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Abstract This paper takes issue with the current tendency in the literature on Qualitative
Comparative Analysis (QCA) to settle for so-called intermediate solution formulas, in which
parsimony is not maximized. I show that there is a tight conceptual connection between parsi-
mony and causality: only maximally parsimonious solution formulas reflect causal structures.
However, in order to maximize parsimony, QCA—due to its reliance on Quine-McCluskey
optimization (Q-M)—is often forced to introduce untenable simplifying assumptions. The
paper ends by demonstrating that there is an alternative Boolean method for causal data
analysis, viz. Coincidence Analysis (CNA), that replaces Q-M by a different optimization
algorithm and, thereby, succeeds in consistently maximizing parsimony without reliance on
untenable assumptions.

Keywords Boolean method · Set-theoretic method · Qualitative Comparative Analysis
(QCA) · Coincidence Analysis (CNA) · INUS causation · Quine-McCluskey optimization

1 Introduction

Sufficient and necessary conditions—the primary search targets of Boolean (or set-theoretic
or configurational) methods of causal inference—tend to feature redundant elements, i.e.
factors such that, if they are eliminated, the remaining conditions are still sufficient and/or
necessary for corresponding outcomes. For the methodological framework of Qualitative
Comparative Analysis (QCA), Ragin and Sonnett (2005) distinguish three different search
strategies researchers may adopt when eliminating redundant elements from Boolean solu-
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840 M. Baumgartner

tion formulas (Boolean models1). In case of limitedly diverse data, only the most liberal
strategy is able to eliminate all redundancies. Yet, as this strategy typically requires a host
of counterfactual simplifying assumptions, which are often difficult or impossible to justify,
it has recently become common practice in QCA studies to settle for so-called intermediate
solution formulas with some redundancies remaining (cf. Ragin and Rihoux 2004; Ragin
2008b, ch. 9; Schneider and Wagemann 2012, chs. 6, 8; Skaaning 2011).2 This is usually
legitimized with recourse to principles as Occam’s Razor, according to which parsimony is
a mere pragmatic virtue of causal models to the effect that, if easily available, parsimonious
models are to be preferred over more complex ones, but if parsimony comes at a high price
it can be dispensed with.

This paper shows that intermediate (and conservative) solution formulas cannot be causally
interpreted. Subject to e.g. Mackie’s (1974) INUS-theory of causation, to which representa-
tives of QCA explicitly subscribe (cf. e.g. Mahoney and Goertz 2006; Schneider and Wage-
mann 2012), causes are Boolean difference-makers for their effects. Yet, elements of solution
formulas that can be eliminated without relationships of sufficiency and necessity thereby
being affected make no difference to corresponding outcomes and, thus, do not cause the
latter. That is, parsimony of solution formulas is much more than a mere pragmatic virtue
of causal models; rather, there exists a tight conceptual connection between parsimony and
causality. Only maximally parsimonious solution formulas can represent causal structures.
Accordingly, researchers that want to apply QCA for the purpose of causal data analysis or of
testing causal hypotheses must not content themselves with intermediate solution formulas.3

The structure of the paper is as follows. In Sect. 2, I review the details of the theory that
accounts for causation in terms of Boolean difference-making and that underlies all Boolean
causal reasoning. On the basis of an inverse search that puts the available search strategies
of QCA to the test, Sect. 3 then shows that only the most liberal strategy—which maximizes
parsimony, yet tends to call for unjustifiable simplifying assumptions—succeeds in uncov-
ering causal dependencies as defined by that theory. It follows that users of QCA face a
dilemma: either they introduce untenable simplifying assumptions and, thereby, maximize
parsimony and secure the causal interpretability of resulting solution formulas, or they base
their inferences on a sound and tenable assumptive basis and, thereby, limit the applicability
of QCA to non-causal purposes. In Sect. 4, it will turn out that the culprit for this dilemma
is QCA’s reliance on Quine-McCluskey optimization (Q-M) to eliminate redundancies from
solution formulas. The paper ends by arguing that by replacing Q-M by a different optimiza-
tion algorithm—one that is custom-built for the discovery of causal structures—so-called
Coincidence Analysis (CNA) (cf. Baumgartner 2009a, b) succeeds in consistently maximiz-
ing parsimony without reliance on untenable assumptions.

1 In this paper, the notion of a model is used in terms of a full specification of the functional dependencies
among endogenous and exogenous factors. In the QCA literature, a model is sometimes (e.g. Wright and
Boudet 2012) simply taken to be a selection of endogenous and exogenous factors (without a specification of
functional dependencies).
2 Some studies even settle for so-called conservative solution formulas with all redundancies remaining (cf.
Grofman and Schneider 2009).
3 There also exist non-causal applications of QCA. For instance, Mendel and Korjani (2012) use QCA as a
method for linguistic summarization, which is a data mining approach to extract patterns from databases. The
goal of this approach is not to generate causal knowledge, causal explanations, or to test causal hypotheses;
rather, it seeks to better understand and communicate about data. For such a purpose, solution formulas that are
not maximally parsimonious may be very useful. Moreover, intermediate solutions may be informative with
respect to correlations and associations among investigated factors; cf. e.g. Grant, Morales, and Sallaz (2009,
344–345) who very explicitly abstain from causally interpreting intermediate solutions (though for different
reasons than the ones advanced in this paper).
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2 Causes as Boolean difference-makers

Before we can investigate which search strategies of QCA yield solution formulas that can
be taken to reproduce causal structures, we have to clarify what causation or causal depen-
dence means in the context of Boolean data analysis. Very roughly put, the (philosophical)
literature concerned with analyzing causal notions provides two different types or traditions
of theories of causation: the first type is constituted by so-called difference-making theo-
ries and the second by transference and power theories. Prototypical examples of the first
type are Suppes (1970), Lewis (1973), Mackie (1974), or more recently Woodward (2003);
well-known examples of the second type are Dowe (2000) or Mumford and Anjum (2011).4

In a nutshell, difference-making theories stipulate—as their name suggests—that causes are
characterized by their property of making some sort of difference to their effects, where the
relevant sort of difference-making is variably specified in different theories. Power theories,
by contrast, take the characteristic feature of causal dependencies to consist in some sort of
physical relation connecting causes to their effects, for instance, the transference of energy
or momentum from the cause to the effect or the cause’s exertion of power over the effect.

