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Abstract We consider the entropy associated with the large-scale structure of the
Universe in the linear regime, where the Universe can be described by a perturbed
Friedmann–Lemaître spacetime. In particular, we compare two different definitions
proposed in the literature for the entropy using a spatial averaging prescription. For
one definition, the entropy of the large-scale structure for a given comoving volume
always grows with time, both for a CDM and a �CDM model. In particular, while
it diverges for a CDM model, it saturates to a constant value in the presence of a
cosmological constant. The use of a light-cone averaging prescription in the context
of the evaluation of the entropy is also discussed.
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1 Introduction

In the standard cosmological approach, the Universe is described by a homegeneous
and isotropic solution of Einstein field equations, known as Friedmann–Lemaître (FL)
spacetimes [1]. These solutions are expected to describe the Universe smoothed on
cosmological scales. While this spacetime is easily identified in the early universe,
matter clusters and structures grow under the effect of gravity so that the distribution
of matter in our late time universe exhibit large inhomogeneities.

Over the past years significant activity has been devoted to the definition of aver-
aging procedures [2–10] in order to construct a notion of a coarse-grained spacetime.
Irrespective of the question of whether this procedure could explain the recent accel-
eration of the Universe, averaging methods are interesting since let us compare the
evolution of a system described at different scales. In such a coarse-graining, infor-
mation about the microscopic behaviour of the system is lost, which is at the origin of
the notion of entropy. In essence, entropy estimates the number of micro-states that
correspond, after averaging, to a given macro-state.

The definition of gravitational entropy is still an open debate. While a suitable
definition has been given in the context of the thermodynamics of stationary black
holes [11–14], a well motivated and universally accepted analogue has yet to be found
in the cosmological context. With the evolution of the Universe, structure grows and
the Universe becomes more and more inhomogeneous. In order for the second law
of thermodynamics to hold, the gravitational field itself shall carry entropy. It was
argued in [15,16] that it has to be defined from the free gravitational field and thus be
related to the Weyl tensor; more recently it was extended to a definition [17] based
on the Bel–Robinson tensor. This latter proposal reduces to the Bekenstein-Hawking
entropy when integrated over the interior of a Schwarzschild black hole and increases
as inhomogeneities grow.

While the concept of entropy arose from equilibrium thermodynamics, it has been
also thought of as a measure of information. In terms of information theory the
Kullback–Leibler divergence [18], for two probability distribution functions p and
q, is defined by

DKL(p|q) ≡
〈
ln

p

q

〉
p

=
∫

p(x) ln
p(x)

q(x)
dx ,

and quantifies the amount of information lost when the data (p) is represented by the
model (q). In cosmology, it was used in order to decide whether two cosmological
models can be distinguished given a set of observational data [19–21].

Since the cosmological model of structure formation predicts the distribution
of the density field (as a random variable), it has been proposed [22], in the
context of averaging, to adapt the Kullback–Leibler divergence to a definition of
relative information entropy that quantifies how the actual density field ρ is dif-
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ferent from its spatial average 〈ρ〉D on a spatial domain D of proper volume VD,
namely1

SRI,D
VD

≡ 1

MPl

〈
ρ ln

ρ

〈ρ〉D
〉
D

, (1)

with M−2
Pl = 8πG. It was conjectured that this function is increasing with cosmic

time, which was checked for linear perturbations of a spatially Euclidean FL space-
time for a CDM model [23] and for the comparison of a Lemaître–Tolman–Bondi
(LTB) spacetime to its average [24–27]. This is indeed a key property to consider
Eq. (1) as a valid definition of entropy.

This definition lies solely on the density field. In principle, we want to compare
a spacetime (M, g) to its average (M̄, ḡ), and evaluate the quantity of information
that has been lost. The previous definition assumes that M can be foliated by a family
of spatial (or null) hypersurfaces, which is related to the choice of the averaging
procedure. It means that (i) the average depends on the choice of the slicing. The
expression in Eq. (1) involves an integral over quantities in the two spacetimes. It means
that it implicitly involves a mapping betweenM andM̄ so that (ii) it may have a gauge
dependence. (iii) In principle, it also depends on the averaging procedure, whether it
is spacelike [2] or along the light-cone [10]. The expression (1) also depends solely on
the matter distribution. After averaging, the matter distribution is indeed homogeneous
but it may not be isotropic, as e.g. shown in Ref. [28], so that (iv) it may not capture
the fact that the background spacetime may not be FL. Indeed, the geometry of the
spacetime M is characterized by its Riemann tensor Rμνρσ , that can be split as a
Ricci contribution, Rμν , and a Weyl part Cμνρσ (that can further be decomposed as an
electric and magnetic parts, Eμν and Bμν). The Ricci part is constrained by the matter
distribution, via the Einstein field equations, but the knowledge of the density field
alone does not allow one to reconstruct the Weyl part. As an example, consider M
as a perturbed FL universe; it has non-vanishing Rμν , Eμν and Bμν . After averaging
〈ρ〉D is homogeneous. If M̄ is a FL universe then only Rμν is non-zero while if M̄ is
a Bianchi I universe both Rμν and Eμν are non-zero, while they have the same 〈ρ〉D.
It means that one part of the difference between the spacetimes is not included in the
definition (1). Part of this information is contained in the two scalars CμνρσCμνρσ and
C∗

