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Abstract

One of the major properties of genes is their expression pattern. Notably, genes are often classified as tissue specific or
housekeeping. This property is of interest to molecular evolution as an explanatory factor of, e.g. evolutionary rate, as well
as a functional feature which may in itself evolve. While many different methods of measuring tissue specificity have been
proposed and used for such studies, there has been no comparison or benchmarking of these methods to our knowledge,
and little justification of their use. In this study, we compare nine measures of tissue specificity. Most methods were estab-
lished for ESTs and microarrays, and several were later adapted to RNA-seq. We analyse their capacity to distinguish gene
categories, their robustness to the choice and number of tissues used and their capture of evolutionary conservation signal.
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Introduction

Gene expression analysis is widely used in genomics and meas-
ured with microarrays or RNA-seq. In the case of a multicellular
organism with different tissues, it is often useful to have a
measure of how tissue specific a gene is.

Even if tissue specificity is often used in studies, there is
usually no clear answer why one or another method was used.
Yet, there are several methods to measure gene specificity,
which differ in their assumptions and their scale. The simplest
one is to count in how many tissues each gene is expressed
(used in e.g. [1–6]). The problem of this method is to define the
threshold to call a gene expressed. Originally, with expressed
sequence tags (ESTs), a count of 1 EST was considered sufficient
[2]. There are different methods to define thresholds for micro-
arrays [7], while for RNA-seq, an Reads Per Kilobase per Million
mapped reads (RPKM) value of 1 is generally used [8, 9]. Some
studies use a stringent threshold, e.g. signal to noise ratio >10
[10], and count a gene as specific only if expressed in a single
tissue. This method causes only highly expressed genes to be
taken into account, and if a data set contains closely related

tissues (e.g. brain parts), less genes are called tissue specific.
Other papers a very low threshold, e.g. 0.3 RPKM [11–13], that
leads to defining most genes as housekeeping.

A widely used method which does not depend on such a cut-
off in its formula is Tau [14] (for details, see ‘Materials and
Methods’). Tau varies from 0 to 1, where 0 means broadly ex-
pressed, and 1 is specific (used in e.g. [15–24]).

Other methods have been proposed, such as the expression
enrichment (EE) [25], to calculate for which tissue each gene is
specific, for example, in the database TiGER [26]. We also con-
sidered: the tissue specificity index (TSI) [27] (used in e.g. [28–
30]); Hg by Schug et al. [31]; the z-score (used in [32]), widely
used for other features than tissue specificity; SPM, used in the
database TiSGeD [33]; and Preferential Expression Measure
(PEM), suggested for ESTs by Huminiecki et al. [34] and used in
e.g. [35–38]. Finally, the Gini coefficient, widely used in eco-
nomics to measure inequality [39], was compared with methods
originating in biology.

These methods can be divided in two groups. One group
summarizes in a single number whether a gene is tissue specific
or ubiquitously expressed (Tau, Gini, TSI, Counts and Hg), and
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the second group shows for each tissue separately how specific
the gene is to that tissue (z-score, SPM, EE and PEM). For com-
parison purposes with the first group, we use the maximum
specificity from the second group.

Material and methods

For all equations,

xi is the expression of the gene in tissue i

n is the number of tissues

The method of counting in how many tissues a gene is ex-
pressed was simply calculated as follows:

Counts ¼ ] tissues expressed

A cut-off needs to be set; the cut-offs that we used are ex-
plained at the end of the ‘Methods’ section.

While the other methods do not necessitate a cut-off per their
mathematical formulation, they need positive expression values.
As expression values are usually log-transformed (because they
are log-normally distributed), this means that values <1 are not
manageable. Solutions include using a multiplier or/and setting a
cut-off of 1 before log transformation. For details of our treatment
of the data, see the description of RNA-seq and microarray data.

