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Abstract In recent years, there has been a growing interest in the social dimension of

travel, and how travel decisions are influenced not only by the global state of the trans-

portation system, but also by joint decisions and interactions with social contacts. Such

joint decisions are particularly important for a variety of behaviors: leisure activities are

often performed with social contacts, and their location and timing is thus the result of a

joint process; household ‘‘maintenance’’ tasks, such as grocery shopping or driving the

children to school, are allocated to one single member; and of course joint (car) travel is the

result of complex joint decisions. For this reason, the need to include household and

friendship relationships into mobility simulation frameworks is becoming more and more

obvious. This paper presents a game theoretic framework for the study of joint decision

making, as well as an algorithm to search for approximate solutions of the resulting game.

An implementation of this algorithm for the household case, using the MATSim software

framework, is proposed and tested. The implementation of this algorithm is tested for the

Zürich area, Switzerland, focusing on the possibility to perform joint trips. Those results

allow to identify strengths and weaknesses of the approach, and directions for future work.
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Introduction

In recent years, there has been a growing interest in the social dimension of travel, and how

travel decisions are influenced not only by the global state of the transportation system, but

also by joint decisions and interactions with social contacts—a clear sign for this interest

being the regular workshops organized on this theme (Dugundji et al. 2008, 2011, 2012).
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A very active field of research is the study and modeling of intrahousehold interactions

and joint decision making, often using the classical random utility framework extended to

group decision making. A classical way to cope with the possibly conflicting objectives of

different members of the household is to specify a group level utility function. For

instance, Zhang et al. (2005, 2007) develop a model where time for different activity types

is allocated to household members, subject to time constraints (including equality of time

participation in joint activities), using a group level utility function formulated as a mul-

tilinear combination of the individuals’ utilities—that is, a linear combination of individual

utilities and pair-wise product of individual utilities. Kato and Matsumoto (2009) use a

linear combination of the utility functions of the household members as a group utility. The

assumption behind this kind of models is the existence of ‘‘utility transfers’’: individuals

accept to decrease their own utility if it allows to increase the utility of others by a certain

fraction of their loss. Bradley and Vovsha (2005) focus on the ‘‘daily activity pattern’’

generation, with household ‘‘maintenance’’ tasks (e.g. shopping) allocation and possibility

of joint activities. To do so, they assume a layered choice structure, choosing first a daily

activity pattern for each member, and then assigning joint and maintenance activities.

Gliebe and Koppelman (2005) also base their model on the daily activity pattern concept,

choosing first a ‘‘joint outcome’’ (the sequence of individual and joint activities), and then

an individual pattern for each household member. Those models rely on enumeration of the

possible household level patterns. Gliebe and Koppelman (2002) also derived a constrained

time allocation model, which predicts the time passed by two individuals in joint activities.

Rather than postulating a group level utility function, the models of those authors

specify a special distribution for the error terms of the individuals. In this setting, the error

term of the individuals are correlated so that the probability of choosing a given joint

output is the same for all individuals. Ho and Mulley (2013) also estimate models in which

members of the household perform choices constrained by the choice of a household level

travel pattern. Their data, as well as the parameters of the models, show high joint

household activity participation on weekends, and a high dependence of joint travel on trip

purpose and household mobility resources. Those results highlight the importance of

representing joint household decisions, in particular when going beyond the ‘‘typical

working day’’. Vovsha and Gupta (2013) formulate a time allocation model for multiple

worker households, which considers a positive utility for members of the household to be

home jointly, as it makes joint activities possible. The estimation results show a significant

influence of this kind of synchronization mechanism. Most models listed in this paragraph

are specific to given household structures; in particular, separate models need to be esti-

mated for different household sizes.

Household level decision processes have also been modeled with approaches which

significantly differ from the classical random utility framework. Golob and McNally

(1997) propose a structural equation model, which predicts time allocation and trip

chaining based on the sociodemographics of a household. Golob (2000) also used a

structural equation model to model the dependency of time allocations of the two heads

(man and woman) of a household.

