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Abstract The intestinal microbiota (previously referred to as
“intestinal flora”) has entered the focus of research interest not
only in microbiology but also in medicine. Huge progress has
been made with respect to the analysis of composition and
functions of the human microbiota. An “imbalance” of the
microbiota, frequently also called a “dysbiosis,” has been as-
sociated with different diseases in recent years. Crohn’s disease
and ulcerative colitis as two major forms of inflammatory
bowel disease, irritable bowel syndrome (IBS) and some infec-
tious intestinal diseases such as Clostridium difficile colitis
feature a dysbiosis of the intestinal flora. Whereas this is
somehow expected or less surprising, an imbalance of the
microbiota or an enrichment of specific bacterial strains in the
flora has been associated with an increasing number of other
diseases such as diabetes, metabolic syndrome, non-alcoholic
fatty liver disease or steatohepatitis and even psychiatric disor-
ders such as depression or multiple sclerosis. It is important to
understand the different aspects of potential contributions of the
microbiota to pathophysiology of the mentioned diseases.

Conclusion: With the present manuscript, we aim to sum-
marize the current knowledge and provide an overview of the
different concepts on how bacteria contribute to health and
disease in animal models and—more importantly—humans.
In addition, it has to be borne in mind that we are only at the
very beginning to understand the complex mechanisms of
host-microbial interactions.
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Introduction

The normal microbiota of humans consists of a few eukaryotic
fungi, viruses, and some archaea that colonize the lower
intestinal tract [68, 79]. By far, the most prominent component
of the normal microbiota, however, is bacteria [148, 154].
They are the most numerous and obvious microbial compo-
nents of the normal flora. Up to 100 trillion (1014) microor-
ganisms [166] per human colonize the intestinal tract making
about 2 kg of the body weight. They represent at least 300–
1000 different species [57, 166].

Interestingly, at present, no one is able to exactly
determine how many bacterial species might really be
represented in an intestinal microbiota probe. This is
dependent on the mathematical algorithm used for the
analysis and the cutoff for similarity of the 16S RNA
sequence (usually 97 % sequence identity is chosen to
demarcate different “species” and define a so-called oper-
ational taxonomic unit (OTU) [117]) [124]. However, the
knowledge on microbial composition has greatly in-
creased with the use of culture-independent analysis
methods. Culture-dependent methods in the past have
been hampered by the fact that the majority of bacterial
species cannot be cultured under aerobic conditions. An-
aerobic conditions are hard/impossible to maintain. Only a
short contact with oxygen may kill several species thereby
leading to conditions that further decrease vitality of other
species. Thus, culture methods are not suited to really
give us an overview over the complete intestinal flora of
a human individual.

Culture-independent methods mainly employ variations in
genes that are common in all bacteria with, however, species-
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specific differences, such as 16S RNA [46, 161, 167, 168].
While these culture-independent methods such as restric-
tion fragment length polymorphism (RFLP) analysis or
pyro-sequencing have enabled a more in-depth study of
the microbial composition in the human intestine with
higher precision, little is known how the complex com-
position is modulated and how environmental factors such
as nutrition, medication use, way of life, toxins, and other
exogenic factors such as smoking might change the bal-
ance between different microbial species [26, 201]. Be-
sides environmental influences, there are other influences
on the composition of the intestinal microbiota. Among
those are genetic influences. There is obviously an adap-
tation between the genetic structure of the host and the
genetic composition of the bacteria [11, 80, 137, 153,
197]. Based on the genetic background, metabolites are
synthesized by the bacteria as well as the host [195].
Those metabolites will cross-react and influence each
other [195], indicating that the metabolic activity of host
and commensal bacteria also needs to be in a tight bal-
ance. An extremely rare though nevertheless impressive
illustration of host-microbial metabolic interaction is the
so-called gut fermentation syndrome (auto-brewery syn-
drome), where an overgrowth with specific microbes may
induce considerable and clinically relevant ethanol blood
levels in the absence of any alcohol intake [36]. Another
aspect that influences the bacterial composition is the age
of the host, the gender, the area of living, the amount of
stress perceived, the extent of regular physical exercise,
the climate, and other influences that have been men-
tioned before [120, 213].

Bacteria select their environment

It is well known that bacteria have environmental preferences
and that certain bacteria only colonize certain areas of the
body [66, 131, 214]. This may be due to an interaction with
surface molecules on the respective tissue cells. Table 1 gives
a list of specific bacterial strains and their preferred tissue of
adherence.

