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Abstract The goal of this contribution was to develop a

reliable quality indicator reflecting the potential success of

differential carrier phase ambiguity resolution for kinematic

Global Positioning System (GPS). The indicator must be

operable without any communication link between the rover

and the reference station. Two common existing GPS quality

measures are combined: firstly, the SIGMAmodel, which is a

signal intensity-based weighing scheme reflecting the actual

signal quality, and secondly, the ambiguity dilution of preci-

sion (ADOP), which is an indicator of the geometric strength

of a constellation. Together, these two established indicators

form the newly developed ADOP?. In the first part of the

present work, a calibration is conducted in order to obtain the

parameters for the SIGMA model. In the second part, the

ADOP? is derived and implemented. A practical test is per-

formed on a motorcycle in order to validate the concept. The

ADOP? is proven to be meaningful and well performing

within the empirical case. It is able to predict the success of

phase ambiguity resolution in the majority of situations.

Keywords Kinematic GNSS � Ambiguity resolution �
Ambiguity dilution of precision

Introduction

In kinematic global positioning system (GPS) applications,

centimeter- to decimeter-level positioning accuracy can

only be achieved by solving phase ambiguities in differ-

ential mode (Kaplan and Hegarty 2006). Without a com-

munication link between the rover and the reference

receiver, the success of ambiguity resolution cannot be

checked in real time. This can be problematic for some

airborne surveying, as in airborne photogrammetry with

unmanned aerial vehicles (UAV). Possible tilt of the

antenna and intentional or unintentional signal interfer-

ences are one possible difficulty, others are related to signal

reception shading by natural or artificial structures

(mountains, buildings, etc.). A reliable real-time quality

check allows in situ assessment of the collected data, helps

to avoid additional field work and reduces the costs of data

acquisition.

The success of kinematic ambiguity resolution depends

mainly on the actual signal quality and on the geometry

and the redundancy of the satellite constellation. The goal

of this contribution is to develop a quality indicator,

applicable in real time and without a communication link

to the reference station, which takes into account both

aspects, the signal quality as well as the receiver to satellite

geometry. The concept should be as general as possible and

rely on a strict mathematical definition.

Concept

The newly developed quality indicator, the ADOP?, is a

combination between a signal intensity-based weighting

scheme of code and phase measurements, the SIGMA-e
model (Brunner et al. 1999), and a geometrical quality

indicator (Teunissen and Odijk 1997), the ambiguity dilu-

tion of precision (ADOP). The stochastic SIGMA-e model

establishes a link between the signal intensity and the

variance of code or phase observations. Hence, it is able to

account for signal jamming and diffraction. The stochastic
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model is used as input for the ADOP? computation, which

is enhanced thanks to realistic weights for each observa-

tion. Since the ambiguity search space and therefore the

ADOP? value are mainly dependent on the estimated

accuracy of the code solution, a correct weighting of the

code observations, through the SIGMA model, is essential.

In the first part of this contribution, the selected sto-

chastic model and its realization are described. A calibra-

tion is conducted to derive the parameters of the model.

The second part addresses the derivation and the imple-

mentation of the ADOP?. Practical tests are carried out to

validate the presented concept.

Stochastic modeling

A stochastic model describes the probabilistic behavior of

observations. In the present case, the accuracy of code and

phase measurements is estimated based on the intensity of the

received GPS signal. A low GPS signal intensity indicates

perturbations and therefore a high noise level in the mea-

surements. The aim of this section is to derive and to calibrate

a parameterized model for the measurement accuracy.

Measuring signal intensity

Signal intensity is reflected either by the signal-to-noise

ratio (SNR) or by the carrier-to-noise power-density ratio

C/N0. The SNR is defined as the ratio of the signal power,

usually the carrier power, to the noise power in a given

bandwidth. It is expressed in decibels. In contrast, the C/N0

is defined as the ratio of the carrier power and the noise

power per unit of bandwidth. Usually, this measure is

expressed in decibel-hertz. The C/N0 can be measured in

each tracking loop, but usually, only one C/N0 value per

carrier frequency is available in the receiver output.