μνρσC
μνρσ (see Sect. 2.3 for definition) constructed from the Weyl tensor, which is

indeed at the heart of the proposals [15–17]. While not transparent in the definition (1),
it can actually be shown (see Ref. [23]) that, for perturbations around an FL spacetime,
this formula reduces in part to some combination of the Weyl scalars.

The paper is organized as follows. In Sect. 2 we define the foliation of our spacetime,
the two averaging procedure we shall consider and introduce linear perturbation theory.
In Sect. 3 we present the different definitions of the gravitational entropy used, while
in Sect. 4 we investigate their time evolution. Finally, the results are discussed and
compared in Sect. 5. “Appendix 1” presents the dynamics of the background spacetime,
and “Appendix 2” summarizes the definition of gauge invariant degrees of freedom.

1 We add a factor 1/MPl with respect to the definition proposed in [22] to obtain a dimensionless relative
information entropy.
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2 Averaging procedures

Averaging procedures rely on a choice of observers/foliation of spacetime, described
in Sect. 2.1. In the following, we consider two procedures based either on spatial
sections or on null sections (Sect. 2.2).

2.1 Spacetime foliation

To define our formalism let us introduce a 1+3 splitting of the Universe [29] associated
with a general reference timelike congruence nμ that defines a class of observers and
the relative foliation of spacetime. The 3-dimensional spacelike hypersurfaces normal
to nμ can then be defined by the equation S(x, t) − S0 = 0, with S(x, t) a scalar field
and S0 a constant. Then

nμ ≡ − ∂μS

(−∂ρS∂νS gρν)1/2 , (2)

is normalized as nμnμ = −1. This allows us to define hμν , the projector on these
hypersurfaces, as

hμν = gμν + nμnν (3)

which satisfies by construction hμρh
ρ
ν = hμν and hμνnμ = 0. Furthermore, one can

define the expansion �, shear σμν and vorticity ωμν of the flow as

�μν ≡ hα
μh

β
ν ∇αnβ (4)

= 1

3
hμν� + σμν + ωμν. (5)

They are explicitly given by

� ≡ ∇μn
μ, (6)

σμν ≡ hα
μh

β
ν

[
∇(αnβ) − 1

3
hαβ∇τn

τ

]
, (7)

ωμν ≡ hα
μh

β
ν ∇[αnβ] . (8)

Indeed, the assumption of Eq. (2) implies that the vorticity strictly vanishes, ωμν = 0.
In practice, perturbations grow significantly only during the matter-dominated era,

so that one can restrict the analysis to dust-filled universes, eventually with a cosmo-
logical constant. In such a situation one can pick up a foliation defined by a congruence
nμ corresponding to the four-velocity of a geodesic observer, which accidentally coin-
cides with the four-velocity uμ of comoving observers, i.e. nμ = uμ.2

2 In general nμ, which defines a general reference flow, and uμ, which defines the four-velocity of the
observers comoving with the matter, may be different (see Ref. [30] for details).
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The shear tensor can be then expressed as

σμν = �μν − 1

3
hμν� , (9)

and it follows that the scalar shear takes the form

σ 2 ≡ 1

2
σμ

ν σ ν
μ = 1

2

(
�μ

ν �ν
μ − 1

3
�2
)

. (10)

2.2 Spatial and light-cone averaging

On one hand, we consider a spatial averaging procedure [2], entirely based on a slicing
of spacetime by spatial hypersurfaces. The spatial average of any scalar quantity A on
a domain D is then defined as

〈A(η, x)〉D = 1

VD

∫
D

√|h| A(η, x)d3x , (11)

where VD is the volume of the domain, defined by the requirement that 〈1〉D = 1,
and h is the determinant of the induced metric hμν on the averaging hypersurface.
Such a spatial average is associated with the general reference timelike congruence
nμ of Eq. (2) if and only if the average is performed in the gauge where S(η, x) is
homogeneous (see Refs. [30–32]).

