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Abstract Shape gradients of PDE constrained shape functionals can be stated in two
equivalent ways. Both rely on the solutions of two boundary value problems (BVPs),
but one involves integrating their traces on the boundary of the domain, while the
other evaluates integrals in the volume. Usually, the two BVPs can only be solved
approximately, for instance, by finite elementmethods.However,when usedwith finite
element solutions, the equivalence of the two formulas breaks down. By means of a
comprehensive convergence analysis, we establish that the volume based expression
for the shape gradient generally offers better accuracy in a finite element setting. The
results are confirmed by several numerical experiments.
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1 Introduction

Shape calculus studies the “differentiation of shape functionals with respect to the
variation of a domain they depend upon”. Over the last three decades this notion has
been made rigorous, notably by the introduction of the velocity method by Zolesio
[10,28] and the domain perturbation method by Simon [24,25,27] and Eppler [11,12].
Shape calculus has also become important as a key tool in the field of optimization,
where it supplies the so-called shape gradient, that is, the first derivative of a functional
with respect to a shape, for use in the framework of descent methods. Since this article
will not directly discuss methods for shape optimization we refer the reader to the
monographs [2,8,15,18,19,26,28].

Shape optimization entails the approximate numerical computation of shape gra-
dients. This step will be the focus of this article. Of course, many different shape
functionals are conceivable, leading to vastly different types of shape gradients. Thus,
we have to adopt a “case study approach” and restrict our study to a special, albeit
important, class of shape functionals.

The shape functionals under scrutiny are least squares output functionals for solu-
tions of scalar second-order elliptic boundary value problems. They belong to the
category of PDE constrained shape functionals and have widely been considered in
articles on shape optimization [3,16].

In [2], for instance, formulas have been derived for the associated shape gradients.
They are based on solutions u and p of two boundary value problems, called state and
adjoint problem. Starting point for our investigations was the insight that the formulas
can be stated in two equivalent ways, (i) as expressions involving traces of u and p on
the boundary of the domain, and (ii) by means of volume integrals on the domain, see
[5, Sect. 6].

The situation resembles that faced for quite a few common output functionals
depending on solutions of BVPs for second-order elliptic PDEs. Examples are the total
heat flux in heat conduction, lift functionals for potential flow [16], far field functionals
[22,23], and electromagnetic force functionals [21]. All these functionals can be stated
as integrals either over boundaries or over parts of the domain, and the same value is
obtained when inserting exact solutions of the BVPs. Both kinds of formulas can also
be used in the context of finite element approximation, but when applied to discrete
solutions, they fail to give the same answer. More strikingly, the volume integrals
often display much faster convergence and provide superior accuracy compared to
their boundary based counterparts. An explanation is that the expressions featuring
volume integrals enjoy continuity in energy norm, whereas integrals of traces are not
well-defined on the natural variational spaces. Thismakes a crucial difference, because
we can benefit from superconvergence, when evaluating continuous functionals for
Galerkin solutions [4, Sect. 2].

This made us suspect that similar effects could be observed for the different expres-
sions for shape gradients and their use with finite element solutions. The analysis and
numerical experiments of this article largely confirmour expectation that volumebased
expressions for the shape gradient often offer better accuracy than the use of formulas
involving traces on boundaries. This is the message of both the a priori convergence
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estimates developed in Sect. 3, see Theorems 3.1 and 3.2, and of the numerical tests
reported in Sect. 4.

What compounds the difficulties of gauging the quality of formulas for shape gradi-
ents is the fact that they must be viewed as linear functionals on spaces of infinitesimal
deformations. Of course, one can switch back to functions via the Riesz representa-
tion theorem, but the choice of the underlying inner product is somewhat arbitrary and
might bias the outcome. Thus, we have decided to study the errors of shape gradients
directly in the relevant dual norms.

2 Shape gradients

Let Ω ⊂ R
d , d = 2, 3, be an open bounded domain with piecewise smooth boundary

∂Ω , and let J (Ω) ∈ Rbe a real-valuedquantity of interest associated to it.One is often
interested in its shape sensitivity, which quantifies the impact of small perturbations
of ∂Ω on the value J (Ω).

For this purpose, we model perturbations of the domain Ω through maps of the
form

TV := I + V , (2.1)

where I is the identity operator and V is a vector field in C1(Rd ;Rd). It can easily
be proven that the map (2.1) is a diffeomorphism for ‖V‖C1 < 1 [2, Lemma 6.13].
Therefore, it is natural to consider J (Ω) as the realization of a shape functional, a
real map

J : A → R

defined on the family of admissible domains

A : =
{

TV (Ω) ;V ∈ C1(Rd ;Rd) , ‖V‖C1 < 1
}

.

The sensitivity of J (Ω) with respect to the perturbation direction V can be
expressed through the Eulerian derivative of the shape functional J in the direction
V , that is,

dJ (Ω;V) : = lim
s↘0

J (Ts·V (Ω)) − J (Ω)

s
. (2.2)

It goes without saying that it is desirable that (2.2) exists for all possible perturba-
tion directions V . It is therefore natural to define a shape functional J to be shape
differentiable at Ω if the mapping

dJ (Ω; ·) : C1(Rd ;Rd) → R, V �→ dJ (Ω;V) . (2.3)

defined by (2.2) is linear and bounded on C1(Rd;Rd). In literature, the mapping
dJ (Ω;V) is called shape gradient of J at Ω , as it is the Gâteaux derivative in
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0 ∈ C1(Rd ;Rd) of the map

V �→ J (TV (Ω)) ,

see [10, Ch. 9, Def. 2.2]. Note that Formula (2.2) is well-defined for any vector field in
the Banach space C1(Rd ;Rd), and the shape gradient is an element of its dual space.

Remark 2.1 In literature, perturbations as in (2.1) are known as perturbations of the
identity. From a differential geometry point of view, this approach is less general
than the so called velocity method, which is, for instance, introduced in [10, Ch. 4].
However, both methods lead to the same formula for the shape gradient, which merely
takes into account first order perturbations of the shape functional J [10, Ch. 9, Thm
3.2].

An interesting property of shape gradients is expressed in the Hadamard structure
theorem [10, Ch. 9, Thm 3.6]: If ∂Ω is smooth, dJ (Ω; ·) admits a representative
g(Ω) in the space of distributions Dk(∂Ω)

dJ (Ω;V) = 〈g(Ω), γ∂ΩV · n〉Dk (∂Ω) , (2.4)

where γ∂ΩV · n is the normal component of V on the boundary ∂Ω . This implies that
only normal displacements of the boundary have an impact on the value of J (Ω).
However, we should take into account that this is no longer true, if the boundary ∂Ω

is only piecewise smooth.
We are particularly interested in PDE constrained shape functionals of the form

J (Ω) =
∫

Ω

j (u) dx , (2.5)

where j : R → R possesses a locally Lipschitz continuous derivative j ′ and u is the
solution of the state problem, a scalar elliptic equation with Neumann or Dirichlet
boundary conditions {L(u) = f in Ω ,

u = g or ∂u
∂n = g on ∂Ω .