Variance of observations

A link between the signal intensity and the variance of a

GPS code or phase observation can be established as fol-

lows (Kaplan and Hegarty 2006).

r2c ¼
aBc

c=n0
1þ 2

T c=n0

� �
k2c ð1Þ

r2p ¼
Bp

c=n0
1þ 1

2 T c=n0

� �
k2

4p2
ð2Þ

rc
2 [m2] is the variance of an undifferentiated code

observation, rp
2 [m2] is the variance of an undifferentiated

phase observation, a [-] is the code tracking loop dis-

criminator correlator factor (either 1 for a shared correlator

or 0.5 for dedicated early and late correlators), Bc [Hz] and

Bp [Hz] are the bandwidths of the corresponding tracking

loop, kc [m] is the code wavelength, k [m] is the carrier

wavelength, and T [s] is the predetection integration time.

c/n0 [Hz] is the C/N0 [dB-Hz] value expressed as a ratio:

c=n0 ¼ 10
C=N0
10 ð3Þ

The second term in brackets in Eqs. 1 and 2 is called

squaring loss. It reflects the nonlinear behavior of the

measurement accuracy in case of low signal intensities.

The SIGMA model

Based on Eqs. 1 and 2, the SIGMA-e model (Brunner et al.

1999; Wieser and Brunner 2000) establishes a parametric

relation between the signal intensity and the variance of an

undifferentiated observation:

r2i ¼ Vi þ Ci � 10
�C=N0

10 ð4Þ

ri
2 [m2] is the variance of an undifferentiated observa-

tion. Vi [m
2] and Ci [m

2 Hz] are two parameters and C/N0

[dB-Hz] is the carrier-to-noise power-density ratio. The

subscript i indicates the type of observation, for instance,

C/A code on L1 or carrier phase measurements on L2.

Compared with Eqs. 1 and 2, the squaring loss is neglected

and the remaining parameters are combined to a unique

parameter Ci. Furthermore, an offset Vi is added to the

equation. Brunner et al. (1999) suggest to determine Vi and

Ci in a calibration procedure. Since the variance of a mea-

surement depends on the bandwidth of the corresponding

tracking loop, a calibration has to be conducted for each

receiver type. Due to the dependence on the wavelength, a

set of parameters must be determined for each observation

type. Additionally, the parameters of the SIGMA model

were found to be dependent on the antenna type.

Calibration procedure

In order to eliminate various errors, such as orbit errors,

synchronization errors, or the influence of the troposphere,

the calibration of the model shown in Eq. 4 has to be

conducted on double-difference level. On this level, the

parameters of the SIGMA model do not appear explicitly

anymore. As suggested by the authors of the model, the

SIGMA variance can be estimated without any parameter

(see Eq. 4):

r2i ¼ 10
�C=N0

10 ð5Þ

Once this variance is computed for each observation,

variance propagation can be applied in order to obtain the

estimated SIGMA variance of the double differences (see

Eqs. 16–18). The estimated SIGMA variance can then be

used to classify the double differences. Each class regroups
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p double differences which are expected to have similar

precisions. Assuming a perfectly known baseline, the

empirical variance remp
2 of each class of double differences

can be computed:

r2emp ¼
1

p� 1
vTv ð6Þ

v is the vector of the double-difference residuals. At this

stage, the model parameters are estimated with a linear

regression between the SIGMA variance, derived from

Eq. 5 and propagated to the double-difference level, and

the actual empirical variance from Eq. 6. An example is

shown in Fig. 1. The intercept corresponds to Vi and the

slope of the regression to Ci (see Eq. 4). The quality of the

regression can be quantified by the coefficient of determi-

nation R2, which is defined as follows.

R2 ¼ 1�
Pn

i¼1 Yi � Ŷi
� �2

Pn
i¼1 Yi � �Yið Þ2

ð7Þ

Yi is the ordinate, Ŷi is its estimate and �Yi is the mean

value. A coefficient value of R = 1 indicates that the whole

variance of the dataset is perfectly reflected by the linear

regression.