On the other hand, cosmological observations are usually restricted on the past
light-cone, since most of the relevant signals are of electromagnetic origin. Hence,
when we look to cosmological observables, the averaging procedure should be possibly
referred to a null hypersurface coinciding with our past light-cone or to the null surface
obtained from the intersection of our past light-cone with some fixed-time spacelike
hypersurface. Let us consider this latter possibility. Following Ref. [10] we obtain that
the averaging of any scalar A(η, x) over the 2-sphere embedded in our past light-cone,
defined by a null scalar V (η, x) (i.e. such that ∂μV ∂μV = 0) equal to a constant, and
corresponding to its intersection with the spacelike hypersurface S(η, x) = S0, is
given by

〈A(η, x)〉V0,S0 = 1

VS

∫
M

√−g δ(V0 − V )δ(S − S0)

×A(η, x) |∂μV ∂μS| d4x , (12)

where M is the 4-dimensional spacetime, VS is the volume of the 2-sphere embedded
in the light-cone, defined by the requirement that 〈1〉V0,S0 = 1, and g is the determinant
of the four dimensional metric gμν .
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2.3 Linear peturbation theory

The standard scalar-vector-tensor decomposition [1] of a perturbed FL spacetime have
metric components

δ(1)g00 = −2a2α

δ(1)gi0 = −a2

2
Bi = −a2

2
(∂iβ + B̄i ) ,

δ(1)gi j = a2
[
−2ψδi j + Di j E + ∂(i χ̄ j) + 1

2
h̄i j

]
, (13)

with Di j ≡ ∂i∂ j − 1
3δi j�. We then have 4 scalar degrees of freedom (α, β, ψ and E),

2 transverse vectors (B̄i and χ̄i with ∂ i B̄i = 0, ∂ i χ̄i = 0) with 4◦ of freedom, and a
traceless and transverse tensor (h̄i j with ∂ i h̄i j = 0 = h̄ii ) with 2◦ of freedom.3

Let us stress that first order perturbation theory is sufficient to obtain the general
expression for the shear in Eq. (10) up to second order. Since second order perturbations
contribute only to third or fourth order to σ 2 (see “Appendix 2”).

In the following we shall use the synchronous gauge and neglect vector and tensor
perturbations. We then have

ds2 = a2
{
−dη2 + [(1 − 2ψ)δi j + Di j E

]
dxidx j

}
. (14)

It is clear from Eqs. (43–45) that we can then write the Bardeen potentials � and � as

� = ψ + 1

6
�E + H

2
E ′, � = −H

2
E ′ − E ′′

2
, (15)

where the prime denotes the derivative with respect to conformal time and H = a′/a.
Let us now introduce the Weyl tensor defined as

Cμνλρ = Rμνλρ + 1

2

(
gμρRνλ + gνλRμρ − gμλRνρ

−gνρRμλ

)+ 1

6

(
gμλgνρ − gμρgνλ

)
R , (16)

where Rμνλρ and Rμν are the Riemann and Ricci tensors, while R is the Ricci scalar.
We can then define the dual of the Weyl tensor as C∗

αμνβ = 1
2ηαμτγC

τγ
νβ , where

ηαμτγ = √−gεαμτγ is the four dimensional volume element.
In terms of the Bardeen potentials, in any gauge and for vanishing anisotropic stress,

the Weyl scalar CμνλρCμνλρ takes the simple form

CμνλρC
μνλρ = 8

a4 Di j�Di j� . (17)

3 The definition of gauge invariant degrees of freedom are summarized in “Appendix 2”.
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Let us relate the contraction of the Weyl tensor in Eq. (17) to the shear of a free-
falling observer given in the synchronous gauge by

σ 2 = 1

8a2 Di j E
′Di j E ′ , (18)

which shows that σ 2 and CμνλρCμνλρ are not independent quantities. If we consider
a general �CDM model we have

ψ(η, 
x) = 2

9H2�m
∇2�(η, 
x) + 5

3
�(ηin, 
x), (19)

E(η, 
x) = − 4

3H2�m
�(η, 
x) . (20)

Using Eq. (20) and the background dynamics (see “Appendix 1”), we obtain the
following relation which connects the shear to the gravitational potential

σ 2 = 2

9

(
1

a0H2
0�m0

)2 [HDi j� + Di j�
′]

×
[
HDi j� + Di j�′] . (21)

The relation between the Weyl tensor in Eq. (17) and the shear of a free-falling observer
is then given by

CμνλρC
μνλρ = 8

a4

⎡
⎣2

9

(
1

a0H2
0�m0

)2

H2

⎤
⎦

−1

σ 2

− 16

a4HDi j�Di j�′ − 8

a4H2 Di j�
′Di j�′ . (22)

In a CDM model, the gravitational potential is constant, so that the contraction of the
Weyl tensor and the shear are related simply by a time dependent factor. In a �CDM
model, one needs to include the terms arising from the decay of the gravitational
potential.