(2.6)

The functions f and g are assumed to belong to L2(Rd) (H1(Rd) in the case
of the Neumann BVP) and H2(Rd), respectively, and they are identified with their
restrictions onto Ω and ∂Ω .

Explicit formulas for dJ (Ω) can easily be derived both for unconstrained and PDE
constrained shape functionals, cf. [10, Ch. 9, Sect. 4.3, and Ch. 10, Sect. 2.5]. In the
case of PDE constrained shape functionals, the formulas involve the integrals of u, the
solution of (2.6), and of p, the solution of the adjoint problem1

{L(p) = j ′(u) in Ω ,

p = 0 or ∂p
∂n = 0 on ∂Ω .

(2.7)

1 For simplicity, we assume that the operator L is self-adjoint.

123



Comparison of approximate shape gradients 463

As different L lead to different formulas for the Eulerian derivative, from now on we
consider only the model elliptic operator

L(u) = −�u + u , (2.8)

which should be regarded as a representative for the class of scalar elliptic differential
operators of second order.

As mentioned in the introduction, dJ (Ω;V) can be formulated as an integral over
a volume, as well as an integral on the boundary. For example, the formula for the PDE
constrained shape functional (2.5) with elliptic operator (2.8) and Dirichlet boundary
conditions u = g on ∂Ω reads (see the Appendix for the derivation)

dJ (Ω;V) =
∫

Ω

(
∇u · (DV + DVT )∇ p − f V · ∇ p

+ divV( j (u) − ∇u · ∇ p − up)

+( j ′(u) − p)(∇g · V) − ∇ p · ∇(∇g · V)

)
dx , (2.9)

and can be recast as

dJ (Ω;V) =
∫

∂Ω

(V · n)

(
j (u) + ∂p

∂n
∂(u − g)

∂n

)
d S . (2.10)

The volume integral (2.9) and the boundary integral (2.10) are equivalent repre-
sentations of the shape gradient dJ (Ω;V). They can be converted into each other by
means of integration by parts on ∂Ω [28, Sect. 3.8] and Gauss’s theorem. However,
the bulk of literature mainly considers (2.10) and does not pay attention to (2.9), prob-
ably because the former better matches the Hadamard structure theorem (2.4). Only
recently it has been realized that the volume representation (2.9) may be better suited
for computations, see [5] and [10, Ch. 10, Remark 2.3].

Remark 2.2 In the case of Neumann boundary conditions on smooth domains, the
counterparts of Formulas (2.9) and (2.10) read

dJ (Ω;V) =
∫

Ω

(
(∇ f · V)p + ∇u · (DV + DVT )∇ p

+ divV( f p + j (u) − ∇u · ∇ p − up)

)
dx

+
∫

∂Ω

(∇g · V)p + gp div� V d S , (2.11)

where div� denotes the tangential divergence on ∂Ω , and

dJ (Ω;V) =
∫

∂Ω

V · n
(

j (u) − ∇u · ∇ p − up + f p + ∂gp

∂n
+ Kgp

)
d S , (2.12)
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where K is the mean curvature of ∂Ω .

Remark 2.3 In general, the shape gradient does not feature the Hadamard structure
(2.4) if the boundary is piecewise smooth only. For instance, in the presence of corners
in 2D, Formula (2.12) has to be corrected by adding the term

∑
i

p(ai )g(ai )V(ai ) · [[τ(ai )]] , (2.13)

where the ai denote the corner points and [[τ(ai )]] is the jump of the tangential unit
vector field in the corner ai [28, Ch. 3.8]. On the other hand, no correction has to be
made to formula (2.10).

3 Approximation of shape gradients

In this section we investigate the approximation of the shape gradient dJ . For the
sake of readability, we perform the analysis for the elliptic operator (2.8) with Dirich-
let boundary conditions only. The results can easily be extended to general elliptic
operators in divergence form with both Dirichlet and Neumann boundary conditions.

To highlight the dependence of dJ on the solution of the state and adjoint problem
u and p, as well as to distinguish between formulas (2.9) and (2.10), we introduce the
notations

dJ (Ω, u, p;V)Vol :=
∫

Ω

(
∇u · (DV + DVT )∇ p − f V · ∇ p

+ divV( j (u) − ∇u · ∇ p − up)

+( j ′(u) − p)(∇g · V) − ∇ p · ∇(∇g · V)

)
dx , (3.1)

dJ (Ω, u, p;V)Bdry :=
∫

∂Ω

V · n
(

j (u) + ∂p

∂n
∂(u − g)

∂n

)
d S . (3.2)

Note that, provided u and p are exact solutions of (2.6) and (2.7),

dJ (Ω;V) = dJ (Ω, u, p;V)Vol = dJ (Ω, u, p;V)Bdry . (3.3)

The operator dJ (Ω; ·) can be approximated by replacing the functions u and p with
Ritz–Galerkin Lagrangian finite element solutions of (2.6) and (2.7) respectively. We
consider approximations based on discretization with finite elements, as this approach
is very popular in shape optimization due to its flexibility for engineering applications.
Approximations based on boundary element methods are also possible, cf. [13,17,29].

Equality (3.3) certainly breaks down when the functions u and p are approximated
with finite elements [5]. Thus, a natural question is, which formula, (3.1) or (3.2),
shouldbepreferred for an approximationofdJ (Ω; ·) in the operator norm.The answer
is provided by Theorems 3.1 and 3.2. Next we state a few assumptions necessary for
a precise statement of the theorems.
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Assumption 1 The Dirichlet BVP for the Laplacian is H2-regular [6, Ch. II, Def.
7.1], that is, if a function w ∈ H1

0 (Ω) is the (unique) weak solution of the elliptic
BVP

{−�w + w = ρ in Ω ,

w = 0 on ∂Ω ,

for a function ρ ∈ L2(Ω), then w ∈ H2(Ω), and there is a constant Cr ,depending
only on Ω , so that

‖w‖H2(Ω) ≤ Cr‖ρ‖L2(Ω) .

Remark 3.1 Assumption 1 holds for convex Lipschitz domains and (possibly non-
convex) domains with C2 boundary [6, Ch. II, Thm 7.2].

Assumption 2 The source function f and the boundary data g in (2.6) are restrictions
of functions in H1(Rd) and H3(Rd) to Ω and ∂Ω , respectively.