Another class of approaches, more oriented toward multiagent simulation than analysis,

is the use of optimization algorithms to generate households plans. They handle the

household scheduling problem by transforming it into a deterministic utility maximization

problem. Contrary to the previously presented approaches, those alternatives do not lead to

the estimation of a model against data. The first of those approaches was introduced by

Recker (1995). By extending increasingly the formulation of the Pick-Up and Delivery

Problem with Time Windows, a well studied combinatorial optimization problem, he
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formulates the problem of optimizing the activity sequence of members of a household as a

mathematical programming problem. However, due to the complexity of the problem, the

full problem cannot be solved exactly by standard operations research algorithms, and the

activity durations are not part of the optimized dimensions. Chow and Recker (2012)

designed an inverse optimization method to calibrate the parameters of this model using

measured data. Also, the formulation from Recker (1995) was later extended by Gan and

Recker (2008) to introduce the effects of within day rescheduling due to unexpected

events. Another attempt to generate plans for households uses a genetic algorithm, building

on a previous genetic algorithm for individual plan generation (Charypar and Nagel 2005;

Meister et al. 2005). This algorithm optimizes sequence, duration and activity choice for a

household, rewarding the fact that several members of the household perform the same

activity simultaneously, in the way also used by Vovsha and Gupta (2013). Finally, Liao

et al. (2013) formulate the problem of creating schedules for two persons traveling together

as finding the shortest path in a ‘‘supernetwork’’, and solve this problem using exact

shortest path algorithms. They however note that their model is specific to the two person

problem, and that extension to larger numbers of agents may prove to be computationally

expensive. All those approaches remained experimental, and were not integrated into

multiagent simulation tools.

Another class of methods aiming at multiagent simulations consists of rule based sys-

tems, which use heuristic rules to construct household plans. Miller et al. (2005) develop

such a model for household mode choice. The main difference with an individual mode

choice model is the consideration of household level vehicle allocation. In their model,

individuals first choose modes individually. If a conflict occurs, the allocation that maxi-

mizes the household level utility is chosen. The members which were not allocated a

vehicle will fall back on their second best choice, and/or examine shared rides options.

Arentze and Timmermans (2009) develop a rule base model which relies on a simulated

bargaining process within the household. Though such models can easily represent com-

plex decision processes, their calibration and validation is cumbersome.

Other authors have investigated the role of more general social networks on travel. One

of the main incentives to conduct such studies comes from the continuous increase of the

share of trips which are performed for leisure purpose (Schlich et al. 2004; Axhausen

2005). This fact represents a challenge for travel behavior modeling, as those trips are

much more difficult to forecast than commuting trips: they are performed more sporadi-

cally, and data about those trips is much more difficult to collect—in particular concerning

attributes of locations and events, which are needed to make models that do not only

consist of random noise. Understanding better how destination choice for leisure trip is

made is therefore essential to improve the accuracy of those forecasts.

Various studies have been conducted with the idea that an important factor in leisure

trip destination choice, or activity duration choice, is the ability to meet social contacts.

Examples of empirical work include Carrasco and Habib (2009), Habib and Carrasco

(2011) or Moore et al. (2013). All those studies show a substantial influence of social

contacts on the spatial and temporal distribution of activities. Based on an analysis of

social network involvement and role, Deutsch and Goulias (2013) advocate considering the

role individuals play in different social networks. Using latent class cluster analysis models

to analyse the role of individuals in the various social networks they are involved in, they

find that ‘‘the decision-making role of an individual can differ vastly across different social

engagement types’’. Frei et al. (2012) demonstrated in a simulation experiment how

considering social interactions in leisure location choice can help increase the accuracy of

predicted leisure trip distance distribution.
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Another field of empirical research studies the spatial characteristics of social networks.

For instance, Carrasco et al. (2008) studied the relationship between individual’s socioe-

conomic characteristics and the spatial distribution of their social contacts. This kind of

empirical work allows to specify and estimate models able to generate synthetic social

networks, given sociode- mographic attributes and home location. An example of such a

model, based on the results of a survey in Switzerland, can be found in Arentze et al.

(2012). This kind of model is essential if one wants to include social network interactions

in microsimulation model.

