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2 Dipartimento di Fisica, Università di Roma “La Sapienza”, Ple A. Moro 2, 00185 Roma,
Italia

3 School of Physics, University College of Dublin UCD, Belfield, Dublin 4, Ireland

Received 26 March 2015 / Received in final form 5 May 2015
Published online 22 June 2015

Abstract. Simulating the exact quantum dynamics of realistic inter-
acting systems is presently a task beyond reach but for the smallest of
them, as the numerical cost for solving the time-dependent Schrödinger
equation scales exponentially with the number of degrees of freedom.
Mixed quantum-classical methods attempt to solve this problem by
starting from a full quantum description of the system and subsequently
partitioning the degrees of freedom in two subsets: the quantum sub-
system and the bath. A classical limit is then taken for the bath while
preserving, at least approximately, the quantum evolution of the sub-
system. A key, as yet not fully resolved, theoretical question is how to
do so by constructing a consistent description of the overall dynamics.
An exhaustive review of this class of methods is beyond the scope of
this paper and we shall limit ourselves to present, as an example, a spe-
cific approach, known as the LANDM-Map method. The method stems
from an attempt at taking a rigorous limit for the classical degrees of
freedom starting from a path integral formulation of the full quantum
problem. The results that we discuss are not new, but our intent here
is to present them as an introduction to the problem of mixed quantum
classical dynamics. We shall also indicate a broad classification of the
available approaches, their limitations, and some open questions in this
field.

1 Introduction

Computer simulation of quantum time dependent properties. e.g. time correlation
functions, is considerably less powerful than its classical counterpart. The crucial
difficulty hindering it is that all available exact methods for solving the quantum
time evolution equations (such as the time dependent Schrödinger equation for the
wave function or, for example, the quantum Liouville equation for the density) scale
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exponentially with the number of degrees of freedom. This scaling effectively limits
exact calculations to a few tenths of interacting degrees of freedom and to times of
the order of the picosecond. This is to be contrasted with the millions of degrees of
freedom and tenths of microseconds accessible in the classical case when an empirical
description of the interactions is adopted. Overcoming these limitations is a very
interesting theoretical problem. As technologies move to smaller scales or seek to
exploit quantum effects, for example coherence to engineer quantum computers, it is
also rapidly becoming a problem with potentially relevant applications.
Several approximate methods have been developed to increase performance in the

modelling of quantum dynamics, many of which attempt to import, with appropriate
modifications, classical molecular dynamics algorithms to this area. In this paper, we
will focus in particular on the so-called mixed quantum classical approaches. These
approaches are useful when the degrees of freedom of the system can be partitioned,
for example based on the magnitude of their De Broglie wavelength, in two subsets.
The first subset, often indicated as the classical bath, is characterised by a small
De Broglie wavelength and can include a large number of degrees of freedom. The
second, the quantum subsystem, is characterised by a large wavelength and is small
enough that the quantum problem can be solved numerically. A typical situation in
which this partition can be used is to describe the dynamics of systems of nuclei (the
classical bath) and electrons (the quantum subsystem) beyond the Born-Oppenheimer
approximation, i.e. non adiabatic systems. In these systems, the coupling between
nuclear and electronic motions in a molecule, or interactions with the environment
can induce transitions among the different states of the electronic subsystem. These
transitions can change, for example, the products of a chemical reaction by opening
reaction channels in the excited states that follow different relaxation paths depending
on the set of electronic transitions that are activated. Typical situations in which they
occur are reactive scattering on surfaces, environmentally controlled photochemistry
and coherent population transfer in photosynthetic centres.
The general idea of mixed quantum classical methods is to start from a fully

quantum representation of the overall system and take a classical limit for the dy-
namics of the bath, while maintaining a quantum description of the evolution of the
smaller subset. The existing approaches differ essentially in three aspects: the start-
ing quantum formalism (e.g. wave function or density matrix based, Heisenberg or
Schrödinger representation. . . ); the way in which the classical limit for the bath is
taken; and, crucially, the way in which the coupling between the evolutions of the two
subsets is determined. The last two aspects are particularly relevant since they are
the key steps to bridge the quantum and classical scales of the problem. Two main
approaches have been pursued so far: (1) assign the evolution equations (in particular
the form of the force to which the nuclei are subject) and create an ad hoc coupling
mechanism designed to mimic a specific physical process; (2) rigorously determine the
evolution and the coupling via the procedure used to enforce the classical limit for the
dynamics of the bath. Ad hoc methods have the advantage of converging1 with rela-
tively little numerical effort, but it is very difficult, if not impossible, to assess their
general reliability. Possibly, the oldest scheme of this type is Ehrenfest dynamics [1,2].
In this approach, the nuclei are assumed to follow classical dynamics. The force that