Next, for an index set H, we introduce a family (Vh)h∈H of finite-dimensional
subspaces of H1

0 (Ω) and define uh ∈ g + Vh , ph ∈ Vh as Ritz–Galerkin solutions2

of (2.6) and (2.7), respectively, that is,

∫

Ω

∇uh · ∇vh + uhvh dx =
∫

Ω

f vh dx ∀ vh ∈ Vh , (3.4)
∫

Ω

∇ ph · ∇vh + phvh dx =
∫

Ω

j (uh)vh dx ∀ vh ∈ Vh . (3.5)

In particular, let (Vh)h∈H be a family of H1-conforming piecewise linear Lagrangian
finite element spaces built on a shape-regular and quasi-uniform family of simplicial
meshes [6, Ch. II, Def. 5.1], and let h designate the meshwidth. We recall that the
associated family of nodal interpolation operators

Ih : H2(Ω) ∩ H1
0 (Ω) → Vh

satisfies3 [6, Ch. II, Thm 6.4]

‖w − Ihw‖H1(Ω) ≤ Ch|w|H2(Ω) ∀ h ∈ H . (3.6)

Theorem 3.1 Let u and p be the solutions of (2.6) and (2.7), and let uh and ph be
their Ritz–Galerkin approximations in the sense of (3.4) and (3.5) by piecewise linear
Lagrangian finite elements. Furthermore, let Assumptions 1 and 2 be satisfied. Then4

|dJ (Ω;V) − dJ (Ω, uh, ph;V)Vol| ≤ C(Ω, u, p, f, g)h2‖V‖W 2,4(Ω) ,

2 Note that ph is not a proper Ritz–Galerkin solution of (2.7), because the right-hand side is perturbed.
3 We write C for generic constants, whose value may differ between different occurrences. They may
depend only on Ω , shape-regularity and quasi-uniformity of the meshes.
4 For the sake of readability, we use the same notation for scalar and vectorial Sobolev norms.
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where the constant C(Ω, u, p, f, g) depends on the domain Ω and its discretization,
‖u‖H2(Ω), ‖p‖H2(Ω), ‖ f ‖H1(Ω), and ‖g‖H3(Ω) .

Proof The proof heavily relies on duality techniques that are repeatedly used to obtain
estimates for the various terms in (3.1). The impatient reader may skip the proof after
(3.14) and will get main ideas nevertheless.

From the equality dJ (Ω;V) = dJ (Ω, u, p;V)Vol, we immediately get by the
triangle inequality

|dJ (Ω;V) − dJ (Ω, uh, ph;V)Vol|
≤

(∣∣∣∣
∫

Ω

∇u · (DV + DVT )∇ p − ∇uh · (DV + DVT )∇ ph dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

f V · ∇(p − ph) dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

divV( j (u) − j (uh) − ∇u · ∇ p − up + ∇uh · ∇ ph + uh ph) dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

( j ′(u) − j ′(uh) − p + ph)(∇g · V) dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

∇(p − ph) · ∇(∇g · V) dx

∣∣∣∣
)

. (3.7)

The proof boils down to bounding each integral in the previous inequality and
applying standard finite element convergence and interpolation estimates. To begin
with, we split the first integral into

∫

Ω

(∇u · (DV + DVT )∇ p − ∇uh · (DV + DVT )∇ ph dx

=
∫

Ω

∇(u − uh) · (DV + DVT )∇ p dx

+
∫

Ω

∇u · (DV + DVT )∇(p − ph) dx

−
∫

Ω

∇(u − uh) · (DV + DVT )∇(p − ph) dx . (3.8)

To bound the first and the second integral on the right-hand side of (3.8) we make use
of standard duality techniques. For the first one we introduce the function w as weak
solution of the adjoint BVP5

{−�w + w = − div
(
(DV + DVT )∇ p

)
in Ω ,

w = 0 on ∂Ω ,
(3.9)

5 Many bounds in this proof rely on duality techniques, which introduce so-called adjoint BVPs. For the
sake of readability, we abuse the notation and we always denote by w the solutions of these BVPs.
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that is,

∫

Ω

∇w · ∇v + wv dx =
∫

Ω

(
(DV + DVT )∇ p

)
· ∇v ∀ v ∈ H1

0 (Ω) . (3.10)

We recall that for two generic functions q1, q2 ∈ L4(Ω) the Cauchy–Schwarz inequal-
ity implies

‖q1q2‖L2(Ω) ≤ ‖q1‖L4(Ω)‖q2‖L4(Ω) . (3.11)

By the triangle inequality, (3.11) and the Sobolev Imbedding Theorem [1, Thm 4.12],
we bound the source function in (3.9) by

‖ div
(
(DV + DVT )∇ p

)
‖L2(Ω)

≤ C
(‖V‖W 2,4(Ω)‖p‖W 1,4(Ω) + ‖V‖W 1,∞(Ω)‖p‖H2(Ω)

)
,

≤ C‖V‖W 2,4(Ω)‖p‖H2(Ω) .

By Assumption 1, w is in H2(Ω) and it satisfies

‖w‖H2(Ω) ≤ C‖V‖W 2,4(Ω)‖p‖H2(Ω) . (3.12)

By exploiting the Galerkin orthogonality of u −uh to the finite dimensional trial space
Vh ⊂ H1

0 (Ω), we derive the bound

∣∣∣∣
∫

Ω

∇(u − uh) · (DV + DVT )∇ p dx

∣∣∣∣

=
∣∣∣∣
∫

Ω

∇(u − uh) · ∇w + (u − uh)w dx

∣∣∣∣ ,

=
∣∣∣∣
∫

Ω

∇(u − uh) · ∇(w − Ihw) + (u − uh)(w − Ihw) dx

∣∣∣∣ ,
≤ ‖u − uh‖H1(Ω)‖w − Ihw‖H1(Ω) . (3.13)

Then by (3.6) and the standard finite element convergence estimate [6, Ch. II, Sect. 7]

‖u − uh‖H1(Ω) ≤ Ch‖u‖H2(Ω) , (3.14)

we conclude from (3.12)

∣∣∣∣
∫

Ω

∇(u − uh) · (DV + DVT )∇ p dx

∣∣∣∣ ≤ Ch2‖u‖H2(Ω)‖p‖H2(Ω)‖V‖W 2,4(Ω) .