It was well established from disease description, which was
then further analyzed by molecular methods, that for example
Corynebacterium diphteriae mainly colonizes the throat epi-
thelium [125]. This is the reason why diphtheria as a disease is
mainly a throat disease. On the other hand, Neisseria
gonnorhoeae mainly colonizes the urogenital epithelium and
this is the reason why this is a veneric disease [204]. Contrast-
ingly, there are bacterial species such as Vibrio cholerae, the
bacterium causing cholera disease, that mainly colonize the
small intestinal epithelium. Staphylococcus aureus has a pref-
erence for the nasal membranes and Staphylococcus
epidermidis for the skin.

Bacteria have found their ecological niche in the human
body and have selected attachment molecules where they have
an advantage above other bacteria [39, 62, 112]. For some of
the bacterial species, both the bacterial ligands for attachment
at the host cell or tissue receptor have been identified [16, 141,
184]. This is illustrated in Table 2.

Streptococcus pyogenes uses its protein F to bind to the
amino terminus of fibronectin which is largely expressed on
the pharyngeal epithelium [191]. Neisseria gonorrhoeae has
N-methylhenyl-alanine pili that bind to glucosamine-
galactose carbohydrate residues on proteins mainly in the
urethral and cervical epithelium. Escherichia coli has type 1
fimbriae that bind certain carbohydrates on either the intestinal
epithelium or the urethral epithelium [4, 12, 30, 211]. Their
binding sites are to some extend carbohydrate specific [4, 12,
30, 211].

Certainly, there are many more bacterial ligands from bac-
teria that are harder to culture. Protein expression of bacterial
species that cannot be cultured obviously cannot be investi-
gated. So far, we only have cDNA sequences from those
bacteria. As there is no knowledge on protein composition
of the bacterial wall of those bacteria species, the host cell
receptor or tissue receptor cannot be identified. Most of those
bacteria live in the intestinal lumen or are attached to the
intestinal epithelial cells.

In general, the forms of bacterial colonization are either
mutualistic, commensalistic, or opportunistic [178].
Mutualism means that both organisms benefit from the co-
existence. Most of the intestinal bacteria therefore are not
commensalistic (despite the fact that they are called commen-
sals) but mutualistic, because both, the bacteria and the human
organism, benefit from their existence [11]. In a
commensalistic situation, one organism benefits and the other
is neither helped nor harmed. If our intestinal bacteria would
be commensalistic, this would mean that they profit but the
human body has no profit. In most scenarios and situations,
this is not the case: The relationship between colonizing
bacteria and the human body most frequently is a mutualistic
one.Opportunistic would mean that under normal conditions,
the microbe does not cause disease but if conditions become
conductive, it can cause disease. Opportunistic infections can

Table 1 Tissue preferences of some well-known bacteria

Bacteria Tissue preference

Staphylococcus epidermidis Skin

Staphylococcus aureus Nasal membranes

Streptococcus salivarius Mouth, tongue

Corynebacterium diphtheriae Throat

Vibrio cholerae Small intestinal epithelium

Escherichia coli Small intestinal epithelium

Neisseria gonorrhoeae Urogenital epithelium
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be induced by Staphylococcus aureus and others that usually
only become infectious when they enter the body whereas
there is no problem with colonization on the skin or even in
the intestine.

Why do we have bacterial colonization in the intestine?

The number of bacteria found throughout the gastrointestinal
tract differs from the esophagus to the rectum (Fig. 1). Where-
as the number of bacteria in the esophagus and the stomach is
low with 101 to 103 bacteria per milliliter, already in the upper
small intestine the number of bacteria clearly increases. Per
gram of small intestinal content, the number of bacteria is 103

to 104, which is still low. However, there is a steady increase
of bacterial concentration toward the lower small intestine. In
the ileum and in the terminal ileum, there are 108 to 109

bacteria per gram content. Finally, in the colon, there are
1012 to 1014 bacteria per gram of feces (Fig. 1).

Those bacteria should not enter the body and there are
several mechanisms to protect body integrity and to form a
barrier against invasion of bacteria. First of all, the epithelium
of the intestinal mucosa forms a monolayer with intercellular
contacts that inhibit the passage of bacterial products and
potential antigens through this monolayer barrier. Neverthe-
less, this barrier becomes leaky and single cells are extruded as
shown by Alistair Watson and co-workers, causing hole-like
structures in the intestinal barrier which therefore is not
completely mechanically tight [121, 205, 206].