Practical realization

As a basis for the calibration, static measurements were

collected over 24 h in a zero-baseline setup. Two Javad

receivers equipped with OEM-boards TR-62T (L1/L2/L5,

Galileo, SBAS) and TR-63T (L1/L2/L5, GLONASS,

Galileo, SBAS), and four different GPS antennas were used

(Table 1). The dynamic adaptation of the tracking loops

bandwidths by the receiver was disabled, so that the

parameters Vi and Ci can be considered as constants. A set

of these parameters is determined for the following

observation types: C/A code, P2 code, L1 phase, and L2

phase.

Validation

In order to check the robustness of the model, datasets were

acquired in two operational-like environments: firstly, with

a tilted antenna and secondly, on a static UAV. In the first

case, the antenna was tilted by 40� to increase the measured

ground noise and to rotate the antenna gain pattern with

respect to zenith. In the second case, all on-board systems

on the UAV, engines, communication devices, and the

inertial navigation unit, were activated to simulate unin-

tentional interferences. The parameters of the SIGMA

model, Vi and Ci, determined previously, are applied to

these datasets. The same procedure as for the calibration is

used, but instead of performing a linear regression, the

accordance of the existing parameters with the new dataset

is checked through the coefficient of determination R2.

Results

The calibration results for the code measurements with the

Antcom G5 antenna are shown in Table 2. The model

performs well in the optimal environment: The coefficient

of determination reaches 98 %. The coefficients of deter-

mination are lower for the validations, which were

expected since the parameters were fit to the first dataset.

R2 exceeds 80 % in the inclined environment, confirming

the validity and the robustness of the model. The value

drops to 67 % for the validation on the UAV. This is

partially caused by the short observation time. For security

reasons, the running UAV had to be under permanent

supervision. Therefore, the measurement duration does not

exceed 3 h. The results for the phase measurements are

more delicate to interpret. The linear regression leads to an

overestimation of Vi and an underestimation of Ci. For that

reason, a second regression with Vi forced to zero was

conducted (Fig. 2). The calibration results for the Topcon
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Fig. 1 Calibration of the SIGMA model parameters via linear

regression for C/A code measurements with the Antcom G5 antenna.

The slope of the regression is equal to C, its offset to V

Table 1 Calibrated antennas

Brand Type Remark Weight

(kg)

1 Antcom G5Ant-1AS1 L1/L2 ? GLONASS 0.100

2 Maxtena M1227HCT-

A-SMA

L1/L2 ? GLONASS 0.017

3 Topcon G3-A1 Geodetic antenna, L1/L2/

L5 ? GLONASS

0.550

4 Unknown MK-76 L1 only 0.020
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geodetic antenna are shown in Table 3. In general, the

coefficients of determination reach lower values for the

phase measurements than for the code observations.

Enhancements in cycle slip detection and phase ambiguity

resolution, which are needed to compute the correct vari-

ance of the phase measurements, could help to improve

these results.

Discussion

The SIGMA model could be implemented successfully. A

validation in various environments showed that the model

is robust with respect to changes in the environment. The

model performances for code measurements are extremely

high with coefficients of determination up to 98 %. The

model was also calibrated for carrier phase observations.

The coefficient of determination decreases below 70 % and

therefore indicates a lower agreement between the model

and the data. As a direct result of this calibration, the

parameters of the SIGMA-e model are obtained for various

antennas and various observation types, namely C/A code,

P2 code, L1 phase, and L2 phase.

ADOP

The dilution of precision (DOP), which is a kind of prior

analysis, is a popular concept in standalone GPS (Kaplan

and Hegarty 2006). The computation of this single-value

indicator does not require any measurements and relies

only on a stochastic and a functional model. The DOP

reflects the geometrical strength of a constellation. If the

functional model is adapted and extended by an additional

parameter, the phase ambiguity, the ADOP is obtained

(Teunissen 1997). In the following, the derivation of the

traditional ADOP is shown, as well as its combination with

the stochastic model from the previous section, resulting in

the new ADOP?. Finally, the performance of the ADOP?

is compared to the classical, purely geometrical ADOP.