Similarly, for the second integral on the right-hand side of (3.8) we introduce the
function w as weak solution of the adjoint BVP

{−�w + w = − div
(
(DV + DVT )∇u

)
in Ω ,

w = 0 on ∂Ω ,
(3.15)
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that is,
∫

Ω

∇w · ∇v + wv dx =
∫

Ω

(
(DV + DVT )∇u

)
· ∇v ∀ v ∈ H1

0 (Ω) . (3.16)

Assumption 1 and the bound

‖ div
(
(DV + DVT )∇u

)
‖L2(Ω) ≤ C‖V‖W 2,4(Ω)‖u‖H2(Ω)

imply that w ∈ H2(Ω) and that it satisfies

‖w‖H2(Ω) ≤ C‖V‖W 2,4(Ω)‖u‖H2(Ω) . (3.17)

Next, we note that for every vh ∈ Vh

∫

Ω

∇(p − ph) · ∇vh + (p − ph)vh dx =
∫

Ω

( j (u) − j (uh))vh dx , (3.18)

which implies

∣∣∣∣
∫

Ω

∇(p − ph) · (DV + DVT )∇u dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

∇(p − ph) · ∇w + (p − ph)w dx

∣∣∣∣ ,

≤
∣∣∣∣
∫

Ω

∇(p − ph) · ∇(w − Ihw) + (p − ph)(w − Ihw) dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

( j (u) − j (uh)) Ihw dx

∣∣∣∣ ,
≤ ‖p − ph‖H1(Ω)‖w − Ihw‖H1(Ω) + ‖Ihw‖L2(Ω)‖ j (u) − j (uh)‖L2(Ω) .

(3.19)

For the concrete BVP considered the state solution u will belong to C0(Ω). Fur-
ther, L∞(Ω)-estimates for finite element solutions [6, Ch. II, Sect. 7] ensure that
‖u − uh‖L∞(Ω) → 0 as h → 0. Hence, we can take for granted that there are h-
independent bounds u and u

− ∞ < u ≤ u(x), uh(x) ≤ u < ∞ ∀x ∈ Ω . (3.20)

We write I : = [u, u] and point out that j ′ is bounded on I . Thus the standard finite
element convergence estimate [6, Ch. II, Sect. 7]

‖u − uh‖L2(Ω) ≤ Ch2‖u‖H2(Ω) , (3.21)

gives

‖ j (u) − j (uh)‖L2(Ω) ≤ ‖ j ′‖C0(I )‖u − uh‖L2(Ω) ,

≤ Ch2‖ j ′‖C0(I )‖u‖H2(Ω) . (3.22)

123



Comparison of approximate shape gradients 469

In order to establish a bound for (3.19), we follow the arguments in the proof of
Strang’s first lemma [6, Ch. III, Thm. 1.1]. We note that for every vh ∈ Vh

‖ph − vh‖2H1(Ω)
=

∫

Ω

∇(ph − p) · ∇(ph − vh) + (ph − p)(ph − vh) dx

+
∫

Ω

∇(p − vh) · ∇(ph − vh) + (p − vh)(ph − vh) dx

≤ (‖ j (uh) − j (u)‖L2(Ω) + ‖p − vh‖H1(Ω)

) ‖ph − vh‖H1(Ω) ,

(3.23)

where in the last step we used (3.18) and the Cauchy–Schwarz inequality. Then by the
triangle inequality, (3.23) and (3.6),

‖p − ph‖H1(Ω) ≤ ‖p − Ih p‖H1(Ω) + ‖Ih p − ph‖H1(Ω) ,

≤ 2‖p − Ih p‖H1(Ω) + ‖ j (uh) − j (u)‖L2(Ω) ,

≤ Ch‖p‖H2(Ω) + Ch2‖ j ′‖C0(I )‖u‖H2(Ω) , (3.24)

which implies

∣∣∣∣
∫

Ω

∇(p − ph) · (DV + DVT )∇u dx

∣∣∣∣
≤ Ch2‖V‖W 2,4(Ω)‖u‖H2(Ω)(‖p‖H2(Ω) + ‖u‖H2(Ω)‖ j ′‖C0(I )) .

Finally, by the Cauchy–Schwarz inequality, (3.14) and (3.24), the following bound for
the third integral on the right-hand side of (3.8) holds.

∣∣∣∣
∫

Ω

∇(u − uh) · (DV + DVT )∇(p − ph) dx

∣∣∣∣
≤ ‖V‖W 1,∞(Ω)‖u − uh‖H1(Ω)‖p − ph‖H1(Ω) ,

≤ Ch2‖V‖W 1,∞(Ω)‖u‖H2(Ω)‖p‖H2(Ω) .

To bound the second integral on the right-hand side of (3.7) we introduce the function
w as weak solution of the adjoint BVP

{−�w + w = − div ( f V) in Ω ,

w = 0 on ∂Ω ,
(3.25)

that is, ∫

Ω

∇w · ∇v + wv dx =
∫

Ω

f V · ∇v ∀ v ∈ H1
0 (Ω) . (3.26)

Note that
‖ − div ( f V) ‖L2(Ω) ≤ ‖V‖W 1,∞(Ω)‖ f ‖H1(Ω) ,
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which implies that w is in H2(Ω) and that it satisfies

‖w‖H2(Ω) ≤ C‖V‖W 1,∞(Ω)‖ f ‖H1(Ω) . (3.27)

Then by (3.26), (3.18), (3.24), (3.6), and (3.21),

∣∣∣∣
∫

Ω

f V · ∇(p − ph) dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

∇(p − ph) · ∇w + (p − ph)w dx

∣∣∣∣ ,

≤ ‖p − ph‖H1(Ω)‖w − Ihw‖H1(Ω) + ‖Ihw‖L2(Ω)‖ j ′‖C0(I )‖u − uh‖L2(Ω) ,

≤ Ch2‖V‖W 1,∞(Ω)‖ f ‖H1(Ω)

(‖p‖H2(Ω) + ‖u‖H2(Ω)‖ j ′‖C0(I )

)
.

To bound the third integral on the right-hand side of (3.7), we first apply the triangle
inequality

∣∣∣∣
∫

Ω

divV( j (u) − j (uh) − ∇u · ∇ p − up + ∇uh · ∇ ph + uh ph) dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω

divV( j (u) − j (uh)) dx

∣∣∣∣

+
∣∣∣∣
∫

Ω

divV(∇u · ∇ p + up − ∇uh · ∇ ph − uh ph) dx

∣∣∣∣ . (3.28)

The first integral on the right-hand side of (3.28) can be bounded by

∣∣∣∣
∫

Ω

divV( j (u) − j (uh)) dx

∣∣∣∣ ≤ C‖V‖W 1,∞‖ j ′‖C0(I )‖u − uh‖L2(Ω) ,

≤ Ch2‖V‖W 1,∞‖ j ′‖C0(I )‖u‖H2(Ω) , (3.29)

whereas the second one can conveniently be rewritten as

∣∣∣∣
∫

Ω

divV(∇u · ∇ p + up − ∇uh · ∇ ph − uh ph) dx

∣∣∣∣

=
∣∣∣∣
∫

Ω

divV (∇(u − uh) · ∇ p + (u − uh)p) dx

+
∫

Ω

divV (∇u · ∇(p − ph) + u(p − ph)) dx

−
∫

Ω

divV (∇(u − uh) · ∇(p − ph) + (u − uh)(p − ph)) dx

∣∣∣∣ . (3.30)

