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1 Motivation and Overview

Almeida et al. (2016) suggest to use the excess expected shortfall as a tail-risk measure:

TRi;t;h ¼ EQ Ri;t;h � zi;h;a

� �
jRi;t � zi;h;a

� �
; (1)

where Ri;t;h is the spot (or forward) return of asset i at date t for the horizon h, zi;h;a is the a-

quantile of the return distribution, and Q is a risk neutral (or forward neutral) probability.

In the Basel terminology, �zi;h;a is called the value-at-risk at Q�probability level a and for

horizon h, so that losses receive a positive sign, and we can interpret the risk measure as a

capital buffer. Typical h are one-day, 10-day, or one-month horizons. If log-returns are

Gaussian with volatility parameter ri, it follows (see e.g., Scaillet, 2004; Fermanian and

Scaillet, 2005):

TRi;t;h ¼ ri

ffiffiffi
h
p uðzaÞ

a
� za

� �
; (2)

where uðzÞ is the density of a standard normal distribution at point z and za the a�quantile

of this distribution. As TRi;t;h is proportional to the integrated implied volatility in such a

setting, these two measures of risk are perfectly correlated whenever log returns are

Gaussian under the pricing measure. In contrast, in presence of departures from log normal-

ity, TRi;t;h incorporates information about Q which is distinct from the one generated by

model-based or model-free measures of implied stock volatility like, for example, VIXi;t;

see Schneider and Trojani (2014, 2015), among others.

Almeida et al. (2016) obtain a measure of aggregate tail risk by averaging tail-risk

measure (1) across a set of benchmark returns. As their estimation approach relies on the

nonparametric estimation of a pricing probability consistent with the joint distribution of

benchmark returns, they propose for parsimony to summarize the information in the

cross-section of individual stock returns using five principal components of size and
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book-to-market returns. Their measure or aggregate tail risk is the average expected

shortfall of the first five principal components of size and book-to-market returns:

TRMt;h :¼ 1

5

X5

k¼1

TRpck ;t;h; (3)

where TRpck ;t;h is the tail measure (1) for principal component return Rpck ;t;h.

Almeida et al. (2016) apply predictive regression methods based on standard asymp-

totics and find that TRMt;h is a powerful predictor for market returns and a set of import-

ant macro variables. The tail risk proxy (3) is different from the aggregate market excess

expected shortfall:

TRm;t;h ¼ EQ Rm;t;h � zm;h;a

� �
jRm;t � zm;h;a

� �
; (4)

and similar measures of implied market tail risk (e.g., Bollerslev et al., 2015), as well as

from model-free proxies of implied market volatility, such as VIXm;t. Therefore, we expect

an imperfect empirical comovement of TRMt;h; TRMm;t;h, and VIXm;t, for example, in

presence of stochastic return correlations or a time-varying conditional return nonnormal-

ity.1 While we can directly extract empirical proxies for tail-risk measure (1) from the prices

of individual stock options, a key insight of Almeida et al. (2016) is to avoid the use of op-

tions in order to obtain a longer time series of implied tail-risk measures. They attain this

goal by estimating risk measure (3) nonparametrically for an horizon of h¼ 1 days, based

on a monthly window of n past daily principal component returns.

Let for brevity Rk;s :¼ Rpck ;s�1;1 be the daily (forward) return of principal component

k ¼ 1; . . . ; 5 in day s and denote by fRk;s : k ¼ 1; . . . ; 5; s ¼ t � nþ 1; . . . ; tg the sample of

observed daily returns in the monthly window before time t. We denote by En½�� expect-

ations under the joint empirical distribution Pn of past principal component forward re-

turns and define the empirical forward-neutral measure QnðAÞ :¼ En½Mn1A� for any

measurable event A, where Mn is a normalized empirical pricing kernel that prices the risk-

free return R0 :¼ 1 and the principal component returns:

En½MnRk� ¼ 1; k ¼ 0; . . . ; 5: (5)

Given the inherent market incompleteness, Almeida et al. (2016) select the empirical

forward-neutral measure that corresponds to a particular empirical minimum power diver-

gence pricing kernel. Precisely, they solve for p¼ 1/2 the minimization problem:

M(
n ðpÞ :¼ arg min

Mn

En
Mp

n � 1

pðp� 1Þ

	 

; (6)

s.t. Equation (5) and positivity constraints. We can motivate the choice of power parameter

p¼ 1/2 (Hellinger divergence) by the convenient robustness properties of the minimum

Hellinger divergence pricing kernel M(
n :¼M(

n ð1=2Þ; see, for example, Kitamura, Otsu,

1 See Buraschi, Trojani, and Vedolin (2014) for a related theoretical evidence in a general equilibrium

model with heterogenous beliefs and Schneider and Trojani (2014) for corresponding empirical evi-

dence based on tradable variance and skew swaps.
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and Evdokimov (2013). Using the empirical forward-neutral measure Q(
n ð�Þ :¼ En½M(

n ��,
they compute an estimate of TRMt;1 for a one-day horizon h¼ 1 as:

dTRMt;1 :¼ 1

5

X5

k¼1

cTRpck ;t;1 :¼ 1

5

X5

k¼1

EQ(
n ½ðRk � ẑk;1;aÞjRk� ẑk;1;a�: (7)

Empirically, this proxy has an imperfect correlation with VIXm;t, which is an indication

that it contains non-redundant information. We can explain this non-redundancy by sev-

eral features, including time-varying correlations among stock returns, time-varying con-

ditional higher moment in market or individual stock returns, the conceptually different

construction of these risk proxies and the different implicit horizons h, as well as the dif-

ferent information set and estimation risk implied by the computation of VIXm;t anddTRMt;h.

Remark 1: We can use the Almeida et al. (2016) approach to compute additional

interesting model-free proxies of implied aggregate tail risk in periods where no option

information is available. For instance, if Pn is the empirical distribution of daily mar-

ket returns fRm;s : s ¼ t � nþ 1; . . . ; tg and M(
n the solution of problem (6) under the

pricing constraints En½MnR0� ¼ En½MnRm� ¼ 1, we can compute an estimate of a daily

VIX2
m;t as twice the estimated forward-neutral entropy of daily market returns:

dVIX
2

m;t ¼ �2EQ(
n ½ln Rm�; (8)

see also Schneider and Trojani (2015). Similarly, a model-free estimate of the daily implied

market excess expected shortfall is obtained as:

cTRm;t;1 ¼ EQ(
n Rm � ẑm;1;a
� �

jRm� ẑm;1;a
� �

: (9)

2 Why Robust Methods For Predictive Regression?

Using standard predictive regressions, Almeida et al. (2016) address the predictive proper-

ties of tail measure (7) for market returns and a number of important economic variables.

We revisit their findings using robust resampling tests of predictive ability, developed in

Camponovo, Scaillet, and Trojani (2015).

The motivation for our robust testing approach lies in that most approaches to test

predictability hypotheses are based on procedures that can heavily depend on a small

fraction of influential observations in the data. For standard asymptotic t�tests based on

OLS or similar estimators, this problem is well-known since a long time; see, for example,

Huber (1981) for a review. Recent research has also shown that a small fraction of influ-

ential observations in the data may even more easily inflate inference based on bootstrap

and subsampling tests. This feature is important for testing predictability hypotheses as

well, because resampling methods are natural tools for producing tests with more reliable

finite-sample accuracy in predictive regression settings with correlated innovations of en-

dogenous and predictive variables and possibly persistent predictors.

Intuitively, the non-robustness of standard resampling methods arises from the too high

fraction of influential data points that is often simulated by standard bootstrap and sub-

sampling procedures, when compared with the actual fraction of outliers in the original

Camponovo et al. j Nonparametric Tail Risk and the Macroeconomy 379

Deleted Text: forward 
Deleted Text:  
Deleted Text:  
Deleted Text: non 
Deleted Text: non 
Deleted Text:  
Deleted Text: forward 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: e.g.,
Deleted Text:  
Deleted Text: non 
Deleted Text: to


data. As it is not possible to fully mitigate this problem simply by applying conventional

bootstrap or subsampling methods to more robust estimators or test statistics,2

Camponovo, Scaillet, and Trojani (2015) develop a general robust resampling methodology

for time series, which allows us to obtain more robust tests of predictability hypotheses for

predictive regression settings. This approach relies on robust weighted least squares and

resampling procedures that are fully data-driven and easily manageable, based on robust

versions of fast bootstrap and subsampling methods; see for example, Goncalves and White

(2004) and Hong and Scaillet (2006).