1 The concept of convergence is used with two meanings in this paper. (1) When exact,
numerical or analytical, quantum results are available for comparison, convergence indicates
that quantum-classical results are indistinguishable, within the error, from the exact result.
(2) In the absence of reference results, convergence means that increasing the size of the
sample does not change, within a predefined accuracy threshold, the value of the estimator
of a given physical quantity. In mixed quantum classical calculations, the size of the sample
is equal to the number of propagated nuclear trajectories. In case (2) convergence does not
ensure accuracy, but it gives the best estimate for a given method.
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they experience is given by the quantum expectation value over the electronic degrees
of freedom of the gradient of the potential with respect to the nuclear positions. The
electrons, on the other hand, evolve with an Hamiltonian that depends parametrically
on the (time dependent) nuclear positions. Such a self-consistent, mean field like, ap-
proach is well suited to describe phenomena in which the electronic energies (which
depend parametrically on the nuclear positions like in standard Born-Oppenheimer)
have similar gradients with respect to the nuclear coordinates. They can, however,
fail quite dramatically when this is not the case. To circumvent this problem, a dif-
ferent method was introduced in the 1970s by John Tully: Surface Hopping [3–5].
Surface Hopping is developed in the so-called adiabatic representation2. In this repre-
sentation, the electronic energies are the Born-Oppenheimer surfaces for the system,
parametrically dependent on the nuclear coordinates. The algorithm aims at repro-
ducing the evolution of the state of the system, |Ψ(t)〉, and, more specifically, at
mimicking the amplitude transfer that occurs among the electronic states in the pres-
ence of non-adiabatic phenomena. This is achieved by propagating an ensemble (a
swarm) of NT classical nuclear trajectories. The propagation of these trajectories is
determined by an ansatz that combines a fully classical part, in which each trajectory
moves according to Newton’s equations on a single (in contrast to the mean field
Ehrenfest approach) electronic surface, and a stochastic term. The stochastic term
mimics quantum non-adiabatic transitions by introducing a probabilistic mechanism
for the trajectory to instantaneously ”hop” on another electronic surface when the
coupling among states becomes significant. This mechanism attempts to provide the
correct time dependent probability to find the system at a given nuclear configura-
tion and on a specified electronic state, pα(R, t) = |〈φα(R)R|Ψ(t)〉|2, by tuning the
hopping probability so that pα(R, t) ≈ Nα(R, t)/NT where Nα(R, t) is the number of
trajectories in the ensemble on state α and at position R at time t. (The electronic
problem is solved, similar to the Ehrenfest approach, by integrating the quantum
evolution of the adiabatic states as governed by an Hamiltonian, hel in note 2, which
depends parametrically on the nuclear trajectory.) The hopping probability adopted
in Surface Hopping is constructed based on physical arguments, but it has so far been
impossible to derive it, and, importantly, the feedback mechanism between nuclear
and electronic evolutions at the time of a hop, using rigorous arguments. This is at
the origin of several well known pathologies of the approach which, for example, of-
ten over estimates transition probabilities due to a wrong treatment of the electronic
quantum coherence. In spite of these shortcomings, Surface Hopping is still the most
popular mixed quantum classical method due to its conceptual simplicity and ease of
numerical implementation. Furthermore, Surface Hopping calculations converge, or
at least provide meaningful information, with a relatively small number of trajectories
making it possible to combine them with first principle calculations (usually based on
time dependent density functional theory [6–8]) of the electronic states and couplings.
Because of this, and of the fact that Surface Hopping results are often surprisingly
accurate when compared to experiments, considerable efforts are devoted to improve
its formal standings by deriving it as the limiting case of more rigorous methods [9,10]
or, perhaps more dangerously, by attempting to find a posteriori patches to mitigate
its known deficiencies, in particular the coherence problem [11–13]. These efforts have
indeed improved understanding of the limitations and range of applicability of the

2 Let us define the Hamiltonian of the system as the sum of the nuclear kinetic energy and
of an electronic Hamiltonian, which contains the electron’s kinetic energy and all the inter-
action potentials, thus Ĥ = P̂ 2/2M + ĥel(p̂, r̂, R̂) (capital letters indicate nuclear operators,
lower case letters are for electronic operators). The adiabatic basis is defined as |R〉|φα(R)〉
where |φα(R)〉 are the eigenstates of the electronic Hamiltonian. The corresponding eigen-
values, Eα(R), are known as the electronic energies.
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method, but the ultimate goal of a rigorous derivation of Surface Hopping has not
been achieved yet and remains an open question in the field.
As mentioned above, the second family of mixed quantum classical methods fol-

lows a different approach in which algorithms are derived via formal limits of the exact
quantum dynamics. A typical example is the quantum-classical Liouville method [14],
whose starting point is the time evolution equation for the density matrix of the full
system. A phase space representation for the bath’s degrees of freedom is then intro-
duced via a partial Wigner transform in these degrees of freedom3, while retaining a
fully abstract form for the subsystem. The quantum evolution operator in this mixed
representation is then expanded to first order in the parameter μ =

√
m/M (m and

M are the masses of the subsystem and the bath, respectively) to obtain the genera-
tor of the mixed quantum classical dynamics. This generator is given by a generalised
Lie bracket in which both a commutator (acting on the subsystem operators) and a
Poisson parenthesis (acting on the bath’s variables) appear. Once a basis set is chosen
for the subsystem (for example the adiabatic basis mentioned above) the evolution
equation for the density matrix, or for any other operator, becomes explicit and dif-
ferent algorithms have been proposed to solve it [16,17]. These algorithms share the
characteristic that the bath motion is obtained via a classical evolution, possibly in-
cluding generalised definitions of the force that describe the influence of more than
one electronic state on the trajectory. The quantum-classical Liouville evolution does
not suffer from some of the limitations of Surface Hopping. For example, it can pro-
vide both diagonal and off-diagonal elements of the density matrix of the system.
The latter are related to the electronic coherence which is then naturally included,
within the limits of the approximation, in the description of the system. In spite of
its merits, however, it has been shown that this mixed quantum classical dynamics
lacks several properties that characterise fully classical and quantum dynamics [18].
In particular, the mixed Lie bracket does not satisfy the Jacobi identity exactly and
does not preserve stationarity of the quantum thermal density. The loss of formal
properties with respect to the purely classical and quantum cases arises, in different
forms, in all current mixed schemes. Determining whether this is to be interpreted as
a failure for mixed schemes or if there is no reason or need to expect or require such
properties from these approximate methods is an interesting open question. Another
important problem for formally derived mixed approaches is that the corresponding
algorithms are still considerably, sometimes prohibitively, more expensive than clas-
sical calculations. They are also considerably more expensive than ad hoc methods,
often requiring one or two orders of magnitude more trajectories to converge. While
this may be considered a reasonable price to pay for the increased reliability, it is a
serious obstacle to modelling multidimensional systems and prevents a wide use of
these methods.
To illustrate a little more in detail formally derived mixed approaches, we shall

