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ABSTRACT The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving
random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the
properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a
set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are
identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the
number of samples and the load level (up to 3.5% macroscopic deformation) is investigated.

KEYWORDS polycrystalline aggregates, crystal plasticity, random fields, spatial variability, correlation structure

1 Introduction

In pressurized water reactors of nuclear plants, the pressure
vessel constitutes one element of the second safety barrier
between the radioactive fuel rods and the external
environment. It is made of 16MND5 (A508) steel which
is forged and welded. In case of operating accidents such as
LOCA (loss of coolant accident), the pressure vessel is
subjected to a pressurized thermal shock due to fast
injection of cold water into the primary circuit. If some
defects (e.g., cracks) were present in the vessel wall this
may lead to crack initiation and propagation and to the
brittle fracture of the vessel. The detailed study of the
embrittlement of 16MND5 steel under irradiation is thus a
great concern for electrical companies such as EDF.
The brittle fracture behavior of the 16MND5 steel has

been thoroughly studied in the last decade using the local
approach of fracture theory [1] and the so-called Beremin
model [2], which assumes that cleavage is controlled by
the propagation of the weakest link among a population of

pre-existing micro-defects in the material. This approach
has been recently coupled with polycrystalline aggregates
simulations [3,4].
The main idea is to model a material representative

volume element (RVE) as a polycrystalline synthetic
aggregate and compute the stress field under given load
conditions. As a post-processing a statistical distribution of
defects (carbides) is sampled over the volume. In each
Gauss point of the finite element mesh the cleavage
criterion is attained somewhere along the load path if a) the
equivalent plastic strain has attained some threshold
(cleavage initiation) and b) a Griffith-like criterion applied
to the size of the carbide in this Gauss point is reached
(cleavage propagation). Within the weakest link theory the
failure of a single critical carbide induces the failure of the
RVE.
From a single RVE simulation (i.e., a single stress field)

various distributions of carbides are drawn, each realiza-
tion leading to a maximal principal stress associated to
failure. Then the distribution of these quantities is fitted
using a Weibull law [4]. In such an approach, the current
practice of computational micromechanics assumes thatArticle history: Received Oct. 20, 2014; Accepted Jan. 14, 2015
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the RVE is large enough to represent the behavior of the
material so that a single polycrystalline analysis is carried
out (the large CPU required by polycrystalline simulations
also favors the use of a single simulation). However it is
believed that numerous parameters such as grain geometry
and orientation may influence the stress field and thus the
final result.
The connection between micromechanics and stochastic

methods has been given much attention in the past few
years, as shown in Graham-Brady et al. [5]; Stefanou [6];
Xu and Chen [7]. Many papers are devoted to developing
probabilistic models for reproducing a random micro-
structure, e.g., Graham and Baxter [8]; Liu et al. [9]; Chung
et al. [10]; Chakraborty and Rahman [11]. The specific
representation of polycrystalline microstructures has been
addressed in Arwade and Grigoriu [12]; Grigoriu [13]; Li
et al. [14]; Kouchmeshky and Zabaras [15] among others.
The propagation of the uncertainty on the microstructure
through a micromechanical model in order to study the
variability of the resulting strain and stresses has not been
addressed much though (see e.g., Kouchmeshky and
Zabaras [16]).
In this paper it is proposed to identify the properties of a

stress random field resulting from the progressive loading
of a polycrystalline aggregate. More precisely, assuming
that the stress random field is Gaussian, a procedure called
periodogram method is devised, which allows one to
identify the correlation structure of the resulting stress
field.
The paper is organized as follows: in Section 2 basics of

Gaussian random fields are recalled and the periodogram
method is presented (Dang et al. [17]). The polycrystalline
aggregate computational model is detailed in Section 3.
The methodology for identifying the correlation structure
of the resulting stress field is presented in Section 4. Two
application cases are then investigated in Sections 5 and 6,
namely an aggregate with fixed grain boundaries and
random crystallographic orientations (Section 5) and an
aggregate with both random geometry and orientations
(Section 6). The variance of the resulting stress field as
well as the spatial covariance function and its correlation
lengths is investigated in details. The properties of the
identified random fields will be used in a forthcoming
study in the context of the local approach to fracture, as
explained above.

2 Inference of the properties of a Gaussian
random field

In this section an identification method called periodogram
is presented, which uses an estimator of the Power Spectral
Density (PSD) in order to identify the correlation structure
of a Gaussian homogeneous random field. Based on
original developments by Stoica and Moses [18] and Li
[19] for unidimensional fields, it has been extended to two-

dimensional cases by Dang et al. [17]. As it relies upon the
use of the Fast Fourier Transform (FFT) its computational
efficiency is remarkable.

2.1 Definitions

A Gaussian random field Z(x, ω) is completely defined by
its mean value µ(x), its standard deviation σ(x) and its auto-
covariance function C(x, x'). It is said homogeneous if the
mean value µ(x) and the standard deviation σ(x) are
constant in the domain of definition of x and the auto-
covariance function C(x, x') only depends on the shift h =
x – x'. Let us introduce the n-th statistical moment mn

z and
the spatial average mn

V :

mn
Z ¼ E½Znðx0,ωÞ� ¼ !