Tau was calculated as follows [14]:

s ¼

Xn

i¼1
1� bxið Þ

n� 1
; bxi ¼

xi

max
1�i�n

xið Þ
:

The EE score was calculated as follows [25]:

EE ¼ xiXn

i¼1
xi �

siXn

i¼1
si

¼

Xn

i¼1
si

si
� xiXn

i¼1
xi

si summary of the expression of all genes in tissue i:

TSI was calculated as follows [27]:

TSI ¼
max
1�i�n

xið ÞXn

i¼1
xi

:

The Gini coefficient was calculated as follows:

Gini ¼ nþ 1
n
� 2
Pn

i¼1ðnþ 1� iÞxi

n
Xn

i¼1
xi

xi has to be ordered from least to greatest:

Hg [31] was calculated as follows:

Hg ¼ �
Xn

i¼1

pi � log2 pið Þ; pi ¼
xiXn

i¼1
xi

:

The z-score was calculated as follows:

z ¼ xi � l
r

l is the mean of gene expression; r is the standard deviation:

The z-score can be implemented in two ways: either only
over-expressed genes are defined as tissue specific, or the abso-
lute distance from the mean is used, so that under-expressed
genes are also defined as tissue specific. Only the former
method was used to be able to compare z-score with other
methods.

SPM from the database TiSGeD [33] was calculated as
follows:

SPM ¼
x2

iXn

i¼1
x2

i

:

PEM estimates how different the expression of the gene is
relative to an expected expression, under the assumption of
uniform expression in all tissues. PEM is calculated as follows
[34]:

PEM ¼ log10

Pn
i¼1si

si
� xiXn

i¼1
xi

0
@

1
A

si summary of the expression of all genes in tissue i:

Derivation of all the methods from the original equations is
presented in Supplementary Materials.

The output of all methods was modified to the same scale
from 0 (ubiquitous) to 1 (tissue specific) to be able to compare
them (Table 1). Four of the methods calculate specificity value
for each tissue separately; for these methods, the largest (most
specific) value among all tissues was assigned to the gene (see
Table 1).

All the methods were compared using R version 3.2.1 [40],
with the gplots [41], reldist [42, 43], VennDiagram [44] and
preprocessCore libraries [45]; the R script is available in
Supplementary Materials.

We used the following RNA-seq data: 27 human tissues (E-
MTAB-1733) from Fagerberg et al. [46] downloaded from their
Supplementary Materials, 22 mouse tissues (GSE36025) from the
ENCODE project [47, 48] as used in Kryuchkova-Mostacci and
Robinson-Rechavi [20] and 8 human tissues and 6 mouse tissues
from Brawand et al. [49], as processed in the Bgee database [50].
All the genes with expression <1 RPKM were set as not ex-
pressed. The RNA-seq data were first log-transformed. After the
normalization, a mean value from all replicates for each tissue
separately was calculated. All genes that were not expressed in
at least one tissue were removed from the analysis.

We used the following microarray data, as annotated in the
Bgee database: 32 human tissues (GSE2361) [51] and 19 mouse
tissues (GSE9954) [52]. Of note, on the microarrays, we have only
9788 (resp. 16 043) genes with data in human (resp. mouse),
relative to 18 754 (resp. 27 364) for RNA-seq. For the microarray
data, we used the logarithm of normalized signal intensity. The
values set as absent in Bgee were set to 0, following the method
of Schuster et al. [53]. After the normalization, a mean value
from all replicates for each tissue separately was calculated. All
genes that were not expressed in at least one tissue were
removed from the analysis.

A summary of the workflow is presented in Supplementary
Figure S1.

For the comparison of tissue-specific or ubiquitous gene
functions, we used the following Gene Ontology (GO) terms:
spermatogenesis (GO:0007283; expected to be specific to testis;
469 human genes), neurological system process (GO:0050877;
expected to be specific to brain and other neural tissues; 1338
human genes), xenobiotic metabolic process (GO:0006805;
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expected to be specific to liver and kidney; 163 human genes),
protein folding (GO:0006457; expected to be ubiquitous; 231
human genes), membrane organization (GO:0061024; expected
to be ubiquitous; 607 human genes) and RNA splicing
(GO:0008380; expected to be ubiquitous; 383 human genes).