devote the next two sections to describe another one of them. This method, known
as LAND-Map or linearised density matrix approach [19], was originally developed
to compute approximate time correlation functions but it can be easily adapted to
density matrix or time dependent averages calculations. It combines the path integral
representation of the time propagator introduced by Feynman with an appropriate
representation of the electronic states as the starting point for an approximation that
determines, like in mixed Liouville dynamics, both the force governing the, classi-
cal like, evolution of the nuclei and the coupling between the classical and quantum
degrees of freedom. This approximation is again based on a well defined limiting pro-
cedure that will be presented below. This specific method was chosen because of the

3 The Wigner transform [15] of a quantum operator Ô is defined as Ow(R,P ) =∫
dZe

i
�
PZ〈R− Z

2
|Ô|R+ Z

2
〉.
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authors’ familiarity with it, but also because it allows to describe essentially all the
relevant aspects mentioned so far and because it is one of the few cases in which
the relationship with alternative schemes (in particular mixed Liouville dynamics)
has been explored. We shall begin with reviewing the key steps in the derivation of
LAND-Map, present in some detail the algorithm, and then show one illustrative ap-
plication. Finally, in the Conclusions, we shall summarise a few more open questions
in this field.

2 Linearised Non Adiabatic Dynamics in the Mapping
Representation (LAND-Map)

LAND-Map [19,20] is a method targeted at computing approximate time correla-
tion functions. Its starting point is the standard form of the quantum thermal time
correlation function of operators Â and B̂

〈Â(0)B̂(t)〉 = Tr
[
ρ̂Âe

i
�
ĤtB̂e−

i
�
Ĥt
]

(1)

where Tr is the trace operation and ρ̂ = e−βĤ/Z (with Z = Tre−βĤ) is the quantum
thermal density. We begin by representing the correlation function in a basis defined
as the tensor product |R̃0α′〉, where R̃0 are the nuclear coordinates and α′ indicates
the electronic basis which, in contrast to Surface Hopping, has been chosen indepen-
dent on the nuclear coordinates (this is the so-called diabatic representation of the
electronic states). To simplify the discussion, in the following we shall consider the
case of operators that are diagonal in the nuclear coordinates. Inserting resolutions of
the identity, e.g. 1 =

∑
α′
∫
dR̃0|R̃0α′〉〈R̃0α′|, the expression above can be identically

rewritten as

〈Â(0)B̂(t)〉 =
∑

α,β,α′,β′

∫
dR0dRNdR̃0

{
〈R0α|ρ̂Â|R̃0α′〉〈R̃0α′|e i� Ĥt|RNβ′〉

×Bβ′β(RN )〈RNβ|e− i
�
Ĥt|R0α〉

}
(2)

where Bβ′β(RN ) = 〈β′|B̂(RN )|β〉 (B̂(RN ) is still an operator in the electronic set).
Equation (2) can be read as a sequence of propagations (evaluations of matrix ele-
ments of exponentials of the Hamiltonian) and evaluations of the operators’ matrix
elements. Starting from the right end of the integrand, the prescription is to select
a state with electronic state equal to α and a nuclear configuration R0 and evaluate
the probability amplitude to find it in state β and at configuration RN after a time
evolution of length t. Note that, since we are considering non-adiabatic systems, state
β needs not be equal to α. The matrix element of B̂ is then computed. Due to the non
diagonal nature of the operator in the electronic states, this operation can change the
state label of the system to β′. The state |RNβ′〉 is then evolved backward in time for
a time t and the probability amplitude to be in state |R̃0α′〉 is computed. The trace
operation is closed by evaluating the matrix element of the product ρ̂Â between the
final state of the backward propagation and the state, |R0α〉, selected as the starting
point for the evaluation of the integrand. This set of operations must then be repeated
for all possible choices of the electronic states α, β, α′, β′ and nuclear configurations
R0, RN , R̃0 to implement the sums and the integrals in Eq. (2).
The exact numerical evaluation of the expression above is impossible: the eval-

uation of the propagators is fully equivalent to the solution of the time dependent
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Schrödinger equation for the system and therefore scales exponentially with the num-
ber of degrees of freedom. To make progress, LAND-Map uses three steps. The first
two are exact and their goal is to express the propagators in a form more suitable for
approximations. The third step contains the key approximation of the method and
leads to a computable expression for the time correlation function. These three steps
are outlined below to summarise the basic ideas and the formal tools used in LAND-
Map. A detailed derivation of the results we present can be found in the literature.
See in particular [19] for a complete derivation and the Appendix in [21] or the book
chapter by Coker and Bonella in [22] for a more detailed summary.