Again, the first two integrals on the right-hand side of (3.30) can be bounded with
standard duality techniques. For the first one we introduce the function w as weak
solution of the adjoint BVP

{−�w + w = − div (div(V)∇ p) + div(V)p in Ω ,

w = 0 on ∂Ω ,
(3.31)
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that is,

∫

Ω

∇w · ∇v + wv dx =
∫

Ω

div(V) (∇ p · ∇v + pv) dx ∀ v ∈ H1
0 (Ω) . (3.32)

Assumption 1 and the bound

‖ div (div(V)∇ p) + div(V)p‖L2(Ω) ≤ C‖V‖W 2,4(Ω)‖p‖H2(Ω)

imply that w is in H2(Ω) and that it satisfies

‖w‖H2(Ω) ≤ C‖V‖W 2,4(Ω)‖p‖H2(Ω) . (3.33)

Thenby (3.32),Galerkin orthogonality ofu−uh toVh , theCauchy–Schwarz inequality,
(3.14), and (3.6),

∣∣∣∣
∫

Ω

divV (∇ p · ∇(u − uh) + p(u − uh)) dx

∣∣∣∣

=
∫

Ω

∇w · ∇(u − uh) + w(u − uh) dx ≤ ‖u − uh‖H1(Ω)‖w − Ihw‖H1(Ω) ,

≤ Ch2‖V‖W 2,4(Ω)‖p‖H2(Ω)‖u‖H2(Ω) .

For the second integral on the right-hand side of (3.30) we introduce the function w

as weak solution of the adjoint BVP

{−�w + w = − div (div(V)∇u) + div(V)u in Ω ,

w = 0 on ∂Ω ,
(3.34)

that is,

∫

Ω

∇w · ∇v + wv dx =
∫

Ω

div(V) (∇u · ∇v + uv) dx ∀ v ∈ H1
0 (Ω) . (3.35)

Assumption 1 and the bound

‖ div (div(V)∇u) + div(V)u‖L2(Ω) ≤ C‖V‖W 2,4(Ω)‖u‖H2(Ω)

imply that w is in H2(Ω) and that it satisfies

‖w‖H2(Ω) ≤ C‖V‖W 2,4(Ω)‖u‖H2(Ω) . (3.36)
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Then, by (3.35), (3.18), the Cauchy–Schwarz inequality, (3.24), (3.6), and (3.21),

∣∣∣∣
∫

Ω

divV (∇u · ∇(p − ph) + u(p − ph)) dx

∣∣∣∣

=
∣∣∣∣
∫

Ω

∇(p − ph) · ∇w + (p − ph)w dx

∣∣∣∣ ,
≤ ‖p − ph‖H1(Ω)‖w − Ihw‖H1(Ω) + ‖Ihw‖L2(Ω)‖ j ′‖C0(I )‖u − uh‖L2(Ω) ,

≤ Ch2‖V‖W 2,4(Ω)‖u‖H2(Ω)

(‖p‖H2(Ω) + ‖u‖H2(Ω)‖ j ′‖C0(I )

)
.

By the Cauchy–Schwarz inequality, (3.14), and (3.24), we obtain the following bound
for the third integral on the right-hand side of (3.30):

∣∣∣∣
∫

Ω

divV (∇(u − uh) · ∇(p − ph) + (u − uh)(p − ph)) dx

∣∣∣∣
≤ ‖V‖W 1,∞(Ω)‖u − uh‖H1(Ω)‖p − ph‖H1(Ω) ,

≤ Ch2‖V‖W 1,∞(Ω)‖u‖H2(Ω)‖p‖H2(Ω) .

The fourth integral on the right-hand side of (3.7) can be bounded similarly as in
(3.29), relying on L∞(Ω)-estimates for finite element solutions. Now, we make use
of the uniform Lipschitz continuity of j ′ on the compact interval I , which yields

∣∣∣∣
∫

Ω

( j ′(u) − j ′(uh) − p + ph)(∇g · V) dx

∣∣∣∣
≤ ‖V‖L∞(Ω)‖g‖H1(Ω)

(‖ j ′‖C0,1(I )‖u − uh‖L2(Ω) + ‖p − ph‖L2(Ω)

)
,

and since (3.18), (3.22), and (3.24) imply [6, Ch. III, Sect. 1]

‖p − ph‖L2(Ω) ≤ Ch2‖ j ′‖C0(I )‖p‖H2(Ω) , (3.37)

we conclude
∣∣∣∣
∫

Ω

( j ′(u) − j ′(uh) − p + ph)(∇g · V) dx

∣∣∣∣
≤ Ch2‖ j ′‖C0,1(I )‖V‖L∞(Ω)‖g‖H1(Ω)

(‖u‖H2(Ω) + ‖p‖H2(Ω)

)
.

Finally, the fifth integral on the right-hand side of (3.7) can be bounded with standard
duality techniques by introducing the function w as weak solution of the adjoint BVP

{−�w + w = −�(∇g · V) in Ω ,

w = 0 on ∂Ω ,
(3.38)

that is,
∫

Ω

∇w · ∇v + wv dx =
∫

Ω

∇ (∇g · V) · ∇v dx ∀ v ∈ H1
0 (Ω) . (3.39)
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Assumption 1 and the bound

‖�(∇g · V) ‖L2(Ω)

≤ C
(‖V‖L∞(Ω)‖g‖H3(Ω) + ‖V‖W 1,∞(Ω)‖g‖H2(Ω) + ‖V‖H2(Ω)‖g‖W 1,∞(Ω)

)

≤ C‖V‖W 2,4(Ω)‖g‖H3(Ω)

imply that w is in H2(Ω) and that it satisfies

‖w‖H2(Ω) ≤ C‖V‖W 2,4(Ω)‖g‖H3(Ω) . (3.40)

Then by (3.39), (3.18), (3.24), (3.6), and (3.21) ,

∣∣∣∣
∫

Ω

∇(∇g · V) · ∇(p − ph) dx

∣∣∣∣

=
∫

Ω

∇w · ∇(p − ph) + w(p − ph) dx

≤ ‖p − ph‖H1(Ω)‖w − Ihw‖H1(Ω) + ‖Ihw‖L2(Ω)‖ j‖C0,1(I )‖u − uh‖L2(Ω) ,

≤ Ch2‖V‖W 2,4(Ω)‖g‖H3(Ω)

(‖p‖H2(Ω) + ‖u‖H2(Ω)‖ j‖C0,1(I )

)
.