It is clear that Boolean methods of data analysis do not scrutinize the physical relation
between causes and effects. Consequently, they do not search for causal dependencies as
defined by transference or power theories. Rather, Boolean methods search for causal depen-
dencies as defined by difference-making theories. More specifically, as their primary search
targets are sufficient and necessary conditions, Boolean methods must be seen to presup-
pose a notion of causation according to which causes are difference-makers within sufficient
and necessary conditions of their effects. The most well-known theory in that tradition is
Mackie’s (1974) so-called INUS-theory of causation. Subject to that account, a cause is an
INUS-condition of its effect, viz. an insufficient but non-redundant part of an unnecessary
but sufficient condition of the latter (Mackie 1974, 62). That is, a cause or, in Mackie’s termi-
nology, a causally relevant factor A for an effect E (typically) is neither itself sufficient nor
necessary for E ; rather, relative to some fixed configuration of background conditions, A is
a non-redundant element of a configuration of factors, say, ABC which, in turn, is sufficient
but not necessary for E . That is, there may be alternative configurations, say, DG H and
J K L that can likewise cause E—even in the absence of ABC . Relative to that theoretical
background, A being a difference-maker for E amounts to this: there exist circumstances φ,
viz. when BC is given and neither DG H nor J K L are given, such that A makes a difference
to the occurrence of E in φ, i.e. E occurs in φ if, and only if, A occurs in φ. In other words,
in circumstances of type φ, A is a means to control or manipulate E : by bringing about
(suppressing) A, E is brought about (suppressed).

In order to see that only the most parsimonious solution formulas of Boolean methods
succeed in capturing causation as defined along these lines, we have to delve more deeply
into the conceptual details of a theory that spells out causation in terms of Boolean difference-
making. As a brief reminder, let me begin with the relevant formal background from Boolean
algebra (for more details cf. Thiem et al. ms). The core Boolean operation that allows for
representing (deterministic) causal dependencies is the implication or subset operator, which
in the context of Boolean methodologies is alternatively expressed in a logical (’→’) or
set-theoretical (’⊂’) formalism (cf. Schneider and Wagemann 2012, part I). For mere con-
ventional reasons I shall in the following give preference to the logical mode of expression.
On the basis of the implication operator the two core notions of Boolean causal modeling

4 For a recent illustration of the debates between these two theoretical camps see Glynn (2013) and Ney
(2009).
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can then be defined: the notions of sufficiency and necessity. A is said to be sufficient for E
if, and only if, it holds that if A is the case, then E is the case as well, or formally A → E .
By contrast, A is necessary for E if, and only if, it holds that if E is the case, then A is the
case as well, or formally E → A. Furthermore, that A is both sufficient and necessary for E
is expressed with the biconditional operator ‘↔’: A ↔ E .

As causal structures in the world we live in hardly ever involve only one cause and
one effect, three further Boolean operations are needed to capture the whole complexity
of ordinary causal structures: conjunction, disjunction and negation. A causally relevant
factor A typically only determines its effect E if other factors as B and C are given as
well. I shall express conjunction, viz. “and”, by mere concatenation of factors: ABC → E .
Moreover, an effect E can be brought about along alternative causal routes, for instance by
the configuration ABC or by DG H or by J K L . Disjunction, viz. “or”, is expressed by
’∨’: ABC ∨ DG H ∨ J K L → E . Finally, not only the presence but also the absence of
a factor may be causally relevant or may be caused, that is, causally relevant factors and
effects must be negatable. The negation of A, i.e. ‘not A’, will be written A. Overall, thus,
an exemplary Boolean representation of a more realistically complex causal structure would
be this:

ABC ∨ DG H ∨ J K L ↔ E, (1)

(1) represents a causal structure such that the effect E has exactly three alternative complex
causes: ABC , DG H , J K L . According to (1), each of these conjunctions is sufficient for E
and their disjunction is jointly necessary for E , meaning that E does not occur if not at least
one of its three alternative causes is given.5

However, only a very small subset of all dependencies of sufficiency and necessity actually
reflect causal dependencies. The reason is that the relationships of sufficiency and necessity
are monotonic, meaning that when A is sufficient for E , it follows (on mere logical grounds)
that AX is also sufficient for E , and when A is necessary for E , it follows that A ∨ X is also
necessary for E , where X in both cases stands for any arbitrary factor. As a consequence, most
complex sufficient and necessary conditions involve a host of factors, whose removal from
the conditions does not change their status as sufficient and necessary conditions. Factors
that can be removed from conditions such that the latter’s sufficiency and necessity remains
unaltered are redundant and, thus, are not Boolean difference-makers and, therefore, are not
causes.

In the following, I illustrate the requirement of removing all redundant elements from
sufficient and necessary conditions before the latter can be causally interpreted, first, with a
concrete example from social science and, second, with an abstract common cause structure.
Suppose that a high GNP (G) in combination with strong left parties (L) and a low ratio of
foreign population (F) are jointly sufficient for a high level of education (E), i.e. GL F → E .
In words: whenever a country has a high GNP, strong left parties, and a low ratio of foreign
population, it also has a high level of education. If that holds, it of course also holds that
whenever a country has a high GNP, strong left parties, a low ratio of foreign population, and

5 Usually, in the prose around solution formulas in QCA studies only necessary conditions that consist of
single factors are explicitly labeled “necessary conditions”. (A commendable exception is Bol and Luppi
(2013), who systematize the search for complex necessary conditions within the QCA framework.) In fact,
however, every QCA solution formula that identifies complex sufficient conditions for the absence of an effect
is tantamount to a solution formula that identifies a complex necessary condition for the presence of the
effect (by contraposition), and vice versa. For instance, a formula that identifies AC and D as two alternative
sufficient conditions for E is logically equivalent to a formula that identifies AD ∨C D as necessary condition
for E . Disjunctive necessary conditions can be interpreted as imposing restrictions on the space of alternative
causes of an effect: in the structure represented by (1), E has exactly three alternative causes.
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Fig. 1 Depicts an ordinary
common cause structure

a blond prime minister (B), it also has a high level of education, or formally: GL F B → E .
Hence, even though the prime minister’s hair color makes no difference whatsoever to E
and is thus redundant for E , B may be part of a sufficient condition of E . The fact that
GL F B clearly is no complex cause of E shows that being part of a sufficient condition is not
sufficient for being a cause. GL F B is not a cause of E because B can be removed without
the remaining condition GL F losing its sufficiency for E .

Next, consider the common cause structure depicted in Fig. 1. In this structure, C and E
are two parallel effects of the common cause A. In addition, there exists one further alternative
cause for C and E each: B for C and D for E . For simplicity, all five factors in that structure
are assumed to be binary. Table 1 then lists all the empirically possible configurations of
these factors. That means there are 8 types of cases that can be found empirically, given that
the behavior of the five factors is regulated by the structure in Fig. 1. For instance, all five
factors can be given in combination (case c1) or D can be absent when all the other factors
are present (c2), and so forth.