1

–1
znðx0,ωÞfzðz,x0Þdz, (1)

mn
V ¼ lim

V ↕ ↓1
1

V
!
V

znðx,ω0Þdx: (2)

The field is said ergodic if its ensemble statistics is equal
to the spatial average, i.e., mn

Z ¼ mn
V [20]. Several popular

covariance models for two-dimensional homogeneous
random fields are presented in Table 1. In this table, σ is
the constant standard deviation of the field, h1, h2 are the
components of the shift h in the two directions, l1, l2 are the
correlation lengths in the two directions. Gaussian and
exponential models are plotted in Fig. 1 for the sake of
illustration. Note that we call correlation length the
parameters that appear in the definition of the covariance
functions. This is not to be confused with the scale of
fluctuation [21], which combine both the shape of the
covariance function and the lengths l1, l2. In one
dimension, denoting by ρ(x; l) the autocorrelation function,
the scale of fluctuation may be defined by:

2lc ¼ !
1

–1�ðx;lÞdx,

which reduces to lc = l for the exponential correlation
function and lc ¼

ffiffiffi
π

p
=2 � 0:886l for the Gaussian case.

Similar expression are available in two and three
dimensions, see e.g., Xu and Chen [7].
The power spectral density (PSD) of the random field is

the Fourier transform of its covariance function as a result
of the Wiener-Khintchine relationship [22]. The following
relationships hold:

Sðf1,f2Þ ¼ !
1

–1
!
1

–1
Cðh1,h2Þe – i2πf1h1e – i2πf2h2dh1dh2, (3)

C h1,h2ð Þ ¼ !
1

–1
!
1

–1
S f1,f2ð Þei2πf1h1ei2πf2h2df1df2: (4)
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The PSD of the Gaussian and exponential covariance
models are presented in Table 1.

2.2 Identification of a PSD

2.2.1 Empirical periodogram

One considers an ergodic homogeneous random field Z(x1,
x2), (x1, x2) 2 D1 � D2 ⊂ ℝ2 for which a single realization
z(x1, x2) is available. If the random field was defined over
an infinite domain, the classical estimation of the
covariance function would be:

Ĉðh1,h2Þ¼
1

4MN

XN – 1

n¼ –N

XM – 1

m¼ –M

Zðx1nþh1,x2mþh2ÞZðx1n,x2mÞ:

(5)

By definition, the Fourier transform of the covariance
estimation is an estimation of the PSD.

Ŝðf1,f2Þ ¼
1

4MN
~Zðf1,f2Þ~Z*ðf1,f2Þ ¼

1

4MN
~Zðf1,f2Þ
�� ��2, (6)

where |.| denotes the modulus operator.
In practice, the problem is to estimate the periodogram

from a limited amount of data gathered on N � M grid {z
(x1i, x2j), i = 1, …, N; j = 1, …, M}. Due to symmetry, the
covariance estimation in Eq. (5) is recast as follows:

Ĉðh1k,h2lÞ ¼
1

NM

XN – k

n¼1

XM – l

m¼1

Zðx1nþh1k ,x2mþh2lÞZðx1n,x2mÞ:

(7)

By taking the expectation of the above equation one
gets:

E½Ĉðh1k ,h2lÞ�

¼ N – k

N

M – l

M
E½Zðx1n þ h1k ,x2m þ h2lÞZðx1n,x2mÞ�

¼ N – k

N

M – l

M
Cðh1,h2Þ: (8)

The latter equation exhibits some bias term between the
expectation of the estimator and the covariance function C
(h1, h2). Using the symmetry of the covariance function,
one can write:

E Ĉðh1k ,h2lÞ� ¼ wBðk,lÞCðh1,h2Þ,
�

(9)

where wB(k, l) is the triangle window, also known as the
Bartlett window (Fig. 2):

wBðk,lÞ ¼
N – kj j
N

M – lj j
M

, if kj j£N ; lj j£M

0, otherwise

8<
: : (10)

Table 1 Covariance functions and associated power spectral densities

for homogeneous two-dimensional random fields

model covariance function power spectral density

Exponential
�2exp –

h1j j
l1

þ h2j j
l2

� �� �
�2

2l1
1þ 4π2l21 f

2
1

2l2
1þ 4π2l22 f

2
2

Gaussian
�2exp –

h21
l21

þ h22
l21

� �� �
�2πl1expðπ2l21 f 21 Þπl2expðπ2l22 f 22 Þ

Wave
�2sinc

h1j j
l1

� �
sinc

h2j j
l2

� �
�2πl1rect1ðπl1f1Þπl2rect1ðπl2f2Þ

Triangle
�2tri

h1j j
l1

� �
tri

h2j j
l2

� �
�2l1sinc

2ðπf1l1Þl2sinc2ðπf2l2Þ

sinc(x) = sin x/x
tri(x) = 1 – |x|, if |x|£ 1 and 0 otherwise

rectτ(f) = 1, if |f |£
τ
2
and 0 otherwise

Fig. 1 (a) Gaussian covariance model and (b) exponential
covariance model: σ = 2, l1 = l2 = 5
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Consequently the expectation of the periodogram
estimation becomes:

E Ŝðf1k ,f2lÞ� ¼ F E Ĉðh1k ,h2lÞ�
� 	
�

¼FfwBðk,lÞCðh1,h2Þg
¼WBðf1,f2Þ � Sðf1,f2Þ,

(11)

where F and WB(f1, f2) respectively denote the 2D Fourier
transform operator and the Fourier transform of the Bartlett
window and � denotes the convolution product. This
window tends to a Dirac pulse when N, M tend to infinity
and wB tends to a unit constant. Thus the periodogram
estimation is asymptotically unbiased. However it is not
consistent since its variance does not tend to zero [22].
Furthermore using this window leads to a convolution
product which introduces additional computational bur-
den. Hence in practice, the modified periodogram
presented in the next section is used to estimate the PSD
of the random field.

