

and

s1 = 5t1

s2 = 10t2
1 − 5μt2

s3 = 10t3
1 − 15μt1t2 + 5μt3

s4 = 5t4
1 − 15μt2

1 t2 + 10μt1t3 + 5μt4

s5 = t5
1 − 5μt3

1 t2 + 5μt2
1 t3 + 5μt1t4 + μt5. (13)

Compared to the representation in the si , this representation gives a faster compression, but a
slower decompression. Therefore, this approach may be useful in a setting where compression
must be particularly efficient.

For decompression, the missing coordinate t5 can be recomputed from a degree 6 equation,
which we obtain by substituting the relations 13 into the symmetrized fifth Semaev polyno-
mial. Afterwards we may either recompute s1, . . . , s5 from t1, . . . , t5 according to system
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Table 2 Average time in milliseconds for compression/decompression of one point when n = 5

q 210 − 3 220 − 5 230 − 173 240 − 195 250 − 113 260 − 695

Compression si 0.041 0.048 0.052 0.106 0.108 0.112
Compression ti 0.017 0.022 0.024 0.031 0.021 0.048
Decompression si

polynomial factorization
5.536 16.480 21.423 45.080 55.872 59.520

Decompression si Gröbner
basis

24.134 26.470 39.593 101.559 104.490 118.991

Decompression ti Gröbner
basis

38.375 40.198 60.438 132.484 133.088 150.083

13 and solve x5 − s1x4 + s2x3 − s3x2 + s4x − s5 for x , or else we may solve system 12
directly for x0, . . . , x4 with Gröbner basis techniques. The polynomial factorization method
is equivalent to using the representation in the si , only that some of the computations are
shifted from the compression to the decompression algorithm. The Gröbner basis method
(use ti and compute Gröbner basis, “second method”) compares to using si with Gröbner
basis (“first method”) as given in Table 2. We see that the second method is a factor 2 to 3
faster in compression, but slower in decompression. The reason for this is that the polynomial
used to recompute the missing coordinate is more complicated for the second method, and
evaluation of polynomials is quite slow in Magma. Solving for the missing coordinate takes
five times longer for the second method. The solution of system 6), which we achieve by
computing a lexicographic Gröbner basis and solving the resulting triangular system in the
obvious way, takes the same amount of time in both cases.

We now give an example of our compression/decompression algorithms, including two
points P on the trace zero variety where Decompress(Compress(P)) produces the minimum
and maximum possible number of outputs.

Example 3 Let E be the curve y2 = x3 + x + 135 over Fq , where q = 260 − 695 is a 60-bit
prime, and μ = 3. The trace zero subgroup of E(Fq5) has prime order of 240 bits. We choose
a random point

P = 697340666673436518 + 801324486821916366ζ + 191523769921581598ζ 2

+ 193574581008452232ζ 3 + 808272437423069772ζ 4 ∈ T5

and compute

Compress(P)

= (27938819546643747, 599177118073319826, 587362643323803394, 899440023033601132)

Decompress(27938819546643747, 599177118073319826, 587362643323803394, 899440023033601132)

= {697340666673436518 + 801324486821916366ζ + 191523769921581598ζ 2

+ 193574581008452232ζ 3 + 808272437423069772ζ 4,

697340666673436518 + 836712212802745328ζ + 506907366758395901ζ 2

+ 517000572714098077ζ 3 + 268866625974497959ζ 4,

697340666673436518 + 960543166171367987ζ + 126552294958642222ζ 2

+ 448251978051599093ζ 3 + 74315924307841334ζ 4,

697340666673436518 + 810370833605859760ζ + 539948230971075773ζ 2

+ 1032750511909194579ζ 3 + 944608723064092684ζ 4,

697340666673436518 + 49813814418649402ζ + 940911346603997068ζ 2

+ 114265365530348581ζ 3 + 209779298444190813ζ 4}.
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When using the second variant of the representation, we compute

(t1, t2, t3, t4) = (697340666673436518, 553115374027544004, 315951679773440541,

285024754797056479).