Let us now inquire what combinations of the factors in the set {A, B, C, D} are sufficient
and/or necessary for E . Without drawing on Boolean methods it can easily be seen that in
Table 1 it holds that whenever A is given (cases c1 to c4) and whenever D is given (c1, c3,
c5, c7), E is given as well. Hence, A and D are both individually sufficient for E ; and as
these sufficient conditions are constituted by single factors, they do not involve redundancies
either. At the same time, though, Table 1 reveals that the combination BC is also sufficient
for E : whenever BC is given (c3, c4), E is given as well. Or formulated in causal terms, in
cases when C is given without B, A must be given to account for C , for no effect occurs
without any of its causes. But since A determines E in the structure of Fig. 1, it follows that
BC is sufficient for E as well. Moreover, no element of BC can be removed without the
condition losing its sufficiency for E : C alone is not sufficient for E , because in c6 C is given

Table 1 Lists all the
configurations of the factors
involved in the structure of Fig. 1
that are compatible with that
structure, i.e. Table 1 is the (ideal
and complete) truth-table for
Fig. 1

Case A B C D E

c1 1 1 1 1 1

c2 1 1 1 0 1

c3 1 0 1 1 1

c4 1 0 1 0 1

c5 0 1 1 1 1

c6 0 1 1 0 0

c7 0 0 0 1 1

c8 0 0 0 0 0
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while E is not; and B alone is not sufficient for E , because in c8 B is given while E is not.
That is, BC does not contain any redundant elements.

A, D and BC are all of the redundancy-free sufficient conditions that E has in Table 1.
Furthermore, all cases featuring E also feature A or D or BC ; or differently, whenever E is
given, so are A or D or BC , which means that the disjunction A ∨ D ∨ BC is necessary for
E . Overall, the following holds:

A ∨ D ∨ BC ↔ E . (2)

Even though (2) features sufficient conditions of E that have no redundant elements, (2)
is a Boolean expression that does not reflect a causal structure, for BC is not a complex
cause of E in the structure of Fig. 1. The reason is that the necessary condition A ∨ D ∨ BC
contains a redundant disjunct, viz. BC . If BC is removed, the remaining disjunction A ∨ D
is still necessary for E , for it holds that whenever E is given in Table 1, so is A or D:

A ∨ D ↔ E (3)

By contrast, the necessary condition of E contained in (3), viz. A ∨ D, is free of redun-
dancies. A itself is not necessary for E because in cases c5 and c7 E is given while A is not;
neither is D alone necessary for E because in cases c2 and c4 E is given and D is not. Indeed,
(3) is a Boolean expression that corresponds to a causal structure, for A and D are exactly
the two alternative causes of E in the structure of Fig. 1. All of this shows that Boolean
expressions only reflect causal structures if all redundancies are rigorously removed from
both sufficient and necessary conditions. Or in other words, if a Boolean expression contains
redundant elements, it does not reflect a causal structure.

To further specify the account of difference-making that is relevant for Boolean methods
of causal inference, let us introduce the notions of a minimally sufficient and a minimally
necessary condition. A conjunction as AB that is sufficient for an outcome E is minimally
sufficient for E if, and only if, no proper part of AB is itself sufficient for E , where a proper
part of a conjunction is that conjunction reduced by at least one conjunct. That is, AB is
minimally sufficient for E if, and only if, AB is sufficient for E and neither A nor B are
themselves sufficient for E . Analogously, a disjunction as A ∨ B that is necessary for an
outcome E is minimally necessary for E if, and only if, no proper part of A ∨ B is itself
necessary for E , where a proper part of a disjunction is that disjunction reduced by at least
one disjunct. That is, A ∨ B is minimally necessary for E if, and only if, A ∨ B is necessary
for E and neither A nor B are themselves necessary for E .

For factors that are contained in minimally sufficient and necessary conditions of an
outcome there exist configurations in which these factors make a difference to the occurrence
of that outcome. For example, compare the configurations c2 and c6 in Table 1: in c2 the factor
A is present and in c6 it is absent, whereas all other factors apart from the outcome E remain
the same in both c2 and c6; in accordance with A, E is present in c2 and absent in c6. Hence,
in c2 and c6 the presence and absence of A makes a difference to the presence and absence of
E . For redundant elements of sufficient and necessary conditions, no such difference-making
configurations exist. All of this yields the following account of Boolean difference-making:

Boolean difference-making (BD): A factor A is a Boolean difference-maker of an outcome
E if, and only if, A is contained in a minimally sufficient condition AX of E such that
AX , in turn, is contained in a minimally necessary condition of E .

Being a Boolean difference-maker is necessary but not sufficient for being a cause. Boolean
difference-making is relative to analyzed data: for instance, C is not a Boolean difference-
maker of E in Table 1, but in a table that results from Table 1 by adding, say, the configuration
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ABC DE the factor C would be such a difference-maker. As is well-known, analyzed data
may fail to reflect causal structures for various reasons: the data may be confounded by
unmeasured causes, it may be miscalibrated, too fragmentary, or result from measurement
errors etc. Relative to deficient data, factors may be Boolean difference-makers of an outcome
E without being causes of E . Data deficiencies are typically exposed by expanding the set
of analyzed factors in follow-up studies of the same phenomenon, by conducting robustness
tests, by recalibrations, remeasurements, or by mere replication studies etc. Only Boolean
difference-makers in data that meet required quality standards can reliably be inferred to be
causes (cf. Baumgartner 2008, 2013).

Of course, due to the fact that in contexts of causal data analysis researchers typically
investigate causal structures which are not completely known, compliance with those quality
standards often cannot be conclusively ascertained. Accordingly, inferring that A causes E
normally involves an inductive risk, i.e. causal inferences are prone to error (which hopefully
are corrected in follow-up studies). Even though, Boolean difference-making as spelled out in
(BD) is not sufficient for causation, it corresponds to the most important Boolean constraint
causes have to comply with. Factors that do not satisfy (BD) can be excluded as causes; corre-
spondingly, Boolean solution formulas that contain (BD)-violating factors are not amenable
to a causal interpretation. By contrast, a causal interpretation of solution formulas that are
exclusively composed of factors complying with (BD) and that are inferred from competently
collected data is (inductively) warranted. I shall say that such solution formulas are causally
interpretable.

I do not intend to claim here that all causal structures empirically manifest themselves in
terms of Boolean difference-making. In fact, according to so-called causal pluralism (cf. e.g.
Psillos 2009), difference-making and power theories of causation do not mutually exclude
each other, rather, they simply highlight different aspects of causation. What I do intend to
claim, though, is that Boolean difference-making is the feature of causation that is tracked by
Boolean methods as QCA. Hence, whoever applies a Boolean method, searches for causal
dependencies that comply with (BD). To uncover causal structures that do not exhibit relations
of Boolean difference-making, recourse to different methods must be made.