2.2.2 Modified periodogram

The modified periodogram is built up in order to avoid the
convolution product with the transformed window WB(f1,
f2) in Eq. (11). In this approach, the data is multiplied
directly with the window w(x, y) before the Fourier
transform is carried out. It aims at filtering the data to limit
the influence of long distance terms and to focus on the
information given by the short distance terms. This leads to
the following estimate:

Ŝðf1,f2Þ ¼
1

NMU
Ffzðx1,x2Þ:wðx1,x2Þgj j2, (12)

where U is the energy of the window calculated by:

U ¼ 1

D1D2

XN
i¼1

XM
j¼1

w2ðx1i,x2jÞ, (13)

and D1, D2 denote the size of the two-dimensional domain

D1�D2. Various window functions are proposed in
Preumont [22], see Table 2. In this paper we will use
mainly the Blackman window (Fig. 2).

2.2.3 Average modified periodogram

As shown in Section 2.2.1, the estimation of the period-
ogram is asymptotically unbiased, however not consistent
since its variance does not tend to zero when N, M tend to
infinity. The averaging of the modified periodogram will
solve this problem. Assume that L realizations of the
random field are available. For each realization zl(x1; x2),
one calculates the periodogram as in Eq. (12):

Ŝ
lðf1,f2Þ ¼

1

NMU
Ffzlðx1,x2Þ:wðx1,x2Þg
�� ��2, (14)

with 1£l£L. Then one calculates the average period-
ogram by:

Sðf1,f2Þ ¼
1

L

XL
l¼1

Ŝ
lðf1,f2Þ: (15)

Therefore the variance of the average periodogram is:

Var½Sðf1,f2Þ� ¼
1

L
Var Ŝðf1,f2Þ�:
�

(16)

It is then obvious that this variance tends to zero when L
tends to infinity, making the “average modified period-
ogram” approach more robust.

2.2.4 Final algorithm for PSD estimation

As a summary, the algorithm to estimate the PSD of a
random field from L realizations may be decomposed into
the four following steps:
1) multiplication of each realization by a selected

window, e.g., the Blackman window (see Table 2);
2) computation of 2D Fourier transform of the product

of the current realization by the filtering window;

Table 2 Window functions used in the modified periodogram approach

model window equation

Bartlett N – kj j
N

, if kj j£N ; lj j£M

0, otherwise

8<
:

Hann
0:5þ 0:5cos

πk
N

� �� �
0:5þ 0:5cos

πl
M

� �� �
, if kj j£N ; lj j£M

0, otherwise

8<
:

Hamming
0:54þ 0:46cos

πk
N

� �� �
0:54þ 0:46cos

πl
M

� �� �
, if kj j£N ; lj j£M

0, otherwise

8<
:

Blackman
0:42þ 0:5cos

πk
N

� �
þ 0:08cos

2πk
N

� �� �
0:42þ 0:5cos

πl
M

� �
þ 0:08cos

2πl
M

� �� �
, if kj j£N ; lj j£M

0, otherwise

8<
:
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3) computation of the modulus of the result to obtain the
PSD estimation of each realization;
4) averaging of the L PSD estimations.
Once the empirical periodogram has been computed, a

theoretical periodogram is selected (e.g., Gaussian,
exponential, etc., see Table 1) and fitted using a least-
square procedure [23]. In case of multiple potential forms
for the theoretical periodogram the best fitting is selected
according to the smallest residual.

3 Modeling polycrystalline aggregates

In this section the computational mechanical model used in
this study is presented. It simulates a tensile test on a
bidimensional polycrystalline aggregate under plane strain
conditions. The various ingredients are discussed, namely:
– the microstructure of the material and its synthetic

representation;

– the material constitutive law;
– the boundary conditions applied onto the aggregate;
– the mesh used in the finite element simulation.

3.1 Material characterization

The material is a 16MND5 ferritic steel with a granular
microstructure. The ferrite has a body centered cubic
(BCC) structure. Three families of slip system should be
taken into account, namely {110} 〈111〉, {112} 〈111〉,
{123} 〈111〉. However, following Franciosi [24] it is
assumed that the glides on the plane 123 are a succession
of micro-glides on the planes 110, 112. This leads to
consider only the two first families, which yields 24 slip
systems by symmetry.

3.2 Crystal plasticity

The model for crystal plasticity chosen in this work has
been originally formulated in Meric and Cailletaud [25]
within the small strain framework. The total strain rate _εij is
classically decomposed as the sum of the elastic strain rate
_εeij and plastic strain rate _εPij :

_εij ¼ _εeij þ _εPij : (17)

The elastic part follows the Hooke’s law and the plastic
part is calculated from the shear strain rates of the 24 active
slip systems:

_εPij ¼
X24
g¼1

_ggRg
ij, (18)

where _γg is the shear strain rate of the slip system g and Rg
ij

is the Schmid factor which presents the geometrical
projection tensor. The latter is calculated from the normal
vector to the gliding plane n and the direction of glidingm.

Rg
ij ¼

1

2
ðminj þ mjniÞ: (19)

The Resolved Shear Stress (RSS) τg of the slip system g
is the projection of the stress tensor via the Schmid factor.

