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Abstract The paper revisits regression-based inequality decomposition, derives fur-
ther theoretical results on the factor shares and applies them in an empirical setting.
Noting that the approach based on Shorrocks and Fields is not directly applicable to
an important welfare-based inequality index, namely Atkinson’s inequality index, we
generalise it to derive shares for this index. We also derive the asymptotic distribu-
tion of all share estimators for obtaining their standard errors necessary for drawing
inference. Finally, we use our theoretical results to examine the major factors that con-
tribute to income inequality in India. Our results show that education and household
size are the two most dominant factors contributing to income inequality in both rural
and urban areas, followed by employment status and regional differences.
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1 Introduction

According to ILO (2008), income inequality has been rising since the early 1990s, and
the gap between rich and poor is widening rapidly. Between the early 1990s and the
mid-2000s, which was a period of relatively rapid economic growth, the total income of
high-income households expanded faster than that of low-income households in about
two-thirds of the countries. Similarly, OECD (2008) shows that income inequality has
been rising in two-thirds of the OECD countries in this decade. The income of the
richest 10 % of people is, on average across OECD countries, nearly nine times that
of the poorest 10 %.

One may ask why is it important to analyse inequality as such and not simply study
economic growth? This is mainly because the literature does not provide any clear
relationship between economic growth, poverty and inequality. Depending on how the
benefits of growth are shared among different sections of the population, inequality
may increase or decrease as a result of economic growth and hence one needs to directly
examine inequality in order to gain a clear picture on this front. From a philosophical
angle, one can also argue that the existence of a large inequality in a society may reflect
an ‘unfair’ state of affairs where access to opportunities and resources is denied for
certain sections of the population. Examining the factors contributing to inequality in
outcomes will provide the necessary insight and lead to possible solutions to correct
this underlying inequity.

The methodology to examine income inequality has generated a lot of debate in
recent years. Depending upon the question that is raised, different methods can be
utilised to address income inequality. We identify four different methods of decom-
posing inequality in the literature: decomposing differences in means; decomposing
inequality in a population into within-group and between-group components; decom-
posing inequality according to factor components; and decomposing inequality accord-
ing to the linear income-generating functions.

The first method decomposes inequality in the human capital tradition explaining
variation in incomes by means of years of schooling and experience (and other con-
trols) and pioneering work using this method has been undertaken by Mincer (1958),
(1970), Becker (1964) and Oaxaca (1973). The second method examines inequality
by decomposing it into mutually exclusive population sub-groups. In this tradition,
accounting for inequality largely involved decomposing by population groups to quan-
tify how education, age structure, sex, race, etc. affect inequality (Cowell and Jenkins
1995; Ameida dos Reis and de Barros 1991; Lam and Levison 1991; Shorrocks 1984).
The third method relates to the decomposition of inequality into components attribut-
able to different sources—labour income, capital income and land income (Fei et al.
1978; Pyatt et al. 1980). Fei et al. (1978) and Shorrocks (1982) provide an additive
decomposition of total inequality into the contribution of each income source. Another
method used in this context is the Shapley (1953) decomposition method which extends
the concept of Shapley value in a cooperative game to the decomposition setting.

A final method of decomposing inequality is a regression-based approach allowing
for the possibility to control for endogeneity of certain factors explaining income.
This approach can be used in a context where income flows are associated with and
explained by certain characteristics of the household. As income is regressed on a
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Further results on the regression-based approach to inequality decomposition 1235

number of explanatory variables, the effects of the different variables can be quantified
in a ceteris paribus context.

A general approach to regression-based decomposition was proposed by Morduch
and Sicular (2002) who use the formula given by Theorem 1 of Shorrocks (1982)
for decomposing an inequality measure say I (Y ) where Y denotes the distribution of
incomes. This formula involves the different components of income, say Yi , as well
as functions ai (Y ) that multiply the different components Yi and these ai (Y )s differ
from one inequality measure to another. Thus, the factor shares obtained by Morduch
and Sicular (2002) vary with the inequality measure chosen.

Fields’ (2003) regression-based method uses another theorem of Shorrocks, The-
orem 3, which gives the formula for factor shares for any inequality measure that
satisfies Shorrocks’ (1982) Assumptions 1–6 and this class includes Gini, variance,
coefficient of variation, Theil’s measure, etc. This method goes through a decom-
position of income Y , rather than inequality of income, into its components Yk and
replaces Yk by their estimates β̂k xk obtained from a regression. Thus, Fields’ method
is different from that of Murdoch and Sicular though they are both regression based.

In Sect. 2, we revisit Fields’ (2003) method and derive further theoretical results
on the shares obtained from the regression model. We calculate the asymptotic distri-
bution of the inequality shares derived by Fields’ (2003) which give us their standard
errors necessary for drawing inference. In Sect. 3, we show that the procedure can-
not be directly applied to Atkinson’s inequality index as one of Shorrocks’ (1982)
six assumptions (the consistent decomposition assumption) needed for applying the
procedure is not satisfied by Atkinson’s index. However, Atkinson’s index is often
preferred in the empirical context due to its nice welfare interpretation. So we propose
a solution for deriving the shares for the Atkinson’s index based on Shorrocks’ (1982)
weak consistency assumption. We also derive the asymptotic distribution of Atkinson’s
shares for inference purposes. Finally, in Sect. 4, we provide an empirical example
applying our methodology, and analyse the key contributions to income inequality in
India using three large nationally representative surveys (three rounds of the National
Sample Survey, see Sect. 4). We end the paper with some concluding remarks in Sect. 5.

2 Statistical properties of share estimators for many inequality indices

In this section, we first briefly present Fields’ (2003) method and then derive the
asymptotic distribution of the vector of shares. As is well known, standard errors (or
confidence intervals) provide us with fundamental information on the precision with
which model parameters are estimated, and are crucial for carrying out inference. In
our setting, they will therefore be extremely important for a correct assessment of the
magnitude of factor contributions to inequality.

2.1 Inequality shares

Our starting point is Shorrocks’ (1982) theorem which provides a convenient decom-
position of the inequality of total income into different components. Let us write the
total income of an individual i (i = 1, . . . , N ) as a sum of different components
(sources) as
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Yi =
K∑

k=1

Yik (1)

and let I (Y ) denotes an inequality measure of the distribution of incomes of the
total population1, denoted as Y = [Y1, . . . , YN ]′. Shorrocks’ theorem decomposes
inequality I (Y ) into different components Sk(Yk, Y ) (i.e.

∑K
k=1 Sk(Yk, Y ) = I (Y ))

and gives the share of each component sk to total inequality as follows2:

Theorem 1

Sk(Yk, Y )

I (Y )
≡ sk = cov(Yk, Y )

V (Y )
with

K∑

k=1

sk = 1 (2)

provided that six assumptions, detailed in Appendix A, are satisfied by I (Y ).

