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Abstract
Objective Our aim was to validate the use of cross-
sectional area (CSA) measurements at multiple quadriceps
muscle levels for estimating the total muscle volume
(TMV), and to define the best correlating measurement
level.
Methods Prospective institutional review board (IRB)-ap-
proved study with written informed patient consent.
Thighs of thirty-four consecutive patients with ACL-

reconstructions (men, 22; women, 12) were imaged at
1.5-T using three-dimensional (3D) spoiled dual
gradient-echo sequences. CSA was measured at three
levels: 15, 20, and 25 cm above the knee joint line.
TMV was determined using dedicated volumetry soft-
ware with semiautomatic segmentation. Pearson’s corre-
lation and regression analysis (including standard error
of the estimate, SEE) was used to compare CSA and
TMV.
Results The mean±standard deviation (SD) for the CSAwas
60.6±12.8 cm2 (range, 35.6–93.4 cm2), 71.1±15.1 cm2

(range, 42.5–108.9 cm2) and 74.2±17.1 cm2 (range, 40.9–
115.9 cm2) for CSA-15, CSA-20 and CSA-25, respectively.
The mean±SD quadriceps’ TMV was 1949±533.7 cm3

(range, 964.0–3283.0 cm3). Pearson correlation coefficient
was r=0.835 (p<0.01), r=0.906 (p<0.01), and r=0.956
(p<0.01) for CSA-15, CSA-20 and CSA-25, respectively.
Corresponding SEE, expressed as percentage of the TMV,
were 15.2 %, 11.6 % and 8.1 %, respectively.
Conclusion The best correlation coefficient between quadri-
ceps CSA and TMV was found for CSA-25, but its clinical
application to estimate the TMVis limited by a relatively large
SEE.
Key points
• Cross-sectional area was used to estimate QFM size in
patients with ACL-reconstruction

• A high correlation coefficient exists between quadriceps
CSA and volume

• Best correlation was seen 25 cm above the knee joint line
• A relatively large standard error of the estimate limits CSA
application
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Abbreviations
CSA Cross-sectional area
TMV Total muscle volume
ACL Anterior cruciate ligament
QFM Quadriceps femoris muscle

Introduction

Quadriceps femoris muscle (QFM) insufficiency is a common
complication following anterior cruciate ligament reconstruc-
tion, and it is at least partially attributed to quadriceps atrophy
[1, 2]. The QFM atrophy is correlated to the QFM strength and
the size of the QFM represents an important clinical indicator
in the outcome assessment after rehabilitation programs [2–8].

Estimation of QFM atrophy in the clinical setting have
usually involved girth measurements with a tape, but it also
involves other thigh muscles, as well as bone and subcutane-
ous fat; despite discordant results, this method is described as
a reliable tool in the assessment of QFM when no isokinetic
strength testing is available [9, 10].

The use of ultrasound muscle thickness measurements to
estimate the TMV has also been investigated, but this method
is limited by a high standard error of the estimate [11, 12].
Computer tomography (CT) and magnetic resonance (MR)
imaging are considered the modalities of choice for the esti-
mation of the QFM size [13–16]. MR imaging is often pre-
ferred, as no ionizing radiation is involved. Usually, the total
muscle volume (TMV) is determined by manual segmentation
of the QFM on multiple contiguous axial anatomical MR
images by outlining of the muscles ‘margins.’ Dedicated soft-
ware is then used to calculate the cross-sectional area (CSA) of
the QFM, and ultimately the TMV by the multiplication of the
individual CSAs with the image slice thickness. Computerized
semi-automated or fully automated segmentation methods
[17], as well as other procedures such as the truncated cone
formula and third-order polynomial regression [18–20], have
been developed, but are either not precise or time efficient
enough to allow their routine clinical use [15, 20, 21].

Therefore, assessment of a single axial anatomical CSA is
often employed as a faster method to obtain a quantitative
muscle parameter [4, 22–24]. An additional advantage related
to the use of a single CSA measurement is the demonstrated
excellent intra-observer and inter-observer reliability, which
suggests that CSA measurements could be a reliable and
simple tool for daily routine use [24, 25]. Nevertheless, pre-
vious studies indicate that a single CSAmeasurement may not
necessarily be representative of the total QFM volume [20]
and the optimal level of CSAmeasurement along the muscle’s
length has also not yet been defined [19, 21, 26]. For example,
Strandberg et al. [27] used a single slice 15 cm above the knee
joint, whereas Callaghan et al. [10] used a single slice at the

thigh mid-point between the lateral joint line of the knee and
the great trochanter as reference to estimate the muscle size.
To the best of our knowledge, the accuracy of QFM CSA
measurements at different levels above the knee joint line
compared to the TMVwas not investigated before. Therefore,
it remains unclear if time-consuming muscle volumetry pro-
cedures can be replaced by more time-efficient CSA measure-
ment methods in clinical practice.