To maintain barrier integrity, several other mechanisms are
necessary [60, 136, 146, 193] (Table 3). One is gut motility
which prevents the long-term interaction between certain bac-
teria and small mucosal areas. A further important mechanism

is the secretion of mucins by goblet cells as well as chloride
secretion. Also, defensins are very effective in preventing the
invasion of bacteria into the mucosa [207]. Defensins are like
human antibiotics that can kill bacteria due to partial destruc-
tion of the cell wall. The mucin layer that is above the
mechanical barrier of the epithelial cells usually contains
defensins bound to the mucin structure. This mucin layer
above the brush or the membrane of the epithelial cells usually
is almost sterile; no bacteria are found close to the epithelial
cells. However, this mucus is colonized in chronic intestinal
inflammation such as Crohn’s disease or ulcerative colitis [42,
185–187] (Fig. 2). Furthermore, there is a competition be-
tween different bacterial strains at the mucosal surface. Usu-
ally, mucus-layer-attached bacteria are more host-friendly as
luminal bacteria. A decreasing number of those beneficial
bacteria may induce growth, adhesion, and invasion of path-
ogenic bacteria. This is the reason why Clostridium difficile
usually only can induce colitis when the number of beneficial
bacteria is diminished by antibiotic treatment.

If the potential migration and translocation of bacteria
across the intestinal barrier is such a big problem for the
human body, why is the intestinal lumen colonized with
bacteria at all? The normal flora synthesizes and excretes
vitamins in excess of their own needs and contributes to
vitamin delivery to the human body [80]. Among those vita-
mins are vitamin K, vitamin B12, and other B vitamins (see
Table 4). The normal flora also prevents the colonization by
pathogens. This is facilitated by competition for attachment
sites or by a competition for essential nutrients. For example,
important insights have been derived from Salmonella studies
that clearly show that Salmonella is not very infective in a
mouse that has a colon colonized with normal commensal
bacteria [15]. Only when the number of bacteria is decreased

Table 2 Bacterial ligands and interacting host proteins (examples)

Bacterium Bacterial ligand for
attachment

Host cell or
tissue receptor

Attachment
site

Streptococcus
pyogenes

Protein F Amino terminus of fibronectin Pharyngeal epithelial cells

Streptococcus
salivarius

Lipoteichoic acid Unknown Tongue epithelial cells

Streptococcus
pneumoniae

Cell-bound protein N-acetylhexosamine-galactose disaccharide Mucosal epithelium

Staphylococcus
aureus

Cell-bound protein Amino terminus of fibronectin Mucosal epithelium

Neisseria
gonorrhoeae

N-methylphenyl-alanine pili Glucosamine-galactose carbohydrate Urethral/cervical epithelium

Enterotoxic E. coli Type 1 fimbriae Species-specific carbohydrate(s) (e.g., mannose) Intestinal epithelium

Uropathogenic E. coli Type 1 fimbriae, P-pili (pap) Complex carbohydrate, Globobiose linked to
ceramide lipid

Urethral epithelial cells and upper
urinary tract

Bordetella pertussis Fimbriae (“filamentous
hemagglutinin”)

Galactose on sulfated glycolipids Respiratory epithelium

Vibrio cholerae N-methylphenylalanine pili Fucose and mannose carbohydrate Intestinal epithelium
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by antibiotic treatment or in germ-free animals that
Salmonella can already cause disease in very low numbers
[15, 71, 182].

In addition, the intestinal bacteria produce a variety of
substances ranging from peroxides to highly specific other
metabolic products that support epithelial growth and metab-
olism. Without bacterial colonization, some of the digestive
enzymes would not be induced sufficiently. In various animal
experiments, Jeff Gordon’s group has shown that the coloni-
zation with bacteria dramatically induces genes in the epithe-
lial cells which are mandatory for physiological digestive
process [81].

Furthermore, the normal flora stimulates the development
of the adaptive immune system30 and the lymphatic tissue, for
example, the Peyer’s patches in the GI tract [13, 14]. The
cecum of germ-free mice is enlarged and thin walled and the
lymphatic structures are underdeveloped. Functioning lym-
phatic structures, however, are important during intestinal
infections. Furthermore, the normal microbiota stimulates
the production of cross-reactive antibodies (mainly IgA)
which are secreted into the gut lumen [210]. As those anti-
bodies are cross-reactive, they also prevent from bacterial
infections. Moreover, microbial products may harbor a direct
immune-regulatory potential, as for instance shownwith poly-
saccharide A (PSA) produced by Bacteroides fragilis (a ubiq-
uitous and mutualistic organism in the gut) that may modulate
and correct systemic T cell deficiencies and TH1/TH2 imbal-
ance [126] as well as T helper cell subsets and potentially
other immune cell populations. Thus, the normal flora induces
a protective mechanism for preventing infections of the GI
tract.

Is there a specific role of the bacterial flora in childhood?

The gut is colonized by bacteria during the first hours of life.
This colonization induces gene expression and subsequent
functions on the intestinal mucosa that are important for
digestions and nutrition [10, 80, 85]. Intestinal angiogenesis
may also be regulated by the gut microbiota [181] indicating
that the microbiota has also a role in local micro- and macro-
circulation.