Proof See Shorrocks’ (1982), Theorem 3, page 204. ��
Fields (2003) extended this result to the regression framework in which income gener-
ation is explained by a certain number of exogenous factors, which can be considered
as contributing factors:

Yi =
K∑

k=1

βk Xi,k + εi = β ′ Xi + εi (3)

with

β ′ = [β1, . . . , βK ] and Xi =
⎡

⎢⎣
Xi,1
...

Xi,K

⎤

⎥⎦

This formulation has the same additive form as the sum of incomes from each source
seen before (cf. Eq. (1)), so, letting Y = [Y1, . . . , YN ]′ and Xk = [X1,k, . . . , X N ,k]′,
we can directly apply Shorrocks’ theorem and obtain the K + 1 shares as

sk = cov(βk Xk, Y )

V (Y )
k = 1, . . . , K (4)

sε = cov(ε, Y )

V (Y )
(5)

One can thus obtain the estimates of the K shares sk from an estimation of β, the
vector of the parameters, on a sample of n individuals as follows:

ŝk = β̂k

ˆCov(Xk, Y )

V̂ (Y )
k = 1, . . . , K (6)

1 Hereafter capital letters refer to concepts relating to the whole population and small letters to the sample
counterparts.
2 Note that Yk is the vector containing Yiks, constructed in the same way as Y .
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with the share of the residual given by

ŝε = 1 −
K∑

k=1

ŝk

These shares are independent of the particular inequality measure chosen provided the
measure satisfies Shorrocks’ six assumptions. Note that the shares can be negative if
β̂ and ˆcorr(xk, y) have different signs, that is when the partial correlation turns out to
be the opposite of the simple correlation.

Following the reasoning of Fields (2003), the change in inequality between two
periods, say 0 and 1, of any given inequality measure I, can be written as

I1 − I0 =
∑

k

[
sk,1 I1 − sk,0 I0

]

and thus the contribution of factor k to the change in inequality can be defined as

�̂k = ŝk,1 I1 − ŝk,0 I0

I1 − I0
(7)

Because of the presence of I in the equation of �k(I ), it is obvious that the contribution
of the k-th factor to the change in inequality will not only depend on the change in xk ,
y and β̂k , but also on the chosen measure of inequality.

2.2 Asymptotic distribution of share estimators

In this sub-section, we compute the asymptotic distribution (and variance) of the
shares, which is necessary for doing inference on them, in particular for testing the
significance of the contribution of each factor to inequality. The asymptotic distribution
allows us to avoid using re-sampling methods, such as bootstrap, which are computer
and time intensive. Although the bootstrap has a higher convergence speed and gives
better values for small sample inference compared to the asymptotic approximation,
it takes an extremely long time for our large data set (approximately 5–10 h per model
specification) thus becoming impractical.

Theorem 2 The vector of estimated shares ŝ given in Eq. (6) and of the share of
residuals3

ŝ =

⎡

⎢⎢⎢⎣

ŝ2
...

ŝK

ŝε

⎤

⎥⎥⎥⎦

3 The share of the constant term, s1, is zero and including it will lead to a singular variance–covariance
matrix.
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has the following limiting distribution4:

√
n

(
ŝ − s

) d−→ N

(
0;

[
� −�ι

−ι′� ι′�ι

])

where � represents the variance–covariance matrix of the limiting distribution of the
shares for the factors excluding the residual term, ι′�ι is the asymptotic variance of
the share for the residual term and ι is a vector of ones of size K − 1. � is given by

� = 1

n
σ 2

ε

(
IK ⊗ β ′Qx

)
L Q−1

x L ′ (IK ⊗ Qxβ)

(β ′Qxβ + σ 2
ε )2

σ 2
ε is the variance of the error term, IK is the identity matrix of order K and L is a

selection matrix that will be introduced in Appendix B along with Qx .

Proof See Appendix B. ��
The asymptotic variance–covariance matrix is therefore estimated as

ˆAsy.V ar
(
ŝ
) =

[
�̂ −�̂ι

−ι′�̂ ι′�̂ι

]

where

�̂ = 1

n
σ̂ 2

ε

(
IK ⊗ 1

n β̂ ′x ′Mx
)

L( 1
n x ′Mx)−1L ′

(
IK ⊗ 1

n x ′Mx β̂
)

( 1
n β̂ ′x ′Mx β̂ + σ̂ 2

ε )2

where M = In − 1
n ιnι′n . The limiting distribution of the shares being normal, one can

calculate their 95 % confidence intervals as ŝk ± 1.96
√

�̂kk where �̂kk denotes the

k-th diagonal element of �̂.
In order to investigate the validity of the asymptotic approximation in finite samples,

we conducted a simulation experiment with a simple regression model explaining y
with a constant term, a continuous explanatory variable x2 and a dummy explanatory
variable d3. The details of the experiment are presented in Appendix C. From Table 3
in this appendix, we can see that for a sample size of 10,000 (relevant for our study),
the asymptotic variance of the shares is close to the finite sample variance up to 5
significant digits for both x2 and d3, and the skewness–kurtosis tests for normality
cannot be rejected. If we plot the two variances of the shares against the sample size,
we find that they in fact become close from a sample size of about 2,000 onwards.
Normality is also confirmed by the q–q plots of the sample distribution of shares versus
the standard normal one.

Finally, the asymptotic distribution of the change in inequality can be obtained as
follows.

4 The reader should pay attention to the fact that the notation ‘I’ used here for the Identity matrix should
not be confused with the inequality measure introduced in the previous section.
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Theorem 3

√
n

(
�̂k − �k

)
d−→ N

(
0; I 2

1 �kk,1 + I 2
0 �kk,0

(I1 − I0)
2

)

where �kk,0 and �kk,1 are the variances of the limiting distributions of the k-th share
at time 0 and 1, respectively, and where we have kept the same notations I0 and I1 to
denote the inequality indices corresponding to the whole population at time 0 and 1,
respectively.

Proof Starting from the definition of �̂k in Eq. (7) and assuming independence over
time, the above result is easily obtained by combining the asymptotic distribution of
shares in Theorem 2 with the fact that when the size of the sample n goes to infinity,
the inequality index will go to its true value given by the inequality in the whole

population, i.e. I (y)
p−→ I (Y ). ��

3 Atkinson’s index: a different case

Although the regression-based approach presented in the previous section applies
to the most inequality indices, there are notable exceptions and Atkinson’s index
is one of them. We see several reasons for giving a special attention to Atkinson’s
index, specifically: (a) it is explicitly derived from an underlying welfare function
that ensures a complete ordering of distributions; (b) it is acceptable to social values
as it attaches more weight to transfers to the lower end of the distribution whereas
Gini attaches more weight to transfers at the middle-income levels; and (c) it is
flexible enough to allow specification of increasing degrees of (relative) inequality
aversion.

Fields’ formula for deriving the shares cannot be applied to Atkinson’s index as the
latter does not respect Assumption 4 of Shorrocks’ theorem, introduced in Theorem 1,
which imposes that the inequality index should be decomposable as a sum of terms
(i.e. shares). In this section, we propose a suitable way of calculating the shares for
Atkinson’s index by adapting the general proposal made by Shorrocks (1982), and
using appropriate transformation and aggregation functions.