The purpose of our study was to measure CSAs of the
QFM at multiple locations, and to define the best correlating
measurement level to estimate the TMV derived by QFM
volumetry. All measurements were performed in a cohort of
patients with ACL reconstructions.

Materials and methods

Study subjects

This was a prospective study with institutional review board
approval and written informed consent from all study subjects.
The study was Health Insurance Portability and Accountabil-
ity Act (HIPAA) compliant and none of the authors had a
financial interest. Some study subjects or cohorts have been
included in another substudy [28] focusing on the vastus
medialis muscle atrophy in patients after ACL reconstruction.
However, the study aim significantly differed from the previ-
ously mentioned study and no data or portions of data pre-
sented in this present study have been, or will be, published
elsewhere.

A total of 34 patients with ACL reconstructions [women,
12; mean±standard deviation (SD) age, 31.3±8.8 years
(range, 20.0–52.0 years); men, 22; mean±SD age, 30.9±
6.5 years (range, 21.0–51.0 years)] underwent MR imaging
between March and August 2013. Mean time interval±SD
between knee injury and surgery was 18.3±30.8 weeks
(range, 0.0–156.0 weeks). The mean time interval±SD be-
tween surgery and follow-up MR examination was 19.7±
3.6 months (range, 13–24 months).

Inclusion criteria were: (a) history of knee trauma with
ACL tear; (b) Bone-Patellar Tendon-Bone (BPTB) recon-
struction; (c) no additional ligament injury at time of trauma;
(d) completed rehabilitation program, asymptomatic and with
functional recovery [defined as a Knee and Osteoarthritis
Outcome score (KOOS) above 91 for activity of daily living
and above 80 for sport and recreation function [29, 30],
evaluated during a follow-up examination performed by two
orthopedic surgeons (BC, CL) at our institution]; (e) normal
range of motion (extension within 2° and flexion within 5° of
the non-operated knee according to International Knee Docu-
mentation Committee (IKDC) criteria [31], stable knee and
normal muscle strength. Exclusion criteria were: (a) contrain-
dication to MR imaging; (b) complex knee injuries with
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additional ligament tears; (c) systemic disease; (d) previous
surgery of the lower extremity or hip; (e) side-to-side differ-
ences in leg length; and (f) scoliosis.

MR examination

MR imaging of the thighs was performed using a 1.5-T MR
unit (Signa Echospeed EXCITE HDxt; GE Healthcare, Wau-
kesha,Wis) and a twelve-channel body array (HDBody array;
GE Healthcare). An axial T1-weighted fast spin-echo (FSE)
MR sequence (TR/TE, 551/13 msec; echo train length (ETL),
3-4; section thickness, 6 mm; matrix, 320 × 224) and a three-
dimensional (3D) spoiled dual gradient-echo MR sequence
(TR/TE, 6.14/2.1,4.2 msec; section thickness, 6 mm; matrix,
320 × 224) were acquired. The latter sequence sampled two
echoes, with an excitation flip angle of 5°, and automatically
reconstructed pure fat signal-only andwater signal-only image
series [32]. The water signal-only images provide excellent
visibility of the muscles ‘margins and were thus used for
manual muscle segmentation. The field-of-view covered both
thighs from the pelvic girdle to approximately 5 cm below the
knee joint. Due to MR scanner restrictions, the left and the
right thigh had to be acquired in two different volumes using a
cranio-caudal direction (Fig. 1). Subjects were imaged in
supine position.

Image analysis

Image analysis was performed by a musculoskeletal radiology
fellow (MM) using dedicated software (Myrian1; Intrasense,
Paris, France). The software provided tools for measuring
distances, areas and volumes. The volumetry tool featured
semi-automatic segmentation with linear interpolation and
allowed for manual correction of the segmentation process,
if necessary.

