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Abstract.—Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across
large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly
influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition
into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or
following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have
become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very
challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of
evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a
compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions
and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards
and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive
zones, just as postulated by Simpson’s hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated
equilibrium; quantitative traits.]

A key goal of evolutionary biology is to understand
the mechanisms by which the phenotypic diversity
seen today evolved. Our understanding of these
mechanisms is improving rapidly with the advent
of increasingly powerful sequencing approaches. For
instance, the accumulation of molecular data has led
to the resolution of phylogenetic trees encompassing
entire orders. Further, methods to reliably identify
substitutions that likely resulted from selection, and
to accurately place them on a phylogeny have been
developed. In contrast, methods to infer events of rapid
evolution from phenotypic data have lagged and are
mostly restricted to inferring independent evolutionary
rates for different clades.

In general, quantitative studies of the evolution of
phenotypic/quantitative traits date back just a few
decades. A first attempt was by Edwards et al. (1964)
and Cavalli-Sforza and Edwards (1967), who modeled
quantitative traits stochastically as “Brownian motion”
(BM). However, given the current wealth of molecular
data available, a more realistic goal is to only aim at
inferring the rates at which quantitative traits evolve,
while assuming the underlying phylogeny to be known.
This has been successfully done using a BM model
in multiple taxa. Freckleton et al. (2002), for instance,
used a BM model on a given phylogeny to test if traits
showed phylogenetic signal. More recently, Brawand
et al. (2011) modeled gene expression evolution as BM
and rejected evolution at a constant rate for several
genes.

Several extensions to a basic BM model have been
proposed. Butler and King (2004) were the first to
implement Ornstein–Uhlenbeck (OU) processes with
multiple evolutionary optima, as initially described
by Hansen (1997), and recently used to describe the
evolution of gene expression (e.g., Bedford and Hartl
2009; Rohlfs et al. 2013). Other extensions to BM allow
evolutionary rates to change over time. O’Meara et al.
(2006), for instance, contrasted maximum likelihood
(ML) estimates of evolutionary rates under BM and
showed that major clades of angiosperms vastly
differ in their rate of genome size evolution. More
recently, Eastman et al. (2011) developed a Bayesian
method to jointly infer evolutionary rates in different
clades and found evidence for multiple rate shifts in
body size evolution in emydid turtles. Shortly after,
Slater et al. (2012) have introduced an extension to
incompletely sampled phylogenies and trait data using
Approximate Bayesian Computation. However, they
found no evidence for an elevated rate of body size
evolution in pinnipeds in comparison to terrestrial
carnivores, despite considerable power. This suggests
that the larger body size found in pinnipeds may be the
result of rapid evolutionary changes early in the clade,
rather than a change in the rate itself, and hence that
models of occasional “evolutionary jumps” may often
more accurately explain the evolution of quantitative
traits.

According to Simpson (1944), such evolutionary jumps
are triggered by shifts of lineages into different adaptive
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zones, either by dispersal into new geographic areas, the
appearance of evolutionary novelties, key innovations,
the extinction of lineages leaving niches empty, or
by rapid changes in the environment (climatic or
ecological). Additionally, the existence of “ecological
opportunities” (Losos 2010) might also trigger such
jumps. While OU processes have been proposed to
model the dynamics of adaptive landscapes (e.g., Ingram
and Mahler 2013; Uyeda and Harmon 2014), a promising
alternative is to model this type of evolution as a
compound process (or Lévy process) consisting of a
continuous background process and a discrete jump
process. The first implementation of such a model
assumed that jumps only occurred at speciation events
(Bokma 2008), but Landis et al. (2013) recently described
Lévy processes in a much more general way and showed
that while the likelihood functions of most of these
models are intractable, inference is possible under a
Bayesian framework. For instance, when modeling the
evolution of quantitative traits as a Poisson compound
process, in which traits are assumed to evolve under BM
with occasional jumps that occur as a Poisson process
on the tree, the likelihood can be calculated analytically
when conditioning on a jump configuration (a placement
of jumps on the tree). Under the assumption that jump
effects are normally distributed, a jump configuration
can be seen as simply stretching the branches of the tree
on which they occur, and the likelihood is then given by
a multivariate normal distribution with the variance–
covariance matrix resulting from the stretched tree. The
numerical integration is then limited to sampling jump
configurations, which is readily done using Markov
Chain Monte Carlo (MCMC).

Unfortunately, two computational challenges prohibit
the application of this approach to larger trees. First,
the space of jump configurations grows exponentially
with tree size, leading to very long MCMC chains.
Second, the evaluation of the likelihood requires the
computation of the inverse of the variance–covariance
matrix, which is computationally very demanding since
it scales exponentially with tree size (Tung Ho and
Ané 2014). Here, we address these computational issues
using an empirical Bayes approach in which we first
infer the hierarchical parameters of the Brownian and
Poisson processes using ML, and then fix those when
inferring posterior probabilities on jump locations.
This approach allows us to run MCMC chains with
fixed hierarchical parameters, for which we find a
computationally highly efficient approach that does not
require matrix inversions. As a result, this approach
readily scales up to very large phylogenies.

We then demonstrate the power and accuracy of our
approach with extensive simulations and find that our
approach hardly misses any jumps with a meaningful
strength. We then illustrate the usefulness of our
approach by identifying evolutionary jumps in Anolis
lizards and Loriini parrots, two well-studied groups
for which morphological data is available. We identify
few but important evolutionary jumps in both groups,
suggesting such periods of rapid evolutionary change

to be rare but crucial in shaping the morphological
diversity observed today.

THEORY

The Null Hypothesis: Brownian Motion
We first consider a Brownian motion (BM) process on a

phylogenetic tree T with root O where time is measured
in the unit of the branch lengths. The process starts at
O with value �∈R (root state) and then proceeds with
variance s2

0 along the branches. The values of the BM
process, as observed at the L leaves, give rise to the
random vector

x= (x1,...,xL)′.
Let us fix the notation: The lengths of the (inner and
outer) branches of T are called �1,...,�B where B is the
number of branches. For two leaves i,j we denote by T0=
(�ij) the length of their common branch in T as measured
from the root O. Now, under the assumption of a pure
BM, and defining 1= (1,1,...,1)′, the values x at the leaves
have the multivariate normal distribution

x∼N (�1,s2
0T0)

or written more conveniently:

x=�1+ε (1)

with ε∼N (0,s2
0T0). Since T0 is positive definite and

symmetric, it has a symmetric and positive definite
square root Q, i.e., Q2=T0. Multiplying both sides of
(1) with Q−1 we get the homoskedastic model

x0=�v0+ε0,

where x0=Q−1x, v0=Q−11, and ε0∼N (0,s2
0I). For this

we have the usual OLS estimators (see e.g., Davidson
and MacKinnon 2004, ch. 3.2)

�̂= (v′0v0)−1v′0x0=
1′T−1

0 x

1′T−1
0 1

and

ŝ2
0 =

1
L−1

v′0
(

I−v0(v′0v0)−1v′0
)

x0

= 1
L−1

(
x′T−1

0 x− (1′T−1
0 x)2

1′T−1
0 1

)
.