Let us first write down the expression of Atkinson’s index:

IA(Y ) = 1 − 1

μ

[
1

n

∑

i

(yi )
1−ε

] 1
1−ε

, ε ≥ 0; ε 
= 1

As already identified by Shorrocks, this index is not decomposable as a sum of factor
shares, so the author also suggests a ‘generalisation’ to Theorem 1, where the ‘adding
up’ rule of Assumption 4 need not be the operator sum, but can be any general aggrega-
tion function F(·). All but one of the earlier six assumptions still hold and Assumption
4 is now modified as Assumption 4’.

Assumption 4’ (Weak consistency assumption): For all Y1, Y2, Y ,
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S(Y1, Y2, Y ) = F(S(Y1, Y ), S(Y2, Y ))

S(0, Y ) = 0, S(Y, Y ) = I (Y )

where F(·) is some aggregator function.
The above modification of the consistency assumption enables Shorrocks (1982)

to give the solution to the additive problem in the form of the following theorem:

Theorem 4 The weak consistency assumption implies the existence of a continuous
and strictly monotonic function: f : � → � such that f (0) = 0 and:

Ĩ (y) =
∑

k

S̃(yk, y)

where Ĩ (y) = f (I (y)) and S̃(yk, y) = f (S(yk, y)).

Proof See Shorrocks’ (1982), Theorem 4, page 206. ��
Now the transformed inequality measure and its shares satisfy Assumption 4 of The-
orem 1. So, by substituting I (·) with Ĩ (·) and S(·) with S̃(·) and applying Theorem 1,
we obtain the shares for the transformed inequality measure.

We can then retrieve the shares sk for the ‘original’ inequality index using the
inverse function of f (·) 5:

sk = Sk

IA
= f −1(S̃k)

IA
= f −1(s̃k ĨA)

IA
= f −1(s̃k f (IA))

IA
(8)

It is important to note that the above formula gives the shares of the ‘original’ inequality
measure (and not of the transformed measure) and that the values of these shares do
depend on the index.

In the case of Atkinson’s index, Shorrocks suggested the following function
f (y) = (1 − y)1−ε . However, this function does not satisfy the condition f (0) = 0,
which is required for Theorem 46. So we correct Shorrocks’ function by simply sub-
tracting 1 from the function he proposed i.e. f (y) = (1−y)1−ε−1 which then satisfies
the conditions of Theorem 4 in particular f (0) = 0. Then, we decompose Atkinson’s
inequality index using this transformation. A detailed derivation of the factor contri-
butions including the transformed measures Ĩ and S̃ is presented in Appendix D.

One can easily see that the inverse of the function f (y) = (1 − y)1−ε − 1 is given

by f −1(y) = 1 − (y + 1)
1

1−ε and using it in Eq. (8) we obtain the shares which are
presented in the empirical section. It is important to stress that the adjustment regarding
the consistency assumption should not be neglected and the calculations have to be
modified accordingly to obtain the correct values of shares. Further, the asymptotic
variances also have to be corrected taking the transformation into account which we
have done in our calculations (See Appendix E).

5 Note that these shares sk do not satisfy the original assumptions of Shorrocks, only the transformed
shares do.
6 f (0) = 1 for the above f (·).
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The following section examines the major factors that contribute to income inequal-
ity in India using the methodology described in this section. The empirical analysis
is not intended to be an exhaustive analysis of inequality in India, but should rather
be viewed as a pertinent application of the methodology discussed in the previous
sections.

4 Empirical application: decomposing income inequality in India

The Indian economy has grown rapidly with an annual average growth of about 6 %
over the past two decades. There was an attitudinal shift towards ‘pro-business’ policies
in the 1980’s, which resulted in the expansion of the industrial sector—through the
abolition of investment licencing, simplification of rules and reduction of the exclusive
monopolies of the public sector—and helped to achieve high growth. The boom in
information technology and other related services along with other measures has been
central to the growth process since the 1990’s (Kohli 2006; Rodrik and Subramanian
2005; Das 2003).

One might have expected that the high growth over the past decades would have
translated into better incomes for all workers both at the higher and lower rungs and
would have reduced inequality. However, inequality as measured by Gini coefficient
has not declined and the most recent data available show a rise in inequality. The evi-
dence with regard to inequality and poverty in the Indian economy is quite mixed (Sun-
daram and Tendulkar 2003; Sengupta et al. 2008; Bhaduri 2008; Dev and Ravi 2007).

In this paper, we do not intend to explore the effects of growth on inequality but
rather to understand at the micro level the determinants of inequality and find out
the relative contributions of various independent factors using the theoretical results
derived in the earlier sections.

4.1 Regression results: determinants of income

We begin with the estimation of the income equation for rural and urban areas sep-
arately. The data are based on multiple rounds of the Employment–Unemployment
survey along with the consumption expenditure survey undertaken by the National
Sample Survey Organisation (NSSO) every five years, covering all major Indian States.
We use three rounds corresponding to the years 1983 (38th round), 1993–1994 (50th
round) and 2004–2005 (61st round)7. The dependent variable is income for which
we use monthly per capita household consumer expenditure as a proxy. Explanatory
variables comprise household head’s age, sex, social group, religion, employment sta-
tus, education level, industry group, region, household size and per capita land owned.
Appendix F presents data sources along with the list of variable names and definitions.
It also states the reference group for each of the categorical variables. The analysis is
undertaken for all persons aged 15–64 years in the sample.

7 There is a debate on methodological comparability across the different NSSO rounds on the choice of
the reference period. However, we have tried to overcome this problem in this paper as we use the 30-day
uniform reference period, which is comparable across all rounds and we do not take into consideration the
55th round (1999–2000) for the analysis.
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We have excluded the top 1 % of the sample for our estimations because of the huge
jumps in income in this category leading to unstable estimation results thus making the
interpretation and comparison difficult over different specifications and time periods.
If we look at what is excluded in terms of the share of total income, the top 1 %
possesses an average of about 10 % of the total income in our sample (average across
the different time periods and rural/urban, ranging from a minimum of 3.9 % for 1993
urban to a maximum of 17.8 % for 1983 rural). This means the inequality that we study
corresponds to about 90 % of the total income and is thus smaller than what it would
be if we took the entire sample. However, the main reason for this exclusion is the fact
that we are using a regression-based approach and ‘stable’ regression coefficients are
necessary for a sound interpretation of the regression results. Removing the top 1 %
stabilises the coefficients (for instance excluding another 1 %—i.e. excluding the top
2 % of the sample—does not change the results significantly). Hence we decided to
use the lower 99 % of the sample.