Image analysis included determination of the femur
length, of the CSA of the quadriceps muscle at three
levels, and of the TMV. Femur length was defined as
the distance from the most proximal portion of the greater
trochanter to the most distal portion of the lateral condyle.
The CSA of the quadriceps muscle was measured 15, 20,
and 25 cm above the knee joint using free-hand drawn
regions-of-interests (ROIs). The three levels were referred
to as CSA-15, CSA-20, and CSA-25, respectively. Quad-
riceps volumetry included calculation of the quadriceps
TMV also using free-hand-drawn ROIs tracked along the
margins of the quadriceps muscles. ROIs were drawn on

�Fig. 1 Series of water signal-only MR images in a patient with left ACL
reconstruction. (A) Coronal reconstruction shows the three levels of
measurement, namely at 15, 20 and 25 cm above the knee joint. (B–D)
Representative axial images illustrate the cross sectional area measure-
ment at these three levels: CSA-15 (B), CSA-20 (C) and CSA-25 (D)
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the most proximal and the most distal slices, where the
quadriceps muscles were visible, and on every third slice
in between these start-and end-point slices. The decision
to use every third slice was based on the minimum num-
ber of slices, which the software needed as input data to
be able to trace the muscle margins and to calculate the
muscle volume. Care was taken to include the whole
muscle, to exclude the surrounding fat or connective
tissue and to avoid partial volume artefacts. The soft-
ware’s output data included the quadriceps TMV, as well
as three-dimensional (3D) reconstructions of the muscle,
which in this paper were only used for illustration
purposes (Fig. 1).

Image analyses were performed in both legs, the oper-
ated and the non-operated side, respectively. For evaluat-
ing the intra-observer reliability, the same reader repeated
the CSA-15 measurement and the volumetric analysis in
12 of 34 (35 %) patients. There was a minimum of
6 weeks between the two image analysis sessions.

Statistical analysis

Descriptive statistics were performed. Data were reviewed
and tested for normal distribution using the Shapiro-Wilk test.

The intra-class correlation coefficient [33] was calculated
to evaluate the intra-observer reliability within the repeated
CSA-15 and muscle volume measurements. According to
Kundel and Polansky [34] and Landis and Koch [35], an
ICC greater than 0.80 was considered to be indicative of
“almost perfect” agreement (ICC = 1.00, “perfect”
agreement).

To evaluate the association between the cross sectional
area measurements (CSA-15, CSA-20 and CSA-25) and
the TMV, Pearson correlation analysis and a univariate
regression analysis (with 95 % confidence interval and
Standard Error of the Estimate, SEE) were performed. The
SEE was additionally put in relation to the mean TMV
and expressed as the percentage of the total QFM volume
(SEETMV) at the three levels to give a relative indication
of the SEE. Analysis was performed for each leg sepa-
rately and for both legs together.

In addition, the paired Student t test for related samples was
used to test for significant differences between operated versus
non-operated leg with regard to the TMV, CSA-15, CSA-20,
and CSA-25.

Side-to-side differences were considered statistically
significant using a p value of less than 0.012 (Bonferroni
correction was applied to correct for multiple compari-
sons; significance level of α=0.05/4). For all other anal-
ysis, differences with p values less than 0.05 were con-
sidered statistically significant. All statistical analyses
were performed with commercially available software
(SPSS, release 17.0; SPSS, Chicago, Ill).

Results

Intra-observer reliability

The intra-observer reliability for the CSA-15 measurements
was ‘perfect’ with an ICC of 1.00 (95 % confidence interval
1.00 to 1.00) and was ‘almost perfect’ with an ICC of 0.90
(95 % confidence interval, 0.78 to 0.95) for the quadriceps
TMV.

Quadriceps CSA

The mean overall CSA-15±SD was 60.6 cm2±12.8 (range,
35.6–93.4 cm2). The mean CSA-15±SD was 57.7 cm2±12.4
(range, 36.0–87.0 cm2) in the operated leg and 63.5±12.7
(range, 35.6–93.4 cm2) in the non-operated leg. The mean
overall CSA-20±SD was 71.1 cm2±15.1 (range, 42.5–
108.9 cm2). The mean CSA-20±SD was 67.7 cm2±14.8
(range, 42.5–100.0 cm2) in the operated leg and 74.4±14.9
(range, 42.9–108.9 cm2) in the non-operated leg. The mean
overall CSA-25±SD was 74.2 cm2±17.1 (range, 40.9–
115.9 cm2). The mean CSA-25±SD was 71.1 cm2±17.0
(range, 40.9–108.6 cm2) in the operated leg and 77.3±16.9
(range, 46.5–115.9 cm2) in the non-operated leg (Table 1).

