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Abstract Gaussian random field (GRF) conditional simulation is a key ingredient in
many spatial statistics problems for computing Monte-Carlo estimators and quantify-
ing uncertainties on non-linear functionals of GRFs conditional on data. Conditional
simulations are known to often be computer intensive, especially when appealing to
matrix decomposition approaches with a large number of simulation points. This work
studies settings where conditioning observations are assimilated batch sequentially,
with one point or a batch of points at each stage. Assuming that conditional simulations
have been performed at a previous stage, the goal is to take advantage of already avail-
able sample paths and by-products to produce updated conditional simulations atmini-
mal cost. Explicit formulae are provided, which allow updating an ensemble of sample
paths conditioned on n ≥ 0 observations to an ensemble conditioned on n+q observa-
tions, for arbitraryq ≥ 1.Compared to direct approaches, the proposed formulae prove
to substantially reduce computational complexity. Moreover, these formulae explic-
itly exhibit how the q new observations are updating the old sample paths. Detailed
complexity calculations highlighting the benefits of this approachwith respect to state-
of-the-art algorithms are provided and are complemented by numerical experiments.
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1 Introduction

Throughout the paper, Z = (Z(x))x∈X is a random field defined on a probability space
(�,B, P), with index x lying in a bounded set X ⊂ R

d (d ≥ 1). The random field
Z is assumed to be evaluated sequentially, first at n points x1:n := (x1, . . . , xn) ∈ X

n

(n ≥ 0), and then at q additional points xn+(1:q) := (xn+1, . . . , xn+q) ∈ X
q (q ≥ 1).

A crucial assumption here concerning the random field Z is that its distribution at
step n be Gaussian. This includes not only the case when Z is a Gaussian random
field (GRF), but also the case of intrinsic random fields with Gaussian generalized
increments (Matheron 1973) and the Bayesian settings (Omre and Halvorsen 1989;
Handcock and Stein 1993) where Z is Gaussian conditionally on some linear trend
parameters with improper uniform distribution, and n ≥ 1 pointwise evaluations of Z
are already available at step n.

Assuming that J simulations of Z have been performed at stage n, this work details
procedures to update them when a vector of new observations Z(xn+(1:q)) is assimi-
lated. More precisely, the goal is to get a fast algorithm that generates J sample paths,
rigorously drawn from the distribution of Z conditional on all n + q evaluations, by
recycling previous simulations and calculations as much as possible.

The main contribution of this paper is illustrated on Fig. 1. An ensemble of 50 sim-
ulations of a GRF Z is generated conditionally on n = 6 observations (black curves).
A fast simulation update procedure (the so-called FOXY algorithm, presented in detail
in Sect. 2) is then applied to this ensemble to condition it on q = 3 additional observa-
tions at points xn+(1:q) = (0.25, 0.3, 0.8), yielding the red curves. Z is here assumed
to be stationary, centered, and to possess a Matérn covariance kernel with regular-
ity parameter ν = 3/2 (Stein 1999). Motivations for developing such a procedure
come from problems in various application fields. While GRF conditional simula-
tion constitutes a standard and important topic in the literature of geostatistics (Chilès
and Delfiner 2012) with a variety of applications in geosciences and natural resources’

Fig. 1 GRF simulations conditioned on n = 6 (black curves) and n + q = 9 observations (red curves).
Black circles stand for n = 6 initial observations and blue triangles represent q = 3 additional observations
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characterization (Delhomme1979;Deutsch 2002; Journel andKyriakidis 2004; Chilès
and Allard 2005; Dimitrakopoulos 2010), they have been increasingly used in engi-
neering and related areas, where GRF models have been used as prior distributions on
expensive-to-evaluate functions (Hoshiya 1995; Santner et al. 2003;Villemonteix et al.
2009; Roustant et al. 2012; Binois et al. 2014). For the latter applications, conditional
simulations are typically needed to compute expectations of non-linear functionals
of random fields. This includes, for example, not only the maximum, but also the
Shannon entropy of the maximizer (Villemonteix et al. 2009).

As conditional simulation methods are known to be generally computer intensive,
an important challenge is the reduction of computation time through efficient algo-
rithms. In the frequent case where observations are assimilated sequentially, both
new observations and previously simulated sample paths are typically available. It is
then tempting to take advantage of the latter for obtaining sample paths conditioned
on all observations without having to restart everything from scratch. A well-known
conditional simulation algorithm which may apply to these settings is the residual
substitution approach (Chilès and Delfiner 2012; de Fouquet 1994), also called condi-
tioning kriging, or residual kriging algorithm. Thismethod starts from non-conditional
GRF simulations obtained using algorithms such as the circulant-embedding, spec-
tral methods, or turning bands (Chilès and Delfiner 2012; Emery and Lantuéjoul
2006), and the assimilation of data is then achieved via kriging (Hernández and Emery
2009).