To sum up, this section has revealed that only redundancy-free sufficient and necessary
conditions feature Boolean difference-makers and, thus, comply with the core Boolean cri-
terion for causation. In consequence, a Boolean method of causal data analysis must seek
for minimally sufficient and minimally necessary conditions of scrutinized outcomes.

3 Inverse search

This section aims to show that in order for Boolean methods to output solution formulas
that are causally interpretable parsimony must be maximized. Only maximally parsimonious
solution formulas identify minimally sufficient and minimally necessary conditions and, as
only the latter can correspond to causal conditions, only maximally parsimonious solution
formulas can mirror causal structures.

To this end, I will perform so-called inverse searches, which—as the label suggests—
reverse the order of causal discovery as it is normally conducted in scientific practice. An
inverse search involves three steps: (i) a causal structure σ is presumed to be given, (ii)
artificial data δ is generated by letting the factors in σ behave/operate in accordance with σ ,
(iii) δ is processed by a method of causal data analysis with the aim of recovering σ . If, and
only if, the scrutinized method finds σ , the inverse search is successfully completed. Even
though successful inverse searches are standardly implemented as quality benchmarks for
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methods of causal discovery (cf. e.g. Spirtes et al. 2000; Pearl 2000), they are hardly ever
conducted in the literature on Boolean data analysis.

In real-life contexts of causal discovery there are manifold reasons as to why methods
of data analysis fail to find the causal structure that actually underlies processed data. A
researcher may fail to properly control for background influences, to the effect that collected
data is too noisy, that is, confounded by unmeasured causes of an investigated outcome.
Or if a process is being analyzed whose relevant factors—for whatever reasons—cannot
be manipulated or influenced artificially, the number or diversity of data points that nature
happens to provide may be wanting. Or the selection, calibration, or measurement of analyzed
variables may be flawed, and so forth. Yet, all of these reasons for failing to find causal
structures are due to problems of data collection and pre-processing, and thus to a task
that must be completed prior to the actual analysis of the data. No method can be expected
to successfully uncover causal structures based on fragmentary, confounded, or otherwise
flawed data. Outputs of procedures of causal data analysis are only as good as the analyzed
data.

Therefore, in order to evaluate causal inference procedures and corresponding search
strategies, problems of data collection/pre-processing must be factored out by assumption
(or idealization). The tool of an inverse search lends itself particularly well to this purpose.
Based on the causal structure that is presupposed as given in an inverse search, we can
artificially generate data that is free of confounding noise, diversity limitations, selection
bias or calibration and measurement errors, that is, we can produce ideal data. Against such
an idealized background, a failure to find the structure based on which the data was generated
can then be directly and unambiguously ascribed to a deficiency in the implemented method
or search strategy.

The previous section has already laid the basis for an inverse search that avoids problems
of data collection. Figure 1 provides a causal structure and Table 1 a list of all and only the
configurations of the factors involved in the structure of Fig. 1 that can possibly be observed
relative to a homogenous (or fixed) setting of unmeasured background causes. Also, there
are no rows featuring one and the same configuration of conditions combined with both
the presence and the absence of outcome E .6 We are hence justified in presuming a proper
variable calibration and the absence of data confounding and measurement error. Moreover,
we can assume that for all configurations in Table 1 we have a sufficient amount of cases in
our raw data to meet inclusion cut-offs. All in all, we shall assume that Table 1 represents an
ideal truth-table for a Boolean analysis—to the effect that an adequate Boolean method of
data analysis must be able to find the causal dependencies in the structure of Fig. 1 based on
Table 1. Or differently, if a method or search strategy does not find the causes of E based on
Table 1, it is inadequate qua procedure of causal inference.

For the purposes of an inverse search the interpretation of the factors involved in the
structure of Fig. 1 does not matter. All that matters is that the behavior of the factors in the set
V = {A, B, C, D, E} is assumed to be regulated by the structure in that figure. Nonetheless,
in order to substantiate that a structure as in Fig. 1 is very commonplace in the field of social

6 In the QCA literature, two rows ci and ch in a truth-table such that one and the same configuration of
conditions is combined with the presence of the outcome in ci and with its absence in ch are often very
misleadingly called “contradictory” (cf. e.g. Rihoux and De Meur 2009; Schneider and Wagemann 2012 §5.1;
Rubinson 2013). In fact, however, such a pair of rows is far from being contradictory, rather, it merely entails
that the relevant configuration of conditions is neither sufficient for the presence nor for the absence of the
outcome.
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sciences, the following would be a viable interpretation of the factors in V:

A : high share of native population D : high GNP
B : strong unions E : high level of education
C : strong left parties

(I)

If (I) constitutes our research context, the relevant question we are going to want to answer
in the following is whether a high level of education (E), say, in western democracies, is
caused only be a high share of native population (A) and, alternatively, a high GNP (D) or
whether strong unions (B) and strong left parties (C) causally contribute as well. The correct
answer, according to the assumed structure in Fig. 1 is the former option, that is, A and D
are the only two alternative causes of E .

As anticipated in the introduction, the standard methodological framework for Boolean
causal data analysis, QCA, provides different search strategies whose main differences con-
cern the way in which redundant elements are removed from solution formulas. More specifi-
cally, Ragin and Sonnett (2005) distinguish between a conservative strategy S1, an intermedi-
ate strategy S2, and a liberal strategy S3. We subsequently apply these three search strategies
to Table 1 with the aim of recovering the causes of E given in the structure of Fig. 1. It will
turn out that only S3 successfully completes this inverse search.

As Fig. 1 and Table 1 involve binary variables only, we can confine our analysis to
crisp-set QCA (csQCA). I assume that the reader is familiar with the procedural details
of csQCA (cf. Ragin 1987; Rihoux and De Meur 2009). Still, to clearly understand why
a search strategy does or does not complete our inverse search, it is required that we
briefly review the computational core of QCA that is concerned with removing redun-
dancies from sufficient and necessary conditions, i.e. the procedural part of QCA whose
function it is to turn mere sufficient and necessary conditions into causally interpretable
sufficient and necessary conditions. Both in csQCA and fuzzy-set QCA (fsQCA) this core
is constituted by Quine-McCluskey optimization (Q-M), which is a procedure to minimize
Boolean expressions standardly used in electrical engineering or digital logic design (cf.
Quine 1959). The operational details of Q-M are best presented by means of concrete
examples.