Intuitively, robust predictive regression methods are likely even more important in set-

tings where endogenous or predictive variables can feature a complex, potentially time-

varying, tail behavior and observed data can include rare influential observations. Such

influential points may arise, for instance, in settings where some of these variables may ac-

tually be obtained from point estimates of corresponding measures of tail risk. Figure 1 il-

lustrates the time series of estimated tail-risk proxy (7) in the sample period from January

1926 to December 2014, where computations are based on CRSP data. It highlights rare

large observations that may reflect both a sudden change in the underlying measure of tail

risk or a large variation of the estimator precision over time. Given this evidence, robust

predictive regression methods seem particularly appropriate for this kind of data. We can

also motivate economically our robust testing approach by the fact that ambiguous time-

varying predictive relations can be consistently addressed by ambiguity averse investors

only using robust estimators that bound the effects of influential data points.

Wrampelmeyer, Wiehenkamp, and Trojani (2015) show that different specifications of

aversion to ambiguity in the literature imply robust optimal estimator choices related to ro-

bust weighted least-squares. In this sense, a robust predictive regression testing approach is

consistent with the preferences of investors that dislike a time-varying ambiguity in the

data-generating processes.

The data-driven weights in our robust procedure dampen, where necessary, the few data

points that are estimated as influential with respect to the estimated predictive link. This

Figure 1. Tail-risk measure. We plot the tail-risk measure (7) for the period from 1926 to 2014.

2 Contrary to what is often thought, resampling trimmed or winsorized estimators does not yield a ro-

bust resampling method; see, for example, Camponovo, Scaillet, and Trojani (2012) for detailed

examples.
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feature automatically avoids arguing ex ante that, for example, a large value of the pre-

dicted or the predictive variables is per se an anomalous observation, which is not the case

in general. Indeed, large values of both the predictive and the predicted variables might ob-

viously also be very informative about a potential predictability structure, and discarding

them in an ad hoc way might bias the inference. In a truly multivariate predictive regression

settings, it is even more difficult to precisely determine with an informal approach which

subset of observations is potentially influential, for example by eyeballing the data. A useful

property of our methodology is that it embeds a formal data-driven identification of obser-

vations that can be excessively influential for the resulting inference on predictive relations.

3 Empirical Results

We revisit the predictive ability of aggregate tail-risk proxy (7) for US stock market returns.

Using our robust approach, we identify two most influential observations in October 1987

and November 1987, in concomitance and immediately after the Black Monday of October

19, 1987. Additionally, we identify two clusters of infrequent influential data in the subper-

iods 1998–2000 and 2008–2010, which correspond to well-known hystorical periods of

pronounced financial market turbulence and distress. Such influential observations are re-

flected also in some of the particularly large values of tail proxy (7) in October–November

1987 and in the subperiods 1998–2000 and 2008–2010; see again Figure 1.

We study the predictive ability of lagged tail-risk measure (7) for future monthly S&P

500 index returns, both in a single-predictor setting and in a two-predictor setting that add-

itionally includes the dividend yield as a predictive variable.

3.1 Single-Predictor Model

We consider monthly S&P 500 index returns from Shiller (2000), Rt ¼ ðPt þ dtÞ=Pt�1,

where Pt is the end of month real stock price and dt the real dividend paid during month t.

We estimate the predictive regression model

ln ðRtÞ ¼ aþ b � dTRMt�1;1 þ �t; t ¼ 1; . . . ;T; (10)

where dTRMt�1;1 is tail-risk measure (7) in month t – 1 for a one-day horizon h¼ 1, and test

the null hypothesis of no predictability, H0 : b0 ¼ 0, where b0 is the true value of the un-

known parameter b. We collect monthly observations in the sample period 1980–2010 and

estimate the predictive regression model using rolling windows of 180 monthly

observations.