In addition, the human intestinal flora has an important role
in shaping the immune system [108]. It profoundly influences
the formation of lymphatic structures and the differentiation of
lymphocytes [63].

The interaction of intestinal microbiota with the immune
system may further be important in the prevention of allergic
and atopic diseases. In children with atopic disease, again, an
“imbalance” of the intestinal flora has been described [27,
144]. Interestingly, children with the presence of eczema had
an even more diverse intestinal flora as compared to control
subjects [133]. Children with eczema in this analysis had an
increased abundance of the Clostridium clusters IVand XIVa,
which are typically abundant in adults [133]. Again, it is
unclear whether these finding are only associated with the
disease or in any causal relationship. On the other hand, risk
genes identified for atopic diseases include a number of genes
relevant for the barrier function of the skin, again indicating a
role for bacteria [58]. The skin microbiome is altered at least
during acute exacerbations of the disease [98]. Whereas, in-
deed, the majority of studies point to an association between
microbiota and especially the gut microbial composition and
atopic diseases, no specific harmful or protective microbes
could be identified so far [145].

Fig. 1 Numbers of bacteria per segment of the GI tract in healthy
individuals

Table 3 Mechanisms for maintenance of intestinal barrier integrity

• Gut motility

• Chloride secretion

• Cell-cell contacts

• Secretion of mucin by goblet cells

• Defensin and cytokine production

• Luminal microbiota (products of bacterial metabolism, mutualistic
bacteria)
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A direct epidemiological link between the exposure to
microorganisms (which are assumed to influence mutualistic
microbial composition and immune system development in
the host) in early childhood and prevalence of chronic
immune-related disorders is suggested by the hygiene hypoth-
esis [9]. This inverse correlation between exposure to mi-
crobes and infectious diseases in childhood has for instance
been shown with the occurrence of inflammatory bowel dis-
ease and is one of the most prominent explanations for the
increasing incidence in recent years [64, 149].

Which diseases are associated with changes
of the bacterial flora?

There is a growing list of non-infectious diseases that have
been associated with the composition of the bacterial flora.
Among them are chronic inflammatory bowel diseases, name-
ly Crohn’s disease and ulcerative colitis, metabolic syndrome,
non-alcoholic steatohepatitis, irritable bowel syndrome, ath-
erosclerosis, rheumatoid arthritis, and colorectal carcinoma.
Interestingly, shifts in intestinal microbial composition have

also increasingly been described in lifestyle factors, not only
in disease states, such as for instance an increased gut micro-
bial diversity associated to heavy exercise (professional rugby
players) [34]. It appears plausible that this list of environmen-
tal factors having an impact on microbial composition will
grow in the next years.

Inflammatory bowel disease

The two most frequent and clinically most important forms of
inflammatory bowel diseases (IBDs) are Crohn’s disease and
ulcerative colitis [75, 169]. They are chronic relapsing intes-
tinal inflammations. More than 160 genetic factors (single-
nucleotide polymorphisms, SNPs, in more than 160 genes are
associated with an increased odds ratio to develop the disease)
contribute to an increased risk to develop both diseases [90,
109]. However, these genetic risk factors are not disease
specific [109]. The individual odds ratio of several genetic
risk factors is low and there is clear evidence that environ-
mental factors must contribute to the onset of both inflamma-
tory diseases [158, 169]. Moreover, while the genetic pool
largely remained stable within the last decades, incidence and
prevalence have shown an impressive increase in the majority
of epidemiologic studies all over the world and even more
pronounced in threshold countries [127], further indicating a
prominent role of environmental factors.

IBDs are multifactorial diseases but there definitely is an
important role for bacteria. “Dysbiosis” has been detected in
both diseases that is most pronounced when the inflammation
is active. Alterations and changes of the predominant species
of the fecal bacteria in the colon of IBD patients have been
demonstrated by many groups [55, 92, 119, 151, 173, 183].
While some of the alterations observed may even be conflict-
ing between studies, there are certain distinctive changes that
have been reproduced in the scientific literature. For instance,

Fig. 2 Colonization of the mucus
barrier above the intestinal
epithelial cells in health subjects
and patients with CD. DAPI
stains DNA, EUB338 is a pan-
bacterial marker. The sandwich
picture shows the colonization of
the CD patient’s mucus layer by
living bacteria

Table 4 Positive effects of bacterial colonization of the intestine

• Synthesis and excretion of supplementary vitamins, e.g., vitamin K and
vitamin B12 (the amount of this supplementary “intake” derived by
microbial production, however, is not sufficient to cover the necessary
total amount)

• Prevention of colonization by pathogens by competition for attachment
or nutrients

•Metabolomic activities (production of growth factors for epithelial cells,
secretion of peroxides or bacteriocidins to inhibit other bacteria)

• Stimulation of the development of lymphoid structures (Peyer’s patches)
and T cell differentiation, correction of T cell imbalances

• Induction of production of cross-reactive antibodies (IgA, secreted into
the gut lumen).
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a decrease of Faecalibacterium prausnitzii and butyrate-
producing Roseburia hominis is clearly associated with
Crohn’s disease (CD) [19, 73, 89, 119] and has interestingly
also been found in healthy relatives of CD patients [73].
Usually, the changes are summarized in a reduction of “diver-
sity” [52, 92, 128, 139]. A more “diverse” flora usually is
regarded to be beneficial; subsequently, OTUs are statistically
analyzed by “diversity indices”; however, in fact, we have no
clue so far what this could mean on a functional level.