3 Definitions of the entropy

3.1 Definition from the density field

As discussed in the introduction, the first idea to define a relative entropy between
two spacetimes [22] followed the definition of the Kullback–Leibler divergence [18]
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in information theory. It allows one to quantify whether two density fields ρ and 〈ρ〉D
can be distinguished and is defined4 by Eq. (1).

When working in perturbation the density field can be expanded as ρ = ρ(0) +
ρ(1) + ρ(2), so that at leading order [23]

SRI,D
VD

= 1

2MPl

〈(ρ(1))2〉D − 〈ρ(1)〉2
D

ρ(0)
. (23)

As can be seen from this equation, the relative information entropy can be obtained at
leading order using only first order perturbation theory. In particular, this is given by
the variance of the energy density.

Equation (23) is valid independently of the matter content of the Universe. Follow-
ing our introductory considerations, the density field that constraints the Ricci part of
the Riemann tensor is the total energy density. Therefore, to define the entropy we
shall use the total density energy of the Universe.

Let us now evaluate Eq. (23) in a �CDM universe. In the synchronous gauge, the
first order perturbation of the energy density is given by the Poisson equation (this
corresponds to the matter perturbation because the cosmological constant cannot be
perturbed by definition)

ρ(1)(η, 
x) = 2

a2 M
2
Pl∇2�(η, 
x) . (24)

As a consequence Eq. (23) becomes

SRI,D
VD

= 2

3

MPl

H2a2

[〈(
∇2�

)2
〉
D

− 〈∇2�〉2
D
]

. (25)

Let us now use the expression of Eq. (17) for the Weyl tensor in a perturbed FL metric
to rewrite Eq. (25) in a useful form. After some simple algebraic manipulations we
obtain that

SRI,D
VD

= 9

4
MPl

[
a2

18H2

〈
CμνλρC

μνλρ
〉
D + 4

9a2H2

×
(〈(

∇2�
)2
〉
D

−
〈
∂i∂ j�∂ i∂ j�

〉
D − 2

3

〈
∇2�

〉2
D

)]
. (26)

As shown in Ref. [23] the term in the second line of Eq. (26) is related to the
so-called kinematical backreaction QD (see Ref. [2]), given by

QD ≡ 2

3

(
〈�2〉D − 〈�〉2

D
)

− 2〈σ 2〉D , (27)

4 In the following we consider the spatial averaging prescription < .... >D in our definition, we will show
in Sect. 4 that this is indeed the right averaging prescription for the evaluation of the entropy.
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in the CDM case. Therefore, for a free falling observer in the synchronous gauge and
considering a CDM model we can rewrite Eq. (26) in the following way [23]

SRI,D
VD

= 9

4
MPl

[
a2

18H2 〈CμνλρC
μνλρ〉D + QD

]
. (28)

The entropy (26) is the average of a combination of scalar quantities and it is
gauge invariant under a gauge transformation (see Ref. [32] for the possible gauge
dependence coming from the averaging prescription). Indeed, this scalar combination
is zero at zero and first orders [see Eq. (23)], and therefore gauge invariant at leading
order under a gauge transformation.

3.2 Definition from the Bell–Robinson tensor

Reference [17] suggested a thermodynamically motivated measure of the gravitational
entropy based on the Bel–Robinson tensor,

Tμνρσ = 1

4

(
CαμνβC

α
ρσ

β + C∗
αμνβC

∗α
ρσ

β
)

. (29)

A measure of gravitational entropy constructed from this tensor was also considered in
[33,34], using an integral over conformal time of the super-energy density W defined
by

W = Tμνρσn
μnνnρnσ . (30)

Note that this super-energy density W is observer dependent and non-negative - which
is not a problem per se, since the entropy is also observer dependent.