��

Remark 3.2 The shape gradient formula (2.9) clearly represents a linear continuous
operator on W 1,∞(Rd). Nevertheless, to exploit finite element superconvergence as in
Theorem (3.1), we have to restrict ourselves to vector fields in W 2,∞(Rd). If this con-
dition is violated, only first order convergence of dJ (Ω, uh, ph;V)Vol to dJ (Ω;V)

as h → 0 can be shown, because two key duality estimates in the proof of Theorem 3.1
are no longer available.

Remark 3.3 The quadratic rate of convergence in Theorem 3.1 depends on the regu-
larity of the functions u and p. If the assumption on the H2-regularity of (2.6) is not
fulfilled, the provable rate of convergence deteriorates to O(hα)with fractional α < 2,
but the formula (3.1) remains meaningful, as long as a weak solutions in H1(Ω) exist.
On the other hand, if the functions u and p enjoy higher smoothness, the convergence
may be improved by increasing the polynomial degree of the finite element space.

Remark 3.4 Theorem 3.1 holds true for Dirichlet boundary conditions only. However,
a similar result can be achieved for Neumann boundary conditions. The proof follows
the same lines as for the Dirichlet case and relies on H2-regularity of the state problem
and regularity assumptions on the source function f and the boundary data g. In
particular, convergence for the boundary term in (2.11) can be conclude either via
duality techniques or by continuity of the Dirichlet trace operator with respect to
H1(Ω).
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For Formula (3.2), the following holds:

Theorem 3.2 Let uh and ph be Ritz–Galerkin linear Lagrangian finite element
approximations of the solutions u and p of (2.6) and (2.7). In addition to the hypothesis
of Theorem 3.1, let us assume that

‖u‖W 2,p(Ω) ≤ C‖ f ‖L p(Ω) (3.41)

for some p > d, where d is the space dimension. Then

|dJ (Ω;V) − dJ (Ω, uh, ph;V)Bdry| ≤ Ch‖V · n‖L∞(∂Ω) ,

where h stands for the meshwidth, and C > 0 does not depend on h.

Proof By the equality dJ (Ω;V) = dJ (Ω, u, p;V)Bdry, we immediately deduce
from (3.2)

|dJ (Ω;V) − dJ (Ω, uh, ph;V)Bdry|
≤ ‖V · n‖L∞(Ω)

∫

∂Ω

∣∣∣∣ j (u) − j (uh) + ∂p

∂n
∂(u − g)

∂n
− ∂ ph

∂n
∂(uh − g)

∂n

∣∣∣∣ d S .

(3.42)

By linearity, and similarly as in (3.8), we find

∂p

∂n
∂(u − g)

∂n
− ∂ ph

∂n
∂(uh − g)

∂n

= ∂p

∂n
∂u

∂n
− ∂ ph

∂n
∂uh

∂n
+ ∂ ph

∂n
∂g

∂n
− ∂p

∂n
∂g

∂n

= ∂p

∂n
∂(u − uh)

∂n
+ ∂(p − ph)

∂n
∂u

∂n
− ∂(p − ph)

∂n
∂(u − uh)

∂n
+ ∂(ph − p)

∂n
∂g

∂n
.

Therefore, applying the triangle inequality on the right-hand side of (3.42), the esti-
mate of the theorem follows straightforwardly from finite element error estimates in
W 1,∞(Ω):

‖u − uh‖W 1,∞(Ω) ≤ Ch and ‖p − ph‖W 1,∞(Ω) ≤ Ch ,

cf. [7, Corollary 8.1.12], which requires the assumption (3.41). ��
Remark 3.5 For dJ (Ω, u, p;V)Bdry to be well-defined, the functions u and p must
be smoother than merely belonging to H1(Ω).

4 Numerical experiments

We numerically study the approximation of the shape gradient for the quadratic shape
functional

J (Ω) =
∫

Ω

u2 dx ,
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for Ω ⊂ R
2, under the scalar PDE constraint

{−�u + u = f in Ω ,

u = g on ∂Ω .
(4.1)

It is challenging to investigate convergence rates in the C1(Rd;Rd) dual norm
numerically. Therefore, we consider only an operator norm over a finite dimensional
space of vector fields in P3,3(R

2), whose components are multivariate product poly-
nomials of degree three.Moreover, theC1(Rd ;Rd)-norm is replacedwith the H1(Ω)-
norm,which ismore tractable computationally. The convergence studies are performed
monitoring the approximate dual norms

errVol : =
(

max
V∈P3,3

1

‖V‖2
H1(Ω)

|dJ (Ω;V) − dJ (Ω, uh, ph;V)Vol|2
)1/2

and

errBdry : =
(

max
V∈P3,3

1

‖V‖2
H1(Ω)

|dJ (Ω;V) − dJ (Ω, uh, ph;V)Bdry|2
)1/2

on different meshes generated through uniform refinement.6

To compute the values errVol and errBdry, we introduce a basis {Vi }m
i=1, m = 20, of

P3,3(R
2), and define the column vectors

zVol :=
(

dJ (Ω;Vi ) − dJ (Ω, uh, ph;Vi )
Vol

)m

i=1
,

zBdry :=
(

dJ (Ω;Vi ) − dJ (Ω, uh, ph;Vi )
Bdry

)m

i=1
.

LetM be the Gramian matrix of {Vi }20i=1 with respect to the H1(Ω) inner product, and
consider the matrices AVol and ABdry defined by

{AVol}20i, j=1 = zVol(zVol)T and {ABdry}20i, j=1 = zBdry(zBdry)T ,

respectively. Then, errVol and errBdry can be obtained as the square roots of themaximal
eigenvalues ofM−1AVol and M−1ABdry, which can be computed by

(zVol)TM−1zVol and (zBdry)TM−1zBdry ,

respectively.
Although analytical values are in some cases computable, the reference values

dJ (Ω;V) are approximated by evaluating dJ (Ω, uh, ph;V)Vol on a mesh with an

6 In experiments 1 and 4 we consider domains with curved boundaries. In this case the refined mesh is
always adjusted to fit the boundary.
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Fig. 1 Plot of the solution u of the state problem in the computational domain Ω for the first (left) and the
second (right) numerical experiment

extra level of refinement. This gives usmuchflexibility in the selection of test cases (the
same code can be used for different geometriesΩ , source functions f and g, and vector
fields V). Agreement with the theoretical predictions of Theorem 3.1 and a numerical
study in the third numerical experiment confirm the viability of this approach.

In the implementation, we opt for linear Lagrangian finite elements on quasi-
uniform triangular meshes.7 Integrals in the domain are computed by a 7-point quadra-
ture rule in each triangle and line integrals with a 6-point Gauss quadrature on each
segment. The boundary of the computational domains is approximated by a polygon,
which is generally believed not to affect the convergence of linear finite elements [7,
Sect. 10.2].