The regression results for 1983, 1993–1994 and 2004–2005 rural and urban areas
are presented in Table 1. We have applied OLS but other procedures could be used,
for instance instrumental variables method if endogeneity is suspected. The variables
included explain about 78 % of the variance in incomes in the urban areas in 1983
and 80 % in 2004–2005, whereas in rural areas the variables included explain about
80 % of the variance in incomes in 1983 and 86 % by 2004–2005. The explanatory
variables have the expected signs and most of the variables included are statistically
significant at the one percent level using the standard z-tests. As our sample size is
large, it is expected that the coefficients turn out to be significant. Deaton (1997)
recommends a correction of the critical value for large samples based on Schwarz
(1978), Leamer (1978) and Chow (1983). In particular, Leamer (1978) suggests using
the Bayes factor to conclude in favour of or against a set of linear restrictions H0 as
it takes into account both the asymptotic distribution (square of the standard normal
i.e. χ2) as well as the sample size T . More specifically this leads to a critical value
of lnT for a χ2 statistic which translates as

√
lnT for the asymptotic standard normal

z-statistic and we have applied this correction in our tests8.
The dummies for the education variable are statistically significant, which con-

firms the differences in returns to human capital: as education level increases the
difference with respect to the reference group (highest education level) decreases. The
only exception is in the rural areas in 1983, having a tertiary level of education brings
lower returns than having a middle or secondary level of education. The size of the
coefficient of the education dummies has increased between 1983 to 2004–2005 in
both rural and urban areas, which brings out the importance of education in reducing
inequality.

The industry dummies are also statistically significant for all sectors, in both rural
and urban areas, which indicate the presence of industry effects on income. The spe-
cific industry dummies show that when compared to agriculture (reference group), all
other sectors have a positive differential in both rural and urban areas. These differ-
entials are much higher in rural compared to urban areas for the non-service sectors,

8 For our case with only one restriction, Leamer’s critical value is given by (T − K )(T 1/T −1) (cf. Leamer
(1978), p. 114) which goes to lnT as T goes to ∞.
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Further results on the regression-based approach to inequality decomposition 1247

while for low and especially high skilled, the returns are higher in urban areas. When
compared across the three periods, the size of the coefficients of electricity, gas and
water and high-skilled services increased in both rural and urban areas while that
of other industry groups has reduced or remained stable between 1993–1994 and
2004–2005.

Social groups play a very important role in Indian society and one can observe
their significant effects on income. In both areas, with respect to the reference group
(other castes), scheduled tribes and scheduled castes have negative differentials. In
rural areas, the differential is higher in absolute value for the former, and in urban
areas, the differentials are higher for scheduled castes. In both rural and urban areas,
their magnitude of the impact on income increased over the whole period. Similarly,
across religious groups, the income differential (compared to ‘Others’) is much higher
for Muslim and Christian households than for Hindus and the effects increase over
time in both rural and urban areas.

4.2 Factors accounting for income inequality

The decomposition methodology described in the earlier section is applied to our
regression model to compute the inequality shares of explanatory variables. Table 2
reports the contributions of various household characteristics to inequality in income,
measured using Atkinson’s index with an inequality aversion coefficient of 2 (ε = 2)9,
for both rural and urban areas from 1983 to 2004–2005. The shares are computed using
Eqs. (6) and (8). In order to facilitate the interpretation of the results, the factor con-
tributions have been normalised to add upto 100 % and aggregated for categorical
variables by summing the contributions of constituent dummy variables10. The com-
plete set of results without normalising or aggregating the shares is presented in Table 4
in Appendix G11. Both the tables also report the standard errors for the share estima-
tors obtained using the asymptotic distribution derived in Theorem 2 combined with
Eq. (13) for Atkinson’s shares given in Appendix D.

Before commenting on the different share values, we would like to make two
remarks: (a) the low inequality shares of certain factors should not be interpreted
in terms of the relevance of these factors in the fit of the data; indeed not only do
these explanatory factors globally explain well the observed variance in income (the
R2 value shows a good fitting) but also their individual contributions to the overall
explanation (i.e. the partial correlations of these factors with the endogenous variable)
are important12; (b) we also computed the shares for the group of indices that satisfy

9 The procedure was also applied for ε = 0.5; the results are consistent with the ones presented in the
paper showing the same pattern across the studied period.
10 For example, the total contribution of industry groups is made up of five terms (dummy variables):
mining and manufacturing; electricity, gas and water; construction; low-skilled service sector; and high-
skilled service sector. This aggregation is also done for social groups, employment status, education levels,
industry groups and regions.
11 Note that if a coefficient is not significant then its contribution to income inequality will be equal to
zero. So we set the coefficient equal to zero and do not compute the shares for the insignificant parameters.
12 We do not report the partial correlations here but they are available upon request.

123



1248 M. Bigotta et al.

Ta
bl

e
2

A
tk

in
so

n’
s

in
de

x:
ag

gr
eg

at
e

fa
ct

or
sh

ar
es

,t
he

ir
as

ym
pt

ot
ic

st
an

da
rd

er
ro

rs
an

d
co

nt
ri

bu
tio

ns
to

th
e

ch
an

ge
of

in
eq

ua
lit

y

U
rb

an
R

ur
al

Sh
ar

es
(%

)
C

ha
ng

e
in

in
eq

ua
lit

y
Sh

ar
es

(%
)

C
ha

ng
e

in
in

eq
ua

lit
y

19
83

19
93

–1
99

4
20

04
–2

00
5

19
83

–1
99

3
19

93
–2

00
4

19
83

19
93

–1
99

4
20

04
–2

00
5

19
83

–1
99

3
19

93
–2

00
4

A
ge

−5
.3

**
*

−2
.7

**
*

0.
8

**
*

−0
.0

8
0.

44
0.

8
**

*
1.

5
**

*
3.

3
**

*
−0

.0
1

−0
.1

0

(0
.0

22
)

(0
.0

17
)

(0
.0

24
)

(0
.0

23
)

(0
.0

20
)

(0
.0

15
)

G
en

de
r

0.
5

**
*

0.
1

**
*

0.
02

**
*

0.
01

−0
.0

1
−0

.0
2

**
*

–
0.

1
**

*
–

–

(0
.0

37
)

(0
.0

08
)

(0
.0

08
)

(0
.0

02
)

(0
.0

02
)

H
ou

se
ho

ld
si

ze
21

.3
**

*
18

.8
**

*
14

.3
**

*
0.

24
−0

.4
2

7.
0

**
*

7.
4

**
*

11
.7

**
*

0.
06

−0
.2

0

(0
.1

82
)

(0
.0

60
)

(0
.0

62
)

(0
.0

31
)

(0
.0

17
)

(0
.0

19
)

L
an

d
O

w
ne

rs
hi

p
4.

5
**

*
4.

3
**

*
4.

8
**

*
0.

05
0.

01

(0
.0

41
)

(0
.0

31
)

(0
.0

20
)

So
ci

al
G

ro
up

1.
1

**
*

0.
7

**
*

1.
2

**
*

0.
02

0.
08

3.
1

**
*

2.
5

**
*

2.
3

**
*

0.
04

0.
03

(0
.0

02
)

(0
.0

25
)

(0
.0

27
)

(0
.0

28
)

(0
.0

19
)

(0
.0

11
)

R
el

ig
io

n
0.

8
**

*
0.

1
**

*
0.

3
**

*
0.

01
0.

03
0.