In the present paper, efficient formulae allowing a fast update of GRF sample
paths are provided, together with an algorithm, FOXY, the complexity of which is
studied in detail to justify the improvement with respect to the residual kriging algo-
rithm. The acronym FOXY stands for fast update of conditional simulation ensembles
(FOCSE, alias FOXY). The new formulae have the advantage of analytically exhibit-
ing the dependence between updated GRF sample paths and the newly assimilated
observations. One of the key ingredients to obtain the formulae and set up the algo-
rithm happens to be the batch-sequential kriging update formulae of Emery (2009)
and Chevalier et al. (2014), as explained next. The paper is organized as follows.
Section 2 presents two already well-established approaches, namely the residual krig-
ing algorithm and the kriging update formulae, which enable to derive the proposed
conditional simulation update formula. Related algorithms and their complexity are
presented in Sect. 3. Subsequent numerical experiments illustrating the efficiency of
the FOXY algorithm are finally given in Sect. 4. For brevity and self-containedness,
basics of kriging and more detailed versions of the algorithms are given inappen-
dices.

2 Theory: From Residual Kriging to the FOXY Algorithm

This section gives the main result of the paper. Sections 2.1 and 2.2 present two crucial
ingredients which are used to obtain the conditional simulation update formula in
Sect. 2.3.

123



774 Math Geosci (2015) 47:771–789

2.1 Residual Kriging Algorithm

In the simple kriging settings, the residual kriging algorithm or residual substitution
approach (Chilès and Delfiner 2012) is known to provide a simple and efficient way to
produce simulations of a GRF Z conditional on observations at x1:q (q ≥ 1) relying
both on non-conditional simulations of Z and simple kriging means of Z and of these
non-conditional simulations given their respective values at x1:q . Denoting by z(x1:q)
the values of Z observed at x1:q , by z′ or z( j) (1 ≤ j ≤ J ) some non-conditional
realizations of Z , and by Ep := {e1, . . . , ep} ⊂ X a considered set of simulation
points (now assumed to be a finite subset of X, for simplicity), the procedure is given
by Algorithm 1 below.

Algorithm 1 Standard residual kriging algorithm (case of several replicates)
Require: The distribution of the GRF Z
Require: Evaluation points x1:q = (x1, . . . , xq ) ∈ X

q

Require: Evaluation results z(xi ) (1 ≤ i ≤ q)
Require: Simulation points Ep = {e1, . . . , ep} ⊂ X

Step 1. Simulate J replicates of Z at {x1, . . . , xq } ∪ {e1, . . . , ep}, denoted z( j) (1 ≤ j ≤ J )

Step 2. Calculate the kriging mean function m of Z knowing z(xi ) (1 ≤ i ≤ q), and evaluate it at the
simulation points Ep , delivering the vector m(Ep).

Step 3.
for j = 1 → J do

- Calculate the kriging meanm( j) of Z knowing z( j)(x1:q ), and evaluate it at the simulation points Ep ,

delivering the vector m( j)(Ep). The kriging weights are the same as that calculated at Step 2.

- Set r ( j)(Ep) = z( j)(Ep) − m( j)(Ep)

- Set z�( j) = m(Ep) + r ( j)(Ep)

end for
Return z�(1), . . . , z�(J ) as conditional simulations of Z at Ep knowing Z(x1:q ) = z(x1:q ).

While this algorithm is common knowledge in geosciences, it is usually restricted
to the simple and ordinary kriging frameworks and presented rather succinctly across
the geostatistics literature (Journel and Huijbregts 1978; de Fouquet 1994; Lantuéjoul
2002; Chilès and Delfiner 2012). This procedure is recalled below.

Proposition 1 (residual kriging algorithm) Let q ≥ 1, x1:q = (x1, . . . , xq) ∈ X
q , Z

beaGRFwith conditional expectation Mq := E(Z |Z(x1:q)), and Z ′ bean independent
replicate of Z with M

′
q := E(Z ′|Z ′(x1:q)). Then, Z� = Mq + Z ′ −M ′

q is equal to Z in
distribution, so that conditional on the event Z(x1:q) = z1:q (for arbitrary z1:q ∈ R

q)

and denoting by mq the corresponding realization of Mq

(Z |Z(x1:q) = z1:q)
D=mq + Z ′ − M ′

q . (1)

Furthermore, if Z (1), . . . , Z (J ) (J ≥ 1) are independent replicates of Z with M ( j)
q :=

E(Z ( j)|Z ( j)(x1:q)) (1 ≤ j ≤ J ), the randomfieldsmq+Z ( j)−M ( j)
q are stochastically

independent replicates of Z conditionally on Z(x1:q) = z1:q .
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Fig. 2 Left simulated residual obtained from a non-conditional simulation of a GRF Z ( j) (black solid
line) and its simple kriging mean (blue dashed line) based on q = 3 observations (blue triangles). Right
conditional simulation of Z (black solid line) obtained by summing Z ’s simple kriging mean (blue dashed
line) based on its values at the same design (red triangles) and the residual simulated on the left graph

Proof By Gaussianity of Z , the following decomposition holds

Z = Mq + Rq , (2)

where Mq = E(Z |Z(x1:q)) depends on Z only through its values at x1:q (technically,
Mq is σ(Z(x1:q))-measurable) and Rq := (Z − Mq) is independent of Z(x1:q). The
same straightforwardly applies to the replicates Z (1), . . . , Z (J ), and the use of similar
notations gives Z ( j) = M ( j)

q + R( j)
q , where the M ( j)

q ’s are σ(Z ( j)(x1:q))-measurable

and the R( j)
q ’s are, respectively, independent of Z ( j)(x1:q) (1 ≤ j ≤ J ). Defining

Z�( j) = Mq + Z ( j) − M ( j)
q = Mq + R( j)

q (1 ≤ j ≤ J )

and using the fact that R( j)
q and Rq have same distribution and are both independent of

Mq , one easily obtains that Z�( j) D= Z . Besides, by independence between the residuals
and the values of the respective random fields at points x1:q

(Z�( j)|Z(x1:q) = z1:q)
D= (mq + R( j)

q )
D= (mq + Rq)

D= (Z |Z(x1:q) = z1:q). (3)

Finally, the Z�( j)’s are indeed independent conditionally on Z(x1:q) by independence
of the R( j)

q ’s. 	