The first numerical experiment is constructed starting from the solution

u(x, y) = cos(x) cos(y)

and setting f and g accordingly. The computational domain is a disc with radius
√

π

(see Fig. 1, left). The predicted quadratic and linear convergence with respect to the
meshwidth h for, respectively, Formulas (3.1) and (3.2) are evident in Fig. 2 (left).

The second experiment is performed on a triangle with corners located at
(−π,−π), (π,−π), and (0, π) (see Fig. 1, right). The source function and the bound-
ary data are chosen as follows:

f (x, y) = x2 − y2 , g(x, y) = x + y .

Again, the rates of convergence predicted in Theorems 3.1 and 3.2 are confirmed by
the experiment, see Fig. 2 (right).

The third numerical experiment is conducted on a domain which does not guar-
antee H2-regularity of the state problem (2.6), see Fig. 3 (left). The source and the
boundary functions are, in polar coordinates, f (x) = r2/3 cos(2ϕ/3) and g(x) = 0
respectively. As expected, the convergence rates deteriorate to fractional values due

7 The experiments are performed in MATLAB and are based on the library LehrFEM developed at ETHZ.
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Fig. 2 Convergence study for the first (left) and the second (right) numerical experiment. Obviously,
Formula (3.1) is better suited for a finite element approximation of the Eulerian derivative dJ (Ω;V) than
Formula (3.2)
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Fig. 3 Plot of the solution u of the state problem in the computational domain Ω (left) for the third
numerical experiment, and corresponding convergence study (right). Due to the poor regularity of the
functions u and p, the convergence rate of dJ (Ω, uh , ph;V)Vol and dJ (Ω, uh , ph;V)Bdry deteriorate

to the presence of a reentrant corner which, with an interior angle of size 2π · 60/61,
affects the regularity of the functions u and p.

In the fourth numerical experiment, we investigate the Neumann problem and
the accuracy of Formulas (2.11) and (2.12), for which we expect results similar to the
Dirichlet case. We consider the solution

u(x, y) = cos(x − 1) cos(y + 1)

and we choose f and g accordingly. The computational domain is a disc with radius√
π (see Fig. 4, left). Surprisingly, we observe that Formula (2.12) performs as well as

Formula (2.11), showing quadratic convergence in the meshwidth h, too (see Fig. 5,
left).

This surprising observation is not confined to smooth domains, as will be demon-
strated by our fifth numerical experiment. It investigates the convergence for the
Neumann case on a triangle with corners located at (−π,−π), (π,−π), and (0, π)
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Fig. 4 Plot of the solution u of the state problem in the computational domain Ω for the fourth (left) and
the fifth (right) numerical experiment
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Fig. 5 Convergence study for the fourth (left) and fifth (right) numerical experiment. The quadratic
convergence of dJ (Ω, uh , ph;V)Bdry is unexpected

(see Fig. 4, right). The source function and the boundary data are set as follows:

f (x, y) = cos(x + 1) cos(y − 1), g(x, y) = cos(x − 1) cos(y + 1) .

Again, we observe that Formula (2.12), corrected according to Remark 2.3, con-
verges quadratically in the meshwidth h (see Fig. 5, right).

Nevertheless, the sixth numerical experiment, which studies theNeumann bound-
ary value problem again, shows that Formula (2.11) is superior to (2.12) in terms of
accuracy and convergence in case of domains which do not guarantee H2-regularity,
see Fig. 6. The source and the boundary functions are chosen as in the third numerical
experiment.

Remark 4.1 The superconvergence observed in the fourth and in the fifth numerical
experiments may be of interest for practical applications. For instance, in shape opti-
mization it is common to arbitrarily restrict the choice of descent directions to vector
fields which vanish on subregions of the computational domain, so that the optimiza-
tion task is limited to the complement of these subregions [2,18,26]. At the same time,
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Fig. 6 Plot of the solution u of the state problem in the computational domain Ω (left) for the sixth
numerical experiment, and corresponding convergence study (right). Due to the poor regularity of the
functions u and p, the convergence rate of dJ (Ω, uh , ph;V)Vol and dJ (Ω, uh , ph;V)Bdry deteriorate

the formation of reentrant corners during the optimization routine is prevented by the
use of regularization techniques such as filtering [14,20].

A closer look at Formula (2.12) reveals a cancellation of the normal derivatives of
u and p, so that the formula is equivalent to

dJ (Ω;V) =
∫

∂Ω

V · n ( j (u) − ∇�u∇� p − up + f p + Kgp) d S

+
3∑

i=1

p(ai )g(ai )V(ai ) · [[τ(ai )]] , (4.2)

where ∇� stands for the tangential derivative. To elucidate the behavior of different
contributions, we split Formula (4.2) according to

dJ (Ω;V) =
∫

∂Ω

V · n ( j (u) − up + f p + Kgp) d S (4.3a)

+
3∑

i=1

p(ai )g(ai )V(ai ) · [[τ(ai )]] (4.3b)

−
∫

∂Ω

V · n (∇�u∇� p) d S . (4.3c)

An approximation of the first integral (4.3a) by finite elements converges quadratically
in h. This can be shownas in the proof ofTheorem3.1, since theDirichlet trace operator
is bounded on H1(Ω). Quadratic convergence is also expected for the approximation
of (4.3b), due to the convergence properties of finite element solutions in L∞ [7, Ch.
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Fig. 7 Convergence study for the first (left, up), the second (left, middle), the third (left, down), the fourth
(right, up), the fifth (right, middle) and the sixth (right, down) numerical experiment, when considering
the operator norm on the subspace of multivariate polynomials of degree two. The results agree with those
obtained with cubic polynomials

8]. On the other hand, the good approximation of the tangential derivative of u and p
in (4.3c) still defies a theoretical explanation.

Finally, all experiments are repeated considering the operator norm on the subspace
of multivariate polynomials of degree two instead of three. The measured errors well
agreewith those reported above, see Fig. 7. Thus, the arbitrary choice of computing the
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operator norm on the finite dimensional subspace of multivariate polynomial vector
fields of degree three does not seem to compromise our observations.

5 Conclusion

The shape gradient of shape differentiable PDE constrained shape functionals is an
element of the dual spaceofC1(Rd ;Rd), and it canbe expressed either as an integration
in volume or as an integration on the boundary. Theorems in Sect. 3 and numerical
experiments in Sect. 4 confirm that it is advisable to evaluate the shape gradient through
volume integrals, when the finite element method is used.

This observation might be of relevance for shape optimization, because, in the
words of M. Berggren, “the sensitivity information - directional derivatives of objec-
tive functions and constraints - needs to be very accurately computed in order for the
optimization algorithms to fully converge” [5]. However, shape optimization tech-
niques usually rely on function representatives of the shape gradient on the boundary.
If volume based formulas are used, it takes an extension of boundary deformations
into the interior of the domain, in order to obtain those. It remains to be seen whether
the superiority of volume based formulas persists under these conditions.