Definition

The ADOP is defined as following (Teunissen and Odijk

1997)

ADOP ¼ detQââð Þ
1
2n ð8Þ

Qââ is a sub matrix of the parameter cofactor matrix Qx̂x̂

and contains the cofactors of the ambiguities. Qx̂x̂ is well

known from adjustment theory as:

Qx̂x̂ ¼ ATQ�1
ll A

� �
¼ N�1 ð9Þ

Qll is the cofactor matrix of the observations. N is called

the normal equation matrix. A is the matrix of partial

derivatives of the function f xð Þ with respect to the

parameters x. f xð Þ represents the functional model and

establishes the link between true parameters x (e.g., coor-

dinates) and true observations l (e.g., code and phase

observations):

l ¼ f xð Þ ð10Þ

By using the determinant and not only the trace of Qââ, the

correlation between ambiguities is taken into account by

the ADOP.

Properties

The value of the ADOP is dependent on the number of sat-

ellites and, if a geometry-based functional model is chosen,

dependent on the satellite constellation. Furthermore, the
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Fig. 2 Linear regression for phase measurements with the Topcon

antenna. The dotted line shows the linear regression without any

condition, the solid line with V forced to zero. The red dot is an

outlier

Table 3 Results of the calibration for phase measurements with the

Topcon antenna

Mean R2 (%) C [m2 Hz] V [m2]

V as parameter 69.3 462 0.020

V forced to zero 64.9 736 0

Table 2 Calibration and validation results for C/A code measure-

ments with the Antcom G5 antenna

Environment Mean

R2 (%)

C

[m2 Hz]

V

[m2]

Data

duration (h)

Calibration Optimal 98.3 10,758 0.157 24

Validation Inclined 40� 82.1 24

Validation UAV 67.0 3
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ADOPdepends on the relative and absoluteweights attributed

to each observation. The effect, on the ADOP, of the accu-

mulation of epochs in a sequential adjustment is as follows

(Willi 2014).

ADOP / 1

k

� �1=2

ð11Þ

This relation is valid, assuming that the k epochs are

independent and geometrically identical with constant

weights.

Functional model

A geometry-based model with observations on two fre-

quencies is used. In a simplified notation and for a single

double difference, the model reads as follows (Teunissen

1997).

rDP1 ¼ rDq

rDL1 ¼ rDqþ k1rDN1

rDP2 ¼ rDq

rDL2 ¼ rDqþ k2rDN2

ð12Þ

DrP is a double-difference code observation, and DrL

is a double-difference carrier phase observation with its

double-difference ambiguity DrN. Drq is the geometric

range on double-difference level, and k1 is the wavelength

of the first, k2 the wavelength of the second GPS frequency.

After linearization, the model has the following shape:

DrP1

DrL1
DrP2

DrL2

0
BB@

1
CCA ¼ A � dx ¼ A �

X

Y

Z

DrN1

DrN2

0
BBBB@

1
CCCCA ð13Þ

If, in a kinematic case, observations are taken over

several epochs, a set of unknown coordinates must be

added to the vector of parameters for each epoch. In con-

trast, the ambiguity terms stay constant, assuming the

absence of cycle slips. The redundancy of the model can be

read from Table 4.

Stochastic model

In the absence of any information, the observations are

assumed to have uniform weights. Usually, the ratio

between the variance of a code observation rc
2 and the

variance of a phase observation rp
2 is set to:

r2p
r2c

¼ 10�4 ð14Þ

Stochastic Model of the ADOP?