An example of application of Proposition 1 in a non-standard set up is given in

Fig. 2. A universal kriging model is assumed, in which Z has already been evaluated
at n (not represented) points prior to the evaluation at the q conditioning points, so
that Z ’s distribution at stage n is indeed Gaussian but with non-stationary mean and
covariance kernel given by the universal kriging equations (recalled in Appendix A).

From that perspective, the conditional expectation of Z when q = 3 new obser-
vations are available can be obtained using simple kriging with the previous non-
stationary mean and covariance kernel. Let us stress here that computing simple krig-
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ing means with a non-conditional covariance function being the covariance function
of the universal kriging errors (referred to as the universal kriging covariance func-
tion) based on n past observations is not necessarily sensible from a computational
point of view, but having this particular approach in mind will facilitate understanding
forthcoming ideas. Such non-stationary simple kriging mean actually coincides with
the usual universal kriging mean relying on all n + q observations, as can be seen for
instance through the update equations recalled in the next section.

2.2 Kriging Update Framework

Keeping in mind the overall set up of a random field whose distribution at stage n ≥ 0
is Gaussian with mean Mn (the realization of which is denoted mn) and covariance
kn , let us now focus on the situation where a batch of evaluations at q > 0 additional
points xn+(1:q) = (xn+1, . . . , xn+q) is assimilated.

In the literature, a lot of efforts have been paid to obtain update formulae for kriging
predictors when observations are assimilated sequentially. Update formulae are meant
to enable a fast computation of the kriging mean Mn+q and the kriging covariance
function kn+q in case Mn and kn are already available. Barnes and Watson (1992)
gave kriging update formulae for the kriging mean and covariance function in simple
kriging settings, with q = 1. Gao et al. (1996) generalized these formulae, still with
q = 1, to universal kriging settings. Finally, Emery (2009) obtained universal kriging
update formulae for the kriging mean for arbitrary q ≥ 1 and Chevalier et al. (2014)
complemented them with update formulae for the kriging covariance function. These
formulae, adapted to settings and notations of this article, are recalled below

Mn+q(x) = Mn(x) + λn,q(x)�(Z(xn+(1:q)) − Mn(xn+(1:q))), (4)

kn+q(x, x′) = kn(x, x′) − λn,q(x)�Kn,qλn,q(x′), (5)

λn,q(x) = K−1
n,qkn(x, xn+(1:q)), (6)

where λn,q(x) is a vector of q kriging weights of responses at xn+(1:q) for predicting
at point x at time n, and Kn,q := (kn(xn+i , xn+ j ))1≤i, j≤q . These formulae enable
significant computational savings as only q kriging weights λn,q (and not n + q)
need to be computed for obtaining updated kriging mean and covariance functions. In
particular, a cumbersome (n + q) × (n + q) matrix inversion is avoided.

Note that the kriging update formulae (4), (5) corroborate the fact mentioned in
the previous example (Fig. 2). Performing simple kriging using mn and kn as mean
and covariance functions and q new observations actually gives the same result as
performing universal kriging based on the initial model, with n + q observations.

2.3 FOXY: Fast Update of Conditional Simulation Ensembles

All the ingredients are now gathered to detail a new update formula which is the
keystone of a method for fast updating ensembles of conditional simulations, referred

123



Math Geosci (2015) 47:771–789 777

to as the FOXY algorithm. Let us now state the main result of the paper, all notations
being kept as in the previous sections unless precised otherwise.

Proposition 2 (Conditional simulation update formula) Let Z (1), . . . , Z (J ) be inde-
pendent replicates of Z conditional on Z(x1:n). Then, the random fields

Z�( j) := Z ( j) + λ�
n,q(Z(xn+(1:q)) − Z ( j)(xn+(1:q))) ( j ∈ {1, . . . , J }) (7)

have the same distribution as Z conditioned on Z(x1:(n+q)). In other words, for any
conditioning values z1:n ∈ R

n, zn+(1:q) ∈ R
q

Z |(Z(x1:n)=z1:n, Z(xn+(1:q))=zn+(1:q))
D= Z ( j) + λ�

n,q(zn+(1:q) − Z ( j)(xn+(1:q)).

(8)

Furthermore, the Z ( j) + λ�
n,q(zn+(1:q) − Z ( j)(xn+(1:q)))’s are stochastically indepen-

dent.

Proof Let Mn+q := E(Z |Z(x1:n), Z(xn+(1:q))) and M ( j)
n+q be defined similarly for the

j th replicate Z ( j). The equality in distribution of Z and Z ( j) implies that

Z − Mn+q
D= Z ( j) − M ( j)

n+q . (9)

Now, an application of the kriging update formula (4) to bothMn+q andM
( j)
n+q , together

with the identity Mn = M ( j)
n , yields

Z
D= Mn + λ�

n,q(Z(xn+(1:q)) − Mn(xn+(1:q))) + (Z ( j) − M ( j)
n )

−λ�
n,q(Z

( j)(xn+(1:q)) − M ( j)
n (xn+(1:q)))

D= Z ( j) + λ�
n,q(Z(xn+(1:q)) − Z ( j)(xn+(1:q))),

which completes the proof. 	