In addition, there is a reduced expression and biochemical
changes of mucins in the colon of Crohn’s disease and ulcer-
ative colitis patients [6, 18, 96]. Important studies demonstrat-
ed a reduced production of defensins (antimicrobial peptides
that are mainly secreted by Paneth cells) [7, 32, 97, 138, 171]
and some authors such as Fellermann, Wehkamp, Stange, and
colleagues have called Crohn’s disease a “defensin deficiency
disease” [61, 86, 208].

Fecal microbiota transplantation, as an attempt to radically
address disturbed microbial composition and diversity, is
discussed controversially in these diseases. While some au-
thors and small case reports/series reported a clear benefit,
others could not find a beneficial effect and even saw adverse
events in IBD patients such as fever or diarrhea [5, 41, 103].

Most of the genetic risk factors for IBD are layers in the
innate immune system that is responsible for the acute defense
against invading bacteria [109, 110]. Among those risk genes
are pattern recognition receptors such as NOD2, TLR4,
CARD8, CARD9, or NLRP3 as well as autophagy genes such
as ATG16L1, IRGM, and LRRK2which destroy bacteria when
they have entered the epithelial cells in the process called
autophagy. Further, risk factors for Crohn’s disease can be
found in the antibacterial response as for example in the
defensin system (see above). Also, elements that are respon-
sible for the maintenance of the epithelial barrier integrity
(IBD5, DLG5, PDGER4, DMBT1, and XBP1) have been
identified. In addition, there are aspects that mainly orches-
trate the adaptive immune system, but they may be secondary
to those defects in the innate immune response.

Interestingly, a number of the components that have been
identified to be genetic risk factors in IBD also were found in
other diseases such as systemic lupus erythematosus
(PTPN22), ankylosing spondylitis (ERAP2), psoriasis
(PTPN22), asthma (IBD5), type 2 diabetes (GCKR), coeliac
disease (PTPN2), type 1 diabetes (PTPN22), leprosy (NOD2),
rheumatoid arthritis (PTPN22), and multiple sclerosis
(PTGER4, STAT3). This may indicate a link between those
diseases and the intestinal microbiota [109, 110]. For instance,
the critical role of NOD2 on intestinal microbial composition
was revealed in a NOD2-deficient mouse model, where mi-
crobial alterations were found already at an early weaning
stage [153].

In 2010, we could show that indeed an increased amount of
the bacterial wall compound LPS can be found inside the

lamina propria of Crohn’s disease patients that carry the
NOD2 variants in their mucosa [100]. NOD2 variants also
are responsible for increased risk to suffer from severe intes-
tinal graft versus host disease after stem cell transplantation
[70, 76–78, 102, 105, 159]. This further indicates that the
bacteria and the bacterial invasion are crucial in the onset of
mucosal inflammation. Further, evidence comes from the
finding that antibacterial therapy by antibiotics might decrease
the risk for intestinal inflammation [94].

Irritable bowel syndrome

The potential role of the intestinal microbiota in the pathogen-
esis of IBS has come into the focus of attention only in recent
years. One of the reasons for this relatively long deferment
might be based on the very nature of the “functional” funda-
ment of the definition of IBS [132], rather precluding a well
definable and identifiable anatomical or physiological alter-
ation. However, at the very latest with the large double-blind
randomized-controlled trial from Pimentel and colleagues
using rifaximine, a non-absorbable derivate of rifamycine, a
critical role of the gut microbiota in IBS was suggested by the
main finding of the study. Significantly, more patients in the
verum group reached the primary end point, i.e., the propor-
tion of patients with a relief of global IBS symptoms [147].
Several years ago, one of the first studies characterizing mi-
crobial composition in patients with IBS from Finland found
significant differences in the microbial composition of IBS
patients, including several distinctive alterations on the level
of genera, such as for instance Coprococcus, Collinsella, and
Coprobacillus [93]. Further studies confirmed variations of
microbial alterations in IBS patients compared to controls [29,
35, 150, 156], also observable in childhood IBS [165] sug-
gesting—besides a new therapeutic target—also a diagnostic
potential of distinctive microbial fingerprints to accurately
identify IBS and differentiate this condition from other gas-
trointestinal diseases [150].