5
**

*
0.

3
**

*
1.

4
**

*
0.

01
−0

.0
6

(0
.0

51
)

(0
.0

28
)

(0
.0

30
)

(0
.0

26
)

(0
.0

18
)

(0
.0

17
)

St
at

e
du

m
m

ie
s

3.
2

**
*

3.
4

**
*

2.
8

**
*

0.
03

−0
.0

6
6.

9
**

*
9.

3
**

*
10

.8
**

*
0.

02
−0

.0
1

(0
.0

93
)

(0
.0

34
)

(0
.0

36
)

(0
.0

51
)

(0
.0

31
)

(0
.0

26
)

H
ou

se
ho

ld
he

ad
’s

In
du

st
ry

1.
3

**
*

1.
0

**
*

2.
3

**
*

0.
02

0.
18

2.
4

**
*

2.
6

**
*

1.
6

**
*

0.
02

0.
09

(0
.2

10
)

(0
.0

82
)

(0
.1

04
)

(0
.0

43
)

(0
.0

38
)

(0
.0

29
)

E
du

ca
tio

n
21

.1
**

*
26

.3
**

*
28

.0
**

*
0.

16
0.

48
8.

1
**

*
10

.3
**

*
11

.2
**

*
0.

04
0.

04

(0
.3

02
)

(0
.0

88
)

(0
.0

92
)

(0
.1

94
)

(0
.1

08
)

(0
.0

53
)

E
m

pl
oy

m
en

ts
ta

tu
s

3.
9

**
*

3.
2

**
*

2.
7

**
*

0.
05

0.
02

4.
2

**
*

5.
1

**
*

4.
2

**
*

0.
02

0.
11

(0
.3

32
)

(0
.0

60
)

(0
.1

22
)

(0
.1

00
)

(0
.0

85
)

(0
.0

51
)

123



Further results on the regression-based approach to inequality decomposition 1249

Ta
bl

e
2

co
nt

in
ue

d U
rb

an
R

ur
al

Sh
ar

es
(%

)
C

ha
ng

e
in

in
eq

ua
lit

y
Sh

ar
es

(%
)

C
ha

ng
e

in
in

eq
ua

lit
y

19
83

19
93

–1
99

4
20

04
-2

0-
05

19
83

–1
99

3
19

93
–2

00
4

19
83

19
93

–1
99

4
20

04
–2

00
5

19
83

–1
99

3
19

93
–2

00
4

R
es

id
ua

ls
52

.1
**

*
49

.1
**

*
47

.6
**

*
0.

55
0.

26
62

.5
**

*
56

.8
**

*
48

.5
**

*
0.

74
1.

09

(0
.1

99
)

(0
.0

75
)

(0
.0

79
)

(0
.0

59
)

(0
.0

44
)

(0
.0

36
)

Su
m

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

A
tk

in
so

n
(e

=
2)

0.
62

3
0.

30
2

0.
32

6
0.

33
0

0.
21

9
0.

18
9

So
ur

ce
Sa

m
e

as
Ta

bl
e

1.
–

in
di

ca
te

s
a

no
n-

si
gn

ifi
ca

nt
be

ta
.F

ig
ur

es
in

br
ac

ke
ts

ar
e

st
an

da
rd

er
ro

rs
.T

he
sh

ar
es

ab
ov

e
ha

ve
be

en
no

rm
al

is
ed

to
ad

d
up

to
10

0
%

to
fa

ci
lit

at
e

th
e

in
te

rp
re

ta
tio

n
of

th
e

re
su

lts
;w

e
al

so
ag

gr
eg

at
ed

th
e

sh
ar

es
fo

r
th

e
va

ri
ab

le
s

co
de

d
as

du
m

m
y

to
se

e
th

e
to

ta
le

ff
ec

to
f

th
e

ca
te

go
ri

es
**

*,
**

,*
Si

gn
ifi

ca
nt

at
th

e
1,

5,
10

pe
rc

en
t,

re
sp

ec
tiv

el
y

123



1250 M. Bigotta et al.

Shorrocks’ original assumptions (such as Gini, coefficient of variation, the gener-
alised entropy indices, the centile measures) and the interpretations are qualitatively
similar13.

Education emerges as the most dominant factor contributing to inequality in urban
and rural areas, although this factor’s share in inequality is much higher in urban
(28 %) than in rural (11.2 %) areas in 2004–2005 (Table 2). The relative contribution of
education has increased both in rural and urban areas over the three periods. Education
explains most of the inequality in urban areas (53 % of the inequality explained by
our model), while both education and household size tend to be equally important in
rural areas. The dominance of education in explaining income inequality has also been
confirmed by others (Londono 1996; Deininger and Squire 1998; Barro 2000).

Household size is another major factor contributing to the inequality and this factor
contribution has declined by almost 7 percentage points between 1983 and 2004–2005
in urban areas attesting itself at 14.3 %. In rural areas, the contribution of the household
size increased from 7.0 to 11.7 % during the same period. This may reflect the fact that
bigger households may mean either more nuclear families within the same household
(a specific feature of the Indian society) and therefore possibly more wage-earners, or
more dependent members thus accounting for disparity.

The contribution of employment status to inequality is comparatively higher in rural
(4.2 %) compared to urban (2.7 %) areas in 2004–2005. The relative inequality weight
of employment status has declined by one percentage point between 1993–1994 and
2004–2005 in rural areas. At the disaggregate level, this decline is in the self-employed
and salaried category, as casual workers see their contribution to inequality rise by
1.2 percentage points. In urban areas, the factor inequality shares declined by half
percentage point in the overall period; the salaried category is the sole reason for the
decline, with a decline of almost 1 percentage points partially compensated by the
other two categories. These results imply that variations in casual labour status tend
to be influential for inequality in both areas.

Regional factors, as captured by State dummies, turn out to be important in explain-
ing income inequality especially in rural areas. In India, income varies across States
and also within States, and this inter-State variation is to a large extent due to the dif-
ferences in the level of development. The relative factor contribution of this regional
variable to inequality has increased over the different periods in rural areas from 6.9
to 10.8 % and in urban areas, it diminished attesting itself at 2.8 %, less than three
times that of rural areas. At the disaggregate level, we find that the factor inequality
shares of households residing in developed States are lower than that of poorer States
especially in rural areas, reiterating that infrastructure and industrial development are
important factors in reducing inequality.

Land ownership is another important factor explaining inequality in rural areas. This
factor’s inequality share is about 5 % in 2004–2005 and the relative factor inequality
only marginally increased between 1983 and 2004–2005. Though caste and religion do
have a significant influence in India, the inequality share results do not seem to reflect

13 We do not discuss the differences between Atkinson’s index and Gini to avoid a lengthy paper but the
Gini shares are available with the authors upon request.
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it14. The relative importance of variables representing caste and religious affiliation is
quite low. The contribution of social group in rural areas declined from 3.1 to 2.3 %
between 1983 and 2004–2005, in the same period in urban areas, the share remained
stable at 1.1/1.2 %.