Appendix

Closely following [10, Ch. 10, Sect. 6], we give a detailed derivation of Formulas
(2.9)–(2.13). Let u be the weak solution in H1(Ω) of the following state problem:

{−�u + u = f in Ω ,

u = g on ∂Ω .
(5.1)

It is assumed that the Dirichlet problem (5.1) is H2-regular, so that its solution u is at
least in H2(Ω) for f ∈ L2(Ω). We consider the shape functional

J (Ω) =
∫

Ω

j (u) dx ,

and we introduce the Lagrangian

L (Ω, v, q, λ) : =
∫

Ω

j (v) + (�v − v + f )q dx +
∫

∂Ω

λ(g − v) d S , (5.2)

where the functions v, q and λ are in H2(Rd). Performing integration by parts, the
Lagrangian can be rewritten as

L (Ω, v, q, λ) =
∫

Ω

j (v) − ∇v · ∇q − v q + f q dx +
∫

∂Ω

∂v

∂n
q + λ(g − v) d S ,

=
∫

Ω

j (v) + (�q − q)v + f q dx +
∫

∂Ω

∂v

∂n
q − ∂q

∂n
v + λ(g − v) d S .
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The saddle point ofL (Ω, · , · , ·) is characterized by

〈
∂L (Ω, v, q, λ)

∂v
, φ

〉

Ω

=
〈
∂L (Ω, v, q, λ)

∂q
, φ

〉

Ω

=
〈
∂L (Ω, v, q, λ)

∂λ
, φ

〉

∂Ω

= 0

for all φ ∈ H2(Rd), which, by density, leads to

{−�v + v = f in Ω ,

v = g on ∂Ω ,
(5.3a)

{−�q + q = j ′(v) in Ω ,

q = 0 on ∂Ω ,
(5.3b)

λ = −∂q

∂n
on ∂Ω , (5.3c)

weakly in H1(Rd). Thus, for Ω fixed,

J (Ω) = inf
v∈H2(Rd )

sup
q,λ∈H2(Rd )

L (Ω, v, q, λ) , (5.4)

because

J (Ω) = L (Ω, u, q, λ) ∀ q, λ ∈ H2(Rd) .

Recall that the material derivative of a generic function f with respect to the defor-
mation TV is defined as

ḟ : = lim
s↘0

f ◦ Ts·V − f

s
.

Note that, if f is independent of Ω , ḟ ∈ H1(Rd) for f ∈ H2(Rd).
To compute the Eulerian derivative of J (Ω), the Correa–Seeger theorem can be

applied on the right-hand side of (5.4) [10, Ch. 10, Sect. 6.3], so that a formula for
dJ (Ω) can be obtained by evaluating the Eulerian derivative of the Lagrangian (5.2)
in its saddle point. For TV (x) : = x + V(x), the Eulerian derivative of (5.2) reads

lim
s↘0

L (Ts·V (Ω), v, q, λ) − L (Ω, v, q, λ)

s

=
∫

Ω

(
j ′(v)v̇ − ∇v̇ · ∇q − ∇v · ∇q̇ + ∇v · (DV + DVT )∇q

−v̇ q − v q̇ + ḟ q + f q̇ + div(V) ( j (v) − ∇v · ∇q − v q + f q)
)

dx

+
∫

∂Ω

∂̇v

∂n
q + ∂v

∂n
q̇ + λ(ġ − v̇) + λ̇(g − v) + div�(V)

(
∂v

∂n
q + λ(g − v)

)
d S

=
∫

Ω

j ′(v)v̇ + �q v̇ − q v̇ dx +
∫

Ω

�v q̇ − v q̇ + f q̇ dx
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+
∫

∂Ω

∂̇v

∂n
q + λ̇(g − v) + div�(V)

(
∂v

∂n
q + λ(g − v)

)
d S

+
∫

Ω

∇v · (DV + DVT )∇q + ḟ q + div(V) ( j (v) − ∇v · ∇q − v q + f q) dx

+
∫

∂Ω

λ(ġ − v̇) − ∂q

∂n
v̇ d S .

So, in the saddle point defined by (5.3), we have

lim
s↘0

L (Ts·V (Ω), v, q, λ) − L (Ω, v, q, λ)

s
=

=
∫

Ω

∇v · (DV + DVT )∇q + ḟ q + div(V) ( j (v) − ∇v · ∇q − v q + f q) dx

+
∫

∂Ω

−∂q

∂n
ġ d S

=
∫

Ω

(
∇v · (DV + DVT )∇q + ḟ q + ( j ′(v) − q)ġ − ∇q · ∇ ġ

+ div(V) ( j (v) − ∇v · ∇q − v q + f q)) dx ,

which, after an additional integration by parts on the term ḟ q = ∇ f ·Vq, corresponds
to Formula (2.9). Formula (2.10) is obtained performing additional integrations by
parts and exploiting the vector calculus identity

V · ∇ (∇v · ∇q) + ∇v ·
(
DV + DVT

)
∇q = ∇ (V · ∇v) · ∇q + ∇v · ∇ (V · ∇v) .

We refer to [5, Sect. 6] for a detailed derivation. Alternatively, (2.10) can be derived
with the so-called “fast derivation” method of Céa, which, formally, does not rely on
the concept of material derivative, cf. [9] and [2, Ch. 6.4.3].

Similarly, Formula (2.11) can be derived considering the Lagrangian

L(Ω, v, q) :=
∫

Ω

j (v) + (�v − v + f )q dx +
∫

∂Ω

gq − ∂v

∂n
q d S , (5.5)

=
∫

Ω

j (v) − ∇v · ∇q − vq + f q dx +
∫

∂Ω

gq d S ,

=
∫

Ω

j (v) + (�q − q)v + f q dx +
∫

∂Ω

gq − ∂q

∂n
v d S .

Its saddle point is characterized by

{−�v + v = f in Ω ,
∂v
∂n = g on ∂Ω ,

(5.6a)
{−�q + q = j ′(v) in Ω ,

∂q
∂n = 0 on ∂Ω .

(5.6b)
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Thus, the Eulerian derivative of (5.5) in (5.6) reads

lim
s↘0

L (Ts·V (Ω), v, q, λ) − L (Ω, v, q, λ)

s
=

=
∫

Ω

∇v · (DV + DVT )∇q + ḟ q + div(V) ( j (v) − ∇v · ∇q − v q + f q) dx

+
∫

∂Ω

ġq + div�(V) (gq) d S .

In this case, the term div�(V) does not vanish, and to recover Formula (2.12) it is
necessary to perform an integration by parts on the boundary, from which stems the
mean curvature term. For piecewise smooth boundaries, this step has to be performed
carefully, because, as in Remark 2.3, additional contributions of corner points appear.
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