– Step 1: The mapping formalism. This step focuses on simplifying the elec-
tronic part of the problem by introducing a representation more suitable to the
mixed quantum classical treatment. The idea [23–27] is to associate to each elec-
tronic state a state in a new, auxiliary, space. This space is defined via the tensor
product of ν + 1 fictitious harmonic oscillators with unit mass and with principal
quantum number n restricted to take values 0 and 1. More in detail

|α〉 → |00, . . . , 1α, . . . , 0ν〉 ≡ |mα〉. (3)

Thus, the auxiliary state associated to electronic state |α〉 has all oscillators in
the ground state, except for the one in position α in the tensor product. This
oscillator, and only this one, is in the first excited state. The representation of the
electronic Hamiltonian is also changed by first using a dyadic representation

ĥel(R̂, r̂, p̂) =
∑

λμ

|λ〉〈λ|ĥel(R̂, r̂, p̂)|μ〉〈μ| ≡
∑

λμ

ĥλμ(R̂)|λ〉〈μ| (4)

and then mapping each element of the dyad into a product of creation and anni-
hilation operators in the space of the fictitious oscillators:

|λ〉〈μ| → â†λâμ (5)

where, for example, âμ = (q̂μ + ip̂μ)/
√
2�. The mapping Hamiltonian is then

defined as
ĥm(R̂) =

∑

λμ

ĥλμ(R̂)â
†
λâμ. (6)

Note that the ĥλμ(R̂) are still the matrix elements of the electronic Hamiltonian in
the original diabatic basis: they depend on the nuclear position and their functional
form is completely general. With the prescriptions above, it is possible to define
a new nuclear-mapping Hamiltonian as

Ĥm = P̂
2/2M + ĥm(R̂). (7)

This mapping ensures that, for example

〈RNβ|e− i
�
Ĥt|R0α〉 = 〈RNmβ |e− i

�
Ĥmt|R0mα〉. (8)

This is the main result of the mapping formalism. It states that the time propa-
gators in the exact expression for the time correlation function can be computed,
without affecting the result, using the mapping. Furthermore, this mapping has
the very convenient property that, if the creation and annihilation operators are
expressed in terms of the positions and momenta operators of the fictitious har-
monic oscillators, the map of the electronic Hamiltonian is given by a quadratic
function of these new operators.
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– Step 2: Path integral representation of the propagators. To move towards a
picture of the dynamics based on trajectories, in LAND-Map the nuclear-mapping
propagators, e.g. Eq. (8), are expressed using the path integral formalism intro-
duced by Feynman [28–30]. Within this picture, the propagators can be formally
written as a sum over all possible sequences of values of the coordinates and mo-
menta of the system that take it from the initial (the ket |R0mα〉) to the final (the
bra 〈RNmβ |) state in the assigned time t. These sequences, known as paths, are
identified by first discretising the time interval t in N steps, and then denoting
the coordinates and momenta at step k as Rk, Pk (k = 1, . . . , N). Coordinates and
momenta at k and k + 1 are separated by a time interval δt = t/N , but there is
no specific relation between successive values of these variables4. In the following
we will indicate one of the (discrete) paths as ({Rk}, {Pk}) (k = 0, . . . , N). Each
path in the sum must be weighted by an appropriate phase factor, given by the
classical action along the path. As mentioned above, the mapping Hamiltonian is
quadratic in the oscillator’s degrees of freedom. This makes it possible to calculate
exactly the path integral evolution for the mapping subsystem (the calculation is
analogous to that of the propagator for an harmonic system with a time depen-
dent frequency [30]). For each nuclear path, this evolution can be in fact expressed
in terms of an integral over a set of classical trajectories for the coordinates and
momenta of the mapping degrees of freedom. The nuclear path integral, on the
other hand, cannot be computed exactly for general systems. More explicitly, the
path integral form of the propagator is

〈RNmβ |e i� Ĥmt|R0mα〉 =
∑

(paths)

e
i
�
S({Rk},{Pk})

×
∫
dq0dp0wαβ(q(tk), p(tk), q0, p0; {Rk})rα(q0, p0)G(q0, p0)

×e−iθβ((q(tk;{Rk}),p(tk;{Rk}))). (9)

In the expression above, we have written, following conventional notation in this
formalism [29,30], the sum over all possible nuclear paths as

∑
(paths). This ex-

pression becomes exact in the limit N → ∞5. The notation indicates that for
finite N the paths are discrete so, for example, Rk indicates the coordinate at
time tk = k× δt along the propagation and successive positions and momenta are
separated by a time interval δt = t/N . The mapping propagator, instead, is writ-
ten as the integral over the initial conditions q0, p0 for a set of classical mapping
trajectories (q(tk; {Rk}), p(tk; {Rk})) that depend parametrically on the nuclear
path (the Hamiltonian for this classical propagation will be given below). In this
writing, q0 ≡ {q00, . . . , qα0, . . . , qν0} is the ν-dimensional vector of the initial coor-
dinates of the mapping oscillators with analogous notation for they momenta.