Following Ref. [17] and imposing the following five conditions for the entropy:
non-negative, vanishing only if Cμνρσ = 0, it should measure the local anisotropy
of the free gravitational field, reproduce the Bekenstein-Hawking entropy of a black
hole and increase monotonically as structure forms, one can define a thermodynami-
cally motivated measure of the gravitational entropy. For the case of a perturbed FL
spacetime with Euclidean spatial sections, this takes the form [17]

S′
G,D = 4πM2

Plλ
a

H
∫
D

d

dη

(
a3

√
W

6

)
d3x, (31)

with λ a constant, and where we integrate over a comoving volume VD. Indeed, this
differs from the definition (1) of the relative entropy between two spacetimes. In
particular, it seems to depend on the whole history of the spacetime, being present on
the left hand side of Eq. (31) a time derivative. But, since the entropy of a spacetime
with vanishing Weyl tensor is zero, the entropy of a FL spacetime vanishes, so that it can
also be considered as the relative entropy with respect to the background FL spacetime.

We now want to compare this result with our previous result for the case of a
freely falling observer in a background spacetime plus first order perturbations. In this
particular case, one easily concludes that
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W = 1

4
Cμ00ρC

μ00ρ = 1

32
CμνλρC

μνλρ (32)

namely the super energy density is equal (up to a constant) to the Weyl scalar, having the
part that comes from the dual of the Weyl tensor zero contribution. As a consequence
the gravitational entropy of Ref. [17] reduces to

S′
G,D = 4πM2

Plλ
a

H
∫
D

d

dη

⎛
⎝a3

√
CμνλρCμνλρ

192

⎞
⎠ d3x. (33)

4 Time evolution of the entropy

We can now compare the two definitions of entropy of Eqs. (26) and (33), obtained
in Sect. 3.1 and Sect. 3.2, to describe the large-scale structure of the Universe, in a
�CDM model.

In the description adopted here, the perturbations are stochastic fields, usually with
initially Gaussian statistics. It follows that, for example, the spatially averaged quanti-
ties are also stochastic fields. If X is a function of the perturbations and 〈X〉 its average
on a given domain then, from a theoretical point of view, we only have access to the
distribution of 〈X〉, that is to 〈X〉, which is the ensemble average of 〈X〉. Hence, one
has to perform the ensemble average of the quantities defined in Sects. 3.1 and 3.2.

To compare the definitions of entropy, we have now to choose an averaging pro-
cedure. In general, one has two possibilities. The first is to average over a volume
embedded in a spatial hypersurface, for example the one of constant redshift z, while
the second is to average over a two-sphere defined as the intersection of our past or
future light-cone with this spatial hypersurface. These two averaging procedures turns
out to be equivalent for terms of the kind 〈( f (�))2〉, with f (�) a linear function of
the gravitational potential. This is due to the fact that in this case we average a quantity
already of the second order in perturbation theory (and the averages can be performed
only at the background level, if one stops at second order), for a case in which the
shape of the domain of integration is not important (see Eq. (5.3) of Ref. [35] for
the light-cone averaging case and Ref. [28] for the spatial averaging case). On the
other hand, for terms of the kind 〈 f (�)〉2 the average depends on the shape of the
domain of integration and the two procedures give different results (see Eq. (5.4) of
Ref. [35] for the light-cone averaging case and Ref. [36] for the spatial averaging
case). Therefore, it is important to specify which prescription has to be used to obtain
a physically meaningful result. As a guideline we consider the fact that our entropy
should describe the entropy of the large-scale structure of the Universe; that is, it
should characterize the Universe as a whole and should be averaged over an extended
region. One can then immediately exclude the light-cone averaging prescription for
several reasons. First, the light-cone averaging prescription corresponds to an average
over a two-sphere with dimensions dependent from the value of redshift considered,
after we fix the observer. For example, for a redshift equal to z = 0.01 the region
of integration (the two-sphere) would be all inside our local universe, where non-
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linearities became extremely important. Even worse, the region of integration goes to
zero at redshift equal to zero. Furthermore, considering different times of observation
for a given observer (i.e. different light-cones) the entropy at a given moment would
be evaluated using different regions of integration.

As a consequence, it is easy to understand why the light-cone averaging prescription
cannot be applied in this context. The right choice for the case in consideration is then
the spatial averaging prescription. This should not surprise us because the entropy is
not an observable in the standard way.5

For both definitions of the entropy, obtained in Sects. 3.1 and 3.2, the key quantity to
be evaluated is 〈CμνλρCμνλρ〉D. Now, let us consider a peculiar-gravitational potential
described by a linear power spectrum of fluctuations, with the transfer function given in
Ref. [43] (without the contribution from the baryons) and the cosmological parameters
from PLANCK [44]. Considering the Fourier expansion of the first-order gravitational
potential we obtain, in Fourier space (and independently from the integration domain
D; see Ref. [28])

〈CμνλρCμνλρ〉D = 16

3a4

∫
dk

k
k4Pϕ(η, k) , (34)

with Pϕ(η, k) = k3

2π2 |ϕk |2 the power spectrum of the gravitational potential. One can
then easily see that the integration in Eq. (34) has an ultraviolet divergence if one
takes the linear power spectrum defined in Ref. [43]. We shall thus consider this as
an effective description and hereafter we will assume a cut-off kUV = 0.1 h Mpc−1 to
stay within the linear regime and regularize the ultraviolet divergence.