This integration of social networks in multiagent simulation frameworks has already

been attempted by other authors. Due to their disaggregated description of the world, such

models are particularly well suited to the representation of complex social topologies. Han

et al. (2011) present experiments of using social networks to guide activity location choice

set formation in the FEATHERS multiagent simulation framework. Using a simple sce-

nario with 6 agents forming a clique, they consider the influence of various processes like

information exchange and adaptation to the behavior of social contacts to increase the

probability of an encounter. They do not, however, represent joint decisions, such as the

scheduling of a joint activity. The same kind of processes have been investigated by

Hackney (2009), using more complex network topologies, within the MATSim framework,

used in this paper. Ronald et al. (2012) and Ma et al. (2011, 2012) present agent based

systems which do integrate joint decision making mechanisms, based on rule based sim-

ulations of a bargaining processes. They are not yet integrated into any operational

mobility simulation platform.

Building on all those ideas, the work presented in this paper aims at including explicit

coordination of individuals in a multiagent simulation software framework. A game-the-

oretic model of joint decisions for daily planning is introduced, and a simulation algorithm

implemented using the MATSim software framework. The process is designed to be able

to handle complex social network topologies, but the current study focuses on intra-

household ties only. The results of an implementation for intrahousehold ridesharing for a

scenario for the Zurich area, Switzerland, are analyzed. Comparing the results of this

scenario with travel diary data, limitations of the current implementation are identified, and

directions for future work are sketched.

Method

We present here a simulation framework able to represent joint decisions, that is, behavior

requiring explicit coordination between individuals—such as shared rides, social activities

or intrahousehold task allocation. The basic idea is that social contacts will take such a

joint decision if it results in an improvement in the satisfaction of all participants. The

modeling of the interaction of individuals with possibly conflicting objectives has been the

subject of game theory for decades, making this theoretical framework particularly well

suited for the problem at hand.

A game theoretic view of transportation systems has indeed been popular since the

seminal work of Wardrop (Wardrop 1952). The essential idea behind it is to see the

transportation system as a set of shared resources (road space, public transport vehicle

seats, etc.), for which individuals compete, individuals in the population trying to maxi-

mize their own satisfaction, given the resources left available by others. Game theory

studies solution concepts for such strategic interactions. A game theoretic solution concept
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is a definition of which states are equilibria, that is, stable under assumption of rational-

ity—a state being considered stable if no agent/player has an incentive to change its

behavior. The static, trip-based approach of Wardrop has been refined and extended with

time. In particular, the equilibrium idea can be pretty naturally transfered to the activity

based framework: individuals do not just try to optimize their trips, but their whole day.

This is in particular the approach of the MATSim software framework (Axhausen 2006;

Nagel and Flötteröd 2009).

Most solution concepts in transportation are akin to the Nash equilibrium: a state where

no individual can improve its satisfaction by unilaterally changing its behavior. This kind

of solution concept does not allow to represent joint decisions. This can be illustrated by a

classical game, called the House Allocation Problem (Schummer and Vohra 2013). This

game consists of n players and n houses. Moreover, each player has its individual ordering

of the houses, from the most preferred to the least preferred, and players prefer being

allocated alone to any house rather than in the same house as somebody else. The strategy

of a player is the house it chooses to live in.

An interesting feature of this game is that any one-to-one allocation of players to houses

is a Nash Equilibrium: no player can improve its payoff by unilaterally changing its

strategy, as it would require choosing an occupied house. This result however contradicts

basic intuition about the stability of such an allocation. In this particular case, a more

realistic solution concept is the Absence of Blocking Coalition: given a one-to-one allo-

cation of houses to players, a blocking coalition is a set of players which could all be better

off by re-allocating their houses among themselves. It is to be noted that both solution

concepts correspond to rational agents, i.e. agents having a preference ordering over

outcomes. The only difference lies in the degree of communication which is allowed.

In the activity-based framework, this solution concept naturally becomes what we

phrase the Absence of Improving Coalition solution concept. An improving coalition for a

given allocation of daily plans is a set of social contacts that can all be better off by

simultaneously changing their daily plan—for instance by switching from separate dinners

at home to a joint dinner at a restaurant. The simulation of joint decision consists in the

search of an allocation of daily plans without such coalitions.