4 This is a consequence of the procedure used to construct the path integral representation.
Considering for simplicity a representation in the coordinates, x, alone, we can use the time
composition property of the propagator and resolutions of the identity in the coordinate

basis to write, exactly, 〈xN |e− i� Ĥt|x0〉 =∏N−1k=0

∫
dxk〈xk+1|e− i� Ĥδt |xk〉. A path is one of the

sequences {xk}k=0,...,N that appear in the integrals. Since, for each xk, an integral over all
possible values of xk+1 must be performed, there is no specific relationship among the values
of the coordinates at subsequent steps along the path.
5 It should be mentioned that the mathematical conditions under which the limit N →∞
for the path integral representation of the propagator is well defined are not clear and indeed,
for general potentials, this may even be an ill defined notion. In this work, as in most of the
path integral related work in physics and chemistry, we shall simply assume that this is not
the case.
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The explicit form of the (real) functions S({Rk}, {Pk}), θβ((q(tk; {Rk}),
p(tk; {Rk}))), rα, G(q0, p0), and wαβ(q(tk), p(tk), q0, p0; {Rk}, ) is not crucial
(see [19] for details), except to say that w is a positive definite function as is
rα, while G(q0, p0) is a multidimensional Gaussian function, and to note that
Eq. (9) contains two phase factors. The idea to express quantum propagation in
terms of paths is intuitively appealing since it reintroduces a phase space picture in
quantum mechanics. In practice, however, the summation over the nuclear paths
cannot be carried out analytically except for very simple potentials. The path in-
tegral expression of the propagator is also extremely difficult, if not impossible, to
compute numerically. This is due to two main reasons that reflect the exponential
cost of exact solution methods. Firstly, the notion of a path is not easy to transfer
to an algorithm. Indeed, there is no prescription for generating the time sequence
of coordinates and momenta (in particular, a path is not a classical trajectory so
it cannot be obtained via standard molecular dynamics methods). Secondly, the
phase factors can cause very rapid oscillations which make convergence exponen-
tially expensive with time and number of degrees of freedom. This pathology is
known as the dynamical sign problem.

– Step 3: Linearization approximation. Substituting Eq. (9) and the analogous
expression for the backward propagator in Eq. (2) gives an exact expression for the
correlation function in which the time evolution is written in terms of sums over
forward and backward nuclear paths and classical motion for the mapping vari-
ables. LAND-Map approximates this result by assuming that the most important
contributions to these sums are given by pairs of forward and backward nuclear
paths that remain close during the propagation. Formally, the approximation is
enforced by changing variables to the semi-sum and difference nuclear paths. In-
dicating with Rk and R̃k the coordinates visited at time tk along a forward and
backward path, respectively, the semi-sum path is defined as R̄k = (Rk + R̃k)/2

and the difference path is Δk = Rk − R̃k, for k = 1, . . . , N , with analogous defini-
tions for the momenta. The phase of the correlation function is then expanded to
first order in the difference variables. With this expansion, the integrals over the
difference paths can be performed analytically resulting in a product of delta func-
tions (see third line in Eq. (10) below). The arguments of the delta functions are
such that the only non-zero contributions to the correlation function are given by
sequences of coordinates and momenta that satisfy6 Rk = Rk−1 + δtPk−1/M and
Pk = Pk−1 + δtFββ′(Rk−1). Thus, once the initial conditions R0, P0 are chosen,
the sequence of semi-sum variables is uniquely determined by the approximation
and can be interpreted as a nuclear trajectory. This trajectory is determined by
the approximation and not imposed a priori as, for example, in Surface Hopping.
Note that this approximation tackles simultaneously the two main difficulties of
path integral calculations: the linearisation of the phase mitigates the oscillations
(in the spirit of a stationary phase approximation) of the integrand and the delta
functions determine uniquely the semi-sum paths to be computed eliminating the
problem of finding an effective way to generate them. Furthermore, the approxi-
mation can be interpreted (if not justified) in terms of the physical characteristics
of the system. In [21] it was shown that the phase expansion in the difference vari-

ables is equivalent to an expansion of the phase in the parameter μ =
√
m/M ,

i.e. in the ratio of the masses of the quantum subsystem and the bath.

6 See Eq. (10) and the text following it for a more detailed discussion, and Eq. (12) for
the definition of Fββ′(Rk−1)).
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3 The algorithm

Implementing the steps outlined in the previous section leads to the following approx-
imation for the time correlation function

〈ÂB̂(t)〉LM =
∑

αβα′β′

∫
dq0dp0dq̃0dp̃0

∫
dR0dP0

∫ N∏

k=1

dRk
dPk

2π�
Bββ′(RN ) (10)

×wαβ(q(tN ), p(tN ))w̃α′β′(q̃(tN ), p̃(tN ))e−iδt
∑N
k=0(θβ(Rk)−θ̃β′ (Rk))

×
N∏

k=1

δ

(
Pk − Pk−1
δt

− Fββ′(Rk−1)
)
δ

(
Rk −Rk−1
δt

− Pk−1
M

)

×rα(q0, p0)G(q0, p0)rα′(q̃0, p̃0)G(q̃0, p̃0)
[
ρ̂Â
]w

αα′
(R0, P0).