Remark 1 It is actually sufficient that Z be Gaussian conditionally on Z(x1:n) for
Proposition 2 to apply. This includes, in particular, the universal kriging case where
the trend parameter is endowed with an improper uniform prior distribution.

In the next section, it is shown that the proposed algorithm has a lower complexity
than the classical residual kriging algorithm, which would update the GRFs Z ( j), 1 ≤
j ≤ J by computing kriging means based on all n + q observations.

3 Complexity Calculation

3.1 Residual Kriging and FOXY Algorithms

This section details the computational complexity of simulating J > 0 sample paths
of Z conditioned on n + q observations at points x1:n , xn+(1:q) in the case where
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J sample paths of Z conditioned on Z(x1:n) are already available. The considered
algorithms return an ensemble of J (conditionally) independent realizations of a GRF
with conditional mean and covariance mn+q and kn+q given by the kriging equations.
The algorithms are given in the settings of universal kriging [Eqs. (10)–(12)]. Only the
case n > 0 will be discussed as, in case n = 0, the two detailed algorithms coincide.

Here, it is assumed that all simulations are performed at p simulation points
e1, . . . , ep in X. To simplify complexity calculations, it is further assumed that p, n
are much larger than q. Another variable also assumed to be much smaller than p, n
is the number � of trend basis functions (Appendix A). To sum up, p, n � q, �.

Two major cases will be distinguished in the algorithms. First, an unfavorable case
where the set of new observation points xn+(1:q) is not included in the set of simulation
points {e1, . . . , ep}. Second, the favorable case where it is. Finally, two algorithms
will be compared. The first one is a classical residual kriging algorithm, based on
Eq. (1). This algorithm requires to compute a kriging mean Mn+q based on all the
actual observations Z(x1:n), Z(xn+(1:q)) and also to obtain a kriging residual, which
involves another computation of a kriging mean based on the observations Z(x1:n)
and artificial observations Z ( j)(xn+(1:q)). These computations involve the calculation
of n + q kriging weights, which is done using Eq. (10). The kriging weights are
the same for the two computed kriging means. The second algorithm is the FOXY
algorithm which is based on Proposition 2 and Eq. (7). FOXY has the advantage of
requiring only the computation of q kriging weights, λn,q , per simulation point. Since
the number of krigingweights is reduced from n+q to q, it turns out that FOXYbrings
a computational complexity reduction of O(n/q) compared to the classical residual
kriging algorithm. The complexities obtained will also be compared to the complexity
of a third benchmark algorithm based on a decomposition (for example, Cholesky)
of the conditional covariance matrix at the simulation points (Davis 1987). This last
algorithm does not take advantage of any previous computations. The algorithms are
summarized in the next two subsections and details are given in Appendix B.

3.2 Preliminary Step: Generating Z ( j)(xn+(1:q)) for all J Sample Paths

An important detail that is relative to Eq. (1) and is even clearer in Eq. (7) is that
updating J sample paths requires knowing, for each j ∈ {1, . . . , J }, the value of the
sample path number j at batch xn+(1:q), which is denoted by Z ( j)(xn+(1:q)). In Eq. (1),
the knowledge of Z ( j)(xn+(1:q)) is required, as the computation of the kriging residual
involves a kriging mean based on q artificial observations Z ( j)(xn+(1:q)). Thus, if the
batch of q points xn+(1:q) is not included in the set of p simulation points {e1, . . . , ep},
Z ( j)(xn+(1:q)) needs to be simulated conditionally on n + p observations for all j ∈
{1, . . . , J }. This case is referred to as the unfavorable case. It involves the computation
of the kriging weights in Eq. (10) of the n + p points x1, . . . , xn, e1, . . . , ep for the
prediction at each of the q points xn+(1:q). In particular, the inversion of a (n+ p)×(n+
p)matrix in Eq. (10) is done with a cumbersome O((n+ p)3) complexity. The cost for
computing the other terms of Eq. (10) is dominated by the latter complexity. Finally,
once the kriging weights are computed, Z ( j)(xn+(1:q)) is simulated for all j with a
cost of O(J pq). Thus, in the described unfavorable case, both the classical residual
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kriging algorithm and the new algorithm based on Eq. (7) have a cost, referred to as
the preliminary cost, which is of O((n + p)3 + J pq). A detailed algorithm justifying
this complexity is given in Appendix B. It will be shown that the preliminary cost
tends to dominate the other costs of the two algorithms, so that the savings provided
by the FOXY algorithm are lower in the unfavorable case.

3.3 Computing Kriging Weights and Updating the Sample Paths

It is now assumed that, for all j ∈ {1, . . . , J }, Z ( j)(xn+(1:q)) is known. This is the
case either if xn+(1:q) is included in the set of simulation points {e1, . . . , ep} (favorable
case), or if the preliminary cost of O((n + p)3 + J pq) has been paid (unfavorable
case).