This definition relies on a specification of individual preference ordering over the set of

possible outcomes. This preference ordering is defined using a utility function, which

values how much an individual is satisfied with its day. It uses a linear disutility of travel

time, and a logarithmic utility of time passed performing activities, as proposed by

Charypar and Nagel (2005). Different parameters can be defined for each mode/activity

type.

In this formulation, the utility of a plan takes the form of a sum of the activity of

performing activities and of the disutility of traveling:

F ¼ t2TUact;t þ a2Aea þ c2CUtog;c þ n
i¼2Utravðloci�1; lociÞ ð1Þ

The utility for an activity type t [ T is Uact,t = Udur,t ? Ushort.dur,t with:

Udur;t ¼
bdur � d�t � ln

dt

d0;t
if dt [ d0

0 otherwise

8
<

:
ð2aÞ

Ushort:dur;t ¼ bshort:dur � dshort;t ð2bÞ
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where dt
* is the ‘‘typical duration’’ for activity type t, d0,t is the ‘‘minimal duration’’ for

activity type t, dt is the cumulated time passed performing activities of type t, dshort,t is the

sum, for all activities of type t shorter than dshort, of the differences with dshort.

In addition to this deterministic part, each activity a [ A has a random utility ea, to
representindividual taste variations. This number is randomly generated using a seed

composed from the position of the activity in the plan, the agent and the location: for a

given combination of those parameters, the value of this random term will be the same

(Horni 013). Those terms follow an Extreme Value Distribution, as is traditional in choice

models.

Utog,c, the utility of time passed with social contact c [ C, can take the same form as the

activity scoring, or a linear form.

The utility of traveling with mode m is simply a linear function of travel time:

Utrav;mðttravÞ ¼ am þ btrav;m � ttrav:

To search for states satisfying a game-theoretic solution concept with a search space too

big for exhaustive search, co-evolutionary algorithms are particularly well suited. Popovici

et al. (2012) provides a thorough introduction to this family of algorithms. Those algo-

rithms work by decomposing a solution into different parts, which are co-evolved, the

fitness of a partial solution being evaluated by interaction with other sub-solutions—a

process naturally game-theoretic (Ficici 2004).

The definition of such an algorithm for the simulation of a transportation system is

natural: each agent, representing an individual, performs an evolutionary algorithm to

optimize its daily plan. The fitness of a daily plan is measured after an execution step,

where agents concurrently execute their daily plans in a simulated transport system,

influencing each other’s fitness by road congestion, public transport vehicle crowding,

interaction at social activities, etc. Those scores are then used to guide evolution towards

the proper solution concept.

This results in the process illustrated on Fig. 1, which steps are described in more details

below.

Initial demand

All agents have an initial daily plan, which will serve as a starting point for the iterative

improvement process. Some characteristics of the plans are left untouched during the

simulation, and should therefore come from data or external model. This is typically the

case of long term decisions, such as home and work locations, or decisions involving a

larger time frame than a single day (e.g. do the weekly shopping or not). The combination

of those initial plans and of the mutation operators applied to the plans (see ‘‘Replanning’’

section) define the universal choice set of the agents.

Fig. 1 The MATSim co-evolutionary process
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Mobility simulation

Plans of all agents are executed concurrently, to allow estimating the influence of the plans

of the agents on each other. This step uses a queue simulation to simulate car traffic, which

gives estimates of the congested travel time. Public transport vehicles are also simulated

according to a schedule, and agents can experience delays if a vehicle becomes full,

forcing them to wait for the next vehicle (Rieser et al. 2010). Together with the next step,

this step constitutes the evaluation stage of the co-evolutionary algorithm.

Scoring

The information from the simulation is used to assign a score to each individual plan, using

the utility function described above.

This gives the score from a single interaction. The fitness of the daily plan can then be

updated, as (1 - a) fold ? a fnew, with a [ [0.5, 1] being the learning rate. The lower the

learning rate, the more the fitness of a plan will be close to a successive average of fitnesses

over the evaluated interactions. While this is consistent with the hypothesis that individuals

react to the expected state of the transport system, most applications use a learning rate of

1, which results in more reactive agents, and thus faster convergence. Nagel and Flötteröd

(2009) define convergence as reaching a state where ‘‘agents draw from a stationary choice

distribution such that the resulting distribution of traffic conditions re-generates that

choice distribution’’. In practice, convergence is considered reached when the macroscopic

statistics (such as mode shares and traffic counts) remain stable between iterations. For a

more in-depth discussion of multi-agent equilibrium concepts, the interested reader might

want to consult Nagel and Flötteröd (2009) or Meister (2011).