Above, Rk is a variable along the semi-sum path defined in the previous section. We
have dropped the bar from the symbol to simplify the notation. The structure of this
approximation can be reconstructed via the following observations. The sum over the
electronic state labels in the first line has remained unchanged with respect to the
exact expression in Eq. (2) and depends on the choice of the basis set. The integrals
over the mapping variables originate from the path integral expression of the mapping
propagator. Within this representation, the paths are classical trajectories governed
by an Hamiltonian of the form [19,21,22]

hm =
1

2

∑

λ

hλλ(R)(q
2
λ + p

2
λ) +

1

2

∑

λ�=λ′
hλλ′(R)(qλqλ′ + pλpλ′). (11)

As mentioned in the previous section, the mapping path propagators are exact due to
the quadratic nature of the mapping Hamiltonian. Two mapping paths appear above,
variables with and without tilde, corresponding to the fact that the correlation func-
tion contains two time evolution operators (the forward and backward propagators in
Eq. (2)). The double propagation of the electronic degrees of freedom is maintained
in the LAND-Map approximation. The integrals over the nuclear coordinates and
momenta, on the other hand, reflect the key approximation of the method. The two
propagators in the exact correlation function (which would correspond to two infinite
sets of paths forward and backward in time) have in fact been reduced to a single
path. Furthermore, the values of the coordinates and momenta along this path are
uniquely determined, for each choice of R0, P0, by the product of delta functions in
the third line of Eq. (10). These delta functions enforce a time stepping prescription
to identify Rk, Pk (see step (6) in the description of the algorithm below) reminiscent
of classical propagation. The “force” Fββ′(R) is however non classical and is given
by [19,22]

Fββ′(R) = −1
2
[∇Rhββ(R) +∇Rhβ′β′(R)]

−1
2

∑

λ

∇Rhβλ(R)
[
qβqλ + pβpλ
q2β + p

2
β

]
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−1
2

∑

λ′
∇Rhβ′λ′(R)

[
q̃β′ q̃λ′ + p̃β′ p̃λ′

q̃2β′ + p̃
2
β′

]

· (12)

(The dependence on the forward and backward variables has been omitted from the
argument of F for notational convenience.) The structure of the equation above, which
is entirely determined by the linearisation, has several interesting features. The “force”
experienced by the nuclei is different for different choices of the electronic state labels
β and β′, i.e. it depends on the specific term of the sum in Eqs. (2) and (10) via
the final states in the forward and backward propagation. If β = β′ the first line
in the equation above indicates that the nuclei move on a single state (i.e. diagonal
element of the electronic Hamiltonian) in a way reminiscent of Surface Hopping, but
if β 
= β′ the evolution occurs on a mean surface, in a way reminiscent of Ehrenfest
dynamics. This pure state or mean propagation is, however, dressed by the terms in
the second and third line above which, in principle, involve all the electronic states.
These terms are non zero when the off-diagonal elements of the electronic Hamiltonian
are non zero and not constant with respect to changes in the nuclear coordinate. This
corresponds to regions of non zero couplings among the electronic states. Thus, these
terms in the force represent the feedback on the nuclear motion of the amplitude
transfer among electronic states which occurs when non adiabatic transitions take
place. This transfer, in turn, is obtained by evolving the mapping variables. In fact,
it can be shown [19,21,22] that the population of state α (i.e. the probability to
find the electronic system in state α) in the mapping representation is given by
q2α + p

2
α. Given the hamiltonian in Eq. (11), this quantity is constant outside of the

coupling regions (i.e. for hβλ(R) = 0) and changes when the coupling is non zero. This
concludes the description of the coupled evolution in LAND-Map, which is the main
ingredient of the method. The other terms in Eq. (10) can be described as follows.
The product of functions in the second line of the expression can be interpreted as
a weight to be associated with each trajectory, while the product of functions in the
last line provides us with a probability density to sample initial conditions for the
mapping variables, from rα(q0, p0)G(q0, p0)rα′(q̃0, p̃0)G(q̃0, p̃0), a product of positive
definite functions that allow for direct sampling, and the nuclear phase space, from
the absolute value of [ρ̂Â]wαα′(R0, P0), the Wigner transform of the product of the

thermal density times the operator Â. This last sampling is non trivial. The Wigner
transform is in fact difficult to calculate for generic densities and observables. Several
approximate methods have, however, been developed for this purpose using either
harmonic approximations of the thermal density whose Wigner transform is known
analytically (see next subsection for a typical example), or keeping the exact form
of the density but implementing quite effective numerical approximations [31–34] for
the Wigner sampling.
From the observations above, Eq. (10) can be calculated via the following algorithm,
which combines Monte Carlo sampling of the initial conditions with classical like
evolution.

1. Assign a set of indices α, α′, β, β′.
2. Sample initial values of the nuclear positions and momenta (R0, P0) from the

Wigner transform of the thermal density times the operator Â.
3. Sample initial values of the forward and backward mapping variables (q0, p0)

and (q̃0, p̃0) from G and G̃.
4. Accumulate weights, i.e. ei(θα−θα′ ) at initial time.
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5. Advance mapping variables via

qβ1 = qβ0 + δt[hββ(R0)pβ0 +
∑

λ�=β
hβλ(R0)pλ0]

pβ1 = pβ0 − δt[hββ(R0)qβ0 +
∑

λ�=β
hβλ(R0)qλ0]

with an analogous prescription for the tilde variables.
6. Advance nuclear positions and momenta according to the argument of the delta
functions using

R1 = R0 + δt
P0

M

P1 = P0 + δtFββ′(R0, qβ0, pβ0, q̃β0, p̃β0).

7. Compute the matrix elements hβλ at the new nuclear position.

8. Accumulate weights, in particular eiδt(θβ(R1)−θβ′ (R1)), and iterate from step (5)
until the final time of the run is reached (i.e. until N time steps have been
performed).