We first estimate the unknown parameter of interest using a least-squares estimator,

and construct 90% confidence intervals with the conventional subsampling and block boot-

strap. Figure 2 reports the empirical results. Interestingly, we find that while in subperiod

1995–2005 both resampling approaches reject the null hypothesis of no predictability, in

subperiod 2005–2010 the testing procedures do not detect predictability structures.3 In a

second step, we test the null hypothesis of no predictability H0 : b0 ¼ 0 using our robust

fast resampling tests. We estimate the unknown parameter of interest using the robust

Huber estimator instead of the least-squares estimator and construct 90% confidence

3 Similar findings arise when computing confidence intervals with standard asymptotic theory, as in

Almeida et al. (2016).
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intervals with the robust fast subsampling and robust fast bootstrap proposed in

Camponovo, Scaillet, and Trojani (2015). Figure 3 reports the empirical results. In this

case, we always reject the null hypothesis of no predictability for the whole period under

investigation.4

It is interesting to study to which extent influential observations might have caused the

diverging conclusions of robust and conventional tests. We exploit the properties of our ro-

bust testing methods to identify such data points. Figure 4 plots the time series of Huber

weights estimated by the robust Huber estimator. We find that subperiod 1998–2002 is

characterized by a cluster of infrequent anomalous observations, which are likely related to

the abnormal stock market performance during the NASDAQ bubble in the second half of

the 1990s. Similarly, we find a second cluster of anomalous observations in subperiod

Figure 2. Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of

the 90% confidence intervals for the parameter b0 in the predictive regression model (10). We consider

rolling windows of 180 observations for the period 1980–2010. We present the conventional subsam-

pling (left panel) and block bootstrap (right panel).

Figure 3. Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of

the 90% confidence intervals for the parameter b0 in the predictive regression model (10). We consider

rolling windows of 180 observations for the period 1980–2010. We present the robust fast subsam-

pling (left panel) and robust fast bootstrap (right panel).

4 Somehow surprisingly, we obtain a weaker predictive evidence, both with conventional and robust

methods, using the tail-risk measure introduced in Kelly and Jiang (2014).
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2008–2010, which is linked to the extraordinary events of the recent financial crisis.

Finally, the most influential observation is November 1987, following the Black Monday

on October 19, 1987. Importantly, the total fraction of such influential observations is

small and less than 3.3%.

To further illustrate the consequences of influential observations, we report in Figure 5

a scatter plot of tail-risk measures (7) and returns. We find that the most influential obser-

vations correspond to tail-risk proxies larger than 7.5 in October and November 1987.

Since our testing results above are based on moving windows of 180 monthly data points,

Figure 5. Scatter plot. On the x-axis and y-axis are represented the tail-risk measure and returns, re-

spectively. The solid line is the robust linear regression computed with the Huber estimator, while the

dashed line is the conventional linear regression computed with the least-squares estimator.

Figure 4. Huber weights under the predictive regression model (10). We plot the Huber weights for the

predictive regression model (10) in the period 1980–2010.
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these influential observations have no impact on the confidence intervals computed in sub-

period 2003–2010. This feature may explain the rejection (non-rejection) of the null hy-

pothesis in subperiod 1995–2005 (2005–2010) using conventional tests.

3.2 Two-Predictor Model

In this section, we study the joint predictive ability of tail-risk measure (7) and the dividend

yield for future monthly S&P 500 index returns, using the two-predictor regression model5:

lnðRtÞ ¼ aþ b1 � dTRMt�1;1 þ b2 � ln
Dt�1

Pt�1

� �
þ �t; t ¼ 1; . . . ;T: (11)

Let b01 and b02 denote the true values of parameters b1 and b2, respectively. Using conven-

tional and robust bootstrap and subsampling tests, we first test the null hypothesis of no re-

turn predictability by tail-risk measure (7), H01 : b01 ¼ 0. Figure 6 reports the 90%

Figure 6. Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of

the 90% confidence intervals for the parameter b1 in the predictive regression model (11). We consider

rolling windows of 180 observations for the period 1980–2010. In the top line, we present the conven-

tional subsampling (left panel) and block bootstrap (right panel), while in the bottom line we consider

the robust fast subsampling (left panel) and robust fast bootstrap (right panel).