GO enrichment analysis was performed with GOrilla [54] and
Revigo [55].

Results

All methods show a bimodal distribution of gene scores: most
genes are either broadly expressed or specific, with only few in
between. This is true both with RNA-seq data (Figure 1 and
Supplementary Figure S2) and with microarray data
(Supplementary Figures S3 and S4). Most methods are strongly
skewed towards classifying many genes as ubiquitous, and few
as tissue specific or intermediate. Z-score has a shifted peak of
tissue specificity relative to other metrics. Tau has a less
skewed distribution, with the most tissue-specific and inter-
mediate genes, indicating that it might be capturing more of the
variance among gene expression patterns.

All methods correlate relatively well with each other
(Supplementary Figures S5 and S6), but the relation is often not
linear because methods other than Tau and Gini have little vari-
ance outside of the most tissue-specific genes. For example,
genes which have Tau between 0.85 and 0.95 have Tsi between
0.2 and 0.43 (Supplementary Figure S5).

As a first measure of robustness of tissue-specificity metrics,
we compared each metric calculated on the full human RNA-
seq data set of 27 tissues, and on subsets of five tissues
(Figure 2). Not all permutations were performed, for computa-
tional reasons, but a random sample of 1000 permutations.
Ideally, the signal for tissue specificity should already be detect-
able with the five tissues. Tau, Gini, Counts, PEM and the Hg co-
efficient all show correlations which are not too low (mean r
> 0.4), indicating that these methods are reasonably robust to
the number of tissues. TSI, SPM and EE score show weaker re-
sults (mean 0.2 > r > 0). The correlation for z-score is even nega-
tive, indicating that it should be not used with a small number
of tissues, and casting doubt on its utility to robustly estimate
tissue specificity. We performed the same analysis in mouse,
comparing scores between all 22 available tissues and subsets
of five tissues; the results are consistent, but correlations are
weaker for all parameters (Supplementary Figure S7). Similarly,
we compared the scores using all available tissues (27 in
human, 22 in mouse) with the scores using only the 16 tissues
shared between these human and mouse data sets; correlations
of all parameters are high for human and mouse, and z-score

shows again the lowest correlation in all cases (Supplementary
Figures S8 and S9).

The choice of tissues to calculate tissue specificity affects
the results. All the outliers (stronger correlation) in Figure 2
and Supplementary Figure S7 contain testis tissue. This can be
explained by the fact that testis has the largest number of tis-
sue-specific genes (Supplementary Figures S10 and S11). Thus,
using a subset which excludes testis produces an estimate
of tissue specificity that is biased relative to the full data set,
and this bias is only relieved in the few subsets that include
testis.

We also analysed robustness of Tau by comparing correl-
ation calculated on all 27 tissues and on all the subsets of 5–26
tissues (Supplementary Figures S12 and S13). Again, all the sub-
sets that are most similar to the full set (outliers with r > 0.7) in
subsets of five and six tissues contain testis in the set.
Conversely, all the subsets that are most different in the full set
(outliers with r < 0.8) in subsets of 21–26 tissues do not have tes-
tis in the subset. There are other outlier subsets that are closer
to the main distribution for 25 or 26 tissues: these do include
testis, but not brain, which is the second tissue with the most
specific genes.

In addition to being robust to tissue sampling, we expect a
good measure of tissue specificity to capture biological signal. A
simple expectation of such biological signal is that it should be
mostly conserved between orthologues from closely related
species such as human and mouse [56]. Thus, we compared the
methods in their conservation between human and mouse,
using the 16 common tissues (Figure 3). All of the methods, ex-
cept z-score, show a high correlation (r> 0.69). Specificity par-
ameters calculated on only six common tissues between mouse
and human (from the Brawand et al. data set) show even higher
correlations (r > 0.75, Supplementary Figure S14).