Lévy Process
We now extend the BM model by super-imposing an

independent Poissonian jump-process with rate �. The
jumps shall be normally distributed with zero mean and
variance s2

1. The (unobservable) random vector

ν= (�1,...,�B)′
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counts the number of Poisson events (jumps) on each of
the B branches. By assumption,

P(�b=nb)=e−��b
(��b)nb

nb!
, nb=0,1,2,....

For a multi-index n= (n1,...,nB), we have

P(ν=n)=
B∏

k=1

e−��b
(��b)nb

nb!
. (2)

Recall that for two leaves i,j we denote by �ij the length of
their common branch in T as measured from the root O.
In particular, �ii is the distance (sum of branch lengths)
of the leaf i from the root O.

We denote by nij for two leaves i,j the number of
Poisson events along the common branch of length �ij.
Conditional on ν=n= (n1,...,nB), the random vector
x is multivariate normal with mean �1 and the L×L
variance–covariance matrix �(n)= (�ij(n)) where

�ij(n)=�ijs
2
0+nijs

2
1, 1≤ i,j≤L.

The conditional density of x given ν=n is

�(x|n)= 1√
(2�)Ldet�(n)

·exp
(
−1

2
(x−�1)′�−1(n)(x−�1)

)
. (3)

The likelihood of x given the four parameters � (root
state), s0 (Brownian motion) and �,s1 (Poissonian jump
process) is the mixture distribution

f (x|�,s2
0,�,s2

1)=
∞∑

n1=0

···
∞∑

nB=0

P(ν=n)�(x|n), (4)

where we used expressions (2) and (3). It is not hard to
show that

E(xi)=� and Cov(xi,xj)=�ij(s
2
0+�s2

1).

Inference under the Lévy Process
Here we develop a computationally efficient approach

to maximize the likelihood function given in equation
(4). Although the infinite sums in (4) prohibit an
analytical solution, they are readily evaluated using
numerical approaches. Landis et al. (2013), for instance,
proposed to use an MCMC approach to integrate
over jump configurations. Unfortunately, however, such
a solution does not scale to large trees, because
the calculation of the conditional density values in
(3) involves the computation of the inverse of �(n)
and its determinant, which are computationally very
demanding.

We propose to address this problem by introducing
an algorithm to calculate these quantities efficiently
under this model. Specifically, and as we show in

Appendix 1, both the inverse and determinant can be
determined cheaply from a previous solution to a case
that differs in the presence of a single jump on the tree.
Although this algorithm can readily be incorporated
into the MCMC approach proposed of Landis et al.
(2013), we will propose an alternative hierarchical Bayes
approach that makes even better use of it and leads to
a computationally highly efficient inference approach to
obtain point estimates of the parameters �, s2

0, �, and
s2
1, as well as posterior probabilities on the location of

evolutionary jumps, as we describe in the following.

Monte Carlo EM algorithm.—We obtain ML estimates of
the parameters �,s2

0 and � by means of a Monte Carlo
version of the classical Expectation Maximization (EM)
algorithm, in which we treat the random variable ν
as missing (unobserved) data. Although this approach
does not allow us to find the ML estimate of 	, we discuss
below how this can be achieved using a simple grid
search.

Recall that each iteration of the EM algorithm consists
of an estimation (E) and a maximization (M) step. Let us
denote the old parameters determined in the previous
M-step by 
̃= (�̃,s̃2

0,�̃,	0), and the new parameters with
respect to which the Q-function has to be maximized in
the next M-step by 
= (�,s2

0,�,	0), where 	0 is a fixed
value for 	. The two steps of the EM algorithm are then
as follows:

Monte Carlo E-step. In this step, we simulate
stochastically K vectors nk according to the multi-Poisson
distribution P(ν=n|�̃). For this we use an MCMC scheme
that fully exploits the fast computation of inverses
discussed above (see Appendix 2 for details).

Determine the weights

�k = �(x|nk,�̃,s̃2
0,	0)

= ck ·exp

(
− 1

2s̃2
0
·(x−�̃1)′ ·T−1(nk,	0)·(x−�̃1)

)
,

with
ck= (2�s̃2

0)−L/2 ·(detT(nk,	0))−1/2.

In the M-step we have to maximize the function

Q(
|
̃) = E
[
logP(x,n|
)|x,
̃

]
(5)

=
∑
n

P(n|x,
̃)logP(x,n|
)

with respect to the parameters 
= (�,s2
0,�,	0) where

P(x,n|
)=�(x|n,�,s2
0,	0)P(ν=n|�).

From Bayes’ theorem we have

P(n|x,
̃)= �(x|n,�̃,s̃2
0,	0)P(ν=n|�̃)

P(x|
̃)
. (6)

Thus, according to our Monte Carlo scheme and up
to the factor 1/P(x|
̃), the infinite sum in (5) can be
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approximated by

Q(
)∝
K∑

k=1

�k log[�(x|nk)P(ν=nk)], (7)

where �(x|nk) and P(ν=nk) are given by (2) and (3),
respectively.

M-step. In this step, we seek the parameters 
̃ which
maximize the sum in (7) and which will serve as “old”
parameters in the next E-step. We have

P(ν=nk)=e−���|nk |c(nk),

where �=∑�i is the total length of the tree T , |nk|
denotes the sum of the components of nk , and c(nk) is
a factor that does not depend on any of the parameters

. From this it is easy to see that

�̃=
∑

�k|nk|
�
∑

�k
, (8)

independently of the values of the other three
parameters. Since we assume the value of 	 to be fixed,
we can also give explicit expressions for the values of �

and s2
0 which maximize Q(
|	=	0). First, determine the

matrix

S=
K∑

k=1

�kT−1(nk,	0). (9)

Standard calculus shows that

�̃= 1′Sx
1′S1

(10)

and

s̃2
0 =

1
L
∑

�k
(x−�̃1)′S(x−�̃1)

= 1
L
∑

�k

(
x′Sx− (1′Sx)2

1′S1

)
. (11)

We note that the EM algorithm can be implemented
without the Monte-Carlo part if we impose a condition
|ν|≤R on the likelihood, i.e., if we suppose a priori that
there have been only R or less Poisson events on the tree
T . In that case, the sum in (5) is over all nk such that
|nk|≤R (see Appendix 3).