To assume a constant cut-off kUV is enough for our purpose. In fact, despite in
general the non-linearity scale evolve in time, we are mainly interested in a �CDM
model, starting from when the cosmological constant begins to dominate. For this case
the non-linearity scale stays nearly constant and our assumption is justified. As we
will see in the following, this is the case where the different entropy proposals here
considered behaviour in a different way one with respect to the other.

While the result in Eq. (34) is enough to evaluate the gravitational entropy of
Eq. (33), for the relative information entropy of Eq. (26) we have to evaluate also

the terms present in the second line. In Fourier space the terms 〈(∇2�
)2〉D and

〈∂i∂ j�∂ i∂ j�〉D cancel each other, while the third term 〈∇2�〉2
D gives a result depen-

dent from the window function used [36]. If we consider a top-hat window function
of radius R to smooth the field, i.e. we have

WR(|x|) =
(

4

3
πR3

)−1

�(R − |x|) ,

with � the Heavyside function, we then have (see, for example, Ref. [28])

〈∇2�〉2
D =

∫
dk

k
k4Pϕ(η, k)

(
3
j1(kR)

kR

)
, (35)

5 See Ref. [37–39] for the case of cosmological observables, such as the second order luminosity dis-
tance/redshift relation [40–42], where the application of the light-cone averaging prescription is necessary.
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with j1(x) = 1/x2(sin(x) − x cos(x)) a spherical Bessel function. As can be shown,

comparing Eq. (35) with respect to Eq. (34), the contribution of 〈∇2�〉2
D to the total

value of the relative information entropy is negligible as soon as we consider a window
function with, for example, a radius R at least one order of magnitude larger than the
cut-off scale kUV . This is a well motived physical choice for the case under considera-
tion because we want to stay inside the linear regime and the ultraviolet cut-off chosen
is, indeed, the present threshold of the linear regime. Therefore, we will neglect this
term hereafter in the evaluation of the information entropy of Eq. (26).

4.1 Relative Information Entropy

Let us begin with some general considerations. Considering Eq. (26), we have that
SRI,D/VD and 〈CμνλρCμνλρ〉D are proportional only if the terms in the second line
of Eq. (26) give negligible contribution. As showed in the previous section, this is
the case for the case of a Universe described by a perturbed FL spacetime when we
average over a large window function.

As a consequence, using Eq. (26), we can conclude that

SRI,D
VD

� MPl
a5

8H2 〈CμνλρCμνλρ〉D (36)

is a good approximation. Then, using the result of Eq. (34), we determine the behaviour
of the relative information entropy per unit comoving volume VD. It is depicted on
Fig. 1 for a CDM model (left panel) and a �CDM model (right panel). As shown
by these two figures, the expression of Eq. (36) is monotonically increasing with the
time only for a CDM model, i.e. as long as the cosmological constant is vanishing.
The fact that the relative information entropy is not a valid definition of entropy for a
�CDM universe can be understood by the fact that in the limit for which the proper
time goes to infinity (equivalent to z → −1) the contribution of the cosmological
constant is more and more dominant. The Universe, both at the background level and
at the perturbed level, is attracted toward a de Sitter spacetime. Therefore, the relative
information entropy between these two spacetimes stops growing and then decreases
asymptotically to zero because all scalar perturbations are washed out. The turn-over
corresponds roughly at the time when the cosmological constant starts dominating the
cosmic expansion.

To conclude, it is easy to see from Eqs. (36) and (34), that the relative information
entropy evolves as ∼ a2(η) for the CDM case, as already stated in Ref. [23].

Let us stress that the shape of the relative information entropy in Fig. 1, and of the
gravitational entropy in the figures in the follow, are independent from the value of
the ultraviolet cut-off used. This is a consequence of the fact that we use a power-
spectrum with a linear transfer function (as given in Ref. [43]) for which the k and
time dependence are factorized. If we had considered a non-linear transfer function
(like the ones in Refs. [45,46]) then the k and time dependence cannot be factorized
anymore, and the shape of our figures would be slightly dependent from the value of
the choice of the ultraviolet cut-off.
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Fig. 2 Value of the gravitational entropy (37) per unit comoving volume for a �CDM model and for
different values of ��0, setting 8πG = 1 and assuming an ultraviolet cut-off kUV = 0.1 h Mpc−1, as a
function of 1/(1 + z). From top to bottom, ��0 = 0, 0.05, 0.35, 0.68 (standard �CDM model), and 0.95

4.2 Gravitational Entropy

Let us now perform a similar analysis for the gravitational entropy defined in Ref. [17],
and described in Sect. 3.2.