The above results are confirmed if we look at the change in inequality (cf. Table 2).
Between 1993–1994 and 2004–2005, education accounts for a huge increase in the
Atkinson’s coefficient in urban India. The other variables which substantially con-
tribute to change in inequality are age, industry and social groups in urban areas. In
rural India, education and employment status account for the increase in Atkinson
coefficients, while household size and religion account for the decline in the Atkinson
coefficient. The analysis clearly brings out the emergence of education as the most
important factor contributing to inequality (increasing or declining).

5 Concluding remarks

This paper completes and extends the methodology of Shorrocks (1982) and Fields
(2003) for decomposing inequality into its factor shares. We first derive the asymptotic
distribution of the share estimators given by Fields. Then we show that Fields’ formula
is not applicable to Atkinson’s index, and provide an extension to obtain the shares
for Atkinson’s index. We also derive the asymptotic variances of Atkinson’s shares
emphasising the point that all economic interpretations have to be based not only on
the estimates of parameters but also on their standard errors calculated in a correct
manner.

We apply our methodology to examine the factors contributing to income inequality
in rural and urban India. The empirical analysis shows that education and household
size emerge as the most dominant factors contributing to inequality in both rural
and urban areas. The relative importance of education has increased much more in
rural areas. The employment status of the household head is another major factor
contributing to inequality, and its importance is much bigger in rural than in urban
areas. In rural areas, land ownership, regional factors and caste to a lesser extent do play
some role whereas other factors like religion or industry group are only marginal in
explaining inequality. In urban areas, regional differences are important and industry’s
share, although slightly less than region, increased between 1993–1994 and 2004–
2005.

Acknowledgments The authors are grateful to Gary Fields for useful comments on an earlier version of
this paper. We also thank Ajit Ghose for helpful discussions. The authors would like to thank the referees
for their valuable comments which helped to improve the paper substantially.

14 This could unfortunately be due to the nature of available data. In the analysis, we compare SCs and
STs with ‘Others’, the latter being an all encompassing category that includes everyone else. This is a
large heterogeneous category that includes castes that are very low in the hierarchy, not necessarily very
different from the SCs and STs in status and in economic conditions. It is possible that this classification
actually underestimates the relative disadvantage of scheduled castes and scheduled tribes with respect to
the ‘higher’ castes.
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Appendices

Appendix A: Shorrocks’ theorem and its six assumptions:

Shorrocks’ theorem can be stated as follows:
Let the total income of an individual i (i = 1, . . . , N ) be written as a sum of

different components (sources)

Yi =
K∑

k=1

Yik k = 1, . . . , K

and let I (Y ) be an inequality measure of the distribution of incomes denoted as Y =
[Y1, . . . , YN ]′. Then the share of each component sk to the total inequality is given by:

sk = cov(Yk, Y )

σ 2(Y )

such that:
∑

k

sk = 1

provided the following six important assumptions15 are satisfied by I (Y ).

1. I (Y ) is continuous and symmetric, and it is equal to 0 if and only if all individuals
have the same income, Y ′ = [μ...μ].

2. Sk(Y1, . . . , YK , K ) = Sk(Yk, Y ), the contribution of factor k, is continu-
ous in Yk (continuity), and if π1, . . . , πK is a permutation of 1, . . . , K , then
Sk(Yπ1 , . . . , YπK , K ) = Sπk (Y1, . . . , YK , K ) (symmetric treatment of factors).

3. The contribution of a factor does not depend on how the others are grouped (inde-
pendence of the level of disaggregation).

4. The sum of the contributions is equal to the inequality measure (consistent decom-
position):

∑
k Sk(Y1, . . . , YK , K ) = I (Y ).

5. If P is any permutation matrix, then Sk(Yk, Y ) = Sk(Yk P, Y P) (population sym-
metry) and if all individuals have the same income for factor k its contribution is
Sk(Yk, Y ) = 0 (normalisation for equal factor distribution).

6. (Two factor symmetry) Suppose that the incomes of factor 2 are a permutation of
those of factor 1 (Y2 = Y1 P). Then if there are only these two sources of income,
they should receive the same value in the decomposition: S1(Y1; Y = Y1 +Y1 P) =
S2(Y2 = Y1 P; Y = Y1 + Y1 P).

As one can see from the substance of these assumptions inserted in parentheses,
they are reasonably basic and self-explanatory. They can also be considered realistic
as the majority of inequality measures satisfy them. The assumption of consistent
decomposition (i.e. Assumption 4) is the only one that can cause some problems as an

15 A combination of the formulations by Shorrocks (1982) and Fields (2003) has been used here.
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additive form cannot be obtained for a few measures and a workaround is needed. An
alternative approach is introduced here for Atkinson’s measure which does not satisfy
Assumption 4 and it can be replicated for other such measures.

Appendix B: Proof of Theorem 2

Let us recall some important limit results in the form of a lemma which will be useful
for future reference16.

Lemma 1 1. xn
d−→ x, yn

p−→ α ⇒ xn + yn
d−→ x + α

2. xn
d−→ x, yn

p−→ 0 ⇒ yn xn
d−→ 0

3. xn
d−→ x, An

p−→ A ⇒ An xn
d−→ Ax

where xn, x and yn are random variables, An is a deterministic sequence, and α and
A are constants.

We make two basic assumptions on x and ε:

1

n
x ′Mx

p−→ Qx , and
1

n
x ′Mε

d−→ 0

where M = In − 1
n ιnι′n .

To prove the theorem we need to derive the limiting distribution of the vector of the
shares for the factors (excluding the constant term), say ŝ∗. From Eq. (6), we have:

ŝ∗ =
⎡

⎢⎣
ŝ2
...

ŝK

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

σ̂x2 y

V̂ (y)
β̂2

...
σ̂xK y

V̂ (y)
β̂K

⎤

⎥⎥⎥⎦ = 1

V̂ (y)

⎡

⎢⎣
σ̂x2 y 0

. . .

0 σ̂xK y

⎤

⎥⎦

⎛

⎜⎝
β̂2
...

β̂K

⎞

⎟⎠ ≡ 1

V̂ (y)
D ˆ̃

β

using the notation D for the diagonal matrix in the middle of the above expression.

We denote as β̃ is the sub-vector of β when the constant term is excluded and ˆ̃
β is its

estimator. Standard estimators of variances and covariances are given by:

V̂ (y) = 1

n

∑

i

(yi − ȳ)2 = 1

n
y′My

σ̂xk y = 1

n

∑

i

(
xk,i − x̄k

)
(yi − ȳ) = 1

n
y′Mxk

16 The notation
p−→ denotes convergence in probability and

d−→ convergence in distribution. The results
of Lemma 1 will not be proved here as they are available in many econometrics textbooks (e.g. see Greene
(2007), page 1049).

123



1254 M. Bigotta et al.

We can now write D as:

D =
⎡

⎢⎣

1
n y′Mx2 0

. . .

0 1
n y′MxK

⎤

⎥⎦

= 1

n

⎛

⎜⎝
y′M 0

. . .