For the classical residual kriging algorithm, the computation of kriging means
requires calculating n+q kriging weights of x1, . . . , xn+q for the prediction at points
e1, . . . , ep. This will be done using Eq. (10). The inversion of the covariance matrix
K at n + q points in Eq. (10) has a O((n + q)3) complexity, and the p matrix-vector
products K−1k(x), where x takes all the values e1, . . . , ep, have a O(p(n+q)2) cost.
The computation of the other terms of Eq. (10) involves other complexities that are all
dominated by the O(p(n+q)2) cost. The total cost is then of O((n+q)3+ p(n+q)2).
It is important to note that the O((n + q)3) complexity to invert K can be reduced
to O(qn2) using matrix block-inversion formulae based on the Schur complement
in the realistic case where the covariance matrix computed in the n (and not n + q)
points x1, . . . , xn has already been inverted or decomposed before. It shall be assumed
that this is the case here, so that the dominating term in the complexity is now of
O(p(n + q)2).

The FOXY algorithm based on Proposition 2 and Eq. (7) enables to improve this
O(p(n + q)2) complexity, as shown below. It requires the computation of q kriging
weights of xn+1, . . . , xn+q for the prediction at points e1, . . . , ep . These weights are
equal to K−1

n,qkn(x, xn+(1:q)), as indicated byEq. (6),wherex takes the values e1, . . . ep,
kn is the kriging covariance defined in Eq. (12) and Kn,q = kn(xn+(1:q), xn+(1:q)) is the
q ×q kriging covariance matrix at xn+(1:q) based on n observations. The computation
of all these kriging covariances can be performed using Eq. (12). In that case, the cost
to invert the matrix K is of O(n3) but, again, it is assumed that this inverse has already
been computed. The remaining matrix–vector multiplications are performed at a cost
of mainly O((�+q)(n2 + pn)). Complete details are given in Algorithm 4. This final
cost is lower than the O(p(n + q)2) cost obtained with the classical residual kriging
algorithm in the settings where n, p � �, q. In particular, for q ≥ � and p ≥ n, FOXY
has a complexity of O(pnq) against O(pn2) for the residual kriging algorithm.

Once the kriging weights are computed, the remaining cost in both the residual
kriging algorithm and FOXY is of O(J pq). This is simply the cost to perform q multi-
plications for all p simulation points (e1, . . . , ep) and J sample paths. The aggregated
complexity of the two studied algorithms is summarized in Table 1, together with
the complexity of a standard algorithm based on a decomposition of the covariance
matrix, which does not take advantage of previous computations. In the unfavorable
case, FOXY brings a lower improvement with respect to the residual kriging algo-
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Table 1 Theoretical complexity of the residual kriging algorithm [Eq. (1)], the FOXY algorithm based on
Eq. (7) and an algorithm based on a decomposition of the covariance matrix at the observation points

Algorithm Preliminary cost Kriging weights Simulation

Residual kriging O((n + p)3 + J pq) O(p(n + q)2) O(J pq)

FOXY O((n + p)3 + J pq) O((� + q)(n2 + pn)) O(J pq)

Decomposition-based O(p3 + J p2)

rithm, as the dominating terms in the complexity are O((n + p)3) and O(J pq) for
both algorithms. On the other hand, FOXY is expected to be much faster than the
classical residual kriging algorithm in the favorable case where xn+(1:q) is a subset of
the set of simulation points, as the preliminary cost of O((n + p)3) is not paid.

Remark 2 In FOXY, the computation of the q kriging weights λn,q of Eq. (7) involves
the computation of kriging covariances, as suggested by Eq. (6). In universal kriging,
the kriging covariances are computed using Eq. (12), which requires to invert a n × n
(and not (n+q)×(n+q)) matrix. It was assumed that, for both algorithms (FOXY and
residual kriging), this inverse was already computed. If this is not the case, the authors
would recommend to be very cautious if appealing tomatrix block-inversion formulae,
especially if the GRF update formulae are applied recursively for more than one batch
of q points. Numerical errors in the computation of the inverse of this matrix would
indeed lead to errors in the kriging covariances and consequently in the krigingweights.

4 Numerical Experiments

This section illustrates the previously established complexity results with numerical
experiments. The total computation time to update J simulations of aGRF conditioned
on n observations into simulations conditioned on n+q observations ismeasured. Sim-
ulations are performed at p simulation points. Here the simulated GRFs are indexed
by X = [0, 1]2. The function used to condition the values of the GRFs is the rescaled
Branin-Hoo function (Ginsbourger et al. 2014). Ordinary kriging is considered, which
corresponds to the case of a single constant basis function (� = 1). As the computa-
tion times are not very sensitive to � (at least if � does not take large values), only the
sensitivity of the computation time to J, n, p, q is investigated.