For a perturbed FL universe, at linear order, the expression (33) does not take into
consideration the fundamental fact that the perturbations of our Universe are stochastic
fields. To that purpose, we need to perform both a spatial and an ensemble average.
Since the Weyl scalar CμνλρCμνλρ is second order in perturbation, we need to first
average it before we insert it into the entropy expression. This corresponds to modify
Eq. (33) as

S′
G,D
VD

= 4πM2
Plλ

a

H
d

dη

⎛
⎝a3

√
〈CμνλρCμνλρ〉D

192

⎞
⎠ (37)

where λ is a numerical constant that, similarly to what done in Ref. [17] to recover the
Bekenstein-Hawking entropy for a stationary black hole, we fix equal to one hereafter.
Using the general solution of Eq. (34), we easily obtain the behaviour of the volume
entropy for a CDM and a �CDM model. They are depicted on Fig. 2 for several values
of the cosmological constant. In all cases the gravitational entropy (37) is monoton-
ically increasing with the time. In particular, in a CDM model, the entropy goes to
infinity, but with a different time behaviour as compared to the relative entropy (36),
namely it behaves as ∼ a5/2(η).

In the presence of a cosmological constant the entropy tends to a constant in the
limit for which the proper time goes to infinity. From Fig. 2 one can see how the
entropy asymptotically reaches its constant value, that indeed depends on the value
of the cosmological constant. The maximum entropy decreases with the cosmologi-
cal constant. The dependence of the maximum asymptotic value of the gravitational
entropy is plotted as a function of the cosmological constant in Fig. 3 and can be shown
to roughly behave as 1/��0.
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Fig. 3 Asymptotic value of the gravitational entropy (37) per unit comoving volume for a �CDM universe
as a function of the cosmological constant, setting 8πG = 1 and assuming an ultraviolet cut-off kUV =
0.1 h Mpc−1

Fig. 4 Value of the gravitational entropy derivative with respect to y = 1/(1 + z) per unit comoving
volume, obtained using Eq. (37), for a �CDM universe, setting 8πG = 1 and assuming an ultraviolet
cut-off kUV = 0.1 h Mpc−1, in function of y

Let us try to explain the physical reasons of such a behavior for the entropy in the
presence of a cosmological constant. The entropy (37) is the entropy associated to
the formation of the large-scale structure, and is defined as an integrated effect over
the cosmological history. The entropy increases when more structures are formed.
When the Universe approaches the de Sitter phase, the growth of structures freezes
and so does the entropy. Therefore, the gravitational entropy encodes the fact that the
Universe is asymptotically de Sitter, but it only includes the entropy associated with
the formation of structures.

To better show this last point, we finally plot the evolution of the derivative of
SG,D/VD with respect to y = 1/(1 + z) in Fig. 4. The curve has a turning point when
the cosmological constant starts to dominate the expansion of the Universe and then
goes to zero. As a consequence, the integrated effect stops.
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5 Discussion

In this manuscript we have computed the entropy of the large-scale structure of the
Universe starting from the proposed definitions of Refs. [17] and [23]. Our results
are valid in the regime for which the Universe can be described as a perturbed FL
spacetime. This is valid at late times on scales ∼ 10 h−1Mpc or more, where the linear
regime holds.

We have argued that the entropy should be evaluated using a spatial averaging
procedure. This is because the entropy is not an observable in the standard way. It
describes the large-scale structure of the Universe and should arise from an average
made over an extended region.

Starting from the definition of Ref. [23] we obtain the relative information
entropy (36). As shown in Fig. 1, the expression (36) is monotonically increasing
with time for a CDM model, while it does not satisfy the Penrose conjecture [15,16]
for a �CDM model. Therefore, this definition does not seem to be a valid definition of
entropy for a �CDM universe. In fact, in the limit for which the proper time t → +∞,
the importance of the cosmological constant increases and both FL and perturbed FL
universes can be well approximated by a de Sitter universe. Therefore, the relative
information entropy stops growing at some stage and then asymptotically decreases
to zero.

On the other hand, starting from the definition [17] we obtain the gravitational
entropy (37). In this case, the entropy always grows with time, both for a CDM and a
�CDM model, hence satisfying the Penrose conjecture [15,16]. While it tends to an
infinite value for a CDM model, it saturates to a constant value in the presence of a
cosmological constant. The entropy (37) is the entropy associated to the formation of
the large scale structure of the Universe.