Colorectal cancer

The intestinal microbiota also seems to play an important role
for the development of colorectal cancer (CRC). A recent,
excellent review highlighted the insights we have on the role
of the intestinal microbiota in CRC so far [84]. Components of
the intestinal bacterial flora are thought to generate “genotoxic
stress to promote genetic and epigenetic alterations” in the
intestinal epithelial cells finally leading to cancer [84, 172].
Distinctive alterations in colorectal cancer microbiota compo-
sition, such as an increase of Fusobacterium sequences, have
been described [101], although in these descriptive studies of
microbial composition, the issue of either primary causative
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event or secondary phenomenon cannot be resolved. Howev-
er, animal models appear to be an important means of eluci-
dating this question. For instance, dysbiosis induced byNOD2
deficiency in mice resulted in an increased predisposition to
colitis-associated dysplasia and cancer [40].

In an animal model of colorectal cancer, Jobin and co-
workers provided evidence that mono-colonization with the
commensal Escherichia coli NC101 promoted invasive CRC
[88]. They further identified specific genes of this bacterium
that are involved in the promotion of CRC: The deletion of a
so-called “genotoxic island” from the DNA of this
Escherichia coli strain NC101 decreased tumor multiplicity
and invasion in the mouse model [8].

Other types of cancer

The impact of the microbiome on the development of liver
cancer may be either direct or indirect. An indirect pathway
would primarily contribute to metabolic syndrome and NASH
(see below). The translocation of bacterial products across the
intestinal barrier into the portal vein blood that contribute to
senescence of stellate cells could be a direct contribution
[174]. However, in liver cancer, deconstructing the distinctive
pathogenetic role of the microbiota remains challenging, as
obesity per se increases the risk for several cancers [157],
including those of the liver.

Polymorphisms in the NOD2 gene which is a pattern
recognition receptor and the first identified and long-known
susceptibility factor for CD have been shown to be associated
with an increased risk for a number of different cancers
besides CRC [118] (for a meta-analysis, see [114], for a
review, [25]). Among them is gastric cancer [203], but also
urothelial cancer [69] or breast cancer [83]. On the other hand,
there are studies that could not confirm this association [104,
194] making these findings somewhat disputable.

The gut microbiota may help to shape the immunological
anti-cancer response as some anti-cancer therapies seem to
lose efficacy in germ-free animals [198].

Metabolic syndrome

Whereas it might be obvious that bacteria can contribute to
intestinal inflammation such as IBD, it seems to be a little bit
more surprising that the microbiota also has been associated to
metabolic diseases such as diabetes [1, 3, 22, 23, 47, 50, 56,
72, 209], metabolic syndrome [31, 189, 199], or non-alcoholic
steatohepatitis [74, 212]. There is a worldwide pandemia of
obesity and recent data show that 69 % of the US adults above
20 years are overweight or obese (Central for Disease Control;
www.cdc.gov). In general, in those patients, an increase in
Firmicutes and Actinobacteria is found and a decrease in

Bacteroidetes which is paralleled in human and mice [91,
111, 192].

Interestingly, the obese phenotype has shown to be trans-
missible via the fecal microbiota [113, 155, 192]. A microbi-
ota extracted from obese mice and transferred to lean mice
was followed by a significant weight gain in the lean mice.
Unfortunately, it does not work in the opposite direction [155,
192]. Microbiota from lean mice does not cause a weight loss
in obese mice. Nevertheless, the modification of the gut
microbiota is already discussed as a future treatment strategy
for obesity. At present, we cannot tell whether this is just hype
or whether it will be a promise for the future. Preliminary data
from a smaller trial in humans, rather focusing on insulin
resistance than body weight, suggested, however, only a very
modest effect [200].

There are distinctive changes in the composition of the
major phyla. Phylum refers to a taxonomic rank in biology
below the rank kingdom including Archaebacteria and
Eubacteria from the domain Bacteria. Regarding phyla, there
is an increase in energy extraction in Firmicutes-rich gut
microbiota [192]. However, the relationship is most likely
more complex than just an increased Firmicutes-to-
Bacteroidetes ratio. No correlation to abundance of major
phyla in structured weight loss programs in humans has been
described [164]. On the other hand, the success in weight loss
is higher in individuals that are rich in Bacteroides fragilis,
Lactobacilli, and Bifidobacteria.