9. Compute weights wαβ and w̃α′β′ and observable Bββ′ at the end points of the
propagation.

10. Iterate from step (1) until the result does not change (within error bars) by
increasing the number of trajectories.

Note that the weight accumulated in step (8) is a phase factor. Its presence is key
to represent, within the limits of the linearisation approximation, interference effects
among different trajectories. These interferences approximate, for example, electronic
quantum coherence and represent a distinct improvement with respect to ad hoc
methods for which coherence is either absent or reintroduced “by hand” in the calcu-
lation. On the other hand, the phase factor can, and in most cases does, reintroduce
oscillations in the expression of the correlation function. The need to accurately cap-
ture the effect of these oscillations, that grow faster with time and dimensions of the
system, imposes very large number of trajectories (of the order of tens to hundreds
of thousand depending on the size of the system) to converge. Due to this, for exam-
ple coupling of LAND-Map with ab initio electronic structure methods is basically
impossible and current calculations are essentially restricted to systems for which an
empirical parametrisation of the electronic Hamiltonian exists. The development of
methods to control the phase oscillations via filtering schemes [35,36] or alternative
methods such as cumulants expansions [37,38] to pre average the phase, is an active
field of research. It remains to be seen if these developments will be sufficient to make
the numerical cost of this method comparable to that of ad hoc schemes.

3.1 Illustrative application: The Spin Boson model

A very important benchmark system for formally derived mixed methods and in par-
ticular for LAND-Map is the spin boson problem. This model describes the dissipative
dynamics of a two level system (the quantum subsystem in the mixed quantum clas-
sical scheme) coupled to an environment (the bath). In calculations on the spin boson
model, the environment is represented by a discrete set of No harmonic oscillators,
linearly coupled to the quantum degree of freedom. In particular, we will show results
for No ∈ {10, 11, . . . , 20}. The characteristics of the bath are specified by the spectral
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Fig. 1. D(t) as a function of Ωt in the weak coupling regime. The solid curve is the LAND-
Map result, while the points were obtained with numerically exact calculations [42,44,46].
In all figures, Ω/ωc = 0.4 and ξ ≈ 0.1. The different temperatures (expressed in the relevant
energy scale) of the calculations are indicated in the insets, with the lowest temperature on
the left.

density, which we will assume of Ohmic form J(ω) = ξωe−ω/ωc , where ξ is the Kondo
parameter (specifying the strength of the coupling) and ωc is the frequency at which
the spectral density has a maximum. With an appropriate choice of units [16,39], the
Hamiltonian of the system is

Ĥ = −Ωσ̂x +
No∑

j=1

[
P 2j

2
+
1

2

ω2j

ω2c
R2j − cjRj σ̂z

]

(13)

where σ̂x,z are Pauli matrices, ωj is a set of frequencies sampled from J(ω),
cj = ωj

√
ξω0

7, and 2�Ω is the gap between the two levels in the bare quantum
system. Initial conditions for this model are sampled from an uncorrelated system-
bath probability density of the form ρ̂sb = ρw(R0, P0)|1〉〈1|, where the Wigner
transform for the bath degrees of freedom is known analytically and given by

ρw(R0, P0) =
∏No
j=1

tanh(βωj/2)
π

e−tanh(βωj/2)/2ωj [P
2
0j+ω

2
jR

2
0j ]. The relevant observable

is the, time dependent, difference in the populations of the two quantum levels. This
quantity is given by D(t) = 〈σ̂z(t)1bath〉8 (the bracket indicates the average on ρ̂sb).
Depending on the temperature and the value of the Kondo parameter, D(t) exhibits a
variety of behaviours ranging from coherent oscillations (low temperature, small ξ) to
over damped relaxation (low temperature, large ξ). Furthermore, reliable numerical
calculations [40–46], using the path integral formalism and in particular the influ-
ence functional approach, have been performed for this system and can be used as a
benchmark. In the following, to exemplify the performance of linearised methods for
this kind of system, we summarise results in two interesting regimes. Further details
of these calculations can be found in [19]. In Fig. 1, we show results in the weak cou-
pling regime with temperatures varying over three orders of magnitude. Agreement
between LAND-Map and exact results is very good at all temperatures. The some-
what surprising agreement even at very low temperatures (left panel in the figure)
can be rationalised by observing that, for this system, the linearisation approxima-
tion becomes exact in the limit of zero coupling. In this limiting case, in fact, the
bath is described by a set of uncoupled harmonic oscillators for which linearisation
is exact, and the dynamics of the quantum subsystem is also represented exactly via
the mapping formalism. The small value of the coupling is then responsible for the
good agreement. The limits of the linearisation approximation are more evident for
larger couplings. To exemplify them, in Fig. 2 we show more results for a spin-boson

7 ω0 is a parameter introduced to sample the frequencies from J(ω), see [19,41].
8 The interpretation of the observable as population difference is immediate remembering
that σ̂z = |1〉〈1| − |2〉〈2|, 1bath is the identity in the bath space.
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Fig. 2. D(t) as a function of Ωt in the strong coupling regime at fixed β�ωc = 3 (low
temperature). In the left panel, ξ = 0.1. In the right panel, ξ = 0.5. The solid curve is the
LAND-Map result, while the points were obtained with numerically exact calculations [45].
In all figures, Ω/ωc = 1/3.