Let us hence eliminate redundancies from an exemplary sufficient condition of E in
Table 1 by virtue of Q-M. The configuration ABC D, which is combined with E in row c1,
is sufficient for E , because Table 1 does not contain a row where ABC D is combined with
E . To determine whether ABC D contains redundancies, Q-M parses Table 1 to find other
rows that accord with c1 in regard to the outcome and all other factors except for one. Such a
row with exactly one difference is easily found. In c2, E is combined with the configuration
ABC D, which accords with ABC D in all factors except for D. The pair of rows 〈c1, c2〉
reveals that, in the context of ABC , E occurs both if D is given and if it is not. In that
context, D makes no difference to E and is hence redundant. Therefore, Q-M eliminates
D from ABC D and D from ABC D to yield ABC . Similarly, the configuration in row c3

coincides with the one in row c4 in all factors except for D which is present in c3 and absent
in c4. Consequently, Q-M removes D and D from the corresponding sufficient conditions of
E to yield ABC . Next, since a comparison of the two sufficient conditions, ABC and ABC ,
that result from the two previous minimization steps reveals that B makes no difference to
E in contexts that feature AC , Q-M continues to eliminate B and B, respectively—and so
forth, until no further redundancies are found.

The feature of this minimization procedure that is of crucial importance for our purposes is
that Q-M only eliminates conjuncts of a sufficient condition if the corresponding truth-table
actually contains a pair of rows that accord with respect to the outcome as well all factors
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except for one. If such a pair of rows does not exist for a particular sufficient condition, the
latter cannot be further minimized. To facilitate later reference to this restriction, I label it
the one-difference restriction.

In light of the one-difference restriction, eliminating all redundancies from sufficient con-
ditions by means of Q-M presupposes that the analyzed truth-table exhibits high diversity
with respect to the logically possible configurations of potential cause factors (conditions).
Consider, for example, row c7 of Table 1 which features E in combination with the config-
uration ABC D. As there is no row where ABC D is combined with E , ABC D is sufficient
for E . However, Table 1 does not contain a row that accords with c7 with respect to the
outcome and all conditions except for one. In consequence, although it can easily be seen
(even without algorithmic help) that all rows of Table 1 that feature D also feature E , i.e. that
D itself is sufficient for E , Q-M cannot eliminate the redundant ABC from ABC D based
on the configurations contained in Table 1.

A table as Table 1 that does not comprise all 2n logically possible configurations of n con-
ditions of an investigated outcome is called limitedly diverse in the QCA terminology (Ragin
2000, 139). Logically possible configurations that are missing from analyzed truth-tables are
termed logical remainders. In cases of limited diversity, QCA offers the researcher the possi-
bility to counterfactually add logical remainders based on her available theoretical knowledge
about an investigated process. The three aforementioned QCA search strategies essentially
differ with respect to how much restrictions they impose on the counterfactual introduction
of remainders. The conservative strategy S1 prohibits the introduction of counterfactual con-
figurations altogether, the intermediate strategy S2 allows for the introduction of so-called
easy (Ragin 2008a) or tenable (Schneider and Wagemann 2012) counterfactuals, and accord-
ing to the liberal strategy S3 any counterfactuals, easy/tenable and difficult/untenable ones,
may be introduced that contribute to maximizing parsimony of resulting solution formulas.
Counterfactuals that are introduced for the purpose of increasing parsimony are also called
simplifying assumptions.

S1 and S3 are precisely defined search strategies whose algorithmic implementation is
straightforward. The concrete blueprint for S2, by contrast, depends on what counterfactual
configurations are deemed easy/tenable in a given research context. The easy/tenable coun-
terfactuals are those remainders that are compatible with the available theoretical knowledge,
the difficult/untenable counterfactuals are those that are not compatible therewith. That is,
the distinction between easy/tenable and difficult/untenable counterfactuals is not stable but
varies with the epistemic context. Moreover, there are various variants of S2 available in
the literature (Schneider and Wagemann 2012, chaps. 6, 8): (i) S2 of the so-called Standard
Analysis (SA), (ii) S2 of the Enhanced Standard Analysis (ESA), (iii) S2 of the Theory-
Guided Enhanced Standard Analysis (TESA). Their main differences concern the complex-
ity of added counterfactuals, the manner in which they are brought to bear—as so-called
directional expectations or as truth-table rows—, and at what point within a complete QCA
of a truth-table these simplifying assumptions are introduced. These variations will not be
relevant for our purposes, because it will turn out that variants of S2 only pass our inverse
search test when they are equivalent to S3.

To see this, let us begin by applying S1 to Table 1. When processed in terms of S1, QCA
issues this solution formula:7

AC ∨ BC D ∨ ABC D ↔ E (4)

7 The QCA solution formulas in this article were built using the R-implementation of QCA by Alrik Thiem
and Adrian Duşa, version 1.0-5 (2013a, 2013b).
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Table 2 List of logical
remainders for outcome E in
Table 1

Configurations c∗
9 to c∗

14 (where
“∗” marks counterfactuality) are
required by S3 in order to
eliminate all redundancies from
sufficient and necessary
conditions of E . Configurations
[c15] and [c16] are irrelevant

Case A B C D E

c∗
9 0 0 1 1 1

c∗
10 0 1 0 1 1

c∗
11 1 0 0 0 1

c∗
12 1 0 0 1 1

c∗
13 1 1 0 0 1

c∗
14 1 1 0 1 1

[c15] 0 0 0 0 1

[c16] 0 0 1 0 1

As Table 1 is an ideal and noise-free truth-table, (4) is a perfect Boolean solution formula,
that is, it has a maximal consistency and coverage of 1 (cf. Ragin 2006), which I express by
means of the biconditional operator in (4).

(4) illustrates what we anticipated already: if no remainders are counterfactually added
to Table 1, Q-M does not succeed in eliminating all redundancies. In particular, no redun-
dancies at all can be removed from ABC D. Due to the fact that not all redundancies are
eliminated, (4) does not identify Boolean difference-makers of E . Although there do not
exist any circumstances in which B and C make a difference to E , they appear as parts of
sufficient conditions of E and they are contained in a (disjunctive) necessary condition of E .
In consequence, (4) does not adequately represent the causes of E in the structure of Fig. 1.
A causal interpretation of (4) would entail that both C and B causally contribute to E , where
in fact they do not. Expressed in terms of research context (I), even though strong left parties
and unions are not causes of a high level of education in the presupposed structure of Fig. 1,
a causal interpretation of (4) would erroneously entail that the former cause the latter after
all. In sum, the solution formula of S1 must not be causally interpreted.