To date, knowledge on the mechanisms and host-microbial
interactions behind a weight gain is sparse. Potential proposed
explanations include an influence of intestinal bacteria and
archaea on the expression of genes involved in energy metab-
olism [81]: There is a transcriptional response of epithelial
genes upon bacterial colonization. When the altered genes are
more closely looked at that are increased upon bacterial col-
onization, they are responsible for nutrient absorption, muco-
sal barrier fortification, xenobiotic metabolism, angiogenesis,
and intestinal maturation. In addition, bacteria may mediate
hormonal changes modulating satiety and energy harvest
(such as for instance via G protein receptors) [106] or induce
a chronic inflammatory state [28, 65, 82].

Rheumatic diseases

There is increasing evidence that the bacterial flora also may
contribute to the onset of rheumatic diseases [24]. As men-
tioned before, IBD and rheumatic diseases share common risk
loci such as PTPN2 or PTPN22 [107]. Similar to what has
been described for IBD, an interaction between genetic and
environmental risk factors seems to be pathophysiologically
relevant in rheumatic diseases [170]. Similar to other diseases,
distinctive intestinal microbial alterations in patients with
rheumatoid arthritis compared to healthy humans have been
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described, such as a lower abundance of Bifidobacteria and
bacteria of the Bacteroides-Porphyromonas-Prevotella
group, Bacteroides fragilis subgroup, and Eubacterium
rectale–Clostridium coccoides group [196].

Allergies and atopic diseases

The microbiota composition of children with atopic diseases
has been found to be altered as compared to controls (for
details see above). The “training” of the intestinal immune
system by gut bacteria appears as an important step in the
development of immune reactions during childhood. As pre-
viously mentioned, there are, however, no definite microbial
taxa associated with the occurrence of distinctive allergic
diseases. In a randomized trial of oral supplementation of a
bacterial lysate (between week 5 and end of month 7), infant
colonization with clostridia was shown with an increased risk
of developing atopic dermatitis in the subsequent 6 months
[142]. However, currently, no specific taxonomic microbial
members are consistently found to be a risk factor for allergic
diseases, having older siblings and mode of delivery, both
factors having clearly shown to influence intestinal microbial
composition and appear to modulate atopy risk [143]. This
represents an indirect proof for the importance of microbial
composition in the pathogenesis of atopy.

Heart disease

A recent review highlighted the important role the intestinal
microbiota might have for the development of various heart
diseases [160]. Patients with inflammatory bowel diseases
appear to have a higher risk—interestingly above all in wom-
en—for coronary heart disease and cerebrovascular events
[177] despite a lower prevalence of “classical” risk factors,
indicating additional links between the gut and the cardiovas-
cular system. An impaired intestinal barrier function followed
by bacterial translocation and presence of bacterial products in
the circulation may contribute to atherosclerosis and chronic
heart failure (CHF) as recent data indicate [160]. This associ-
ation is further suggested by an interesting study investigating
microbial composition in atherosclerotic plaques that showed
a clear correlation to the microbial composition of the hosts’
oral cavity [99].

Psychiatric disorders

An alternation of the composition of the human microbiota
has been found in a mouse model of depression [140] as well
as in patients with depressive symptoms [51, 130]. However,
it has to be kept in mind that depression is associated with a

number of changes in behavior such as food consumption,
diet, and physical activity that may influence the composition
of the gut microbiota.

Changes of the gut flora furthermore have been found in
mouse models [45] as well as patients with autism [44, 115,
202]. Also, stress perception may have a significant influence
on human microbiota [135].

It is too early to interpret these findings. They may, how-
ever, open a sight on diseases that seemed to have no connec-
tion to intestinal functions.

Possibly the most robust evidence for a brain modulating
capacity of the intestinal microbial composition in humans so
far comes from a randomized trial of Bifidobacteria supple-
mentation, where significant changes in task performances
and activity in brain regions important for the procession of
emotion and sensation were observed in correlation to shifts in
intestinal microbial composition in those women receiving the
verum preparation [190].

What environmental factors drive the composition
of the microbiota?

Nutrition certainly is responsible for some aspects of micro-
biota composition [2, 43, 59, 123, 148, 162, 163, 176, 215].
Individuals that change their living conditions also change the
microbial composition of the intestinal flora. For example, the
change from a mixed diet to a vegetarian diet causes changes
in the microbial flora [95]. Moreover, the intestinal microbiota
appears to only to be associated with Kwashiorkor (a disease
state of severe malnutrition)—rather, transplant experiments
using mouse models suggest a direct pathogenetic and caus-
ative role of microbial composition, as the phenotype ap-
peared to be inducible by transplantation [179]. Antibiotic
treatment has also been shown to induce alterations on micro-
bial composition [48, 49, 87]. The sustainability of this effect
is not fully understood. However, as the induced disturbances
have been shown to increase the risk in children to develop
IBD years or even decades after intake [175, 188], it appears
plausible to consider long-term (potentially lifetime) shifting.
Aside from these rather intuitively plausible modulating fac-
tors, other influences on microbial composition, where the
causative link appears more obscure, have been identified,
such as physical activity [34] or excessive alcohol use [129].