τg ¼ Rg
ij�ij: (20)

The shear strain rates _gg of each slip system g are the
internal variable that describes plasticity. The evolution of
these variables depends on the difference between the RSS
τg and the actual critical RSS τgc in an elastoviscoplastic
setting:

_gg ¼ τg – τgc
K

� �n

signðτgÞ, (21)

where K and n are material constants, and sign(a) = a/|a| if
a ≠ 0 and 0 otherwise. Note that this formula corresponds
to an elastoviscoplastic constitutive law but the viscous

Fig. 2 (a) Bartlett window; (b) Blackman window
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effect will be negligible if sufficiently large values of K and
n are selected. Its power form allows one to automatically
detect the active slip systems. All the systems are
considered active but the slip rate is significant only if
the RSS τg is much higher than the critical RSSτgc . This
procedure allows one to numerically smooth the elasto-
plastic constitutive law.
The critical RSS τgc evolves according to the following

isotropic hardening law:

τgc ¼ τgc0 þ Qg
X24
s¼1

hgsð1 – e – bggs
cumÞ, (22)

where gs
cum ¼ !t

t0
_gS
�� ��dt. The exponential term presents the

hardening saturation in the material when the accumulated
slip is high. τgc0 is the initial critical RSS on the considered
system g. Qg and bg are parameters which depend on the
material. hgs is the hardening matrix of size 24 � 24 whose
component hgs presents the hardening effect of the system
g on the system s. In the present work, one considers only
two families of slip systems named 110〈111〉, 112
〈111〉. Thus the hardening matrix hgs is completely
defined by four coefficients h1, h2, h3, h4 only. The values
of these coefficients and this matrix are presented in
Mathieu [26]. All the parameters describing crystal
plasticity for 16MND5 steel are gathered in Table 3.

3.3 Microstructure and boundary conditions

The construction of the aggregate is based on the Voronoi
polyhedra model [27], generated in this work with the
Quickhull algorithm [28]. The geometry of the resulting
synthetic aggregate, which is a simplified representation of
the real microstructure of the 16MND5 steel, is shown in
Fig. 3. It corresponds to a square of size 1,000 (this is a
relative length which shall be scaled with a real length
depending on the grain size). Grain boundaries are
considered as perfect interfaces. Note that more detailed
models of grains have been proposed recently using so-
called Laguerre tessellations [29] in order to better fit the
observed distributions of grain size, see e.g., Zhang et al.
[30]; Leonardia et al. [31].
The same crystallographic orientation, defined by the

three Euler angles φ1, f, φ2, is randomly assigned to all
integration points inside each individual grain using a
uniform distribution. In Fig. 3(a), the color of each grain
corresponds to a given crystallographic orientation. The
mesh is generated by the BLSURF algorithm [32] of the
Salome software (http://www.salome-platform.org). The

mesh of the generated specimen is presented in Fig. 3(b).
The finite elements are quadratic 6-node triangles with
three integration points.
The boundary conditions applied onto the aggregate are

sketched in Fig. 4. The lower surface is blocked along the Y
direction. The displacements DX = DY = 0 are blocked at
the origin of the coordinate system (lower left corner). On
the upper surface, an homogeneous displacement is
applied by steps in the Y direction up to a macroscopic
strain equal to 3.5%. The computation is carried out using
the open source finite element software Code_Aster (http://
www.code-aster.org).
The computational cost for such a non linear analysis is

high. The number of degrees of freedom of the finite
element model is 33, 885. A parallel computing method
based on sub-domain decomposition is used. One simula-
tion of a full tensile test up to 3.5% strain requires about 2h
computation time when distributed over four processors.

3.4 Results

In this section, we present the result of the simulation of a
tensile test on the 2D aggregate at different scales. We
define the mean stress and strain tensor calculated in a
volume V by:

Σ ¼ 1

V
!
V

�dV , (23)

E ¼ 1

V
!
V

εdV : (24)

Figure 5 shows the macroscopic strain/stress curve. It is
observed that ΣXX = 0 as expected whereas the uniaxial
behavior shows a global elastoplastic behavior.
At the mesoscopic scale one can observe the mean

strain-stress relationship in each grain as shown in Fig. 6.
Because of the different crystallographic orientations in
each grain, the mean elastoplastic behavior is different
from grain to grain. Furthermore, whereas the mean stress
ΣXX calculated in over the whole specimen is zero, the
mean values calculated in each single grain are scattered
around zero. This observation shows the first scale of
heterogeneity of the material.
The microscopic behavior of a single grain (Grain #24,

see tag in Fig. 3) is finally studied. The mean behavior and
the strain-stress relationship at each node of this grain are
plotted in Fig. 7 for four levels of macroscopic strain,
namely EYY = 0.15%, 0.65%, 1.5%, and 3.5%.
In this figure the blue point represents the stress field

Table 3 Parameters of the crystal plasticity constitutive law for the 16MND5 steel [26]

isotropic elasticity viscoplasticity isotropic hardening

E(MPa) ν K(MPa.s1/n) N τc0(MPa) Q(MPa) b h1 h2 h3 h4

210,000 0.3 15 12 175 20 30 1 1 1 1
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within the grain for a macroscopic strain level EYY =
0.15%. This single point shows that the stress field is
homogeneous within the grain in the elastic domain. The
red points represent the stress values σYY in each node of
the grain at EYY = 0.65% macroscopic strain. One observes
that the mean strain calculated for this single grain is
0.85% and the maximal strain value εYY in a specific node
may attain about 2%. Similar effects are observed at other
levels of macroscopic strain, which show the heterogeneity
of the strain and stress fields at the microscopic scale. It is
observed that the scattering around the mean curve
increases with the macroscopic strain. Indeed, for the
final loading step corresponding to EYY= 3.5% the mean

strain in the grain is about 4.54%, while the local strain
varies form 2.4 to 9%.