For this point, the results of decompression are exactly the Frobenius conjugates of P .
However, this is not always the case. In rare cases, the algorithm may recover up to six
classes of Frobenius conjugates. We give an example of a point for which three classes of
Frobenius conjugates are recovered:

P = 760010909342414570 + 568064535058825884ζ + 244006548504894796ζ 2

+ 446522043528586762ζ 3 + 731314735984238952ζ 4 ∈ T5.

Operation count for representation in the si Given x0, . . . , x4, the numbers t1, . . . , t4 can
be computed with a total of 5S+13M according to 12). Then s1, . . . , s4 can be computed
from those numbers with 2S+3M as given in 13). This seems to be the best way to compute
s1, . . . , s4, since these formulas group the terms that appear several times. Hence compression
takes a total of 7S+16M.

For decompression, the most costly part of the algorithm is factoring the polynomials. First,
the algorithm has to factor a degree 6 polynomial over Fq , and next, a degree 5 polynomial
over Fq5 . The asymptotic complexity for both of these is O(log q) operations in Fq .

Operation count for representation in the ti Compression takes 5S+13M. For decompres-
sion, we can either recompute s1, . . . , s5 from t1, . . . , t5 and factor the polynomial, in which
case this approach is exactly the same as the above. Or else we can solve system 12 by means
of a Gröbner basis computation over Fq . Since there are no practically meaningful bounds
for Gröbner basis computations, a complexity analysis of this approach makes no sense.

Comparison with Silverberg’s method Concrete equations are presented in [42] for the
case where the ground field has characteristic 3. The most costly parts of the compression
and decompression algorithms are computing the resultant of two polynomials of degree
6 and 8 with coefficients in Fq , and finding the roots of a degree 27 polynomial over Fq .
In general, resultant computations are difficult, and the polynomial to be factored has much
larger degree than those in our algorithm. In Silverberg’s approach, five extra bits are required
to distinguish between the possible 27 roots of the polynomial.

Although neither Silverberg nor we give explicit equations for larger n, our understanding
is that our algorithm scales better with increasing n, since our method is more natural and
respects the structure of the group.

Security issues We briefly discuss the security issues connected with use of T5 in DL-based
and pairing-based cryptosystems.

Since T5 is a group of size q4, generic algorithms that solve the DLP in T5 have complexity
O(q2). Security threats in the context of DL-based cryptosystems are posed by algorithms
for solving the DLP that achieve lower complexity. There are two types of algorithms that
one needs to consider: First, cover attacks aim to transfer the DLP in E(Fq5) to the DLP
in the Picard group of a curve of larger (but still rather low) genus, see [9,21]. The DLP is
then solved there using index calculus methods. Combining the results of [9] and [10], it is
sometimes possible to map the DLP from T5 into the Picard group of a genus 5 curve (which
is usually not hyperelliptic), where it can be solved with probabilistic complexity Õ(q4/3)

following the approach of [11]. However, only a very small proportion of curves is affected by
this attack, and such curves should be avoided in practice. Moreover, in order to avoid isogeny
attacks, the curve should be chosen such that 4 does not divide the order of T5, see [9]. Second,
the index calculus attack of [20] applies to T5 and has complexity Õ(q3/2). This makes T5
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not an ideal group to use in a DL-based cryptosystem. Notice that in practice, however, the
constant in the O is very large, since the attack requires Gröbner basis computations, which
are very time consuming (their worst case complexity is doubly exponential in the size of
the input), and often do not terminate in practice. It is our impression that more in depth
study is needed in order to give a precise estimate of the feasibility of such an attack for a
practical choice of the parameters. We carried on preliminary experiments, which indicate
that a straightforward application of the method from [20] to T5 yields a system of equations
which is very costly to compute (it requires computing the Weil descent of the fifth Semaev
polynomial) and which Magma cannot solve in several weeks and using more than 300 GB
of memory on the same machine that we used to carry out the experiments reported on in
Sects. 5 and 6 of this article. Notice that solving such a system would (possibly) produce one
relation, to be then used in an index calculus attack. Therefore, in practice one would need
to solve many such systems, in order to produce the relations needed for the linear algebra
step of the index calculus attack.