By contrast, S3 succeeds in finding the true causes of E in Fig. 1 based on Table 1. The
solution formula for outcome E produced by S3 is this:

A ∨ D ↔ E (5)

By counterfactually adding any remainders that contribute to maximizing parsimony,
Q-M manages to eliminate all redundancies from sufficient and necessary conditions of E
and, thus, to identify Boolean difference-makers as defined in (BD). Moreover, as Table 1
contains optimal data, a causal interpretation of (5) is warranted; it reveals exactly the two
alternative causes, A and D, that E actually has in the underlying structure of Fig. 1. Against
the background of research context (I), S3 correctly determines that a high share of native
population and a high GNP are the two alternative causes of a high level of education. S3

hence successfully completes our inverse search.
To this end, S3 counterfactually introduces the remainders given in rows c∗

9 to c∗
14 of

Table 2. Those are the configurations that Q-M needs in order to find the correct causal
model (5). That, in turn, means that variants of the intermediate strategy S2 only find solu-
tion formula (5) if they likewise counterfactually add all configurations c∗

9 to c∗
14. If any of

those configurations is deemed difficult/untenable and, thus, not introduced by S2, the latter
outputs a solution formula with at least some redundancies, i.e. with at least some factors
that are not Boolean difference-makers and, hence, not causes. As indicated above, whether a
configuration is difficult/untenable or not depends on the theoretical background knowledge
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that is available in a given research context—and available background knowledge may vary
from context to context.

However, note that we started our inverse search with ideal and, in particular, com-
plete data. Table 1 contains all empirically possible configurations of the factors in the set
V = {A, B, C, D, E}, given that their behavior is regulated by the structure in Fig. 1. In
other words, most remainders in Table 2 are deemed empirically impossible by the structure
in Fig. 1. To illustrate, consider configuration c∗

10, where B is given but C is not. This con-
figuration is not compatible with the structure in Fig. 1 because, according to the latter, B is
a sufficient cause of C , meaning that whenever B is given, so is C . Or in c∗

11 to c∗
14 A is given

without C , even though Fig. 1 entails that A is sufficient for C . According to the standard
analysis of the notion of knowledge in terms of justified true belief (cf. Ichikawa and Steup
2013), nothing that is impossible can possibly be known. Hence, a researcher analyzing the
structure in Fig. 1 cannot have theoretical knowledge about that structure that would identify
configurations c∗

10 to c∗
14 as easy/tenable counterfactuals.

The only remainder in Table 2 that might still pass as an easy/tenable counterfactual and
that contributes to eliminating redundancies is c∗

9. The rationale for such an assessment is as
follows. The data in Table 1 is assumed to be collected against a homogenous background
of unmeasured causes of the effects in the structure of Fig. 1. That means, in particular, that
causes of C that are not contained in the set V are assumed to be absent in the background
against which the data in Table 1 is collected. But that does not exclude that there might be
different background configurations of unmeasured causes such that C is present without any
of its causes in V being present. Hence, it might be that A and B are not the only causes of
C . In consequence, configurations featuring C in combination with AB might be considered
empirically possible against a different causal background than the one behind Table 1, such
that remainder c∗

9 could be deemed easy/tenable. If S2 counterfactually introduces c∗
9, it

outputs this solution formula:

AC ∨ C D ∨ AB D ↔ E . (6)

As can easily be seen, (6) fares a bit better than (4), viz. the output of S1. Nonetheless, the
sufficient and necessary conditions in (6) still feature numerous elements that are not Boolean
difference-makers and, thus, not causes of E . A causal interpretation of (6) would erroneously
entail that C and B causally contribute to E . Overall, a variant of S2 that counterfactually
adds only a proper subset of the remainders c∗

9 to c∗
14 to Table 1 fails to find the structure in

Fig. 1 and, hence, does not pass our inverse search test.
As the distinction between easy/tenable and difficult/untenable counterfactuals cannot be

conclusively fixed, friends of a variant of S2 might insist that all relevant remainders c∗
9 to

c∗
14 in Table 2 could be deemed easy/tenable, for the causal structure regulating the behavior

of the factors in V could have been different. They might hold that causal laws governing the
world we live in do not hold of necessity. Of course, if the causal dependencies among the
factors in V had been different, the latter could have been configured in any logically possible
manner. Whether causal laws hold of necessity or not is a deep metaphysical question on
which I do not want to dwell here. All that matters for our current purposes is that, if any
logical remainder that S3 needs to maximize parsimony is considered difficult/untenable, the
solution formulas output by variants of S2 fail to identify Boolean difference-makers, that
is, causes. The output of S2 is causally interpretable only if it is identical to the output of S3.
Or differently, S2 is a strategy for causal discovery only if it is equivalent to S3, which—as
we have seen above—dispenses with the problematic distinction between easy/tenable and
difficult/untenable counterfactuals altogether.
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The only QCA search strategy that, if applied to non-flawed data, is guaranteed to out-
put solution formulas that represent causal structures is the liberal strategy S3. In light of
Sect. 2, this result is not surprising. Section 2 has shown that parsimony is not simply a
pragmatic or aesthetic virtue of QCA solution formulas, which can be dispensed with if it
comes at a high price. Rather, there is a tight conceptual interdependence between parsimony
and causality. According to the notion of causation presupposed by Boolean search meth-
ods, causes are Boolean difference-makers of their effects. Only factors that are contained
in minimally sufficient and minimally necessary conditions are Boolean difference-makers,
and only maximally parsimonious solution formulas feature minimally sufficient and min-
imally necessary conditions. That means only maximally parsimonious solution formulas
are causally interpretable. If QCA is applied in order to discover causal dependencies or to
test causal hypotheses, neither the conservative search strategy S1 nor any of the available
variants of the intermediate strategy S2 must be implemented; rather, recourse to S3 is called
for.

4 Parsimony vs. tenability

In light of the fact that causal data analysis, in general, and the testing of causal hypotheses,
in particular, are among the main purposes for which QCA is currently being applied in
social scientific practice the question arises as to why the most liberal strategy S3, which was
the principal search strategy Ragin suggested in (1987), was ever supplemented by further
strategies. In fact, in recent years it has become more and more common that intermediate
solution formulas are presented as the preferable QCA outputs (cf. e.g. Ragin 2008b, 171–
172).8

The main reason for the widespread turning away from maximally parsimonious solu-
tions, as e.g. Schneider and Wagemann (2012, chs. 6, 8) convincingly show, is that QCA’s
liberal strategy S3 faces a serious problem. In order to eliminate all redundancies, S3 is
regularly forced to introduce untenable simplifying assumptions, i.e. configurations that are
empirically impossible because they contradict causal or logical laws (or simply our general
world knowledge). We have already seen an instance of this problem in the previous section:
even though A is a sufficient cause of C in the structure of Fig. 1, Q-M—due to the built-in
one-difference restriction—can only reveal that C is not a Boolean difference-maker of E in
Table 1 if the configuration AC is counterfactually introduced, which however is determined
to be impossible by the very causal structure under investigation.9 Or Schneider and Wage-
mann’s (2012, ch. 8) “pregnant man” is another telling example: in a study that investigates
how gender, taking the pill, and being pregnant causally contribute to, say, suffering from
thrombosis, S3 will at some point be forced to counterfactually introduce the combination of
being a man and being pregnant, which of course is a biological impossibility.