Estimating factor 	.—The Monte Carlo EM algorithm
proposed above, while computationally highly efficient,
does not allow for the estimation of the factor 	. We
thus use a numerical approach to iteratively approach
the ML estimate of 	. Specifically, we start at a value
	0 and then iteratively increase that value such that
log10	t= log10	t−1+�	 until the likelihood decreases.
The algorithm then turns back by setting �	←−�	/e
and proceeds again until the likelihood decreases. With
every switch, the step size gets smaller and the estimate
is guaranteed to get closer to the true MLE value as we
found the likelihood surface to have a single peak (Figure
S1 available as Supplementary Material on Dryad at

http://dx.doi.org/10.5061/dryad.170rb). In each step,
we use the Monte Carlo EM algorithm described above
to calculate the likelihood at the MLE estimates of all
other parameters conditioned on that 	 value. In all
application we set 	0=0.1 and the initial �	=0.1 and
found estimates to be accurate within five switches
corresponding to about 15 values tested.

Identifying jump locations.—To infer the location of jumps
on a phylogenetic tree we implement an empirical Bayes
approach. As is commonly done in such a setting, we

assume the ML estimates �̂,ŝ2
0,�̂ and 	̂ obtained using

our Monte Carlo EM scheme are accurate and thus
known constants when inferring jump locations. Under
this assumption, the MCMC approach introduced above
can also be used to sample configurations of jumps n

from the probability distribution P(n|x,�̂,ŝ2
0,�̂,	̂). This

allows us to numerically infer for each branch k the

posterior probabilities of P(nk=0|x,�̂,ŝ2
0,�̂,	̂) and P(nk >

0|x,�̂,ŝ2
0,�̂,	̂), and thus to identify branches for which

there is convincing evidence for an evolutionary jump.

Implementation.—We implemented the algorithm
introduced here in C++ and optimized the
code for speed. A user-friendly program to
apply it to data is available at our lab website
(http://www.unifr.ch/biology/research/wegmann/).

SIMULATIONS

Convergence
Convergence of the MCMC.—We assessed the convergence
of MCMC chains by comparing parameter estimates
between two independent and parallel chain runs until
10,000 jump vectors n were sampled. We run a total of
100 such chain pairs for each of two different starting
locations and discarded the first 100 such vectors as burn-
in. We also compared two different values to thin the
chains: either we sampled every 10th or every 5000th
step. Here we define an MCMC step as one proposed
update for each branch (hence one step consist of as many
iterations as there are branches in the tree).

Regardless of the starting values, convergence was
reached rather fast but with some variation across
parameters (Figure S2 available as Supplementary
Material on Dryad). The parameter to converge fastest
was �, for which the difference in estimates was
below 0.01 within 2000 sampled jump vectors for 90%
of all chain pairs. Similarly small differences for s2

0
and � were only reached after sampling about 4000
jump vectors (Figure S2 available as Supplementary
Material on Dryad). Interestingly, a larger thinning
did not improve convergence, suggesting that the
variance in estimates is dominated by variation in
the jump vectors sampled, but not by autocorrelation
along the chain. This was further confirmed when

http://dx.doi.org/10.5061/dryad.170rb
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we repeated the same experiment for much larger
trees with 1000 leaves and sampling every second
step to reflect the larger number of iterations per
step, in which case convergence was observed at
the same rate (Figure S3 available as Supplementary
Material on Dryad). For subsequent analyses, we
sampled a total of 5000 jump vectors an used thinning
of 10 and two for trees with 100 and 1000 leaves,
respectively.

We next assessed the convergence of the MCMC for the
inference of jumps on trees by assessing the difference
in posterior probabilities between independent chains
for trees with 100 and 1000 leaves (Figures S4 and S5
available as Supplementary Material on Dryad). We
again run 100 chain pairs, fixed the thinning to 10 or
two for trees with 100 or 1000 leaves, respectively, and
discarded the first 100 jump vectors as burn-in. Although
we found convergence to be reached within less than
2000 iterations for branches with very low (<0.05) and
very high (>0.95) posterior probabilities, more iterations
were required for branches with intermediate posterior
probabilities. We found that sampling 5000 jump vectors
gave very consistent results also for inferring the location
of jumps.

Convergence of the EM for parameter inference.—To test if
the stochastic EM algorithm converges with the MCMC
settings determined above, we run the EM for a wide
range of parameter values for up to 100 iterations. Since
the EM algorithm is stochastic, it does not converge
onto a single value unless an infinitely large sample
of n vectors are used. We thus first inspected obtained
patterns visually and found that parameter estimates
stabilized after only a few iterations, usually between 10
and 20, regardless of tree size (Figures S6 and S7 available
as Supplementary Material on Dryad).

We then implemented two different measurements
to assess convergence more formally: the first is a

test statistic assessing the presence of a trend in the
parameter estimates, and the second is quantifying the
number of slope changes in the individual parameter
updates (see Appendix 4).

Power to Reject Brownian Motion
To assess the power of our approach to identify Lévy

processes and to estimate associated parameters, we run
our EM algorithm on data simulated with jumps on
trees of 100 leaves, each simulated using a birth–death
model (Stadler 2011) and scaled to a total length of 1. We
generated 100 such simulations for many combinations
of number of jumps and 	 values but fixed �=0 and
s2
0=1 because changing these parameters does not affect

the inference. We then inferred the MLE estimates for
all parameters under both the null model (Brownian
motion) and under the alternative Lévy model.

Using both a likelihood ratio test (LRT) or the Akaike
Information Criterion resulted in generally substantial
power to reject the null model over a large range of jumps
simulated and for many different values of 	 (Fig. 1).
Unsurprisingly, power was much lower if simulated
jumps were on the order of the change of the Brownian
background process or lower. Here we simulated trees
of length 1, and thus the average length of each of the
∼200 branches on a tree with 100 leaves was roughly
0.005. Hence with 	=0.01, the strength of half of the
evolutionary jumps are expected to be smaller or equal
to the effect of the background process on an average
branch. However, with 	=0.1, the power to reject the
null model was >80% if multiple jumps were present on
the tree.

Interestingly, we also found our approach to regularly
fail to reject the null model if the number of jumps was
very large, i.e., on the order of the number of branches (50
jumps correspond to a jump on every 4th branch). In such
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b) as a function of the number of simulated jumps n and the jump strengths 	.
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situations, the large variance in traits observed under
the Lévy model is also perfectly explained by a pure BM
model with larger variance s2

0 (see below). Surprisingly,
we did not observe this effect at larger trees of 1,000 leaves
at the same proportion of jumps (Figure S8 available as
Supplementary Material on Dryad), suggesting that the
fraction of branches with jumps required for the model
to reduce to pure Brownian motion is larger for larger
trees.

In summary, these results show that our method has
considerable power to detect Lévy processes as long as
jumps are meaningfully strong and there are not too
many jumps, in which case the Lévy and BM models
become indistinguishable from each other.