Another way to capture biological signal is to compare the
expression specificity of genes annotated with functions that
are expected to be tissue specific, or which are expected to be
ubiquitous. For this, we chose three tissue-specific GO terms
and three GO terms that are expected to be present in all tis-
sues. The tissue-specific GO terms are spermatogenesis, specific
to testis; neurological system process, specific to brain and
other neural tissues; and xenobiotic metabolic process, specific
to liver and kidney. The broadly expressed GO terms are protein
folding, membrane organization and RNA splicing. The distribu-
tion of the genes belonging to each category is presented in
Figure 4 and Supplementary Figure S15. All of the parameters
are successful at recognizing broadly expressed genes (peak of
blue lines, as expected, shifted towards 0). But, there are import-
ant differences in results for specific genes. Only Tau has a

Table 1. Tissue specificity parameters. N is the number of tissues in the data set

Methods Tissues Ubiquitous Specific Transformation

s ðtauÞ all 0 1 –
Gini all 0 N� 1ð Þ=N x � N= N� 1ð Þð Þ
TSI all 0 1 –
Counts all N 1 ð1� x=NÞ � N= N� 1ð Þð Þ
EEi separately 0 > 5 X=maxX
Hg all log2N 0 1� x=log2N
Z score separately 0 > 3 X=n� 1=

ffiffiffiffi
N
p

PEM score separately 0 �1 X=max X
SPM separately 0 1 X

X ¼ max
1�i�n

xi is the maximal specificity value for a certain gene among all tissues.
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larger peak close to 1 than close to 0. All parameters, except
Tau, show strongly bimodal distributions for the genes that are
expected to be specific, often with the larger peak at ubiquitous
expression. Thus, Tau appears to be more successful at recover-
ing this expected biological signal. We also checked the correl-
ation of genes from tissue-specific functions (according to the
three GO terms) between mouse and human orthologues
(Supplementary Figure S16). Even if correlations are high and al-
most the same for all the parameters, the difference is that
genes that are expected to be specific are specified by most par-
ameters as ubiquitous. Only Tau reports most of these genes as
evolutionarily conserved tissue specific.

Most methods seem to have more difficulty in finding tis-
sue-specificity signal than broad expression signal. We checked
whether those tissue-specific genes detected by each method
are specific to the method, or also detected by others. Strikingly,
almost all tissue-specific genes found by any method are also
found by Tau. Gini also reports many tissue-specific genes that
are reported by Tau but no other method. This is illustrated
with the examples of brain- and testis-specific genes in Figure 5
(for other organs, see Supplementary Figure S17–S41). To call
genes specific, a threshold of 0.8 was set, which is after the first
peak of the bimodal distribution for most parameters. The same
analysis was performed with thresholds of 0.6 and 0.4 (data not

Figure 1. Distribution of tissue-specificity parameters with data for human RNA-seq of 27 tissues. Graph created with density function from R, which computes kernel

density estimates. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Figure 2. Comparison between tissue-specificity parameters calculated on the same human RNA-seq data set using all 27 tissues versus 1000 random subsets of five

tissues.
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shown), and produced similar results: Tau detects all genes that
other methods detect plus some that are not detected by any
other method. To check whether these additional tissue-spe-
cific genes found by Tau are biologically relevant, a GO enrich-
ment test was performed on tissue-specific genes for testis and
brain reported by all methods, by Tau alone or only by Tau and
Gini (Supplementary Figures S42–S47). Each of these genes sets
is indeed enriched in brain- or testis-specific functions, which
shows that these were rather false negatives of the other meth-
ods than false positives of Tau and Gini.

The same analysis was also performed on the microarray
data sets for mouse and human. We compared each metric on a
full microarray human data set of 32 tissues and on the subset of
five tissues (Supplementary Figure S48). For human, the correl-
ations are weaker than with RNA-seq, even for the best perform-
ing metrics: Counts, Gini and Tau (mean 0.2 < r < 0.4). For mouse,
the correlations on microarray data are better: Counts, Gini and