Replanning

This step actually groups two of the important components of co-evolutionary algorithms:

(i) selection of the interactions for evaluation, and (ii) application of the evolutionary

operators (selection and mutation).

Popovici et al. (2012) note that in co-evolutionary algorithms, ‘‘decisions need to be

made as to what interactions should be assessed and how the outcomes of those interac-

tions should be aggregated to give individual fitnesses’’. In the case of the activity

scheduling problem studied here, the interactions (i.e. which daily plans are concurrently

executed) should be selected such that (a) agents have time to adapt to the traffic patterns,

(b) agents are able to estimate the influence of joint decisions on their score, while

(c) keeping the number of computationally expensive mobility simulation steps as low as

possible. (a) is achieved by letting a large proportion of agent select a past plan. (b) is

achieved by including joint plans constraints. A joint plan is a set of individual plans

executed simultaneously. Different copies of the same individual plan can be part of

different joint plans—for instance an agent might go to the same restaurant alone, with

members of its household or with a group of friends. The score of the different copies will

take into account the influence of the joint plan to which it pertains. Those joint plan

constraints are included using heuristic rules, applied after mutation operators are applied,

and are classified between strong and weak constraints—weak constraints are considered

when selecting plans for execution, but are allowed to be broken when merely selecting

plans for mutation. They are then part of the evolution process. In the current application,

Transportation (2015) 42:753–769 759

123



the heuristic rules consist in joining newly created plans with joint trips (strong) or with

leisure activities at the same location at the same time (weak).

To allow handling joint plans, agents need to be handled in groups. This is straight-

forward for households: all agents of a same household are always handled as a single

group. For more general social networks, agents are handled with all agents with whom

they have a joint plan, plus some social contacts with whom new joint plans can be created.

As this paper focuses on intra-household interactions, details of how to group agents for

generic social networks are left aside here. The interested reader can find a more general

description of this replanning process, defined in terms of generic social network topology,

in Dubernet and Axhausen (2013).

For each group, two actions are then possible. For most groups, an allocation of existing

plans, fulfilling the joint plans constraints, is selected for execution. Based on plan scores,

randomized by adding an extreme value distributed error term, an allocation without

improving coalitions is searched for by an algorithm inspired by the ‘‘Top Trading Cycle’’

algorithm used for the House Allocation Problem (Schummer and Vohra 2013).

For the other groups, a plan allocation is selected and copied. The copied plans then

undertake mutation, to make the agents explore new alternative joint plans. What kind of

mutation is performed determines which alternative plans will be tried out by the agent.

Mutation operators include:

• least cost path routing, given the congested travel times from the last execution step

• departure times random mutation

• mutation of modes at the subtour level, taking into account chaining constraints

• creation of shared rides, by joining a car trip (driver) with a non-chain based mode trip

for another agent (the passenger). Currently, the process does not generate pure

escorting trips.

• switching the sequence of two activities

• choice of a joint leisure location, by choosing a random location inside of the

intersection of approximate space–time prisms for the participating agents

Agents have a limited memory size, keeping at most 3 plans per joint plan composition,

and 10 plans in total. If this limit is exceeded, one should keep the plans which have the

highest probability to create improving coalitions, that is, to be preferred to the other plans

in the agent’s memory. To this end, a lexicographic ordering is used: the process removes

the joint plan which maximizes the number of individual plans which are the worst of the

agents’ memories. If several joint plans have the same number of worst plans, the process

chooses among them the joint plan which maximizes the number of second worst plans,

and so on until the ‘‘worst’’ joint plan is unique. When the overall maximum number of

plans in the memory of an agent is reached, the worst individual plan for this agent is

removed along with plans of other agents of the same joint plan. Each agents keeps at least

one plan not part of a joint plan, as there may otherwise not be any state without blocking

coalitions. Agents are parsed in random order, to avoid the emergence of ‘‘dictators’’ over

iterations, whose worst plan would always be removed, even if it is the only ‘‘bad’’ plan of

a joint plan.