Trace zero varieties are even more interesting in the context of pairing-based cryptography.
The main motivation comes from [40], where Rubin and Silverberg show that supersingular
abelian varieties of dimension greater than one offer more security than supersingular elliptic
curves, for the same group size. Trace zero varieties are explicitly mentioned in [40] as one
of the most relevant examples of abelian varieties for pairing-based cryptography. In order
to estimate the security of T5 in pairing-based cryptosystems, one needs to compare the
complexities of solving the DLP in T5 and in Fq5k , where k is the embedding degree, i.e.,
the smallest integer k such that Fq5k contains the image of the pairing. A first observation is
that, since the results of [40] hold over fields of any characteristic, one should avoid fields of
small characteristic, so that the recent attacks from [2,3,23,24,28] do not apply. Over a field
of large characteristic, the cover and index calculus attacks that we discussed in the previous
paragraph do not seem to pose a serious security concern in the context of pairing-based
cryptography. This is due to the fact that, for most supersingular elliptic curves, the Frey-
Rück or the MOV attack have lower complexity than cover and index calculus attacks in the
lines of [9,11,20,21]. In some cases however, the choice of the security parameter may need
to be adjusted, according to the complexity of these index calculus attacks. As an example,
let us discuss the choice of parameters for a pairing with 80-bits security. One needs a field
of about 1,024-bits as the target of the pairing (avoiding fields of small characteristic). If we
assume that the pairing ends up in an extension field of degree k = 2 of the original field Fq5

(this is the case for most supersingular elliptic curves), then q should be a 102-bit number. A
q3/2 attack on the group T5 on which the pairing is defined would result in 153-bit security,
while a q4/3 attack would result in 136-bit security. However, on the side of the finite field
the system has an 80-bit security, so the attacks from [9,11,20,21] end up not influencing the
overall security of the pairing-based cryptosystem in this case. A related comment is that an
interesting case for pairings is when the DLP in T5 and in the finite field extension Fq5k where
the pairing maps have the same complexity. In order to achieve this in our previous example,
we would need to have a security parameter k = 4, which can be achieved by supersingular
trace zero varieties. In this case, the complexity of solving a DLP in T5 and in Fq20 are both
about 80-bits when q ∼ 253. Summarizing, the complexity of the DLP in T5 coming from the
works [9,11,20,21] influences the choice of the specific curves that we use in pairing-based
applications, since it influences the security parameter k that makes the hardness of solving
the DLP in T5 and in Fq5k comparable, and the value of k depends on the choice of the curve.
However, in general it does not influence the size q of the field that we work on, since an
attack can influence the value of q only if it has lower complexity than the Frey-Rück or the
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MOV attack for supersingular elliptic curves. Therefore, using trace zero varieties instead
of elliptic curve groups in pairing-based cryptography has the advantages of enhancing the
security and allowing for more flexibility in the setup of the system.

7 Conclusion

The Semaev polynomials give rise to a useful equation describing the Fq -rational points of
the trace zero variety. Its significance is that it is one single equation in the x-coordinates
of the elliptic curve points, but unfortunately its degree grows quickly with n. Using this
equation, we obtain an efficient method of point compression and decompression. It computes
a representation for the Fq -points of the trace zero variety that is optimal in size for n = 3
and for n = 5. Our polynomials have lower degree than those used in the representations of
[42] (1 compared to 4 for n = 3, and 6 compared to 27 for n = 5) and [35] (1 compared to 3
for n = 3), thus allowing more efficient compression and decompression and less ambiguity
in the recovery process. Finally, our representation is interesting from a mathematical point
of view, since it is the first representation (to our knowledge) that is compatible with scalar
multiplication of points.
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