An example of GRFs simulated on a grid of 50 × 50 = 2,500 points is provided
in Fig. 3. The three GRFs at the top are conditioned on n = 10 observations and
each GRF is updated (using FOXY, see bottom plots) to be conditioned on 10 + 3
observations. For the experiments, a set of values needs to be chosen for (J, n, p, q).
The chosen set is the following full factorial design

(J, n, p, q) ∈ DJ × Dn × Dp × Dq ,

whereDJ ={1; 100; 1,000; 10,000; 20,000; 30,000},Dn ={10; 100; 500; 1,000},
Dp = {100; 500; 2,000} andDq = {1; 10}. The setDJ covers cases where very few
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Fig. 3 Top three realizations of aGRF in twodimensions conditioned onn = 10 observations (black points).
Bottom update of these three realizations when q = 3 new observations (red triangles) are assimilated

conditional simulations are updated, so that the computation timewill be dominated by
the preliminary costs or by the time to compute kriging weights. DJ also covers cases
where a large set of conditional simulations is updated. Regarding Dn , the number n
of initial conditioning observations goes from very few (10) to up to 1,000. The reason
for not going beyond a value of 1,000 is that standard uses of kriging with a unique
neighborhood are rarely done when the number of observations is larger because of
a necessary n × n matrix inversion. For the same reason, the value of p does not go
beyond 2,000. It must be recalled that in the unfavorable case, a (n + p) × (n + p)
matrix needs to be inverted. One may, however, note that in the favorable case it is
perfectly possible to use large p, or even infinite p. Finally, only two small values
of q were considered, insofar as the change of computation time when q grows is
rather simple for moderate q. For all possible (n, p, q) triplets, the computation time
is computed as a function of J . Experiments were performed in both the unfavorable
and favorable cases on a laptop with a 2.27 Ghz cpu and 3.7 Gb of RAM.

As explained in the previous section, the total computation time of the tested algo-
rithms is the sum of the computation times of three different steps:

1. The preliminary cost (unfavorable case). Here, both algorithms perform a (n+ p)×
(n + p) matrix inversion, which adds a fixed cost that does not depend on J .

2. The cost to compute kriging weights. In this step, the FOXY algorithm computes
q kriging weights while the residual kriging algorithm computes n + q weights.
This cost is also a fixed cost that does not depend on J . This step is where FOXY
might be much faster than the classical algorithm.

3. The cost to update simulations once the weights are computed. Both algorithms
have an O(J pq) cost for this step. Hence, when q is large, computation time is
expected to grow faster with J .
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Figure 4details the results in the favorable casewhile Fig. 5 shows the unfavorable case.
Computation times are given in seconds. It is important to note that, for a given value
of (n, p, q), the improvement brought by FOXY, expressed in number of seconds,
is the same in the favorable and unfavorable cases. However, the ratio between the
computation times of the two algorithms does not remain the same, as the preliminary

Fig. 4 Computation times in the favorable case
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Fig. 5 Computation times in the unfavorable case

costs are high. This explains why even if the time difference between the two methods
is unchanged, the computation times of the two algorithms, plotted on a log-scale,
seem to be closer in the unfavorable case.

The following conclusions can be drawn from Figs. 4 and 5. First, whenever n is
very low, the time to compute kriging weights becomes negligible, which explains
why the two algorithms have the same performances. In that case, the computation
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time is dominated by the O(J pq) complexity to update the J conditional simulations,
or, in the unfavorable case, by the preliminary costs.

When n = 100, the computation time to obtain the kriging weights is not negligible
anymore. In the favorable case, FOXY reduces the computation time by a factor two
for moderate (<1,000) J . For larger J , the performances tend to be similar as the
O(J pq) complexity dominates again. In the unfavorable case, FOXY reduces the
computation time by a factor that is lower than two because of the preliminary costs
paid in both algorithms.

Finally, whenever n = 500 or 1,000, the gap between the two algorithms is large.
This is due to the time to compute the kriging weights that is O(n/q) faster with
FOXY. For n = 1,000 and in the favorable case, FOXY can be up to 25 times faster for
moderate J and 10 times faster for large J . In the unfavorable case, the improvements
are less substantial and essentially depend on p instead of J . For low p, FOXY is
approximately three times faster, and only two times faster for large p.

The choice of q mainly influences the cost of the last step of both algorithms,
which has a O(J pq) complexity. q is thus driving the slope of the curves presented in
Figs. 4, 5. It is also interesting to note that, in absolute value, computation times are
generally low. With a very standard laptop, the update of 30,000 simulations on 2,000
points conditionally on 1,000 observations takes only 1 s with FOXY in the favorable
case, and 10 s in the unfavorable case. Performing the simulation from scratch using
a Cholesky decomposition takes approximately 20 min, here.

5 Conclusions

This paper presents efficient formulae allowing to quickly update ensembles of simula-
tions of GRFs. Simulated paths, which are initially conditioned on n ≥ 0 observations,
are twisted to be conditioned on n+q observations, for arbitrary q ≥ 1. The formulae
lead to a fast update algorithm that has been implemented in R and proves to offer
substantial computational savings, especially when the number of conditioning obser-
vations n is large. In addition, the formulae have the advantage of explicitly quantifying
the effect of the q newly assimilated observations on already simulated sample paths.

A limitation of the formulae, though, is that they apply only in the case where the
covariance parameters of the non-conditional covariance function of Z are assumed
known. In the typical settings where the covariance parameters are re-estimated
when new observations are assimilated, the formulae cannot be straightforwardly
applied.