Clearly, a method for causal data analysis that infers a causal structure based on counter-
factual data points that contradict the very structure under investigation or that is forced to
assume what is known to be impossible has more than an air of fishiness. Such a method runs

8 Without providing any reasons, Rubinson (2013, 2866) rightly deplores the fact that “far too many researchers
automatically pick the intermediate solution, assuming that it must be best”. The most straightforward reason
why a general preference of intermediate solutions is deplorable is simply that these solutions are not (causally)
explanatory.
9 A causal dependence among investigated conditions is but one reason why certain remainders turn out to be
impossible—logical, conceptual, or mereological dependencies being further reasons. Thus, the arrow from
A to C in Fig. 1 could also be interpreted in terms of such a non-causal form of dependence.
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the risk of complete trivialization. From assumptions that cannot possibly be true, i.e. that
are necessarily false, everything can be inferred (ex falso quodlibet). More concretely, from
the assumption that a man is pregnant it can both be inferred that taking the pill is a sufficient
cause of thrombosis and that taking the pill is not a sufficient cause of thrombosis. A neces-
sarily false assumption entails any arbitrary causal model (as well as the negation thereof).
That is, on pain of trivialization, no search strategy for causal data analysis must be allowed
to introduce necessarily false simplifying assumptions. Yet, to repeat it once again, in order
to eliminate all redundancies from solution formulas, Q-M regularly forces S3 to do just that.

Many studies concerned with developing or applying QCA acknowledge a tension between
parsimony and tenability of simplifying assumptions. That, however, is a gross understate-
ment. When applied as a method for causal data analysis, the polarity between parsimony
and tenability presents QCA with a pressing dilemma: the causal interpretability of solution
formulas calls for maximal parsimony, but in order to reach the latter by means of Q-M, nec-
essarily false assumptions may be required, which, in turn, trivializes corresponding causal
inferences. In view of the fact that the tight conceptual connection between parsimony,
Boolean difference-making, and causation has gone unnoticed so far in the QCA literature,
most authors prioritize tenability of simplifying assumptions over parsimony without noticing
that this maneuver prohibits the causal interpretability of resulting solution formulas.

However, prioritizing tenability over parsimony and thereby biting the bullet that QCA
can no longer be used as a method of causal data analysis is not the only way out of the
above dilemma. Maximal parsimony and tenability of the assumptive basis of Boolean data
analysis can both be had at the same time. What is responsible for the QCA dilemma between
parsimony and tenability is not some in-principle incompatibility of parsimony and tenability,
rather the culprit is QCA’s reliance on Quine-McCluskey optimization (Q-M), which imposes
the one-difference restriction on data diversity.

Q-M is a procedure that was originally developed for the sole purpose of simplifying
Boolean expressions (formulas). What is crucial for Q-M is that the expression that is input
into the procedure and the expression that is output by the procedure are logically equivalent,
i.e. that input and output have exactly the same meaning (cf. Quine 1959).10 To guarantee for
logical equivalence, Q-M is very cautious in eliminating elements from input expressions—
thus the one-difference restriction. Yet, inputs and outputs of a Boolean procedure of causal
inference do not have to be logically equivalent. More concretely, Boolean solution formu-
las do not have to be logically equivalent with the processed truth-table. Rather, the former
must identify the causes that are operative in the data behind the latter. As a causal infer-
ence procedure does not strive for logical equivalence of input and output but merely for
redundancy-freeness of the output, there is no need at all to draw on Q-M when it comes to
eliminating redundancies. On the contrary, since QCA’s reliance on Q-M is what is responsi-
ble for the dilemma between parsimony and tenability, the proper way around that dilemma is
to dismiss Q-M when it comes to identifying Boolean difference-makers. Solution formulas
of Boolean methods must be freed of redundancies by procedures that do not impose the
one-difference restriction.

And, as a matter of fact, there exist alternatives to Q-M. Baumgartner (2009a, b) proposes
so-called Coincidence Analysis (CNA) as an alternative Boolean method of causal data
analysis. CNA shares all of QCA’s basic goals and intentions: it focuses on configurational
complexity rather than on net effects (which are scrutinized by standard quantitative methods),

10 In fact, the disjunction of solution terms of the conservative formula (4) is logically equivalent to the
disjunction of configurations in rows c1 to c5 and c7 in Table 1, which are the configurations that are sufficient
for E in that table. Neither the intermediate nor the parsimonious solution—(6) and (5)—preserve this logical
equivalence.
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it processes the same kind of data as QCA, i.e. small- to intermediate-N configurational data,
and it also searches for causal dependencies defined in terms of Boolean difference-making.

There are two main differences between CNA and QCA. First, while QCA is designed
to treat exactly one factor Zi as outcome and all other factors in an analyzed truth-table as
potential direct causes of Zi , CNA can treat any number of factors in a set {Z1, . . . , Zi }
as outcomes. That is, CNA does not only search for direct causal dependencies among
Z1, . . . , Zi−1, on the one hand, and Zi , on the other, but also for dependencies among the
conditions Z1, . . . , Zi−1 themselves. Second, CNA does not remove redundant factors on
the basis of Q-M but implements its own minimization algorithm that is custom-built for the
discovery of complex causal structures.

This is not the place to reiterate the procedural details of CNA (cf. Baumgartner 2009a, b;
Baumgartner and Epple forthcoming). Let me just briefly indicate the basic ideas behind
CNA’s minimization algorithm. If there exist (deterministic) causal dependencies among n
factors, it follows that not all 2n logically possible configurations of these factors are also
empirically possible. Causal dependencies constrain the range of empirical possibilities. To
do justice to this trademark feature of causality, CNA infers causal dependencies not only
from the configurations actually contained in truth-tables (as does QCA) but also from the
fact that certain configurations are not contained therein.