system at low temperature. In the left panel, the value of the Kondo parameter is
small and, as before, our method reproduces the exact result. In the right panel,
however, we see a large discrepancy between the results of the linearised calculation
and exact values. In this case, the friction is relatively large, but our linearisation
approximation overemphasises its effect and underestimates the importance of the
coherent dynamics. Thus the exact results oscillate around zero while the linearised
approximate results show slow incoherent decay.
The numerical effort required by LAND-Map calculations for this system is very

small: the calculations reported reproduced the numerically exact result with about
500 trajectories.
The results reported in this section, which were chosen because they still represent

an interesting reference point, can be – and in some cases have been – improved. In
particular, in [47], it was shown how to improve agreement at low temperatures and
strong coupling by a generalisation of LAND-Map in which the overall dynamics is
obtained by concatenating a sequence of linearised propagators of the form shown
in the previous section. While this is an interesting development, which results in a
systematic procedure to increase the accuracy of the method, it has the important
drawback of requiring considerably larger numbers of trajectories (of the order of a
million) to converge. More recently, Huo and Coker have proposed a refined version
of the method which further improves accuracy of the linearisation and has been
successfully applied to model coherent excitation energy transfer in photosynthetic
light harvesting [48], and condensed phase electron transfer [49].

4 Discussion

This paper contains a brief outline of mixed quantum classical methods. These meth-
ods can be broadly divided in two categories: ad hoc schemes and formally derived
methods. Two of the most popular ad hoc schemes in the field, Surface Hopping and
Ehrenfest dynamics, have been recalled in the Introduction together with a repre-
sentative of the formally derived approaches, the mixed Liouville method. Another
formally derived approach, LAND-Map, has then been described in some detail to
illustrate typical problems of exact methods and typical steps to obtain approximate,
computable expressions. The LAND-Map algorithm has then been described in some
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detail, indicating both its advantages (the approximate time evolution is reduced
to a mixed scheme that combines Monte Carlo and classical like propagation) and
its difficulties (the estimator of the correlation function contains phase factors that
complicate convergence).
To conclude, it may be interesting to summarise some very general questions and

interesting lines for current and future research (the list below is non exhaustive but
it contains questions that are more directly related to the contents of this paper):

1. Is it possible to bridge the gap between numerically efficient but poorly justified
ad hoc methods and more rigorous but computationally expensive methods such as
mixed Liouville or LAND-Map? As mentioned in the Introduction, several groups
are at work in this field, in particular attempting to derive Surface Hopping from
“first principles”, but no definite answer has been put forward yet. If positive, this
answer would represent however a major advancement (the field’s “Holy Grail”?)
by opening the way to combine the best of the worlds of ad hoc and formal
methods.

2. Is it possible to derive systematic tools to analyse the range of accuracy of mixed
methods? Interestingly, this question affects both families of methods and, in par-
ticular, also LAND-Map. In fact, even though the expansion in the mass ratio
provides a justification for the linearisation, more work is necessary to assess the
time spans that can be tackled via this approximation. (A similar difficulty arises
for mixed Liouville dynamics.) This is usually not considered a stumbling block for
applications based on the argument that typical calculations focus on quantities
(e.g. correlation functions) that decay very rapidly for condensed phase systems
and thus only require to capture accurately the short time evolution of the system.
While this argument is supported by the success of mixed methods, it would be
desirable (and useful) to make a more precise statement.

3. Is it possible to analyse systematically the relationship between the available ap-
proaches? One of the characteristics of the field is that a considerable number of
methods have been proposed in the last forty years, but very little efforts have
been devoted to a systematic comparison among them. This is due both to the
fact that the formal starting points of the various approaches are, or appear, very
different and to the difficulty, in particular for the ad hoc schemes, of comparing
algorithms that do not rely on a precise formal development. Indeed, one of the
few cases in which such an analysis has been performed is precisely that of LAND-
Map and mixed Liouville dynamics. In [21] it was in fact shown that not only the
approximation in these approaches is governed by the same physical parameter
(μ =

√
m/M) but that the mixed evolution equations for both schemes could

be derived from the same linearisation procedure applied to the exact quantum
propagator. This result was useful, for example, to explain the essentially iden-
tical numerical performance of the methods on benchmark systems [22]. It also
explained some striking similarities in the structure of the generalised forces used
to propagate the bath’s motion in these approaches. It would be interesting to ex-
plore further connection with other approximations schemes. In particular, the μ
expansion of the phase in LAND-Map is reminiscent of a (partial, since it involves
only the nuclear degrees of freedom) WKB (see, for example, [51]) approximation
of the propagator, but this connection has not been explored so far. In general,
setting aside LAND-Map, a more extensive comparison among methods might
help to identify the more promising approaches and simplify the field.

To conclude, it is important to mention that all mixed quantum classical methods
assume that a purely classical description is sufficient for the dynamics of the bath.
This means, in the case of non adiabatic dynamics, that nuclear quantum effects are,
by construction, not included. While this is often a reasonable assumption, there are
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physically significant situations (most notably systems that contain hydrogen atoms)
for which this hypothesis is not justified. While some attempts to include such effects
are being developed for Born-Oppenheimer dynamics [50] using an approach similar
to that presented here for LAND-Map, their efficiency is still unsatisfactory and more
work is necessary also to understand their formal aspects.

The contents of this paper draw heavily on previous work and material and on discussions
with several colleagues. We would like to thank, in particular, I. Tavernelli for input on
Surface Hopping. We also thank D. Coker for collaborations on LAND-Map, and R. Kapral
for collaborations on Wigner-Liouville dynamics and the mapping formalism.
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