The fast update approaches presented in this paper can be applied to efficiently
compute Monte-Carlo estimates based on GRF simulations in the case where obser-
vations are assimilated sequentially. Example of potential applications includes esti-
mating the Shanon entropy of the maximizer of a conditioned GRF, a crucial step in a
recently proposed Bayesian global optimization algorithm (Villemonteix et al. 2009).
In the same vein, updated simulations have been recently used in the framework of
the robust inversion problem studied in Chevalier (2013). In any case, when relying
on an ensemble conditional simulations, one has to keep in mind that potential biases
in Monte-Carlo estimates due to sample finiteness may propagate along consecutive
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stages. Hence, when using such an approach, and especially when it comes to uncer-
tainty quantification purposes, the sample size and the procedure for generating the
initial set of simulations should be carefully chosen.
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Appendix A: Universal and Simple Kriging

Let Z be a L2 random field defined on a bounded set X ⊂ R
d with known (and not

necessarily stationary) covariance function k(·, ·) and unknown mean function m(·)
such that Z |m ∼ GRF(m, k), where GRF(m, k) denotes a GRF with mean function
m and covariance function k. A well-known Bayesian approach consists in writing m
as follows

m(·) =
�∑

i=1

βi fi (·),

where � ≥ 1, f1, . . . , f� are � known basis functions and β = (β1, . . . , β�) has an
improper uniformprior inR�. In these settings, known as the universal kriging settings,
when n observations Z(x1:n) are assimilated at points x1:n := (x1, . . . , xn) ∈ X

n , it is
known (O’Hagan 1978) that the posterior distribution of Z is a GRF with posterior (or
conditional) mean function mUK

n and covariance function kUK
n given by the so-called

universal kriging equations

λUK (x) = K−1
(
k(x) + F(F�K−1

F)−1(f(x) − F
�K−1k(x))

)
, (10)

mUK
n (x) = λUK (x)�Z(x1:n) = f(x)�β̂ + k(x)�K−1 (

Z(x1:n) − Fβ̂
)
, (11)

kUK
n (x, x′) = k(x, x′) − k(x)�K−1k(x′)

+(f(x)� − k(x)�K−1
F)(F�K−1

F)−1(f(x′)� − k(x′)�K−1
F)�,

(12)

where β̂ := (F�K−1
F)−1

F
�K−1Z(x1:n), f(x) := ( f1(x), . . . , f�(x))�, F ∈ R

n×�

is the matrix with row i equal to f(xi )�, k(x) := (k(x, x1), . . . , k(x, xn))�, K is
the covariance matrix at the observation points, K := (k(xi , x j ))1≤i, j≤n . The vector
λUK (x) is the vector of n kriging weights of x1, . . . , xn for the prediction at point x.

A well-known simpler setting is the case where the non-conditional mean function
m is already known. In that case, the Bayesian approach is no longer necessary and

123



786 Math Geosci (2015) 47:771–789

the conditional mean and covariance function of Z are given by the so-called simple
kriging equations, written here in the case where m(·) = 0

λSK(x) = K−1k(x), (13)

mSK
n (x) = λSK(x)�Z(x1:n) = k(x)�K−1Z(x1:n), (14)

kSKn (x, x′) = k(x, x′) − k(x)�K−1k(x′). (15)

If m is not equal to zero, the simple kriging covariance function kSKn is unchanged
and an application of Eq. (14) to the centred GRF Z − m yields mSK

n (x) = m(x) +
k(x)�K−1(Z(x1:n) − m(x1:n)).

Appendix B: Algorithms

Algorithm 2 (Preliminary cost): computation of Z ( j)(xn+(1:q)) for all 1 ≤ j ≤ J .

Require: J i.i.d. GRFs Z (1), . . . , Z (J ) simulated at p points e1, . . . , ep conditionally on n ≥ 0 observa-
tions Z(x1), . . . , Z(xn) at points x1, . . . , xn ; and q > 0 additional points xn+(1:q) = (xn+1, . . . , xn+q ).

Require: The non-conditional covariance function, k, of the GRFs Z (1), . . . , Z (J ).
Step 1. The goal is to compute a matrix of (n + p) × q kriging weights of (x1, . . . , xn , e1, . . . , ep) for
the prediction at points xn+1, . . . , xn+q , using Eq. (10).
- Compute the inverse of the covariance matrix at points (x1, . . . , xn , e1, . . . , ep): O((n + p)3)

- Compute other terms of Eq. (10) that do not depend on x : O(�(n + p)2 + �2(n + p) + �3)
for i = 1 → q do
- Compute k(xn+i ) = (k(xn+i , x1), . . . , k(xn+i , xn), k(xn+i , e1), . . . , k(xn+i , ep))� and f(xn+i ).
- Compute the multiplication K−1k(xn+i ) and then F

�K−1k(xn+i ). Conclude the computation of
λUK (xn+i ): O(�(n + p) + (n + p)2)

end for
Total cost for Step 1 dominated by the term of O((n + p)3)
Step 2. Preliminary: compute S := (kn+p(xn+i , xn+ j ))1≤i, j≤q using Eq. (12) and the terms precom-

puted in Step 1. Compute also a decomposition (Cholesky, Mahalanobis) of S : O(q2(n + p) + q3).
for i = 1 → q do
- If n > 0, precompute, ui := ∑n

j=1[λUK (xn+i )] j Z(x j ), where [λUK (xn+i )] j is the kriging weight
of x j for the prediction at point xn+i : O(n)

end for
for j = 1 → J do
for i = 1 → q do
- Compute the kriging mean mUK

n+p(xn+i ) from the n + p observations

Z(x1), . . . , Z(xn), Z ( j)(e1), . . . , Z ( j)(ep), using the vector of kriging weights λUK (xn+i ).
The precomputation of ui reduces this to p operations. O(p).

end for
- Simulate a Gaussian random vector Z ( j)(Xq ) with mean mn+p(Xq ) and covariance matrix S.O(q2)

end for
Total cost for Step 2 dominated by the term of O(Jpq)

Total cost of the algorithm dominated by the term of O(Jpq + (n + p)3)
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Algorithm 3 Classical residual kriging algorithm

Require: J i.i.d.GRFs Z (1), . . . , Z (J ) simulated at p+q points e1, . . . , ep, xn+1, . . . , xn+q conditionally
on n ≥ 0 observations x1, . . . , xn .