The ADOP? is a combination between the traditional

ADOP and a realistic stochastic model. The variances of

the observations at the rover Kll;A are estimated with the

SIGMA model (see previous section), and the variances of

the observations at the reference station Kll;B are estimated

with an elevation-dependent model. The reason for this

choice is simple: At the rover, no data from the reference

station are available. Therefore, it is not possible to com-

pute the SIGMA variances for the reference station. The

elevation-dependent model works very well in clear sky

condition, which is assumed to be the case at the reference

station. The elevation-dependent model reads as follows.

r2j;B ¼ Ui þ Bi

1

sinElj
ð15Þ

Elj is the elevation of the jth satellite. The subscript

i stands for the observation type, for instance, C/A code or

L2 phase. To simplify the computation of the elevation, it

is assumed that the elevation of the satellite seen from the

rover is equal to the elevation of the satellite seen from the

reference station. The parameters Ui and Bi were deter-

mined within the SIGMA model calibration procedure.

In the second step, classical variance propagation (or

error propagation) is applied in order to obtain the vari-

ances at double-difference level KrD. Both the variances

from the rover Kll;A and the variances from the reference

Kll;B contribute to the error budget of the double

differences:

KrD ¼ D � Kll;A þKll;B

� �
� DT ð16Þ

D is the sequential differentiation operator, which is used

to form the double differences out of the single differences:

Dm n�1ð Þ�m�n ¼ Imðn�1Þ 0m n�1ð Þ;m
� �
� 0m n�1ð Þ;m Imðn�1Þ
� �

ð17Þ

m is the number of observations per satellite, and n is the

number of satellites. Additionally, r0 was chosen to be one,
so that:

Table 4 Overdetermination of

the geometry-based functional

model

Model Mode Unknowns Observations Overdetermination

Geometry based double frequency Kinematic 3k ? 2n-2 4k (n-1) k (4n-7)–2n ? 2

Static 2n ? 1 4k (n-1) 4k (n-1)–2n-1
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KrD ¼ r20QrD ¼ QrD ð18Þ

Implementation

The implementation of the ADOP? is diagrammed in

Fig. 3. The program enters the slow loop. A buffer is

formed, containing all satellites measured over the buffer

length of k epochs. k has to be chosen according to the

rover dynamics and the sampling rate. On a highly

dynamic vehicle, a buffer length of a few seconds is rea-

sonable. The satellites presenting a data outage within the

buffer are eliminated. Since satellites need to have been

tracked without interruption on both frequencies, this

operation is implicitly a cycle slip detection through loss of

tracking on L2. After the satellite selection, the program

enters the fast loop and the functional model A is formed,

using satellite orbits computed from the ephemerides. The

SIGMA model is used to set up the stochastic model K.

Finally, the normal equation matrix N is formed. This

operation is repeated for all k epochs contained in the

buffer, and the normal equation matrices are summed up in

order to perform a sequential adjustment. Once the pro-

gram quits the fast loop, the normal equation matrix is

inverted and the ADOP? is extracted. The buffer is shifted,

and the ADOP? is computed for the following epochs.

Validation

A validation was conducted on a motorcycle. This vehicle

was chosen mainly for practical reasons: it presents inter-

esting dynamics, a changing inclination in turns, and it can

be deployed without any special authorization. Figure 4

shows the motorcycle with the Maxtena antenna mounted

on a pole at the back. Several short baseline (\12 km) tests

were performed in challenging urban and suburban envi-

ronments. The Topcon antenna on the roof of an EPFL

building connected to a Javad multi-frequency receiver

served as reference station. The same types of receivers

were used as within the calibration. The baselines are

computed in postprocessing with the commercial software

GrafNav (http://www.novatel.com). As this software is

proprietary, the exact algorithm on ambiguity resolution

and the criteria on ambiguity validation are not known;

nevertheless, it is considered by practitioners as a standard

for its proven performance, reliability, and versatility in

kinematic applications. In the last step, the phase ambiguity

fixing rate in postprocessing is compared to the ADOP

prediction.