Accuracy in Inferring Lévy Parameters
For the cases in which the Lévy model was preferred

we next evaluated the power of our approach to infer the
associated parameters, starting with the jump strength
	 and trees with 100 leaves. We found that our approach
infers 	 quite accurately over the whole range, but we
observed a slight overestimation for lower 	 values.
This is a direct result of the low power to reject a
model of Brownian rate at these lower jump strengths
such that for simulations that resulted in larger jumps
the Brownian model was more easily rejected. But the
inferred values for 	≤1 were rarely further from the true

value than a factor of 2 if multiple jumps were present
(Fig. 2a), whereas it was unsurprisingly much harder
to accurately infer the jump strength in case of a single
jump.

We next evaluated the accuracy of our approach in
inferring the jump rate �, again limited to the simulations
in which a Lévy model was preferred. As shown in
Figure 2b, our method inferred this parameters very
accurately over a large range of jumps simulated and
for all values of 	, with generally higher accuracy with
higher 	 values.

We then finally evaluated the accuracy in inferring
the Brownian background rate s2

0 (Figure 2b) and
found it to be very accurately inferred whenever the
Brownian model was rejected. Interestingly, however,
s2
0 was overestimated whenever the Brownian model

could not be rejected but jumps were simulated. This
illustrates that under certain conditions a Lévy model
is indistinguishable from a model of pure Brownian
motion with an elevated rate. This is particularly true
in the case of weak jumps (small 	) or if jumps are very
common on the tree.

As expected given the larger amount of information,
the hierarchical parameters are estimated much more
accurately on larger trees. To illustrate this we repeated
these analyses for trees with 1,000 leaves which resulted
in much tighter confidence intervals for all parameters
(Figure S9 available as Supplementary Material on
Dryad).
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FIGURE 2. Accuracy in inferring Lévy parameters. Each boxplot represents the distribution of inferred values across 100 replicates simulated
as described in the text for different combinations of jump strengths 	 and number of simulated jumps n. a) Accuracy in inferring factor 	. The
true 	 values used in the simulations are indicated with red dashed lines. b) Top row: distributions of inferred jump rate �. Connected red open
circles represent the true values. The numbers printed below the boxplots indicate the percentage of simulations for which the Brownian model
was rejected and are hence included here. Bottom row: distributions of inferred Brownian background rates s2

0 for simulations in which the
Brownian null model was rejected (black) or not rejected (blue).
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Jump Location
We finally tested the power of our method to infer

the location of jumps on the tree. For this we simulated
trees with 100 leaves and trait data affected by 20
jumps randomly placed on each tree for different jump
strengths 	 while fixing s2

0=1. In each case, we then
assumed the Lévy parameters to be known and used our
MCMC approach to calculate the posterior probability
on there being at least one jump for each branch.

We found our method to have a very low false positive
rate in identifying jumps in that a posterior probability
for jumps >0.5 was never obtained for branches on
which we did not simulate any jumps (Fig. 3a), and 90%
of all such branches resulted in a posterior probability
for jumps below 0.2 even for the weakest jump strengths
simulated (	=0.1).

The power to infer true jumps (true positives) was also
considerably high, especially for jumps of meaningful
strength. For data simulated with 	=10, for instance,
90% of all branches on which jumps were simulated
resulted in a posterior probability >50%, and 75% even
in a posterior probability >95%. The few branches with
jumps for which we did not obtain decisive posterior
probabilities in favor of jumps all contained jumps
that were considerably weak (Fig. 3b). Such jumps are
expected even for large 	 values since individual jump
strengths are assumed to be normally distributed around
zero.

A similar pattern was observed when simulating data
with smaller 	, but even in the case of 	=0.1 we obtain
posterior probabilities in favor of jumps >0.5 for more
than one third of the branches on which jumps were
simulated (Fig. 3a). At such small 	 values for a tree
of length 1, about 40% of all jumps are expected to
have a strength smaller than 10 times the effect of the
Brownian process on the same branch. But we note that
the difficulty in placing weak jumps did not affect the
power to infer the jump rate �, which was inferred quite
accurately even at such low 	 values (Fig. 2).

All these findings were confirmed with simulations
conducted for trees with 1000 leaves (Fig. 3c and d)
if scaling 	 appropriately (since branches are 10 times
smaller, the same power is obtained with 10 times smaller
	 values).

Run Times
The simulations performed here illustrate the

computational efficiency of our algorithm. For a tree
with 100 leaves, a single iteration of the EM required
about 10 seconds on a single core of a standard desktop
computer. Given that the EM converged after about 15
iterations on average, the algorithm required about 3
minutes to the find the MLE of all model parameters for
a fixed 	 value. For a tree with 1000 leaves, the EM also
took on average 15 iterations to converge, but a single EM
iteration required about eight minutes, resulting in a run
time of 2 hours per 	 value. The number of 	 values to
test directly translates into the estimation accuracy, but
we found that very accurate estimates of 	 were obtained
with our peak-finder algorithm after already 15 values.
The total run time was thus 45 minutes and 30 hours for a
tree with 100 and 1000 leaves, respectively. The inference
of jump locations then requires just a single run of the
MCMC algorithm, and hence as long as a single EM
iteration (10 seconds and 8 minutes, respectively).

We note that this almost quadratic increase in
computational costs between a tree with 100 and 1000
leaves is expected given that the number of branches
increases quadratically with the number of leaves. We
can thus speculate that the inference of evolutionary
jumps on a tree with 10000 leaves will require about
10 hours per EM iteration and thus about 6 days for a
single 	 value. To speed up the inference for trees this
large we thus recommend not to use our peak-finder
algorithm but rather to run a grid search over 	 that
is readily parallelized on a computer cluster. It might
further be beneficial to obtain initial estimates from a
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subset of the tree to restrict this search range and to
initialize the EM algorithm with already appropriate
values. All features required for such runs are readily
available in our implementation.

APPLICATIONS

Quantum Evolution in Anoles
There have been a few direct tests of Simpsonian jumps

between adaptive zones using empirical data (Uyeda
et al. 2011). Here, we analyze “evolution by jumps” in the
adaptive radiation of anoles, lizards that have adaptively
radiated in the Caribbean and South America (Losos
2009). Following previous work, we focused on anoles on
the four islands of the Greater Antilles, as they provide
a unique opportunity for testing Simpson’s theory of
adaptive zones for two reasons. First, there have been
repeated dispersal events among islands in the Greater
Antilles (Losos et al. 1998; Mahler et al. 2010). These
dispersal events represent geographic opportunities,
where anole lineages reach a new island and are no
longer sympatric with the former set of competitors
(Mahler et al. 2010). Second, most anole species can
be classified into ecomorphs, habitat specialists that
have evolved repeatedly on the four islands of the
Greater Antilles (Losos et al. 1998). Transitions between
ecomorph categories represent the evolution of key
characters in anole lineages that allow them to invade
novel habitats (see Losos (2009) for a review).