The CSA difference was statistically significant between
operated and non-operated legs for all the three levels (all,
p<0.001). Considering the total femur length as 100 %, the
three levels (CSA-15, CSA-20, and CSA-25) corresponded to
34.6±2.4 % (mean±SD; range 30.6–40.5), 46.2±3.2 %
(range, 40.8–54.0) and 57.7±4.1 % (range, 51.0–67.5) of the
total femur length, respectively.

Muscle volume

The mean overall quadriceps TMV±SD was 1949 cm3±533.7
(range, 964.0–-3283.0 cm3). The mean quadriceps TMV±SD
was 1863.7 cm3±517.6 (range, 964.0–2967.0 cm3) in the op-
erated leg and 2034.2 cm3±543.5 (range, 1138.0–3283.0 cm3)
in the non-operated leg. The side-to-side difference was statis-
tically significant (p<0.001) (Table 1).

Correlation between total muscle volume and CSA

A good to excellent linear relationship was found between the
cross-sectional areas CSA-15, CSA-20 and CSA-25 and the
quadriceps TMV with a Pearson correlation coefficient of r=
0.835 (p<0.01), r=0.906 (p<0.01) and r=0.956 (p<0.01),
respectively (Table 2, Fig. 2A–C). Similar values were found
when the correlation coefficient was calculated for both legs
separately (Table 2). The SEE were±295.9 cm3 for the overall
CSA-15, ± 227.9 for the overall CSA-20 and±158.6 for the
overall CSA-25, corresponding to a relative SEETMV of
15.2 %, 11.6 % and 8.1 %, respectively (Table 2).
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Discussion

The quadriceps cross-sectional area (CSA) is often used to
estimate the quadriceps size, an important clinical indicator
for the outcome evaluation in patients after knee surgery, e.g.,
ACL reconstruction [4, 6, 36–38]. Measuring the CSA of a
muscle is relatively easy and fast to perform and its high
reproducibility supports its clinical use [20]. In our study, we

found a perfect intra-observer agreement with an ICC of 1.00
when CSA measurements were repeated after 6 weeks. This
confirms the high reproducibility reported in the literature
where inter-class and intra-class correlation values of 0.98–
1.00 were shown [25, 27].

In the literature, different approaches were used to assess
the quadriceps CSA, and a lack of standardization for these
measurements is seen [10, 27]. This specifically applies to the

Table 1 Femur length, quadriceps TMVand CSA-15, CSA-20 and CSA-25

Pt. Operated Leg Non-operated Leg

FL
[cm]

TMV
[cm3]

CSA-15
[cm2]

CSA-20
[cm2]

CSA-25
[cm2]

TMV
[cm3]

CSA-15
[cm2]

CSA-20
[cm2]

CSA-25
[cm2]