Results and discussion

Figure 5 shows the results of the validation in the suburban

environment. The dataset was acquired with a measuring

rate of 10 Hz. The buffer length is set to k = 50 epochs or

5 s. The black line shows the prediction computed with the

ADOP?. The background is the graphical output from the

commercial software: green indicates successful ambiguity

fixing in the forward and backward solutions, blue indi-

cates an ambiguity resolution in only one direction, and red

represents an unsuccessful ambiguity resolution. The

implemented ADOP? is able to predict the problematic

periods (1) and (2). The Sects. (3) and (4) are also cor-

rectly predicted, but with lower ADOP values. The epi-

sodes with unproblematic ambiguity resolution are also

correctly detected, like (5) and (6). In some cases, the

ADOP? turns out to be over pessimistic (7). In general,

the ADOP? is able to successfully predict the achievement

of ambiguity resolution. Setting an alarm threshold

between 0.6 and 0.8 cycles seems a reasonable choice. In

general, the threshold has to be chosen based on empirical

tests and depending on the required ambiguity fixing rate.

GPS measurements

buffer over k epochs

selection of satellites

functional model A

stochastic model K

addition of normal
equation matrices N

ADOP computation

graphical output

almanac

orbit computation

SIGMA model

buffer loop

main loop

Fig. 3 Structure of the ADOP? implementation Fig. 4 Empirical setup on a Suzuki DL650 V-Strom with the Antcom

G5 on a pole at the back
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In the case that the buffer length k is modified, Eq. 11 has

to be used in order to properly scale the resulting ADOP?

values.

Figure 6 illustrates the benefit of using a signal inten-

sity-based weighting. The upper line represents the newly

developed ADOP?, including stochastic input from the

SIGMA model and the elevation-dependent model. The

lower line shows the traditional ADOP computed with

fixed weights. In this case, the signal intensity values do

not enter the computation and the ADOP only depends on

the geometry and the redundancy of the satellite constel-

lation. This fixed and unitary weighting introduces an

arbitrary scale; hence, only the relative values of the ADOP

and the ADOP? can be compared and not their absolute

values. In cases of a favorable satellite constellation and a

good signal quality, the traditional ADOP works well,

e.g., (1), (2), and (3). In this case, there is only a little

benefit using a signal intensity-based stochastic model as

input. However, as soon as the signal quality gets worse,

only the ADOP? (upper line) is able to correctly predict

difficulties in phase ambiguity resolution, as in (4) to (7).

In some cases, for instance, in (5) and (7), the traditional

ADOP (lower line) shows no or only a little peak and

overestimates the success of phase ambiguity resolution. In

other cases, the traditional ADOP shows some peaks, but

drops to small values in between.

In summary, the traditional ADOP is unable to detect

difficulties in ambiguity fixing that occur despite a strong

satellite constellation. In contrast, the stochastic SIGMA

model input enhances the sensitivity and the performance

of the ADOP?. Since the computational cost of the

SIGMA model is small compared to the matrix inversion

operations, the ADOP? is well suited to predict the phase

ambiguity resolution success rate directly on a rover.

Conclusions

In the first part, a calibration has successfully been con-

ducted in order to obtain the parameters of the stochastic

SIGMA model. The calibration gives good results for the

estimation of the accuracy of code measurements, which

have the largest impact on the ADOP? values. Parameters

for other types of observations could be obtained, but the

residuals are higher. In the second part, an ambiguity res-

olution success prediction was implemented. It could be

shown that the newly developed indicator, the ADOP?, is

able to correctly predict the success rate of ambiguity

resolution in the majority of cases, thanks to its enhance-

ment by realistic weights from the SIGMA model.

Outlook

The concept of the ADOP? is proven to work and to be

meaningful in the context of kinematic differential carrier

phase ambiguity resolution. Practical tests with this indi-

cator revealed its whole potential. The possible benefits are

manifold, from applications in photogrammetry to land

surveying. Further studies have to be conducted in order to

properly take into account the correlation between obser-

vations in the case of high frequency measurements.

Another improvement could be the integration of the

baseline length in the functional model through an

Fig. 5 Result of the prediction with the ADOP? in a suburban

environment. The buffer length is equal to 50 epochs, the measure-

ment rate to 10 Hz

Fig. 6 Comparison of the ADOP? (upper line) and the traditional,

purely geometrical ADOP (lower line)
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observation of the ionospheric delay, resulting in a better

modeling of long baselines ([5 km).
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