Anoles have thus repeatedly experienced two
conditions under which Simpson expected evolutionary
jumps to be observed: dispersal into new geographic
areas and the appearance of evolutionary novelties.
Importantly, both ecomorph origins and transitions
among islands are replicated in the phylogeny of anoles,
but are still rare enough that we can estimate the
position of transitions on the phylogenetic tree with
some confidence (Schluter 1995; Huelsenbeck et al. 2003).

With this background in mind, we tested if a model
with evolutionary jumps fits the evolution of body size
in anoles better than pure Brownian motion, and if jumps
correspond with either of the two factors postulated by
Simpson: evolution of key characters and/or geographic
dispersal. To address this question, we made use of a
recent time-calibrated phylogeny of 170 Anolis lizards
(Thomas et al. 2009) and analyzed snout-to-vent length
(SVL), a standard phenotypic measurement of body size
in lizards. This trait is broadly correlated with habitat
partitioning in Greater Antillean anoles and represent
the primary axes of ecologically driven evolutionary
divergence in lizards (Schoener 1970; Beuttell and Losos
1999; Losos 2009). We made use of the sex-specific data of
SVL from Thomas et al. (2009) and inferred evolutionary
parameters independently for females and males, but
excluded five species that lacked information on SVL for
one or both sexes (Anolis darlingtoni, A. guamuhaya, A.
loveridgei, A. oporinus, and A. polyrhachis).

We found that the Lévy jump model is preferred over
a strict BM model in females, but not in males (Table 1).

Evolutionary jumps indicating rapid body size evolution
(Fig. 4) were found precisely at the basis of the clade
comprising the ecomorph “crown giants” Thomas et al.
(2009), in which females exhibit particularly large body
sizes. The large sexual size dimorphism of this group
(Harmon et al. 2005) is also likely explaining why the
BM model fits the evolution of male body sizes well. In
addition to the clades of crown giants, we also identify
evolutionary jumps at the basis of the clade consisting of
the species A. barbatus, A. porcus, and A. chamaeleonides.
These species, which are known as “false chamaleons”
and are part of the former genus Chameleolis have been
called the “most bizarre West Indian lizards” (Leal and
Losos 2000).

Our analyses support two main conclusions. First,
evolutionary change in female anoles is not well
described by a uniform random walk. A better
description of anole evolution combines a uniform
component of change that is punctuated by rapid jumps
in trait values. Second, these jumps in body size very well
correspond to ecological transitions to novel ecomorphs.
The evolution of this trait is thus consistent with
Simpson’s description of evolutionary jumps associated
with the entry into new adaptive zones. The fact that
we did not find such jumps at the basis of clades of
other ecomorphs suggests that body size was not a
trait strongly contributing to the ecological transition
of those. However, evolutionary jumps might well be
found at the basis of those clades when focusing on more
relevant traits.

Nectarivory Evolution in Loriini
The Australasian lories belong to the tribe Loriini

(Joseph et al. 2012) and are extremely species rich
(Schweizer et al. 2011). Their digestive tract is highly
adapted to a nectarivorous diet (Güntert 2012) and
Schweizer et al. (2014) has shown quantitatively that
a switch in diet to nectarivory might be considered
an evolutionary novelty that created an ecological
opportunity for species proliferation through allopatric
partitioning of the same new niche. Using the
methodology developed above we tested if the evolution
of the morphology of the digestive tract in parrots as a
whole is better characterized by a model of evolutionary
jumps or Brownian motion. For this we made use
of data from Schweizer et al. (2014), to generate a
time-calibrated phylogeny of 78 parrot species using
BEAST (Drummond and Rambaut 2007) implementing
a secondary calibration point from Schweizer et al. (2011)
for the initial split within parrots. The following 13
measurements of the morphology of the digestive tract
were used: the length of intestine, length of esophagus,
extension of esophagus glands, length of intermediate
zone, length of proventriculus, gizzard height, gizzard
width, gizzard depth, maximum gizzard height at
main muscles, gizzard thickness at main muscles,
gizzard lumen width including koilin layer, gizzard
width at the caudoventral thin muscle, maximum
gizzard height at the thin muscle, and the maximum
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gizzard lumen at the thin muscle. Since many of
the morphological characters of the digestive tract
considered are both highly correlated with body size as
well as among themselves, we first regressed out body
mass (Wgt) from each other morphological trait and
then summarized the residuals of all traits using the
first three principal components (PCA; see also (Revell
2009)).

We found that the evolution of the first two PC axis
on the morphology of the digestive tract were much

better explained by a model of evolutionary jumps
(P<10−16 in both cases) with relatively high rates of
jumps (Table 1). Overall, the jumps for PC1 identified
with strongest support are both on branches basal to
clades of nectarivorous species, particularly at the base
of highly specialized nectar feeding Loriini, but also at
the base of the genus Loriculus (Fig. 5). As postulated
by Simpson the niche shift to nectarivory especially in
Loriini involved a period of rapid evolution reflecting
adaptations to feed effectively on nectar (and pollen)
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TABLE 1. Inferred Lévy parameters for Anolis and Loriinii, along with the log-likelihood (�) obtained under the Lévy and BM models and
the p-value of a LRT contrasting these.

Anolis Loriini

logSVLf logSVLm log Wgt PC1 PC2 PC3

� 3.93 4.18 5.33 −0.062 0.051 0.19
s2

0 5.06 10.34 44.40 7.68 7.35 5.80
	 0.11 — — 0.16 0.093 —
� 11.27 — — 11.95 7.38 —
�BM 5.03 −15.19 −85.54 −65.00 −60.63 −6.22
�Lévy 26.61 −13.89 −85.51 −31.99 −24.72 −4.97
LRT p 4.3·10−10 0.28 0.97 4.7 ·10−15 2.3 ·10−16 0.29
Preferred model Lévy BM BM Lévy Lévy BM

(Schweizer et al. 2014). Although the jumps within the
Neotropical parrots are difficult to interpret in biological
terms, the shift along the branch leading to Psittrichas
fulgidus might be explained by its gizzard morphology
similar to that of the Loriini probably reflecting an
adaptation to its reportedly mainly frugivorous diet
(Schweizer et al. 2014). Some special structures in the
digestive tract of the genus Nestor have been described
in Güntert (2012).