Though those selection operators seem to be in accordance with the chosen solution

concept, it is difficult, if not impossible, to prove that the process will actually converge

towards the searched state. As noted by Ficici et al. (2005), when they perform a theo-

retical analysis of different selection methods in a co-evolutionary context, ‘‘Co-evolu-

tionary dynamics are notoriously complex. To focus on our attention on selection

dynamics, we will use a simple evolutionary game-theoretic framework to eliminate
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confounding factors such as those related to genetic variation, noisy evaluation, and finite

population size’’. Those ‘‘confounding factors’’ can however not be eliminated from an

actual implementation of a co-evolutionary algorithm, and rigorously proving that a given

algorithm actually implements a specific solution concept is very tedious, if not impossible.

With iterations, agents build a choice set of daily plans that becomes better and better

given the actions of the other agents. However, the presence of a large portion of agents

with plans resulting from random mutation creates noise, not only for the analyst looking at

the output of the simulation, but for the agents themselves when they compute the score of

their plans. To solve this issue, when the system reaches a stable state, agents stop per-

forming mutation, and only select plans from their memory for 100 iterations, using the

absence of improving coalition with randomized scores. This ensures that the selected

plans are the result of a behavioral model, rather than the result of random mutation

operators.

Output

Once convergence was reached, data from the last iteration (daily plans and events from

the mobility simulation) are used for analysis.

Validation

This section presents the results of a run of the model for the region of Zurich, Switzerland,

and analyses how the results compare to the survey data.

Scenario

For this validation, a scenario for the Zurich area, Switzerland, was used. The scenario is

composed of the following elements:

1. Population the initial demand comes from the full-Switzerland scenario described by

Meister et al. (2010). It was generated by allocating activity chains from the national

travel survey from the years 2000 and 2005 to records from the national census 2000,

which is a 100 % survey of the Swiss population, containing in particular information

on home location at the hectare level and work location at the municipality level, as

well as household membership information. The agents are grouped according to the

household information from the census, and only the households having at least one

member performing a trip passing less than 30 km from the Bellevue Place, in the

center of Zurich, are kept. A sample of 10 % of those households is used for the

simulation. This results in a scenario containing 206,943 agents, grouped in 88,439

households, and performing a total of 788,931 trips. This rather old scenario is used

because from 2010 on, the Swiss census contains detailed information only for a 2.5 %

of the Swiss population, and hence does not allow to reconstruct households as easily.

Though this approach is not applicable to most recent data, it is sufficient for the

purpose of this paper. The generation of a synthetic population, including household

structure, from the most recent data is in progress (Müller and Axhausen 2014).

2. Network a planning network is used, from the National Transport Model (Vrtic et al.

2003). It models the Swiss network at a coarse resolution, as well as the major arterials

in the neighboring countries. It allows faster runs than a navigation network.

Transportation (2015) 42:753–769 761

123



3. Public transport the public transport schedule from the Cantonal Transport Model is

used to get realistic travel time estimates (Amt für Verkehr, Volkswirtschaftsdirektion

Kanton Zürich 2011).

4. Facilities the ‘‘facilities’’ contain the information about opening times for different

activity types, and roughly correspond to buildings. Data comes from the federal

enterprise census 2001.

Due to the evolving code base, the parameters of the scoring function which were

calibrated for previous studies did not give satisfying results anymore. Therefore, the

parameters were adjusted so as to obtain reasonable results. Due to the duration of a single

simulation, calibrating a scenario is a time-consuming process. The aim of the study

described herein being to test the behavior of the model rather than producing accurate

forecasts, it was not attempted to get a perfect fit, but rather to obtain reasonable values—a

more thorough calibration is in progress for a scenario build with most recent data, which

however does not contain household information. Each agent have private preferences

about leisure locations, modeled by an agent-specific Gumbel distributed error term for

each location, using the approach of Horni (2013).

Two variants of the scenario are run: one with, and one without giving the possibility to

the agents to adjust location of leisure activities and sequence of the activities. We will

refer to those two variants as LOC and NOLOC, respectively.