4 Identification of the maximal principal
stress field

In this section the method developed in Section 2 is applied
to the identification of the properties of the random stress
field in polycristalline aggregate calculations. More
specifically the maximal principal stress field σI that is
computed from repeated polycrystalline simulations is
considered. Throughout the paper this stress field is
considered Gaussian. This is a strong assumption which
shall be considered as a first approximation. Indeed the
maximal principal stress is positive in nature under the
uniaxial loading that is considered and a Gaussian
assumption cannot totally fit this feature. Yet it is believed
that the results obtained in terms of the description of the
spatial variability (covariance functions), which is the main

Fig. 3 (a) Two-dimensional polycrystalline aggregate modeling a
volume of 16MND5 steel (100 grains); (b) mesh of the specimen
(11,295 nodes)

Fig. 4 Boundary conditions used for simulating the tensile test

Fig. 5 Macroscopic strain-stress relationship in the X and Y
directions

Bruno SUDRET et al. Characterization of random stress fields obtained from polycrystalline aggregate calculations 127



outcome of the paper, will not be strongly influenced by

this assumption. Note that methods for identifying the
properties of non Gaussian random fields have been
recently developed, see e.g., Perrin et al. [33].

4.1 Finite element calculations and projection

The maximal principal stress field is assumed to be
Gaussian and homogeneous (the latter assumption will be
empirically checked as shown in the sequel). The period-
ogram method is applied using K = 35 realizations of stress
fields, i.e., 35 full elastoplastic analysis of aggregates up to
a macroscopic strain of 3.5%. The identification is carried
out successively at various levels of the macroscopic
strain. Two cases are considered:
– Case #1: the grains geometry is the same for all the

finite element calculations. Only the crystallographic
orientations are varying from one calculation to the other.
– Case #2: both the grains geometry and the crystal-

lographic orientations vary.
The input data of the identification problem is the

maximal principal stress field σI obtained from the finite
element calculations. As the periodogram method is based
on a regular sampling of the random field under
consideration, the brute result (i.e., the maximal principal
stress at the nodes of the mesh) has to be projected onto a
regular grid. This operation is carried out using internal
routines of Code Aster. Note that a slice of width 100 (i.e.,
10% of total size) is discarded along the edges of the
aggregate in order to avoid the effect of boundary
conditions on the computed stress field, as suggested in
Mathieu [26]. A typical maximal principal stress field is
shown in Fig. 8.

4.2 Check of the homogeneity of the field

As it was described in Section 2 the periodogram method
assumes that the random field under consideration is
homogeneous. From the available realizations SIGi(x, y),
i = 1,…,35 one first checks empirically this assumption
using the following approach:
1) The ensemble mean and variance of the field is

computed point-by-point throughout the grid for an
increasing number of realizations K = 2,…,35:

�Kðx,yÞ ¼
1

K

XK
i¼1

SIGiðx,yÞ, (25)

�2
Kðx,yÞ ¼

1

K – 1

XK
i¼1

�
SIGiðx,yÞ –�ðx,yÞ

�2
, (26)

If the field is homogeneous these quantities should tend
to constant values that are independent from the position
(x, y) when K tends to infinity.
2) To measure the magnitude of the spatial fluctuation of

the latter, the spatial average and spatial variance of a

Fig. 6 Mesoscopic behavior in each grain in the X (a) and Y (b)
directions

Fig. 7 Microscopic strain-stress relationship for various nodes
within Grain #24 and mean tensile curve
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realization of a field Z(x, y) sampled onto a N � M grid is
defined by:

�Z ¼ 1

NM

XN
i¼1

XM
j¼1

Zðxi,yjÞ, (27)

�2Z ¼ 1

NM

XN
i¼1

XM
j¼1

Zðxi,yjÞ –�Z

 �2, (28)

whereas the associated “spatial” coefficient of variation is
defined by:

CVZ ¼ �Z

�Z
: (29)

3) The spatial coefficient of variation of the ensemble
mean and variance (Eqs. (25) and (26)) are computed and
plotted as a function of K. If the underlying random field is
homogeneous it is expected that the curves of CVµK

and
CV�2K

converge to zero.

4.3 Choice of theoretical periodograms and fitting

From a visual inspection of the obtained empirical
periodograms it appears that a Gaussian or an exponential
model of periodogram such as those presented in Table 1
may be consistent with the data. However it appeared in
the various analyses that the peak of the periodogram is not
always in zero. An initial frequency is thus introduced
which shifts the theoretical periodogram. Finally, due to
lack of fitting of the simple periodograms (e.g., Gaussian
and exponential), a combination thereof is also fitted. The
most general model finally reads:

Sðfx,fyÞ
¼ �21πlx1exp½π2l2x1

�
fx – f

ð1Þ
x0

�2�
þ �2

2
2lx2

1þ 4π2l2x2

�
fx – f

ð2Þ
x0

�2 2ly2

1þ 4π2l2y2

�
fy – f

ð2Þ
y0

�2 ,
(30)

where lx1 , ly1 , lx2, ly2 are correlation lengths in each
direction X and Y (aniso-tropic field) for each component
(1) (Gaussian part) and (2) (exponential part). Similarly

f ð1Þx0 , f ð1Þy0 , f ð2Þx0 , f ð2Þy0 are initial shift frequencies.
Note that Eq. (30) corresponds only to positive values of

fx, fy. The periodogram is then extended by symmetry for
negative frequencies. In terms of associated covariance
models, the linear combination of periodograms leads to a
linear combination of covariance models. The initial
frequency shift in the periodogram leads to oscillatory
cosine terms in the covariance by inverse Fourier trans-
form:

Cðhx,hyÞ

¼ �21exp –
h2x
l2x1

þ h2y
l2y1

 !" #
cos
�
2πf ð1Þx0 hx

�
cos
�
2πf ð1Þy0 hy

�

þ �2
2exp –

hxj j
lx2

þ hy
�� ��
ly2

� �� �
cos
�
2πf ð2Þx0 hx

�
cos
�
2πf ð2Þy0 hy

�
:

(31)

To compare the various fittings the least-square residual
between the empirical periodogram Sðfx,fyÞ (Eq. (15)) and
the fitted periodogram Stheor(fx, fy) is finally computed. The
following non dimensional error estimate is used:

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM

XN
i¼1

XM
j¼1

  Sðfxi,fyjÞ – Stheorðfxi,fyjÞ
� �2vuut =max

ðfx,fyÞ
Sðfx,fyÞ:

(32)

Fig. 8 A realization of the maximal principal stress field σI
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5 Results – Case #1: fixed grain geometry

5.1 Check of the homogeneity

First the homogeneity of the maximal principal stress field
is checked using the methodology proposed in Section 4.2.
Figure 9 shows the evolution of CVµK

and CV�2K
. These

quantities regularly decrease and it is seen that they would
tend to zero if a larger number of realizations was
available. This leads to accepting the assumption that the
random field is homogeneous since the fluctuations around
the constant spatial average tend to zero when K increases.

5.2 Identification of periodograms at 3.5% macroscopic
strain

The average empirical periodogram obtained from L = 35
realizations of the maximal principal stress field σI at 3.5%
of macroscopic strain is plotted in Fig. 10(a).

Table 4 presents the results of the fitting of the average
empirical periodogram calculated from 35 realizations of
the field using three models, namely Gaussian, exponential
and a mixed “Gaussian+ exponential” as in Eq. (30)
From the results in Table 4 it appears that the mixed

model provides a significantly smaller least-square error
than that obtained from the Gaussian and exponential
models respectively. The corresponding fitted periodogram
is plotted in Fig. 10(b).
To better appreciate the quality of the fitting, two-

dimensional cuts of the empirical (resp. fitted) period-
ogram are given in Figs. 11–13. Figure 11 corresponds to a
cut along the X direction for two values of fy = 0; 0.0013.
Figure 12 corresponds to a cut along the Y direction for two
values of fx = 0; 0.0013. Finally Fig. 13 corresponds to a
cut along the diagonal fx = fy.
From the above figures it appears that the fitting of the

empirical periodogram by a mixed model is remarkably

Fig. 9 Case #1: Evolution of CVµK and CV�K with respect to the
number of realizations

Fig. 10 Case #1: (a) Average empirical periodogram of the stress
field at 3.5% macroscopic strain; (b) best fitted periodogram
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accurate. It is interesting to interpret the fitted parameters
reported in Table 4. First it is observed that the amplitude
of each component of the mixed periodogram is similar
since σ1&σ2. The variance of the field is equal to
�2
1 þ �2

2 � 6,309 MPa. The associated standard deviation
is 79.4MPa. As the mean principal stress is 720MPa at
3.5% macroscopic strain, the coefficient of variation of the
field is about 11%.
To interpret the correlation length parameters let us

define the mean size of a grain Sg for such a two-

dimensional aggregate. As the volume of edge length equal
to 1,000 corresponds to 100 grains, the equivalent diameter
of a single grain reads:

Dg ¼
ffiffiffiffiffiffiffiffi
4

π
Sg

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

π

1000� 1000

100

r
¼ 112:8: (33)

Thus the correlation lengths obtained from the fitting
vary from 0.55 to 1.3Dg. This shows that the characteristic
dimension of the underlying microstructure (i.e., Dg) is of
the same order of magnitude as these parameters. In other

Table 4 Fitted parameters and error estimates for the three fitted models: Gaussian, exponential and mixed “Gaussian+ exponential”

model ε Gaussian Exponential

Eq. (32) σ1 lx1 ly1 f ð1Þx0 f ð1Þy0
σ2 lx2 ly2 f ð2Þx0 f ð2Þy0

Gaussian 0.0043 69.4 104.6 102.9 0.00287 0 – – – – –

Exponential 0.0039 – – – – – 84.2 73.8 87.5 0.00275 0

Mixed 0.0017 54.7 138.4 159.1 0.00244 0 57.6 57.5 63.5 0.00562 0.0028

Fig. 11 Case #1: Cut of the periodograms in the X direction Fig. 12 Case #1: Cut of the periodograms in the Y direction
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words the scale of local fluctuation of the stress field is
related to the grain size, as heuristically expected. More-
over, it appears that the lengths in the X and Y directions are
almost identical. The stress field does not show any
significant anisotropy in this case.

5.3 Influence of the number of realizations

In this section the stability of the fitted parameters as a
function of the number of available realizations K used in
the average periodogram method is considered. In practice
the procedure applied in the previous paragraph is run
using K = 8, 9, …,35 realizations of the stress field. The
evolution of the standard deviations (σ1, σ2) is shown in
Fig. 14. The evolution of the correlation lengths l(x,y)(1,2) is
shown in Fig. 15. The evolution of the initial frequencies

f ð1,2Þðx,yÞ0 is shown in Fig. 16.

From these figures it appears that the fitted parameters
tend to a converged value when at least 20 realizations of
the stress field are used for their estimation.