5 Consistent with the literature, the annualized dividend series Dt is defined as

Dt ¼ dt þ ð1þ rtÞdt�1 þ ð1þ rtÞð1þ rt�1Þdt�2 þ � � � þ ð1þ rtÞ � � � ð1þ rt�10Þdt�11;

where rt is the one-month maturity Treasury-bill rate.
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confidence intervals for parameter b1, based on rolling windows of 180 monthly observa-

tions in sample period 1980–2010. We find again that the robust tests always clearly reject

the null of no predictability. In contrast, the conventional bootstrap and subsampling tests

do not detect predictability structures for the subperiod 2003–2010. We also test the hy-

pothesis of no predictability by the dividend yield,H02 : b02 ¼ 0. Figure 7 reports the result-

ing confidence intervals for parameter b02. Also in this case and in line with the empirical

evidence in Camponovo, Scaillet, and Trojani (2015), the robust procedures always reject

the hypothesis of no predictability. In contrast, the conventional bootstrap and subsampling

tests produce a weaker and more ambiguous predictability evidence. By inspecting the

Huber weights in Figure 8, implied by the robust estimation of the predictive regression

model (11), we find again a cluster of infrequent anomalous observations, during the Black

Monday on October 1987, the NASDAQ bubble, and the recent financial crisis.

3.3 Time-Varying Predictability?

The evidence of influential observations in the previous section might suggest a broader

misspecification of predictive relations for market returns, which might be captured by

time-varying parameters. We test for the presence of time-varying parameters in predictive

Figure 7. Upper and lower bounds of the confidence intervals. We plot the upper and lower bound of

the 90% confidence intervals for the parameter b2 in the predictive regression model (11). We consider

rolling windows of 180 observations for the period 1980–2010. In the top line, we present the conven-

tional subsampling (left panel) and block bootstrap (right panel), while in the bottom line we consider

the robust fast subsampling (left panel) and robust fast bootstrap (right panel).
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regression model (11), using the standard Wald statistic for endogenous breaks in Andrews

(1993) and its robust version introduced in Gagliardini, Trojani, and Urga (2005). Using

both statistics, we never reject the null hypothesis of no structural break at the 10% signifi-

cance level in our sample period. Therefore, we cannot explain the lack of predictability

produced by classical tests in some cases by a structural break in a significant subset of the

data. We conclude that the presence of a small fraction of influential observations is a

plausible explanation for the diverging conclusions of standard and robust predictive re-

gression methods.

3.4 Out-of-Sample Predictability?

We close our analysis, by quantifying the out-of-sample predictive accuracy of the predict-

ive regression model (10) estimated by our robust approach. We follow Goyal and Welsh

(2003) and Campbell and Thompson (2008), and consider the out-of-sample R2
OS;ROB

statistic:

R2
OS;ROB ¼ 1�

Xt2

t¼t1þ1
ðyt � ŷt;ROBÞ

2Xt2

t¼t1þ1
ðyt � ytÞ

2
; (12)

where ŷt;ROB is the fitted value from a predictive regression estimated with data up to time t

for the out-of-sample forecast period tþ1, using the robust Huber estimator, yt is the his-

torical average return estimated through period up to time t, t1 ¼ 1980, and t2 ¼ 2010.

Whenever statistic R2
OS;ROB is positive, the robust estimation of predictive regression model

(10) provides more accurate out-of-sample predictions than simple forecasts based on the

sample mean of market returns. For the period under investigation 1980–2010, we obtain

R2
OS;ROB ¼ 0:90%. Similar empirical findings also arise by estimating the predictive regres-

sion model using the non-robust least-squares estimator. Therefore, in our data, non-robust

and robust methods provide more accurate out-of-sample predictions than simple forecast

based on the sample mean of market returns.

Figure 8. Huber weights under the predictive regression model (11). We plot the Huber weights for the

predictive regression model (11) in the period 1980–2010.
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