The replanning modules used for those runs, as well as their weights, are presented in

Table 1. For each household, at each iteration, a replanning module is selected with a

probability proportional to the weights of the replanning module. This process in run for

1500 iterations. During those iterations, agents concurrently improve the quality of the

Table 1 Probability of the different replanning modules

Module Description Weight

Logit-like Selection Selects past plans using Gumbel-distributed scores 2

Time allocation mutation Randomly mutates activity end times. It adds or removes a random
amount to all activity end times in a plan, within a range which
decreases with iterations, from [- 2.5 h; ?2.5 h] at the
beginning to [- 0.5 h; ?0.5 h] from iteration 750 on. The big
mutation range at the beginning helps synchronizing plans of co-
travelers; the smallest range at the end allows a finer tuning of
departure times

1

Subtour mode mutation Changes randomly the mode of all trips of a subtour. It considers
car availability (i.e. the combination of driver’s license and car
ownership) and trip chaining constraints: subtours with chain-
based modes (car and bike) must be anchored at home or in a
subtour of the same mode. Subtours containing one or more joint
trips are not modified

1

Re-routing Compute new routes for all trips in the plan, using a least-cost path
algorithm based on the travel times observed in the previous
iteration

1

Joint trip mutation Inserts or remove joint trips randomly 1

Sequence mutation Swaps the position of two randomly chosen activities in the plan
This module is only activated in LOC

1

Joint location choice Randomly mutates leisure locations, using a household-level
choice set

This module is only activated in LOC

1
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plans in their choice set, given the behavior of the others. For 100 additional iterations, all

modules except Logit-like plan selection are deactivated: agents just choose their behavior

from their choice set, updating the score of the plans to the new behavior of others.

The comparison of the results of those runs with the data from the national travel survey

2005 are discussed in the next section. For most of the results, only the trips having their

origin and their destination within a radius of 20 km around the Bellevue Place are con-

sidered, due to the way the scenario was generated (see above). The radius is smaller than

the 30 km used as a criterion during scenario generation, to avoid border effects.

Results

Figure 2 shows the final mode shares per distance class for all the scenarios, as well as in

the National Travel Survey 2005, considering only the trips having their origin and their

destination 20 km from Bellevue Place. The length of a trip is defined as the sum of the

crow-fly distances of all stages, as it is the only statistic available for all modes and both

from the simulation and the National Travel Survey. The scenario in general contains too

few short trips compared to the National Travel Survey, though letting agents choose their

leisure destination helps improve this statistic. Overall, the fit for all modes but bike is

rather good—though the fact that joint travel is considered only within the household

makes difficult to assess whether agents travel too much together.

Figure 3 shows the distribution of trip distances in the different scenarios and the

National Travel Survey 2005. Outliers are not shown. ‘‘driver’’ corresponds to driving a car

with a passenger. As above, trip distance is estimated using the sum of stages crow-fly

distances. Trip length for bike and walk are overestimated, probably due to the linear form

Fig. 2 Mode share per distance class, in the National Travel Survey (NTS) and simulations, with (LOC)
and without (NOLOC) leisure destination adaptation
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of the disutility of travel time for those modes (i.e. it does not consider tiredness), and to

the under-representation of trips under 2 km in the scenario. When driving somebody,

agents travel a bit too much, whereas trips being performed as a passenger are much

shorter than in the National Travel Survey. This indicates that drivers tend to perform too

large a part of their trip alone in the car. This might be due to a wrong distribution of

purposes, as will be seen in Fig. 4: if when dropping the children to school on the way to

work, the joint part might be rather short compared to the full trip, for other purposes, such

as leisure, individuals might do their trip between the same origin and destination.

Figure 4 presents the share of the ‘‘car passenger’’ mode, from activity type to activity

type, in the activity chains extracted from the National Travel Survey, as well as in the

simulations. Figure 4(c) uses data from all Switzerland, due to the small sample size; the

other figures consider only the trips with origin and destination within a 20 km radius

around the Bellevue Place. In the National Travel Survey, the share of the car passenger

mode is particularly high among trips with leisure purpose, indicating a high share of joint

activities. Simulations do not exhibit this pattern. Several reasons may explain this fact:

(a) only intra-household ties are considered, (b) the initial activity schedules for household

members were generated independently, and (c) pure serve passenger tours are not con-

sidered. Interestingly, the share of being a passenger between home and school is very

high, as should be expected in households—even too high, probably linked to the fact that

the global mode share of being a passenger is close to the observed one, even if only intra-

household joint trips are considered. Those trips emerge from the constraints specific to

households, namely the fact that children do not have a car, and that the daily tours of all

members of the household originate and end at home, making it easy to join trips. The

willingness to help (represented by the positive constant for being a driver) then makes

those trips more attractive than their individual counterpart, for both driver and passenger.