Tau (mean 0.4 < r < 0.6) (Supplementary Figure S49). Results for
32 and 14 human tissues, and for 19 and 14 mouse tissues, are
shown in Supplementary Figures S50 and S51. The distribution of
correlations of Tau calculated on different subsets of tissues is
shown in Supplementary Figures S52 and S53. Similarly, in the
comparison between human and mouse orthologues, the correl-
ations are much weaker for microarrays than for RNA-seq
(Supplementary Figure S54). Specificity values are better corre-
lated between RNA-seq and microarray for the mouse than for
the human data sets (Figure 6 and Supplementary Figure S55).
This correlation is on the same scale as that between two differ-
ent RNA-seq data sets, although the correlation is a bit stronger
for the RNA-seq data sets (Supplementary Figures S56 and S57). It
should be noted that microarray and RNA-seq can only be com-
pared on the subset of genes for which microarray data are
usable, which excludes very tissue-specific genes detected only
by RNA-seq (Supplementary Figure S58).

Figure 3. Comparison between tissue-specificity parameters calculated on the 16 common tissues between the human and mouse RNA-seq data sets. All correlations

have P-value <2.2 � 10�16. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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Tissue specificity has been reported to be negatively corre-
lated to mean or maximum gene expression level across tis-
sues, i.e. ubiquitous genes have higher expression, and specific
genes have lower expression (discussed in [1, 4, 20]). Indeed, we
find a negative correlation of all metrics with mean expression;
this correlation is similar for RNA-seq (r from �0.69 to �0.93)
and for microarray (r from �0.70 to �0.95) (Supplementary
Figures S59–S62). Z-score has the weakest correlation with
mean expression on RNA-seq data and on microarray data. The
correlation of tissue specificity parameters and maximal ex-
pression is also similar with RNA-seq and microarray
(Supplementary Figures S63–S66): all the parameters are nega-
tively correlated with maximal expression.

In all the analyses described above, RPKM values were log-
transformed, as described in ‘Material and Methods’. In the fol-
lowing, we investigated how stable the results of tissue specifi-
city are if data are not log-normalized or if they are additionally
quantile normalized. We compared tissue specificity calculated
on log-transformed RPKM (as above), raw RPKM, log-trans-
formed and quantile normalized RPKM (Supplementary Figures
S67–S75); quantile normalization was performed across tissues
in each data set. In general, quantile normalization has no
influence on the results of calculation of tissue specificity
(Supplementary Figures S74 and S75). Expectedly, removing log-
transformation has a greater influence on all parameters, in the
direction of detecting more tissue-specificity, sometimes
losing completely the signal of broad expression, e.g. Tau

(Supplementary Figure S68). Moreover, in the absence of log-
transformation, the correlations between subsets of tissues or
between species are in general weaker (Supplementary Figures
S69–S70). The normalization has no influence on Counts, as ex-
pected, as only yes/no for the expression is taken in the ac-
count. Tau, Gini, TSI and Hg show the highest correlations
between normalized and non-normalized data (Supplementary
Figures S72 and S73), thus appearing more robust.

Discussion

We analysed nine parameters to calculate tissue specificity. We
compared the methods with respect to their stability to the
number of tissues, their correlation between one-to-one ortho-
logues in human and mouse, their power in detecting tissue-
specific genes and their distribution of values. As many experi-
ments do not have many tissues, it is important that tissue spe-
cificity can be calculated reliably on few tissues.

Different methods of calculating tissue specificity take into
account different properties of expression. The Counts method
does not take in account the amplitude of differences between
tissues. This is the simplest method; yet, if the threshold is
chosen properly, it gives surprisingly good results. Distribution of
Counts tissue specificity depending on the chosen threshold is
presented in Supplementary Figure S76: with too high or too low
threshold, most genes are reported as not specific, but it is robust
to a change of one order of magnitude (1–10 RPKM). Tau and TSI