DISCUSSION

Although many traits appear to evolve at relatively
constant rates over long time periods and across many
taxa, some traits seem to undergo periods of rather
rapid evolution (see Arnold (2014)). Simpson (1944)
postulated that such evolutionary jumps are triggered by
a change in selection pressure after lineages transitioned
into different adaptive zones, for instance by dispersing
into new geographic areas, after the appearance of
evolutionary novelties, key innovations, or after rapid
climatic or ecological changes of the environment. The
appearance of well-calibrated phylogenies along with
recent statistical developments now allow to test such
models on a wide variety of data.

Bokma (2008), for instance, proposed to model
evolutionary jumps as a compound process of a
continuous background process and a discrete jump
process. Recently, Landis et al. (2013) introduced a
general framework to infer parameters of such Lévy
processes under a Bayesian framework by means of
Markov Chain Monte Carlo (MCMC). Unfortunately this
approach, while elegant, requires the calculation of the
inverse of the variance–covariance matrix describing
the correlations between traits as a function of the
phylogenetic tree and the jump process, which is
computationally prohibitive for large trees.

Here we introduce a computationally highly efficient
variant of this approach that naturally scales to large
trees. The basis of our approach is an MCMC algorithm
in which we can update the inverse of the above
mentioned variance–covariance matrix directly without
inversion when sampling jump configurations with fixed
hierarchical parameters (root state, Brownian rate, jump

strength and jump rate). To make use of this development
for inference we propose a two-step approach in which
the MCMC algorithm is embedded into an Expectation–
Maximization (EM) approach to obtain maximum
likelihood (ML) estimates of the hierarchical parameters
while integrating over jump configurations. In a second
step, the location of jumps can then be inferred under
an empirical Bayes framework in which the hierarchical
parameters are fixed to their ML estimate and the
developed MCMC algorithm is used to obtain for each
branch the posterior probability that a jump occurred at
this location.

There are also other methods that deal with the burden
of calculating inverses and determinants of variance–
covariance matrices. For instance, Freckleton (2012)
applied the results of Felsenstein (1973) and Felsenstein
(1985) to calculate the likelihood in linear time of a BM
model. FitzJohn (2012) also proposed a fast algorithm
to calculate BM and OU likelihoods using Gaussian
elimination, but this is not applicable to non-Gaussian
traits. Tung Ho and Ané (2014) proposed a new method,
which efficiently calculates likelihoods by avoiding
the calculation of the inverse and determinant of the
variance–covariance matrix. Their method requires that
this matrix belongs to a class of generalized 3-point
structured matrices. Our method, which applies an
iterative scheme, differs from the others in the sense that
the inverse and determinant of the variance–covariance
matrix has to be calculated only once when obtaining the
likelihoods, thus obtaining rather fast calculation times.

We demonstrated the applicability of our approach by
identifying evolutionary jumps for body size evolution
in Anolis lizards and the evolution of gut morphology
in Australasian lories of the tribe Loriini. We found
strong support for evolutionary jumps in both systems
that provide direct support for Simpson’s quantum
evolutionary hypothesis of adaptive zones. Among the
anoles, for instance, we identified evolutionary jumps
on the basal lineage leading to crown giants, a group of
lizards that transitioned into a novel niche for hunting:
the crowns of large tropical trees. Similarly, we identified
jumps at the basis of clades of lories that transitioned
to nectarivory, an evolutionary novelty that triggered
rapid changes in morphology of the digestive system
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FIGURE 5. Evolutionary jumps in the morphology of the digestive tract in parrots. Results for PC1 are shown on the left phylogeny, and
results for PC2 on the right phylogeny. Branches are colored according to their inferred jump posterior probability (black to red scale going from
posterior probability 0 to 1, respectively). Species names are colored according to their diet: nectarivorous (blue) and nonnectarivorous (green).

and promoted significant lineage diversification, which
was probably mainly non-adaptive after the basal diet
shift through allopatric partitioning of the same niche
(Schweizer et al. 2014, cf.).

These results also show that the distinction between
“gradual” and “punctuated” models of evolution is
a false dichotomy; instead, evolution has a gradual
component that may be frequently punctuated by
periods of rapid change (Levinton 2001). We further note

that in both cases studied here a single jump at the
basis of clades is sufficient to explain their trait data,
suggesting that the period of rapid evolution was limited
to a single branch and that the background rate remained
constant. We suggest that future work should follow
Simpson’s lead and focus on the factors that promote
these pulses of evolutionary change.

Although we model evolutionary jumps as
instantaneous, we want to be clear that we are not
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invoking actual instantaneous evolutionary change (e.g.,
“hopeful monsters”) (Goldschmidt 1940; Charlesworth
et al. 1982). Typical microevolutionary processes of
selection and drift can cause change that would appear
to be instantaneous when viewed over the timescale
of macroevolution. Our model is also distinct from
punctuated equilibrium, which requires evolutionary
jumps to occur only at speciation events (Eldredge and
Gould 1972). The punctuated changes in our model
occur along branches in the tree and are not necessarily
associated with speciation events. In fact, for the case of
anoles, two lines of evidence argue against punctuated
equilibrium: first, most speciation events in the tree are
not associated with jumps; and second, we know from
detailed microevolutionary studies that anole body size
can evolve rapidly in response to selection even in the
absence of speciation (e.g., Losos et al. (2006)).
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APPENDIX 1

Efficient Calculation of Inverses and Determinants
For a symmetric non-singular matrix A and a (column)

vector a, we have

(A±aa′)−1=A−1∓ 1

1±a′A−1a
(A−1a)(A−1a)′ (1)

(see Izenman (2008), p. 47) and

det(A±aa′)=detA·(1±a′A−1a) (2)

(see Anderson 2003, Corollary A.3.1). These formulae
have recently been shown to speed up the calculation of
the likelihood function under Brownian motion models
(Tung Ho and Ané 2014). Here we use them to develop a
fast algorithm applicable to Lévy processes.

Let us first fix some notation: For each branch b, we
define the L×L incidence matrix Ib= (Ib

ij) by setting Ib
ij=1

if the branch b is common to the pair of leaves i,j, and

Ib
ij=0 otherwise. Clearly,

nij=
B∑

b=1

nbIb
ij.

In the following we replace the parameter s2
1 with the

positive factor 	 given by s2
1=	s2

0. Observe that

�(n)=s2
0T(n,	) and det�(n)=s2L

0 detT(n,	),

where

T(n,	)=T0+	

B∑
b=1

nbIb

and T0= (�ij). Finally, we introduce for b=1,...,B the
(column) vectors ub, each one with L components. The
i-th component ub

i is equal to 1 if leaf i is subordinate to
branch b (i.e., the path from the root O to node i contains
branch b). Otherwise, if leaf i is not subordinate to branch
b, then ub

i =0. It is easy to see that Ib=ub(ub)′ and thus

T(n,	)=T0+	

B∑
b=1

nbub(ub)′. (3)

We can now apply formulae (1) and (2) to obtain
the following iterative scheme for the computation of
T−1(n,	) and detT(n,	):

First, determine T−1
0 and detT0. Then, for each term

with nb >0 in the sum (3), update Tb−1 to Tb etc. as
follows: Let

rb=1+	 nb ·(ub)′ T−1
b−1ub

and calculate

T−1
b =T−1

b−1−
	 nb
rb
·(T−1

b−1ub)(T−1
b−1ub)′;

detTb=rb ·detTb−1. (4)

When all non-zero terms in (3) have been considered,
we arrive at T−1

B =T−1(n,	) and detTB=detT(n,	).
Observe that in this scheme, the only matrix inverse
that ever has to be determined is T−1

0 . The number of
non-zero nb will frequently be small compared to B and
so will be the number of iterations (4).