Fig. 3 Trip length distribution per mode, in the National Travel Survey and simulations, with (LOC) and
without (NOLOC) leisure destination adaptation
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Overall, those results point both strengths and limitations of the current implementation.

First, the framework is able to represent the emergence of joint travel, and in particular the

emergence of patterns per activity type, due to the constraints specific to the household

context. Though applied only to the household context here, the model is formulated in a

way compatible with any social network topology, and experiments with a synthetic

network of leisure contacts are in progress. However, the experiments also make clear the

difficulty to apply such a model. Indeed, most differences with observed data are arguably

due, at least in part, to the absence of other social contacts than household members in the

scenario. Building a fully operational scenario thus requires not only to generate synthetic

social networks, for instance using an approach such as the one of Arentze et al. (2012), but

to calibrate behavior for those different networks: individuals are known to behave dif-

ferently with different kind of social contacts (Deutsch and Goulias 2013). Finally, this

approach works with exogenously given activity chains. In particular, which activity is

performed or not is not part of the optimisation process. However, this kind of decision is

likely to be performed jointly: only one person in the household will do grocery shopping,

or the household will go as a whole to the restaurant. In the runs presented here, such

processes were not included. The approach would probably benefit from co-generating the

Fig. 4 Activity type to activity type ‘‘car passenger’’ mode shares
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initial plans—which however strengthens the data requirements in the initial phase, as

household-level diaries become necessary, instead of individual ones.

Conclusion

This paper presented a validation run of an approach to simulate joint decisions in the

trans- portation context, using the MATSim activity-based transportation microsimulation

framework. It compared the results of simulations of intra-household ride-sharing in the

Zurich area, Switzerland, with travel diary data. The analysis of the results showed that the

approach, in its current implementation, is able to represent the emergence of joint travel in

the household context. The absence of other types of social contacts in the simulation,

combined with the absence of data about which kind of social contact trips and activities

were performed with in the National Travel Survey, make it difficult to assess precisely the

quality of the results. To tackle this issue, experiments using a synthetic network of leisure

contacts, generated using the approach of Arentze et al. (2012), are in preparation.

Considering both households and social contacts at the same time comes with new

calibration challenges, as behavior is likely to vary with the kind of social contact (Deutsch

and Goulias 2013).

Even with this difficulty of interpretation, the present results allow to identify directions

for future work. First, in the scenario used here, the initial activity schedules of agents were

sampled independently for each household member, probably leading to an underestima-

tion of the number of possible intra-household joint leisure activities (i.e. the number of

households within which several members plan a leisure activity). A way to improve the

results would thus be to consider activity schedule generation at the household level. Such

a model however requires even more detailed disaggregate data than the current approach

for initial demand generation, whereas this kind of data is long and costly to collect—and

is not readily available in Switzerland. Hence, another way to cope with this would be to

represent explicitly the higher flexibility of discretionary activities in the simulation, by

including or removing activities. Such a possibility was experimented with, but not vali-

dated, by Feil (2010).

Another limitation of the current implementation is that it does not include the gener-

ation of pure ‘‘serve passenger’’ tours, but only considers drivers picking up and dropping

off passengers during their already-scheduled trips. The inclusion of such tours could be

considered, depending on how the model performs when both households and social

contacts are considered in the simulation.

Also, due to the lack of data, car resources in households were not considered. However,

this most probably is a strong incentive for intra-household ride sharing, as pointed out by

the results of Ho and Mulley (2013), and this kind of information should be included in the

scenario.
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Vrtic, M., Fröhlich, P., Axhausen, K.W.: Schweizerische Netzmodelle für Strassen- und Schienenverkehr.
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