
already evolved to form Tn6172 (pHypo in Figure 1c). Using the tni
genes and the IRl of Tn6022 together with the IRr of Tn6172, this
segment has transposed as a single unit into the comM gene of
the ancestor of the GC2 clone. Subsequently, AbGRI1 has evolved
in situ into the large variety of forms seen in current GC2 isolates,
some of which have acquired additional antibiotic resistance
genes, such as tet(B), blaPER or oxa23 in Tn2006 or AbaR4.
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Sir,
The recent identification of the first plasmid-mediated polymyxin
resistance determinants, namely the MCR-1 and MCR-2 enzymes,
has constituted an ultimate threat of pandrug resistance in Gram-
negative organisms.1–3 These enzymes have been reported only in
Enterobacteriaceae, mainly in Escherichia coli and Klebsiella
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pneumoniae; however, there have been reports from other entero-
bacterial genera, including Enterobacter, Salmonella and Shigella.1

The mcr-1 and mcr-2 genes have both been identified from cattle
and pigs.1–3 In addition, the mcr-1 gene has been identified from
chickens,4 but also from river samples and vegetables.5

MCR-1 and MCR-2, sharing 81% amino acid identity, are phos-
phoethanolamine transferases of 541 and 538 amino acids, re-
spectively.2,3 They add phosphoethanolamine to the lipid A moiety
of LPS, leading to a more cationic LPS structure and consequently
to resistance to polymyxins.1

We recently showed that some Moraxella species might consti-
tute putative reservoirs of MCR-like proteins, with corresponding
genes located on the chromosome of these species.6 Hence, MCR-
like proteins were identified in Moraxella catarrhalis, Moraxella
lincolnii, Moraxella porci and Moraxella osloensis. They all share sig-
nificant amino acid identities with MCR-1 and MCR-2, ranging from
59% to 64%.6 Even though these Moraxella species have been
shown to carry intrinsic mcr-like genes, these genes remain quite
distantly related to the plasmid-borne mcr-1 and mcr-2.

We recently had the opportunity to investigate another
Moraxella species. Moraxella pluranimalium strain 248-01T

has been isolated from the nasal turbinate of a healthy pig
in Spain.7 M. pluranimalium is an aerobic and catalase- and
oxidase-positive Gram-negative coccus that grows at temperatures
of 22–37�C.7

PCR assays with internal primers specific for both mcr-1 and
mcr-2, as published,1 allowed us to obtain an amplicon that was
further sequenced. Internal outward primers were then designed
and used for an inverse PCR strategy, as previously performed.6

The sequence of the entire mcr gene was thus obtained and it re-
vealed that this new enzyme (termed MCR-2.2) was almost identi-
cal to MCR-2 (99% amino acid identity), with only 8 amino acid
differences out of the 538 constituting the MCR-2 enzyme, and
shared 82% amino acid identity with MCR-1.

Interestingly, the mcr-2.2 gene exhibits a G!C content of
49.1%, which is in accordance with the total G!C content of the
genomes of different Moraxella species (�45%), which agrees with
the intrinsic origin of this gene in M. pluranimalium.

The corresponding gene, named mcr-2.2, was cloned into plas-
mid pBADb, the recombinant plasmid being then expressed in
E. coli TOP10 by adding L-arabinose 1% (necessary for the expres-
sion of the cloned genes in this inducible vector), as performed
for other mcr-like genes.6 Then MICs of colistin were determined
for the recombinant strains expressing mcr-1, mcr-2 and mcr-2.2
by broth microdilution (BMD),1 and this showed that MCR-2.2 con-
ferred exactly the same level of resistance as MCR-1 and MCR-2
(MIC 4 mg/L compared with 0.03 mg/L for the E. coli WT recipient
strain), thus showing that the few differences in terms of amino
acid sequence did not have an impact on resistance to colistin in
E. coli.

Interestingly, the MIC of colistin determined by BMD for M. plur-
animalium strain 248-01 was high (16 mg/L). Susceptibility to
other antibiotics, determined by disc diffusion, showed that this
strain had a penicillinase phenotype, with resistance to amoxicillin
and ticarcillin removed by clavulanic acid. In addition, it was resist-
ant to tetracycline, nalidixic acid and ciprofloxacin, but remained
susceptible to all aminoglycosides, sulphonamides, chlorampheni-
col and fosfomycin.