1* 48 2710 58.1 75.7 93.6 2706 56.9 71.9 89.6

2* 40 1422 54.0 61.0 58.3 1475 55.4 63.4 62.7

3* 40 1870 62.8 67.2 70.6 2152 71.9 82.4 83.0

4* 45 2153 57.6 72.4 84.2 2455 69.7 86.1 91.0

5* 46 2343 65.4 75.3 80.9 2369 67.4 76.4 84.1

6* 40 1965 67.5 82.8 85.9 2080 70.7 84.2 90.1

7* 46 1935 45.5 63.2 75.4 2487 60.0 81.7 92.6

8* 45 2967 81.3 100.0 108.6 3283 85.2 108.9 115.9

9* 43 2042 68.1 75.6 73.7 1976 62.3 73.1 71.1

10* 42 1552 52.3 61.7 60.8 1799 60.7 66.9 68.6

11* 45 2192 60.9 75.6 80.1 2309 63.8 81.4 86.9

12* 48 2496 70.8 80.4 86.8 2707 71.0 85.6 90.1

13 42 2019 67.4 75.7 82.2 1973 68.0 75.9 78.8

14 37 1476 58.2 62.8 54.9 1560 59.4 65.5 58.9

15 43 2320 77.1 85.9 85.6 2378 82.8 90.6 88.8

16 40 1447 53.6 60.7 59.1 1902 68.9 76.7 75.0

17 45 2588 72.1 91.9 100.1 2755 73.5 94.4 103.1

18 40 1384 54.7 67.2 66.1 1586 64.2 76.5 76.2

19 38 964 38.5 42.5 40.9 1232 47.3 56.2 53.2

20 43 1298 36.3 49.3 53.9 1416 46.0 56.9 58.2

21 41 1322 49.1 53.5 53.2 1462 54.1 58.4 59.4

22 48 2209 61.1 66.8 71.3 2334 70.9 75.7 76.5

23 45 1237 36.0 46.5 52.3 1186 35.6 44.7 49.7

24 45 2187 59.7 72.5 75.0 2567 73.0 87.7 93.1

25 41 1286 47.3 53.2 53.7 1422 50.4 63.3 59.8

26 46 2317 66.8 83.1 92.9 2436 73.7 88.2 95.9

27 49 2131 56.0 62.4 68.0 2496 71.8 77.0 83.1

28 41 1157 39.9 43.9 48.1 1138 38.6 42.9 47.7

29 44 1693 55.5 62.5 68.5 1794 55.4 65.7 73.5

30 44 2549 87.0 97.3 94.4 2628 93.3 100.9 97.7

31 44 1992 58.9 72.6 78.6 2272 66.6 80.7 86.8

32 47 1494 51.0 61.1 61.9 1582 54.8 66.8 67.8

33 45 1489 51.7 55.2 56.4 1967 67.7 72.5 74.1

34 43 1160 40.5 44.0 42.7 1280 46.1 50.7 46.5

Means±SD 43.5±3.0 1863.7±517.6 57.7±12.4 67.7±14.8 71.1±17.0 2034.2±543.5 63.5±12.7 74.4±14.9 77.3±16.9

*Patients analyzed twice for assessing the intra-observer reliability

Pt =patient; FL = femur length
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fact at which level the measurements should be performed.
Therefore, it would be advantageous if a thumb rule could be
applied that the measurement level should always be located
at a certain distance from the knee joint. A different approach
would consist of defining the CSA level at a relative distance
considering the femur length, but this would require the MR
image acquisition of the whole thigh length [19]. In our study,
we evaluated three different levels, located 15, 20 and 25 cm
above the knee joint. We found a good to excellent linear
relationship between the quadriceps TMVand the CSA at all
the three levels in the overall evaluation and also in the
operated and non-operated leg subgroups, but the highest
correlation coefficient was found 25 cm above the knee joint
(r2=0.956). Our results indicate that the CSA-25 is the most
appropriate of the three evaluated levels and should be used
for CSA measurements of the quadriceps muscle. The 25-cm
distance above the knee joint corresponded to a percentage
distance of the femur length of around 58 % (exact numbers
were 57.7±4.1 %, range 51.0–67.5 %). Our findings are in
agreement with a previous study conducted by Tracy et al.
[20], where a very high correlation coefficient (r2=0.96) was
found between the largest single CSA (defined case by case
without establishing a standardized level for all the subjects)
and the quadriceps volume. In another study, Morse et al. [19]
found correlation coefficients within a similar range when
they measured and compared the CSA at 40, 50 and 60 %
from the distal end of the femur to the quadriceps volume (r2

values were 0.84, 0.93, and 0.90 respectively). Overall, CSA
measurements in the midst of the thighs correlated better with
the muscle volume than measurements at the proximal or
distal end of the femur. In the study by Tracy et al. [20], it
was observed that the CSA of the QFM peaks in the mid-thigh
area (6–8-cm region), showing the greatest absolute amount of
hypertrophy compared with proximal and distal regions. This
is consistent to our results as the least correlation was seen at
the CSA-15 level, with increasing correlation coefficients for
CSA-20 and CSA-25. Whereas the lower correlation coeffi-
cient at CSA-15 is likely related to the anatomy of the muscle,

where at this level only a small portion of the rectus femoris
component is assessable for the CSA measurement (Fig. 1B),
the mid-thigh region is best suitable to evaluate quadriceps
volume changes using the CSA.

From a practical point of view, however, our findings
demand a separate, dedicated MR examination of the thigh
muscles in order to evaluate QFM insufficiency, as an extend-
ed proximal field-of-view of a routine post-operative kneeMR
exam would not cover the mid-thigh area.