0 y′M

⎞

⎟⎠

⎛

⎜⎝
x2 0

. . .

0 xK

⎞

⎟⎠ = 1

n

(
IK−1 ⊗ y′M

)
x∗

where the notation x∗ is used for the last diagonal matrix in the above expression. The

OLS estimator ˆ̃
β is17:

ˆ̃
β = (

x ′Mx
)−1

x ′My

Replacing V̂ (y) and D in the expression of ŝ∗, we get:

ŝ∗ = 1

V̂ (y)
D ˆ̃

β =
1
n

(
IK−1 ⊗ y′M

)
x∗ ˆ̃

β

1
n y′My

We can now write
√

n
(
ŝ∗ − s

)
as:

√
n

(
ŝ∗ − s

) = √
n

⎛

⎝
1
n

(
IK−1 ⊗ y′M

)
x∗ ˆ̃

β

1
n y′My

−
1
n

(
IK−1 ⊗ y′M

)
x∗β̃

1
n y′My

⎞

⎠

=
1
n

(
IK−1 ⊗ y′M

)
x∗

1
n y′My

√
n

( ˆ̃
β − β̃

)

Let us now study the different parts of the equation, starting with 1
n y′My:

1

n
y′My = 1

n

(
β1ιn + x̃ β̃ + ε

)′
M

(
β1ιn + x̃ β̃ + ε

)

= 0 + 1

n
β̃ ′ x̃ ′Mx̃ β̃ + 1

n
ε′Mx̃ β̃ + 1

n
β̃ ′ x̃ ′Mε + 1

n
ε′Mε

The asymptotic limit of the first term is given by

1

n
β̃ ′ x̃ ′Mx̃ β̃

p−→ β̃ ′Qx β̃,

17 Here we use the standard OLS estimator but other estimators could be used in which case the computation
of the asymptotic distribution will have to be modified accordingly. Note that the constant term disappears
with the M transformation.
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The second and third terms go to 0 and the last term goes to the variance of ε. So at
the end we have:

1

n
y′My

p−→ β̃ ′Qx β̃ + σ 2
ε (9)

We know the asymptotic distribution18 of
√

n
( ˆ̃
β − β̃

)
:

√
n

( ˆ̃
β − β̃

)
d−→ N

(
0; σ 2

ε Q−1
x

)
(10)

The last part to be examined is 1
n

(
IK−1 ⊗ y′M

)
x∗. To analyse its asymptotic behav-

iour, let us go back to the matrix notation:

1

n

(
IK−1 ⊗ y′M

)
x∗ =

⎡

⎢⎣

1
n y′Mx2 0

. . .

0 1
n y′MxK

⎤

⎥⎦

and look at the k-th term for example, 1
n y′Mxk . Using a selection vector lk , that only

selects the kth element19 and substituting for y′ we can write:

1

n
y′Mxk = β̃ ′ x̃ ′Mx̃

1

n
lk + 1

n
ε′Mx̃lk

It can be easily verified that:

1

n
y′Mxk

p−→ β̃ ′Qxlk + 0 = β̃ ′Qxlk

Going back to the matrix notation we obtain20:

1

n

(
IK−1 ⊗ y′M

)
x∗ p−→

(
IK−1 ⊗ β̃ ′Qx

)
L (11)

18 See for example Greene (2007), page 67.
19 lk is a vector of dimension K −1 with 0 everywhere and 1 on the (k−1)th position: lk = [0 · · · 010 · · · 0]′.

Using this vector we have xk = x̃ · lk = [x2 · · · xK ]

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
.
.
.

1
.
.
.

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

20 Let L =
⎡

⎢⎣

l2 0
. . .

0 lK

⎤

⎥⎦.
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Putting together the results in Eqs. (10) and (11) and using Lemma 1.3, we get :

1

n

(
IK−1 ⊗ y′M

)
x∗√

n
( ˆ̃
β − β̃

)
d−→ N

(
0; σ 2

ε

(
IK−1 ⊗ β̃ ′Qx

)
L Q−1

x L ′ (IK−1 ⊗ Qx β̃
))

Now using Lemma 1.1 we find the result:

√
n

(
ŝ∗ − s

) d−→ N

(
0; σ 2

ε

(
IK ⊗ β ′Qx

)
L Q−1

x L ′ (IK ⊗ Qxβ)

(β ′Qxβ + σ 2
ε )2

)

The variance–covariance matrix obtained through the asymptotic results can then be
written as:

Asy.V ar(ŝ∗) = � = 1

n
σ 2

ε

(
IK ⊗ β ′Qx

)
L Q−1

x L ′ (IK ⊗ Qxβ)

(β ′Qxβ + σ 2
ε )2

We can now move on to compute the variance of the all vector of shares ŝ (i.e. including
the share for the residuals). We have ŝε = 1 − ∑K

k=1 ŝk = 1 − ι′ŝ∗ and therefore:

ŝ =

⎡

⎢⎢⎢⎣

ŝ2
...

ŝK

ŝε

⎤

⎥⎥⎥⎦ =
[

ŝ∗
1 − ι′ŝ∗

]
=

[
0
1

]
+

[
Ik

−ι′
]

ŝ∗

We can than easily compute the variance of the vector of all shares as:

Asy.V ar(ŝ) = 0 +
[

Ik

−ι′
]

Asy.V ar(ŝ∗)
[

Ik −ι
] =

[
� −�ι

−ι′� −ι′�ι

]

Thus we have:

√
n

(
ŝ − s

) d−→ N

(
0;

[
� −�ι

−ι′� ι′�ι

])

��

Appendix C: Simulation experiment

We simulate a simple model specified as follows:

y = β1 + x2 · β2 + d3 · β3 + ε (12)

where y could be the income variable, x2 a continuous explanatory variable such as
age in our case, and d3 a dummy explanatory variable such as gender. We generate
the two explanatory variables and the error term as follows:
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Table 3 Summary of results for the simulation

n β β̂ V (β̂) ŝ Vs (ŝ) Asy.V ar(ŝ) Skewness–Kurtosis test
Skewness Kurtosis Joint

x2 100 3 2.999 0.731 0.117 3.3E-03 9.6E-04 0.000 0.937 0.000

1′000 3 3.001 0.067 0.112 3.2E-04 9.5E-05 0.468 0.631 0.684

10′000 3 3.002 0.007 0.111 3.4E-05 9.5E-06 0.693 0.312 0.554

D3 100 40 39.960 427.8 0.041 1.2E-03 3.4E-04 0.000 0.000 0.000

1′000 40 40.109 38.43 0.034 1.0E-04 2.9E-05 0.000 0.002 0.000

10′000 40 39.913 4.230 0.033 1.1E-05 2.8E-06 0.139 0.822 0.327

ε 100 0.842 4.0E-03 1.3E-03 0.000 0.220 0.000

1′000 0.854 3.9E-04 1.2E-04 0.388 0.338 0.436

10′000 0.856 4.2E-05 1.2E-05 0.533 0.970 0.822

x2 ∼ N (45, 12)

d3 = 1 if u ≥ 0.6 and 0 otherwise, where u ∼ U [0, 1]
ε ∼ N (0, 100)

Inspiring from our empirical results, we fix β1 = 500, β2 = 3 and β3 = 40 and
generate y according to Eq. (12). Then β̂, the shares ŝ and their asymptotic variances
are computed. We repeat the procedure 1’000 times and for different sample sizes
n = 100, 1,000 and 10,000.