5.4 Influence of the macroscopic strain level

In this section the evolution of the parameters of the fitted
periodograms as a function of the macroscopic strain is
investigated. For this purpose the methodology presented
in Section 5.2 is applied using the realizations of the
maximal principal stress fields corresponding to various
levels of the loading curve, i.e., various values of the
equivalent macroscopic strain EYY = 0, …, 3.5%.
The evolution of the standard deviations (σ1, σ2) is

shown in Fig. 17. The two components of the periodogram
(e.g., Gaussian and exponential) contribute for approxi-

Fig. 13 Case #1: Cut of the periodograms along the diagonal
fx = fy

Fig. 14 Case #1: Evolution of the fitted standard deviations with
respect to the number of realizations K = 8,…,35

Fig. 15 Case #1: Evolution of the fitted correlation lengths in
the X, Y directions with respect to the number of realizations
K = 8,…,35
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mately the same proportion to the total variance of the field
since the curves are almost superimposed. Note that these
standard deviations increase with the applied load in the
same way as the mean load curve (Fig. 5).
The evolution of the correlation lengths l(x,y)(1,2) is

shown in Fig. 18. The evolution of the initial frequencies

f ð1,2Þðx,yÞ0 is shown in Fig. 19. It is observed that once plasticity
is settled (i.e., once the macroscopic strain EYY is greater
than ~ 0.5%) the parameters describing the fluctuations of
the maximal principal stress field are almost constant. This
conclusion is valid for both the correlation lengths and the
initial frequencies. Note that the convergence is faster for
the parameters related to the X direction, i.e., the direction
that is transverse to the one-dimensional loading. Finally it

is also observed that f ð1Þy0 is almost equal to zero whatever
the load level, thus the zero value in Table 4.

Fig. 16 Case #1: Evolution of the fitted initial frequency in the X,
Y directions with respect to the number of realizations K = 8,…,35

Fig. 17 Case #1: Evolution of the fitted standard deviations with
respect to the load level (macroscopic strain EYY = 0,…,3.5%)

Fig. 18 Case #1: Evolution of the fitted correlation lengths in the
X, Y directions with respect to the load level (macroscopic strain
EYY = 0,…, 3.5%)
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6 Results – Case #2: random grain
geometry

In this section both the randomness in the grain geometry
and in the crystallographic orientations are taken into
account. A total number of 35 finite element models are
run. In each case, the grain geometry is obtained from a
uniform sampling of points from which a Voronoï
tessellation is built.

6.1 Check of the homogeneity

As in Section 5 the homogeneity of the maximal principal
stress field is checked using the methodology proposed in
Section 4.2. Figure 20 shows the evolution of CVµK

and
CV�2K

. These quantities regularly decrease and it is seen

that they would tend to zero if a larger number of
realizations was available. This leads to accepting the
assumption that the random field is homogeneous.

Fig. 19 Case #1: Evolution of the fitted initial frequency in the X,
Y directions with respect to the load level (macroscopic strain EYY =
0,…,3.5%)

Fig. 20 Case #2: Evolution of CVµK
and CV�K with respect to the

number of realizations

Table 5 Fitted parameters and error estimates for the mixed “Gaussian+ exponential” periodogram

Case ε Gaussian Exponential

Eq. (32) σ1 lx1 ly1 f ð1Þx0 f ð1Þy0
σ2 lx2 ly2 f ð2Þx0 f ð2Þy0

Case #1 0.0017 54.7 138.4 159.1 0.00244 0 57.6 57.5 63.5 0.00562 0.0028

Case #2 0.0018 35.8 269.5 174.5 0.00172 0 81.6 67.2 70.4 0.004 0
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6.2 Identification of periodograms at 3.5% macroscopic
strain

The average empirical periodogram obtained from L = 35
realizations of the maximal principal stress field σI at 3.5%
of macroscopic strain is plotted in Fig. 22(a). Three types
of theoretical periodograms have been fitted as in the
previous section, which lead to the conclusion that the
mixed model that combines a Gaussian and an exponential
component is best suited. The fitted parameters are
gathered in Table 5 where the parameters fitted for Case
#1 are also recalled for the sake of comparison.
To check the accuracy of the fitting, two-dimensional

cuts of the empirical (resp. fitted periodogram) are plotted
in Fig. 22 (cut along the X direction), Fig. 23 (cut along the
Y direction), Fig. 24 (cut along the diagonal fx = fy). Again
the fitting is remarkably accurate, meaning that the fitted

model of periodogram accurately represents the spatial
variability of the maximal principal stress field.
It can be observed from the figures in Table 5 that the

fitting is of equal quality in both cases (relative error less
than 2�10–3). As far as the contribution of each component
of the periodogram is concerned, the symmetry reported in
Case #1 is not existing anymore since the standard
deviation of the exponential contribution (σ2 = 81.6) is
much greater than that of the Gaussian part (σ1 = 35.8). The
total variance of the field is 7,940MPa2, corresponding to a
standard deviation of 89.1 MPa and a coefficient of
variation of 12%. Thus there is a little more scattering in
the random stress field obtained in Case #2 when
considering both the random grain geometry and orienta-
tions.
The correlation lengths associated with the exponential

part do not differ much in Case #2 compared to Case #1
(corresponding here to 1.5 to 2.4 Dg). In contrast the
correlation lengths related to the Gaussian part are
increased, which tends to produce less rapidly varying

Fig. 21 Case #2: (a) Average empirical periodogram of the stress
field at 3.5% macroscopic strain; (b) best fitted periodogram

Fig. 22 Case #2: Cut of the periodograms in the X direction
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realizations. This may be explained by the fact that the
grain boundaries are “averaged” in Case #2 whereas they
were fixed in Case #1. The stress concentrations that are
usually observed at the grain boundaries are thus smoothed
in Case #2 compared to Case #1.