APPENDIX 2

Simulating n with MCMC
Here we describe how to sample the states n from the

probability distribution P(n|x,
) using the Metropolis
scheme. (To unburden the notation in the description
of the MCMC algorithm, we drop the tilde overscript on
the parameters.) At each state we will need the inverse
matrix T−1 of T(n,	0) given by (3). Start the chain e.g.,

http://dx.doi.org/10.5061/dryad.170rb
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at n= (0,...,0) and with T−1
0 .

1. Let n denote the current state of the Markov chain
and T−1 the inverse matrix of T(n,	0). Choose
an index b=1,...,B with equal probability (or
with a probability proportional to �b) and an
increment �nb=+1 or =−1 with probability 1/2.
The candidate state n′ is given by in- or decreasing
the b-th index n by �nb: n′b=nb+�nb.

2. Using (6) and the iteration formula (4) it is not
hard to check that the Hastings ratio (proposal
probability) can be calculated by

h=min

⎡
⎣1, r−1/2

(
��b

n+b

)�nb

×exp

(
	�nb

2rs2
0

∣∣∣(x−�1)′T−1ub
∣∣∣2
)⎤⎦,

where n+b =nb+max(0,�nb) and r=1+	�nb ·
(ub)′T−1ub. If the candidate state contains a
negative component (i.e., if nb=0 and �nb=−1)
then set h=0. This ensures that the chain is indeed
symmetric.

3. With probability h jump to the candidate state n′,
otherwise stay at n. In the first case, update

n← n′

T−1 ← T−1− 	0�nb
r
·(T−1ub)(T−1ub)′

and go to step 1.

No matrix inverse must ever be calculated in this scheme
thanks to the update in step 3. (To counterbalance
the accumulation of numerical errors it might however
be wise to occasionally calculate T−1=T−1(n,	0) from
scratch.)

After the burn-in phase, a fraction n1,...,nM of the
simulated states will be retained (thinning out). These
will be used to replace the matrix (9) in the M-step of the
EM algorithm by

S= 1
M

M∑
m=1

T−1(nm,	0). (5)

APPENDIX 3

Conditional Likelihood
If we suppose a priori that there have been only R or

less Poisson events on the tree T , the EM algorithm can
be implemented deterministically. In that case, the sum
in (5) is over all nk such that |nk|≤R. Observe that we

have to use the conditional probabilities

P(ν=ni|ν≤N)=P(ν=ni)/
K∑

k=1

P(ν=nk).

The new Q-function is

Q(
)=
K∑

k=1

�k log[�(x|nk)P(ν=nk|ν≤R)], (6)

where we can use

�k=�(x|nk,�̃,s̃2
0,	̃)P(ν=nk|�̃).

In the conditional case, there no longer seems to exists
a closed formula like (8) for the optimal �̃. Setting the
derivative of (6) w.r.t. � equal to 0, one can show that �̃
is the root of the following R-th order polynomial:

P(�)=
R∑

r=0

�r

r!
(∑

�k|nk|−r
∑

�k

)
�r,

i.e., P(�̃)=0. The estimation of �̃ and s̃0, on the
other hand, remains exactly as given by (10) and (11),
respectively.

APPENDIX 4

Assessing Convergence of the Stochastic EM
We introduce two measures to assess convergence of

the Monte Carlo EM algorithm.

Regression criterion.—We consider a time series y1,...,yn
and construct a test statistic which allows to reject the
null hypothesis that the time series exhibits no trend. For
this we estimate the slope 
̂ of the regression line passing
through the data points (1,y1),(2,y2),...,(n,yn) and test
for the null hypothesis 
=0 (no trend). Determine the
following quantities:

ȳ= 1
n

n∑
i=1

yi, Sxx = n(n2−1)
12

, Sxy=−1
2

n∑
i=1

(n+1−2i)yi,


̂= Sxy

Sxx
, �̂2 = 1

n−2

(( n∑
i=1

y2
i

)
−nȳ2− 
̂Sxy

)
,

se(
̂)=
√

�̂2

Sxx
.

The test statistic

T= 
̂

se(
̂)
has the Student’s t-distribution with n−2 degrees of
freedom. We reject the null hypothesis on the level � if
|T|≥ t�/2,n−2. A good rule of thumb (for � roughly 5%
and n>15) is |T|≥2.
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Proportion of slope sign changes.—We propose a second
way of assessing convergence by taking the last n values
of the EM algorithm and counting the number of times
c there is a change in the sign of the slope between
consecutive values. If convergence is reached, we expect
the number of slopes with a positive sign to be similar
to the number of slopes with a negative sign. We report
the test statistic N

N= c
n−2

,

where n−2 represents the total number of possible sign
changes among the last n values.

REFERENCES

Anderson T. 2003. An introduction to multivariate statistical analysis.
New York: John Wiley.

Arnold S.J. 2014. Phenotypic evolution: the ongoing synthesis.
American Naturalist 183:729–746.

Bedford T., Hartl D.L. 2009. Optimization of gene expression by natural
selection. Proc. Nat. Acad. Sci. 106:1133–1138.

Beuttell K., Losos J.B. 1999. Ecological morphology of caribbean anoles.
Herpetological Monographs, p. 1–28.

Bokma F. 2008. Detection of punctuated equilibrium by bayesian
estimation of speciation and extinction rates, ancestral character
states, and rates of anagenetic and cladogenetic evolution on a
molecular phylogeny. Evolution 62:2718–2726.

Brawand D., Soumillon M., Necsulea A., Julien P., Csárdi G., Harrigan
P., Weier M., Liechti A., Aximu-Petri A., Kircher M., et al. 2011. The
evolution of gene expression levels in mammalian organs. Nature
478:343–348.

Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: a
modeling approach for adaptive evolution. American Naturalist
164:683–695.

Cavalli-Sforza L.L., Edwards A.W. 1967. Phylogenetic analysis.
models and estimation procedures. American J. Human Genet.
19:233.

Charlesworth B., Lande R., Slatkin M. 1982. A neo-darwinian
commentary on macroevolution. Evolution 36:474–498.