Since the mcr-1 and mcr-2 genes are often identified on IncX4-
type plasmid scaffolds, strain 248-01 was tested for the corres-
ponding replicase gene as reported,8 but it remained negative.
No plasmid could be identified despite several extraction attempts
and attempts to transfer a polymyxin resistance determinant by
electro-transformation into an E. coli recipient strain also failed.8

These negative results further suggest a chromosomal location of
the mcr-2.2 gene. Since the mcr-1 gene is most often associated
with the ISApl1 element, which has been shown to be involved in
its acquisition,9 and since IS1595 was found to be closely associ-
ated with mcr-2 (even though its involvement in the acquisition of
the resistance gene has not yet been proven),3 PCR specific for
those IS elements was performed using DNA from strain 248-01T

as a template. Interestingly, positive signals were obtained for
both ISs and sequencing confirmed a perfect identity with ISApl1
and a variant of IS1595 (97% nucleotide identity), respectively.
However, PCR mapping showed that these ISs were not located
upstream of the mcr-2.2 gene, in contrast to what is observed with
both mcr-1 and mcr-2 genes when identified in enterobacterial
isolates. This is another confirmation that ISApl1 may be found in
Moraxella spp. after its identification in the genome of M. porci.
Notably, the concomitant identification of IS1595 and of an mcr-2-
like gene in the same M. pluranimalium strain further suggests
that the mobilization event that led to the further dissemination
of mcr-2 in Enterobacteriaceae had first occurred from
M. pluranimalium.

This report most likely identifies the direct progenitor of the
mcr-2 gene as M. pluranimalium, about which little is known so far.
Strains belonging to this species have been recovered from pigs
that were either healthy or suffering from pleuritis and polyserosi-
tis (nose, pleura and peritoneal cavity fluids), and from the brain of
a sheep presenting with meningitis. It is likely that pigs might con-
stitute a significant reservoir of M. pluranimalium. We speculate
that the occurrence, selection, mobilization and dissemination of
mcr-like genes might have occurred first in pigs. Since colistin is
widely prescribed in veterinary medicine, in particular in pig farms,
it represents a driving force for selection and spread of naturally
occurring mcr-like resistance genes from Moraxella to
Enterobacteriaceae. The present report paves the way for rethink-
ing antibiotic policy in veterinary medicine, since this is likely a sig-
nificant driving force for selection of antibiotic resistance traits that
may have significant impacts in human medicine, as previously
hypothesized.10
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Sir,
Quinolones are recognized as one of the most widely prescribed
classes of antibiotics used to treat infections caused by Gram-
negative and Gram-positive bacteria.1 In humans, quinolones are
used to treat infections of the urogenital, respiratory and gastroines-
tinal tracts as well as a range of anatomically diverse infections in
swine, poultry, cattle and companion animals and in aquaculture.2

In the environment, fluoroquinolones break down slowly (half-life of
�100 days) and it is possible to measure trace levels of the drug in
exposed environments.3 The environmental impact of quinolones,
particularly fluoroquinolones from humans, agriculture and pharma-
ceutical production facilities, is a cause of concern as residues and
metabolic breakdown products released from the body of target
species provides a selection pressure that impacts the ecology of
non-target bacterial, invertebrate and vertebrate populations, where
it can influence natural mutation rates and lateral gene transfer.2

The cellular targets of quinolones are bacterial type II topo-
isomerases, including DNA gyrase and topoisomerase IV.4 DNA
gyrase functions in the management of DNA supercoiling and
topological stress, while topoisomerase IV has a role in unlinking
replicated daughter chromosomes.4 The genes encoding QnrA,
QnrB, QnrC, QnrD, QnrS and QnrVC are found on the chromosome
or on plasmids and confer resistance to quinolones and low-level
resistance to fluoroquinolones. The Qnr proteins belong to the pen-
tapeptide repeat family and function to protect DNA gyrase and
topoisomerase IV, enabling bacteria to resist the actions of
quinolones.5
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