6.3 Influence of the number of realizations

In this section one considers the stability of the fitted
parameters as a function of the number of available
realizations K used in the average periodogram method.
The procedure applied in the previous paragraph is run
using K = 8, 9,…,35 realizations of the stress field. The
evolution of the standard deviations (σ1, σ2) and the initial

frequencies f ð1,2ÞðxÞ0 is shown in Fig. 25 (note that f ð1,2ÞðyÞ0 = 0 in

the present case). The evolution of the correlation lengths
l(x,y)(1,2) is shown in Fig. 26.

Fig. 23 Case #2: Cut of the periodograms in the Y direction

Fig. 24 Case #2: Cut of the periodograms along the diagonal
fx = fy

Fig. 25 Case #2: Evolution of the fitted standard deviations and

the initial frequencies f ð1,2ÞðxÞ0 with respect to the number of

realizations K = 8,…,35
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From these figures it clearly appears that the fitted
parameters are almost constant when the number of
realizations of the stress field used in their estimation
increases. The minimal number of K = 8 could be used here
without significant errors although it is recommended to
keep a value of K = 20 as in Case #1 for robustness.

6.4 Influence of the macroscopic strain level

Finally the evolution of the parameters of the fitted
periodograms as a function of the macroscopic strain EYY is
investigated. For this purpose the identification method is
applied using the realizations of the maximal principal
stress fields corresponding to various levels of the loading
curve, i.e., various values of the equivalent macroscopic
strain EYY = 0, …,3.5%.
The evolution of the two standard deviations look

similar to the results obtained in Case #1 (Fig. 27). It is
observed that the ratio σ2/σ1 is almost constant all along the
loading path up to 3.5% strain. As far as the initial
frequencies are concerned, there is a complete indepen-
dance with the load level as soon as EYY is greater than
~ 0.5%, i.e., when plasticity has settled in the aggregate.
The same conclusion can be drawn for the various
correlation lengths.

7 Conclusions

The distribution of stresses in a material at a microscopic
scale (where heterogeneities such as grain structures are
taken into account) has been given much attention in the
context of computational homogenization methods. How-
ever the current methods usually stick to a deterministic

Fig. 26 Case #2: Evolution of the fitted correlation lengths in the
X (a) (resp. Y (b)) directions with respect to the number of
realizations K = 8,…,35

Fig. 27 Case #2: Evolution of the fitted standard deviations (a)
with respect to the load level (macroscopic strain EYY = 0,…,

3.5%) (resp. the initial frequencies f ð1Þðx,yÞ0 (b))
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formulation. Starting from the premise that any represen-
tative volume element (such as a polycrystalline aggregate)
is a single specific realization of a random quantity, the
present paper aims at using methods of computational
stochastic mechanics for representing the (random) stress
field.
After recalling the basic mathematics of Gaussian

random fields, the paper presents a periodogram method
for estimating the parameters describing the spatial
fluctuation of a random field from a collection of
realizations of this field. This method is adapted in two
dimensions from well-known techniques originating from
signal processing.
The material under consideration, namely the 16MND5

steel used in nuclear pressure vessels is then presented
together with a local modeling by polycrystalline finite

element calculations. From a collection of 35 realizations
of the (maximal principal) stress field, the spatial
correlation structure of the latter is identified. By fitting
various theoretical periodograms, a mixed model combin-
ing a Gaussian and an exponential contribution is retained.
These two contributions may be empirically interpreted as
follows: The Gaussian part corresponds to the fluctuation
from grain to grain; the (less smooth) exponential
component corresponds to the sharp grain boundaries
stress concentrations.
Two cases are considered, namely a “fixed-geometry”

case in which only the crystallographic orientations
changes within the 35 realizations (fixed grain boundaries),
and a “variable geometry” in which the grain geometry is
randomly sampled for each realization. In both cases, a
good convergence of the procedure is observed when the
number of realizations increases. A set of 20 realizations is
recommended, although good results are already obtained
for ~8 realizations in Case #2.
Moreover it is shown that the correlation lengths are of

the same order of magnitude as the grain size. The initial
frequencies that are required for a best fitting of the
periodogram and that translate into some kind of spatial
periodicity in the covariogram could be explained by
spurious edge effects due to the limited size of the
aggregate. This should be investigated more in details in
further analysis.
Another important result is drawn from the comparison

of the fitted parameters at various load levels. Once
plasticity is settled within the aggregate, the parameters
describing the spatial fluctuations of the field are almost
constant. Moreover the variance of the field (sum of the
variance of each component of the periodogram) increases
proportionally to the mean strain/stress curve, meaning that
the coefficient of variation of the stress field is almost
constant (around 11% for the fixed geometry and 12% for
the variable geometry).
The results presented in this paper should be confirmed

by additional investigations under different types of
loading (e.g., biaxial loading). The tools that are presented
here may be applicable to three-dimensional aggregates
and stress fields at a much larger computational cost
though. This work is currently in progress.
The identified stress fields may eventually be re-

simulated: new realizations of the stress fields are
straightforwardly obtained at a low computational cost
by random field simulation techniques such as the spectral
approach or the circulant embedding method [17,22,34].
This allow us to apply local approach to fracture analysis
(such as that presented in Mathieu et al. [26]) for the
assessment of the brittle fracture of metallic materials, as
shown in Dang et al. [35].
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