Require: The non-conditional covariance function, k, of the GRFs Z (1), . . . , Z (J ).
Require: q > 0 real observations Z(xn+(1:q)) = (Z(xn+1), . . . , Z(xn+q ))

Require: If n > 0, the inverse of the matrix K0 := (k(xi , x j ))1≤i, j≤n
Step 1. The goal is to compute (n+ q)× p kriging weights of (x1, . . . , xn+q ) for the prediction at points
e1, . . . , ep , using Eq. (10). These weights will be used to obtain kriging means at points e1, . . . , ep .
- Inverse the covariance matrix K at points (x1, . . . , xn+q ) with block-inversion formula: O(qn2).
- Compute other terms of Eq. (10) that do not depend on x: O(�(n + q)2 + �2(n + q) + �3)
for i = 1 → p do
- Compute k(ei ) = (k(ei , x1), . . . , k(ei , xn+q ))� and f(ei ): O(n + q + �)

- Compute K−1k(ei ), then F�K−1k(ei ), then λUK (ei ): O(�(n + q) + (n + q)2)
end for
Total cost for Step 1 dominated by the term of O(p(n + q)2)
Step 2. The goal is to use the kriging weights to compute, for all the J GRF sample paths, kriging means
at points e1, . . . , ep based on n + q observations at points x1, . . . , xn+q .
for i = 1 → p do
- If n > 0, precompute, ui := ∑n

j=1[λUK (ei )] j Z(x j ), where [λUK (ei )] j is the kriging weight of x j
for the prediction at point ei : O(n)

- Compute the kriging mean at point ei from Z(x1), . . . , Z(xn), Z(xn+1), . . . , Z(xn+q ), using the
vector of kriging weights λUK (ei ). The precomputation of ui reduces this to q operations. O(q).

end for
for j = 1 → J do
for i = 1 → p do
- Compute the kriging mean at point ei from Z(x1), . . . , Z(xn), Z ( j)(xn+1), . . . , Z

( j)(xn+q )), and
using precomputations. Apply Eq. (1) to obtain Z�( j)(ei ): O(q).

end for
end for
Total cost for Step 2: O(Jpq)

Total cost of the algorithm dominated by the term of O(Jpq + p(n + q)2)
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Algorithm 4 FOXY algorithm based on Proposition 2

Require: J i.i.d.GRFs Z (1), . . . , Z (J ) simulated in p+q points e1, . . . , ep, xn+1, . . . , xn+q conditionally
on n ≥ 0 observations x1, . . . , xn .

Require: The non-conditional covariance function, k, of the GRFs Z (1), . . . , Z (J ).
Require: q > 0 real observations Z(xn+(1:q)) = (Z(xn+1), . . . , Z(xn+q ))

Require: If n > 0, the inverse of the matrix K := (k(xi , x j ))1≤i, j≤n

Step 1. The goal is to compute the q kriging weights λn,q (x) = K−1
n,qk

UK
n (x,Xq ) of Eq. (7) where x

takes the values e1, . . . , ep , Kn,q = (kUK
n (xn+i , xn+ j ))1≤i, j≤q and kUK

n is obtained using Eq. (12).

- Compute terms of Eq. (12) that do not depend on x: O(�n2 + �2n + �3)
for i = 1 → p do
- Compute k(ei ) = (k(ei , x1), . . . , k(ei , xn))� and f(ei ): O(n + �)

- Compute k(ei )�(K−1
F), then f(ei )� − k(ei )�(K−1

F): O(�n)

end for
for i = 1 → q do
- Compute k(xn+i ) = (k(xn+i , x1), . . . , k(xn+i , xn))� and f(xn+i ): O(n + �)

- Compute k(xn+i )
�(K−1

F), then f(xn+i )
� − k(xn+i )

�(K−1
F): O(�n)

- Compute K−1k(xn+i ), then (F�K−1
F)−1(f(xn+i )

� − k(xn+i )
�K−1

F)�: O(n2 + �2)
end for
- Conclude the calculation of kUK

n (x, x′) for all (x, x′) ∈ Xq × Xq : O(q2(n + �))

- Conclude the calculation of kUK
n (x, x′) for all (x, x′) ∈ {e1, . . . , ep} × Xq : O(pq(n + �))

- Compute kriging weights through kUK
n (x,Xq )�K−1

n for all x ∈ {e1, . . . , ep} : O(q3 + pq2)
Total cost for Step 1 dominated by the term of O((pn + n2)(� + q))

Step 2. Conclude the update of the J GRFs by applying Eq. (7). For a given point x and a given GRF
sample path, q operations are performed. Total cost of O(Jpq).
Total cost of the algorithm dominated by the term of O(Jpq + (pn + n2)(� + q))
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