The two proposals of Ref. [17] and Ref. [23] were already compared in the literature
in the case of a LTB dust model in Ref. [27]. It was shown how in both cases the entropy
of a LTB dust model grows with time satisfying the Penrose conjecture. Such models
could be used only to describe the local universe and, therefore apply in this restrict
regime. Our results instead apply on large scale, where the linear and mildly non-linear
regimes are valid and the Universe can be describe by a perturbed FL spacetime. The
entropy obtained here can be seen as the entropy of the large-scale structure of the
Universe and is complementary to the one obtained in Ref. [27].

To conclude, in [47] the proposal of Ref. [17] was studied in a non-perturbative
context, with local voids of 50–100 Mpc described by spherical under-dense regions
with negative spatial curvature and dynamics determined by LTB dust models. The
results obtained in [47] for the gravitational entropy are in good quantitatively and
qualitatively agreement with the result presented here, when the LTB evolution is in
its linear regime. In particular, the gravitational entropy has an asymptotic behavior
similar to the case of the gravitational entropy of the large-scale structure for a �CDM
model. Therefore, the results of [47] provides an important local physics connection
to the large scale linear regime described here.
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Appendix 1: Dynamics of the background spacetime

We assume that the background spacetime is well-described by a spatially Euclidean
Friedmann–Lemaître universe with the late time dynamics dictated only by pressure-
less matter and cosmological constant with density parameters

�m0 = 8πGρm0

3H0
, ��0 = �

3H0
(38)

that satisfy �m0 + ��0 = 1. The Friedmann equation then takes the usual form

H2(z)

H2
0

= �m0(1 + z)3 + ��0 , (39)

and, using the proper time t , its solution is given by

a(t) ∝ sinh2/3
(

3

2

√
��0H0t

)
. (40)

The normalization to the Hubble constant today, H0, implies that

sinh

(
3

2

√
��0H0t0

)
= �

1/2
�0

(1 − ��0)1/2 ≡ κ
3/2
0 (41)

so that the redshift is given by

1 + z = κ0

sinh2/3
( 3

2

√
��0H0t

) . (42)

Appendix 2: Linear perturbation theory

The evolution of the degrees of freedom of the metric (13) can be found in many
textbooks, e.g. Ref. [1].
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It can first be shown that there is only six gauge invariant degrees of freedom usually
defined as

� ≡ ψ + 1

2
�E + H

2
(β + E ′), (43)

� ≡ α − H
2

(β + E ′) − 1

2
(β + E ′)′, (44)

�̄i ≡ 1

2
χ̄ i ′ + 1

2
B̄i , h̄i j , (45)

where the prime denotes the derivative with respect to conformal time and H = a′/a.
Considering a matter sector described by a perfect fluid with stress-energy tensor

Tμν = (ρ + P)uμuν + Pgμν, (46)

where the density and pressure can be split as ρ(η, x) = ρ(0)(η) + ρ(1)(η, x) and
P(η, x) = P(0)(η)+P(1)(η, x), and the velocity of the comoving observers is decom-
posed as uμ = ūμ + δuμ with uμuμ = −1. It follows that

uμ = a−1(1 − α, vi ), uμ = a(−1 − α, vi − 1/2Bi ) (47)

and we decompose vi into scalar and a vector component according to

vi = ∂iv + v̄i . (48)

The scalar shear, given in Eq. (10), is by construction a second order quantity so
that

(σ 2)(0) = (σ 2)(1) = 0. (49)

Thus, at the lowest order and for a general metric, we have

(σ 2)(2) = 1

2a2S′2

[
δS,i jδS

,i j − 1

3
(∇2δS)2

]

+ 1

8a2

[
Bi, j B

i, j − 1

3
(∂ i Bi )

2
]

− 1

2a2S′

[
δS,i j B

i, j − 1

3
(∇2δS)(∂ i Bi )

]

− 1

a2S′ δS,i j h̃
′,i j + 1

2a2 Bi, j h̃
′,i j

+ 1

2a2 h̃ ′,i j h̃
′,i j , (50)

where h̃,i j = 1
2 Di j E + ∂(i χ̄ j) + 1

4 h̄i j , we use the notation X,i ≡ ∂i X for any field
X , and δS is the first order perturbation of the scalar S(x, t) defining the space-time
foliation.
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It is clear that first order perturbation theory is sufficient to obtain the general
expression for the shear up to second order, since second order perturbations will
contribute only to third or fourth order to σ 2.
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