Table 3 presents a summary of the results, including the small sample variance Vs(ŝ),
the asymptotic variance Asy.V ar(ŝ) and the p-values of the Skewness–Kurtosis test
for normality21.

We also explored different values for the coefficients and the results are similar.

Appendix D: Solving the problem of consistent decomposition for Atkinson’s Index

In this appendix we derive the decomposition function for Atkinson’s Index. We start
by writing the measure as:

IA(Y ) = 1 − 1

μ

[
1

n

∑

i

(yi )
1−ε

] 1
1−ε

, ε ≥ 0; ε 
= 1

Simply rearranging the expression of the inequality measure we obtain:

(1 − IA(Y ))1−ε = 1

μ1−ε

1

n

∑

i

(yi )
1−ε

21 We present the variance instead of MSE because the estimation of β is unbiased even with a small sample
size; note that V (β̂) denotes the sample variance of β̂.
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The above expression gives us the transformation function proposed by Shorrocks
(1982) (i.e.: f (y) = (1− y)1−ε). As observed in Sect. 3, this function does not satisfy
the condition f (0) = 0, so we modify it, by subtracting one, to make it respect this
condition. We then obtain the following expression for the transformed index:

ĨA = f (IA) = (1 − IA(Y ))1−ε − 1 = 1

μ1−ε

1

n

∑

i

(yi )
1−ε − 1

The above expression can be rewritten as:

ĨA = 1

μ1−ε

1

n

∑

i

(yi )
−ε

[
∑

k

yi,k − 1

n

]

Thus we can compute the contribution to inequality of the k-th factor as follows:

S̃k = 1

μ1−ε

1

n

∑

i

(yi )
−ε

[
yi,k − 1

nK

]

It is easy to show that the two transformed measures (S̃ and Ĩ ) respect the six assump-
tions of Shorrocks’ theorem and hence the general formula of Theorem 1 can be
applied to ĨA to get s̃k, k = 1, . . . , K which can in turn be reconverted into sk using
f −1(·) as in (8).

Appendix E: Variances and covariances of Atkinson shares

Recall from (8) that

sk = f −1(s̃k ĨA)

IA

with

f −1(y) = 1 − (y + 1)
1

1−ε

Thus

∂sk

∂ s̃k
= 1

IA

∂ f −1(·)
∂(·) ĨA

= 1

IA

−1

(1 − ε)
(s̃k Ĩk + 1)

ε
(1−ε) ĨA

and

∂sk

∂ s̃ j
= 0 for k 
= j
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Hence,

V (ŝk) ∼=
(

∂sk

∂ s̃k

)2

V ( ˆ̃sk)

where V ( ˆ̃sk) is given by our Theorem 2.
Denoting the vectors of shares as

ˆ̃s =

⎡

⎢⎢⎢⎢⎣

ˆ̃s1
ˆ̃s2
...

ˆ̃sK

⎤

⎥⎥⎥⎥⎦
; ŝ =

⎡

⎢⎢⎢⎣

ŝ1
ŝ2
...

ŝK

⎤

⎥⎥⎥⎦

and writing

∂s

∂ s̃′ =

⎡

⎢⎢⎢⎢⎣

∂s1
∂ s̃1

0 . . . 0

0 ∂s2
∂ s̃2

. . . 0

. . .

0 0 . . . ∂sK
∂ s̃K

⎤

⎥⎥⎥⎥⎦
≡ say J

we have:
Asy.V (ŝ) ∼= Ĵ [Asy.V ( ˆ̃s)] Ĵ ′ ≡ say Q (13)

Therefore, the variance of the sum of shares, for instance ι′ŝ, can be derived as follows:

V (ι′ŝ) ∼= ι′Qι

Appendix F: Data sources, variable names and definitions

The data are based on multiple rounds of the employment–unemployment survey along
with the consumption expenditure survey undertaken by the NSSO every five years,
covering major Indian States. We use three rounds corresponding to the years 1983
(38th round), 1993–1994 (50th round) and 2004–2005 (61st round). The detailed
characteristics of all household members including sex, age, caste/religion, marital
status, relation to the household head, education level, employment status, occupation,
industry and the region are provided in the survey. The monthly per capita consumption
expenditure that is used as a proxy variable for income is obtained for the same set of
households from the consumer expenditure survey. The sample is restricted to the age
group 15–64 years and the variables are defined below:

• Income: The income variable is proxied by monthly per capita consumer expendi-
ture.

• Age: Age of the individual in logarithm.
• Household size: Number of persons in the household.
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1260 M. Bigotta et al.

• Gender: Dummy variable, indicating female=1, 0 otherwise.
• Land ownership: Per capita land possession obtained as land possession owned

by the household divided by the number of persons in the household.
• Social group: Social group consists of scheduled tribes, scheduled castes and others

(other backward caste and forward caste). Two dummy variables for scheduled tribes
and scheduled castes are constructed with “Others” as the reference category.

• Religion: Religion comprises of Hindus, Muslims, Christians and Others. We have
constructed three dummy variables for Hindus, Muslims and Christians separately,
with “Others” as the reference category.

• Education: We classify education into five categories: illiterate, primary, middle,
secondary and above secondary. We generate four dummy variables for illiterate,
primary, middle and secondary and the reference category is “above secondary”.

• Employment status: The employment status categories that we consider are self-
employment, casual worker, salaried and unemployed. The self-employment com-
prises own account workers, employers and unpaid family workers; salaried workers
comprises regular salaried and waged employee and the casual workers comprises
casual labour in public works or other type of works. We create three dummy vari-
ables with “unemployed” as the reference category.

• Industry: We aggregate the industries classified under National Industrial Classi-
fication to six industry groups with similar qualitative characteristics: agriculture
(comprises agriculture, forestry and fishing); manufacturing (comprises mining and
manufacturing); electricity, gas and water; construction; low-skilled services sec-
tor (comprises trade, hotels and restaurant, transport and personal services) and
high-skilled services sector (comprises banking and insurance, communication,
real estate, business services and public administration). The categorization of the
service sector into two groups is justified on the basis of skill and capital require-
ments. “agriculture” is used as reference category and we constructed five dummy
variables for each of the other industry groups.

• State dummies: We have generated state dummies for 15 major States in India and
the remaining states are used as the reference category. The 15 major states for which
we have generated dummies are Andhra Pradesh, Assam, Bihar, Gujarat, Haryana,
Karnataka, Kerala, Madhya Pradesh, Maharashtra, Orissa, Punjab, Rajasthan, Tamil
Nadu, Uttar Pradesh and West Bengal.

Appendix G: Shares of inequality and their asymptotic variances for Atkinson’s index
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