To determine whether, say, a complex sufficient condition ABC of a factor E contains
redundancies or is minimally sufficient, CNA systematically eliminates conjuncts from ABC .
For each conjunction that results from such an elimination, say for BC , CNA then parses
a corresponding truth-table T to check whether T contains BC in combination with the
absence of E , i.e. E . If T does not contain the configuration BC E , BC is itself sufficient for
E , which means that A is redundant. CNA then proceeds to eliminate the next conjunct from
BC and tests for further redundancies, until no more redundancies are found. By contrast,
if T contains the configuration BC E , BC is not itself sufficient for E , which means that
A makes a difference to E and is, thus, not redundant. Accordingly, CNA re-adds A to
BC and proceeds to eliminate B, and so forth. That is, while Q-M only eliminates factors
from sufficient conditions if the latter reduced by a respective factor is actually contained in
the truth-table in a way that satisfies the one-difference restriction, CNA eliminates factors
from sufficient conditions if the latter reduced by a respective factor is not contained in the
truth-table in combination with the absence of a corresponding outcome.11

Similarly, to determine whether a complex necessary condition A ∨ B ∨ C of an outcome
E is minimally necessary, CNA systematically eliminates disjuncts from A ∨ B ∨ C and
checks for every resulting disjunction, say for B ∨ C , whether it is still necessary for E , i.e.
whether T contains a configuration featuring E without any of the disjuncts in B ∨ C . If the
truth-table does not contain such a configuration, B ∨C is still necessary for E , which means
that the eliminated disjunct A is redundant. Next, B ∨ C is tested for further redundancies,
until no more redundancies are found.

As CNA does not impose the one-difference restriction, limited data diversity in no way
hampers CNA’s capacity to remove all redundancies from sufficient and necessary condi-
tions. By taking into account the configurations not contained in a truth-table, CNA can
systematically test for redundancies without ever being forced to counterfactually introduce
missing configurations.12 In sum, due to its reliance on Q-M, QCA is forced to eliminate

11 Eliason and Stryker (2009, 26) implement a very analogous minimization idea in the context of a goodness-
of-fit test for fuzzy-set solutions.
12 Note that CNA does not preclude the addition of counterfactual configurations; it just does not require it.
If there are good theoretical grounds for counterfactually supplementing the data, CNA does not prevent the
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redundancies from solution formulas on the basis of problematic counterfactual assumptions
as “Had the configuration ABC occurred, the outcome E would have occurred as well”.
CNA, in contrast, eliminates redundancies from solution formulas based on unproblematic
negative existential claims about an analyzed truth-table T , for example, “The configuration
ABC E is not contained in T ”.13

In this manner, CNA always outputs maximally parsimonious solution formulas that iden-
tify Boolean difference-makers, which—when inferred from competently collected data—are
causally interpretable. Moreover, as CNA does not only search for the dependencies among
one designated outcome and the rest of the factors in an analyzed truth-table, but for all
dependencies of minimal sufficiency and necessity among all the involved factors, it not only
correctly uncovers the causes of E in the structure of Fig. 1 but also the causes of C . When
given Table 1 as input, CNA outputs this complex solution formula (where the concatenation
of the atomic solutions for C and E indicates conjunction):

(A ∨ B ↔ C)(A ∨ D ↔ E) (7)

This result substantiates that QCA’s dilemma between parsimony and tenability of simpli-
fying assumptions does not have to be resolved by dispensing with maximal parsimony and,
thereby, endangering the causal interpretability of inferred solution formulas. By replacing
Q-M by its own custom-built minimization algorithm, CNA succeeds in maximizing parsi-
mony on the basis of completely unproblematic and, hence, easily tenable assumptions.

5 Conclusion

The first part of this paper has shown that there is a tight conceptual connection between
parsimony and causality. Parsimony is not simply a pragmatic virtue that facilitates the
comprehensibility or readability of Boolean causal models and that can be dispensed with
if it comes at a high price. Rather, parsimony is essential for the causal interpretability of
models output by Boolean methods. A factor A is a cause of another factor E only if there exist
circumstances in which the presence and absence of A makes a difference to the presence and
absence of E . Only solution formulas that exclusively feature Boolean difference-makers as
defined in (BD) are amenable to a causal interpretation.

In the second part, I then conducted a simple inverse search revealing that only the most
liberal search strategy S3 of QCA succeeds in correctly identifying Boolean difference-
makers. If inferred from appropriate data, only the most parsimonious solution formulas of
QCA are guaranteed to reflect causation. That is, if QCA is applied, as it often is, to generate
causal explanations, to uncover causal structures or to test causal hypotheses, recourse must
be made to the liberal search strategy S3. However, as is well recognized in the literature, S3

Footnote 12 continued
researcher from doing so. Whereas in the case of QCA it is the algorithmic machinery of the method that
calls for the introduction of counterfactual configurations in order to eliminate all redundancies from solution
formulas, CNA leaves counterfactual considerations entirely up to the researcher’s background theory.
13 The fact that QCA’s S3 and CNA infer the same causal model for outcome E from Table 1 does not indicate
that corresponding inferences are based on the same or even related assumptions. One and the same conclusion
can be inferred from very different assumptions. For instance, “Socrates is mortal” can be inferred from the
assumptions “Socrates is a man” and “All men are mortal”, or from “All immortal things are angels” and
“Socrates is not an angel”, or from any contradiction, e.g. from “It rains and it does not rain”. A conclusion is
established if it is not only validly inferred from a set of assumptions, but if the latter are moreover cogently
justifiable.
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runs the risk of trivializing causal inferences by introducing untenable, viz. necessarily false,
simplifying assumptions.

Finally, we saw that it is Quine-McCluskey optimization (Q-M) that presents QCA with the
dilemma between parsimony and tenability of simplifying assumptions. A Boolean method
of causal data analysis, as CNA, that does not eliminate redundancies from solution formulas
by means of Q-M manages to maximize parsimony and, thereby, to correctly uncover causal
structures without drawing on untenable counterfactual assumptions.

Let me end by reemphasizing a caveat. None of the findings of this paper shall be taken
to imply that parsimonious Boolean solutions always correctly mirror underlying causal
structures. If the data processed by any Boolean method is deficient, parsimonious solutions
will tend to miss the target just as any other type of solutions. Yet, while conservative and
intermediate solutions are even off-target when they have been generated from ideal data,
to the effect that the corresponding search strategies of QCA under no circumstances output
causally interpretable solutions, there is a positive chance that parsimonious solutions truth-
fully reflect underlying causal structures, viz. whenever the analyzed data is of the required
quality. All in all, thus, studies that aim for causally explanatory solutions must, under all
circumstances, present the parsimonious solutions as their main results—and not, as is cur-
rently customary in the QCA literature—intermediate solutions. Moreover, if parsimony can
only be maximized at the prize of introducing untenable simplifying assumptions, recourse
must be made to a Boolean method that dispenses with Quine-McCluskey optimization.
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