Although overall, the correlation between the CSA at the
three levels and the quadriceps TMV was high, we found a
remarkable standard error of the estimate (SEETMV) of
15.2 %, 11.6 % and 8.1 % of the total quadriceps volume for
CSA-15, CSA-20 and CSA-25, respectively. Similar values
were obtained from the analysis of the operated and the non-
operated legs subgroups. This means that for any given value
of CSA, the mean bias of the predicted volume would be±1
SEE in approximately 68 % of cases and±2 SEE in 95 % of
cases. Our results are in agreement with Tracy et al. [20], who
reported a SEE of 7 % when the largest single CSAwas used
to predict the quadriceps volume, and with Morse et al. [19]
who found mean SEEs of predicted compared to measured
quadriceps volume of 26.8 %, 12.5 %, and 9.9 % (at 40 %,
50 %, and 60 % of the femur length, respectively). Compared
to other volume estimation methods, e.g., based on the inter-
polation and deformation of a parametric specific object
(mean SEE, 1.1 %) [15], CSA measurements perform inferi-
orly, but these methods are much more complex and time-
consuming than a single CSA evaluation. Nevertheless, full
muscle volumetry remains the gold standard for QFM size
assessment in special in situations where the expected change
in muscle size is relatively small. This could be the case for
short-term follow-up examinations during rehabilitation pro-
grams or exams prior and after surgery.

CSAmeasurements of the QFMmay be helpful to estimate
the muscle strength, as QFM atrophy is correlated to the QFM
strength [2–7]. The size of the quadriceps femoris muscle
correlates with the muscle strength [5, 8, 39], but muscle

Table 2 Correlation between CSA-15, CSA-20 and CSA-25 and quadriceps TMV

CSA-15 CSA-20 CSA-25

Tot
(N=68)

Op
(N=34)

Non-op
(N=34)

Tot
(N=68)

Op
(N=34)

Non-op
(N=34)

Tot
(N=68)

Op
(N=34)

Non op
(N=34)

r 0.835 0.839 0.823 0.906 0.906 0.903 0.956 0.954 0.955

r2 0.697 0.704 0.678 0.820 0.821 0.815 0.913 0.910 0.913

SEE
[cm3]

± 295.9 ± 286.2 ± 313.3 ± 227.9 ± 222.5 ± 237.7 ±158.6 ± 157.6 ± 162.9

SEETMV

[% of TMV]
15.2 15.3 15.4 11.6 11.9 11.6 8.1 8.4 8.0

r = Pearson correlation coefficient; r2 = R-square; SEE = Standard Error of the Estimate; SEETMV = SEE expressed as the percentage of the quadriceps
TMV; Tot = overall legs; Op = operated leg; Non-op = non-operated leg
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weakness might also be due to increasing fat content (due to
loss of muscular function [40] or muscle de-innervation [41]),

which is not considered in CSA measurements. Therefore,
other methods than trivial measurements of thigh

Fig. 2 Scatterplots and
regression lines show the
presence of a strong linear
relationship between the
quadriceps TMVand the
measurements at the three levels:
(A) CSA-15 (Pearson r=0.835,
p<0.01), (B) CSA-20 (Pearson
r=0.906, p<0.01) and (C) CSA-
25 (Pearson r=0.956, p<0.01).
Solid central line = regression
line. Solid upper and lower lines
= 95 % confidence intervals (±2
SEE)
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circumferences have to be applied for the assessment of fatty
muscle degeneration. These methods include the qualitative
Goutallier classification on T1 sequences [42] and the quan-
titative fat-signal-fraction measurements on in- phase-based
and opposed-phase-based chemical shift imaging, on MR
spectroscopy and DIXON techniques [32, 40, 43–49], 3D
ultrasound muscle volumetry [50] as well as for histopatho-
logic examinations [43, 44, 51].

Our study has several limitations. One limitation was the
relatively small number of cases, which was due to narrow
inclusion criteria resulting in a well-selected, very homoge-
nous study cohort. Second, due to practical reasons, we lim-
ited CSA measurements to only three levels and did not
perform measurements at all levels. However, our methods
were comparable to previous studies evaluating the CSA of
the QFM [19, 20], allowing for direct comparison of our
findings. Third, we outlined the outer margins of the quadri-
ceps for both, volume and CSA evaluations, including the
fascia and possibly a small amount of fat tissue interspersed
between the fascia and the muscle and between the different
muscle bellies. This could have introduced a systematic error,
which should have similar biased the values for CSA
and volume, and therefore would not have influenced
the correlation analysis.

In conclusion, although a high linear correlation coefficient
between quadriceps CSA of the mid QFM and TMV was
found in our cohort of patients with ACL reconstructions,
with the best correlation seen 25 cm above the knee joint line,
the clinical application of CSA measurements to estimate the
TMV is limited by a relatively large SEE. Thus, we recom-
mend using CSA measurements only for gross estimation of
muscles sizes or in those cases where large muscle volume
differences are expected.
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