Davidson R., MacKinnon J.G. 2004. Econometric theory and methods,
vol. 5. New York: Oxford University Press.

Drummond A.J., Rambaut A. 2007. Beast: Bayesian evolutionary
analysis by sampling trees. BMC Evolut. Biol. 7:214.

Eastman J.M., Alfaro M.E., Joyce P., Hipp A.L., Harmon L.J. 2011.
A novel comparative method for identifying shifts in the rate of
character evolution on trees. Evolution 65:3578–3589.

Edwards A., Cavalli-Sforza L., Heywood V. 1964. Phenetic and
phylogenetic classification. Systematics Association, Publication 67.

Eldredge N., Gould S.J. 1972. Punctuated equilibria: an alternative to
phyletic gradualism. Models in Paleobiol. 82–115.

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary
trees from continuous characters. American J. Human Genet. 25:471.

Felsenstein J. 1985. Phylogenies and the comparative method.
American Natural 125(1):1–15.

FitzJohn R.G. 2012. Diversitree: comparative phylogenetic analyses of
diversification in r. Methods Ecol. Evol. 3:1084–1092.

Freckleton R.P. 2012. Fast likelihood calculations for comparative
analyses. Methods Ecol. Evol. 3:940–947.

Freckleton R.P., Harvey P.H., Pagel M. 2002. Phylogenetic analysis
and comparative data: a test and review of evidence. American
Naturalist 160:712–726.

Goldschmidt R. 1940. The material basis of evolution, vol. 28. New
Haven: Yale University Press.

Güntert M. 2012. Morphologische Untersuchungen zur adaptiven
Radiation des Verdauungstraktes bei Papageien (Psittaci).
Zoologische Jahrbucher. Abteilung für Anatomie und Ontogenie
der Tiere 106:471–526.

Hansen T.F. 1997. Stabilizing selection and the comparative analysis of
adaptation. Evolution 51(5):1341–1351.

Harmon L.J., Kolbe J.J., Cheverud J.M., Losos J.B. 2005. Convergence
and the multidimensional niche. Evolution 59:409–421.

Huelsenbeck J.P., Nielsen R., Bollback J.P. 2003. Stochastic mapping of
morphological characters. Syst. Biol. 52:131–158.

Ingram T., Mahler D.L. 2013. SURFACE: detecting convergent evolution
from comparative data by fitting Ornstein-Uhlenbeck models with
stepwise Akaike Information Criterion. Methods Ecol. Evol. 4:
416–425.

Izenman A. 2008. Modern multivariate statistical techniques vol. 1.
New York: Springer.

Joseph L., Toon A., Schirtzinger E.E., Wright T.F., Schodde R. 2012.
A revised nomenclature and classification for family-group taxa of
parrots (Psittaciformes). Zootaxa 3205:26–40.

Landis M.J., Schraiber J.G., Liang M. 2013. Phylogenetic analysis using
lévy processes: finding jumps in the evolution of continuous traits.
Syst. Biol. 62:193–204.

Leal M., Losos J.B. 2000. Behavior and ecology of the Cuban
“chipojos bobos” Chamaeleolis barbatus and C. porcus. J. Herpetol. 34:
318–322.

Levinton J.S. 2001. Genetics, paleontology, and macroevolution.
Cambridge: Cambridge University Press.

Losos J.B. 2009. Lizards in an evolutionary tree: ecology and adaptive
radiation of anoles vol. 10. University of California Press.

Losos J.B. 2010. Adaptive radiation, ecological opportunity, and
evolutionary determinism. American Naturalist 175:623–639.

Losos J.B., Glor R.E., Kolbe J.J., Nicholson K. 2006. Adaptation,
speciation, and convergence: a hierarchical analysis of adaptive
radiation in caribbean Anolis lizards 1. Annals Missouri Botanical
Garden 93:24–33.

Losos J.B., Jackman T.R., Larson A., de Queiroz K., Rodrıguez-Schettino
L. 1998. Contingency and determinism in replicated adaptive
radiations of island lizards. Science 279:2115–2118.

Mahler D.L., Revell L.J., Glor R.E., Losos J.B. 2010. Ecological
opportunity and the rate of morphological evolution in the
diversification of greater antillean anoles. Evolution 64:2731–2745.

O’Meara B.C., Ané C., Sanderson M.J., Wainwright P.C. 2006. Testing
for different rates of continuous trait evolution using likelihood.
Evolution 60:922–933.

Revell L.J. 2009. Size-correction and principal components for
interspecific comparative studies. Evolution 63:3258–3268.

Rohlfs R.V., Harrigan P., Nielsen R. 2013. Modeling gene expression
evolution with an extended ornstein-uhlenbeck process accounting
for within-species variation. Mol. Biol. Evol. 31(1):201–211.

Schluter D. 1995. Uncertainty in ancient phylogenies. Nature 377:
108–110.

Schoener T.W. 1970. Size patterns in west indian anolis lizards.
ii. correlations with the sizes of particular sympatric species-
displacement and convergence. Am. Naturalist 104(936):155–174.

Schweizer M., Güntert M., Seehausen O., Leuenberger C., Hertwig S.T.
2014. Parallel adaptations to nectarivory in parrots, key innovations
and the diversification of the loriinae. Ecol. Evol. 4:2867–2883.

Schweizer M., Seehausen O., Hertwig S.T. 2011. Macroevolutionary
patterns in the diversification of parrots: effects of climate
change, geological events and key innovations. J. Biogeography 38:
2176–2194.

Simpson G. 1944. Tempo and Mode in Evolution. A Wartime book.
New York: Columbia University Press.

Slater G.J., Harmon L.J., Wegmann D., Joyce P., Revell L.J.,
Alfaro M.E. 2012. Fitting models of continuous trait evolution
to incompletely sampled comparative data using approximate
bayesian computation. Evolution 66:752–762.

Stadler T. 2011. Simulating trees with a fixed number of extant species.
Syst. Biol. 60:676–684.

Thomas G.H., Meiri S., Phillimore A.B. 2009. Body size diversification
in Anolis: novel environment and island effects. Evolution 63:
2017–2030.

Tung Ho, L.S., Ané C. 2014. A linear-time algorithm for gaussian and
non-gaussian trait evolution models. Syst. Biol. 63:397–408.

Uyeda J.C., Hansen T.F., Arnold S.J., Pienaar J. 2011. The million-
year wait for macroevolutionary bursts. Proc. Nat. Acad. Sci. 108:
15908–15913.

Uyeda J.C., Harmon L.J. 2014. A novel Bayesian method for inferring
and interpreting the dynamics of adaptive landscapes from
phylogenetic comparative data. Syst. Biol. 63:902–918.


	Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes
	APPENDIX 1