Interestingly, the microbial composition of the gut has been
shown to be different in the elderly [33, 122]. So far, it remains
to be established whether these differences in composition and
temporal stability are directly linked to differences of the
physiology in the elderly or rather a sort of summation effect
from modulating factors (including environmental) during the
whole human life span.

On the other hand, there are influences that only recently
have been recognized. While in utero the entire organism is
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sterile, initial colonization of the newborn with microorgan-
isms does not occur after birth as often incorrectly assumed
but indeed during the very process of passage through the
vaginal birth canal [53], a distinctive ecosystem with its own
evolutionary history toward its current microbial composition
dominated by Lactobacillus and Prevotella spp. [54, 152].
Thus, delivery mode, i.e., conventional vaginal birth (VB)
versus Cesarean section (C-section), has a key impact on
primal intestinal bacterial colonization and thus composition
of the pioneer human intestinal microbiota [20, 54, 67].

It always has been reported that there is an average weight
gain after smoking cessation of 7–8 kg [134]. Usually, it has
been attributed to an increased food intake as an oral substi-
tution for the smoking. However, data from one of the largest
population-based primary prevention trial on this topic, the
Multiple Risk Factor Intervention Trial, revealed that success-
ful quitters gained weight despite the fact that they consumed
less calories and had a healthier diet compared to the contin-
uous smokers or recidivists, who did not gain weight [180].

Interestingly, smoking also has detrimental effects in
Crohn’s disease, whereas in ulcerative colitis, smoking seems
to be protective [17, 37, 38, 116]. There is a low incidence of
ulcerative colitis especially early onset forms in smokers and a
more severe disease course may appear after smoking cessa-
tion. Subsequently, we were interested in studying the com-
position of the intestinal microbiota upon smoking cessation.
Thus, we performed a study in 10 healthy smoking subjects
and a control group of 10 subjects that continued smoking or
were non-smokers [21]. The observational period was
9 weeks, including five study visits to collect stool samples.
An intensive counseling by physicians and psychologists was
performed. Food diary controlled the food intake and strict
adherence to smoking cessation was verified by carbon mon-
oxide exhalation monitoring. Interestingly, using different

microbial approaches to investigate microbial composition
and quantify specific strains, including 454-pyrosequencing
and fluorescence in situ hybridization, we found significant
shifts of microbial composition from phyla to genera in the
intervention group after smoking cessation (Fig. 3). In the
intervention group, there was a significant increase of
Firmicutes and Actinobacteria whereas there was a decrease
of Proteobacteria and Baceroidetes. In contrast, in the two
control groups, there was a stable microbial composition. This
increase in Firmicutes and Actinobacteriawas associated with
the weight gain despite a stable intake of calories in those
subjects undergoing smoking cessation [21].

Summary

We have only started to understand the importance and the
impact of our microbiota for health and disease. Many dis-
eases have been associated with an imbalance or dysbiosis of
the microbial composition such as IBD, rheumatoid diseases,
atopic diseases, cancer, metabolic syndrome, and even psy-
chiatric disease. So far, these findings are descriptive. A
deeper understanding of the interactions will be necessary to
finally come to new therapeutics to treat those chronic dis-
eases. A promising hint that this may indeed be possible in the
future is the clinical success of FMT (a radical, though very
unspecific, approach) for recurrent Clostridium difficile coli-
tis. For obvious reasons, other diseases will require more
specific approaches. It will be important to neither raise exag-
gerated expectations nor make unbalanced or enthusiastic
promises at present. We should bear in mind that we still need
to further carefully elucidate the mechanisms by which the
bacterial flora contributes to health and disease and learn how
this knowledge must may be translated to overcome various

Fig. 3 Intestinal microbial composition (major phyla of the gut
microbiota) 1 week before (t1) as well as 4 (t2) and 8 weeks (t3) after
smoking cessation in the intervention group (I) compared to the non-
smoking (N) and smoking (S) control groups with the same intervals but
without abrupt change in smoking habits. Percentages of major phyla are
shown for the three time points. A significant increase in fractions of

Firmicutes and Actinobacteria and a decrease in fractions of
Proteobacteria and Bacteroidetes can be observed in the intervention
group with a stable composition in the control groups. On the left, a
phylogenetic tree is shown, to illustrate the earlier separation of the
samples in the intervention group prior and after smoking cessation,
i.e., closer to the root of the tree
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obstacles still present in the creation of targeted microbial
treatment approaches for the multitude of human diseases
associated with altered microbial composition. Otherwise,
the hype about the microbiota will soon be over and we will
have missed an important chance.
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