Figure 4. Tissue-specificity parameters of subsets of genes which are expected to be tissue-specific (top three terms, Spermatogenesis to Xenobiotic metabolism lines) or

broadly expressed (RNA splicing to Membrane organisation lines), based on associated GO terms (described in Material and Methods). The black line represents the distribu-

tion for all genes, including those not associated to any of these GO terms. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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both use the information of expression of a gene in each tissue
and its maximal expression over all tissues. The difference be-
tween Tau and TSI is that Tau also takes into account the num-
ber of tissues. The Hg coefficient is also similar, but differs in that
instead of the maximal expression (necessarily in a specific tis-
sue) the sum of expression over tissues is used, and each normal-
ized value is multiplied by log of the value. And for the SPM
score, each value (squared) is corrected by the sum of squared
gene expression across all tissues. The EE score also corrects
each expression value by the sum of gene expression across tis-
sues as well as by the sum of expression in the target tissue. The
PEM score is simply the logarithm (base 10) of the EE score. As
these coefficients are normalized by either maximal expression
of the gene or by the sum of expression of the gene, they are not
sensitive to its absolute expression level. Z-score is the only
method that takes the standard deviation of expression into ac-
count. An overview of the methods with their shared compo-
nents (e.g. max expression appears in Tau and in TSI) is
presented in the Supplementary Materials.

Tau appears consistently to be the most robust method in
our analyses. Comparing coefficients calculated on different
sized data sets, Tau showed one of the highest correlations
(Figure 2 and Supplementary Figures S7–S9). And, while it may
be debated what is it the ‘best’ distribution between ubiquitous
and specific genes, we note that Tau provides well-separated
groups with lower skew towards calling most genes ubiqui-
tous or tissue specific than other methods (Figure 1 and
Supplementary Figure S2); and it found more tissue-specific
genes (Figure 5, Supplementary Figures S10, S11 and S16–S41).
Tau also showed a robust behaviour according to normalization
of data (Supplementary Figures S72 and S73). With the GO ana-
lysis performed, Tau is the best in recognizing tissue-specific
genes (Figure 4 and Supplementary Figure S15), and conversely
tissue-specific genes found only with Tau have functional an-
notations that are consistent with their tissue of highest expres-
sion (Supplementary Figures S41–44).

When a score per tissue is needed, the PEM score showed
acceptable results, except for non-log-transformed mouse

Figure 5. Venn diagram of genes called specific with different parameters, with a cut-off of 0.8 for each parameter; (A) and (B) genes with their highest expression in

the brain; (C) and (D) genes with their highest expression in the testis; parameters are shown in A/C or B/D for readability, with Tau in common because it calls the

most genes tissue specific. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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RNA-seq (Supplementary Figure S73), and it is most similar to
Tau. An association between scores and tissues can be also ob-
tained by simply using Tau and choosing the tissue with the
highest expression.

Z-score and PEM score are the only methods to detect under-
expression. But z-score is the most sensitive to the number of
tissues used for analysis, and generally performs poorly on
most tests. The PEM score performs relatively well, though it is
skewed to 0, i.e. to calling genes as ubiquitous (Figure 1 and
Supplementary Figure S2).

In general, almost twice as many genes can be called ex-
pressed in at least one tissue with RNA-seq than with micro-
array (see ‘Materials and Methods’ and Supplementary Figure
S58). It has been reported that the detection of lowly expressed
genes is better with RNA-seq than with microarrays [57–59].
Because the most tissue-specific genes are often lowly ex-
pressed [1, 4, 20], RNA-seq can detect specific genes that were
not detected using microarrays (Supplementary Figure S58). We

observe that the correlation between RNA-seq and microarray
data set is of the same scale as the correlation between two
RNA-seq data sets (Figure 6 and Supplementary Figures S55–
S57). It should be noted that the correlation between microarray
and RNA-seq is calculated only on half of the genes, mostly
excluding specific ones, and that the second RNA-seq data set
has only six tissues, which could make the correlation between
RNA-seq data sets weaker.

Generally, the tissue specificity estimated from different
data types appears to be different. This is notable relative to the
number of tissues (Figure 2 compared with Supplementary
Figure S48 and Supplementary Figure S7 compared with
Supplementary Figure S49): tissue specificity calculated on
microarray with a small number of tissues is poorly correlated
to that with a larger number in human data, but the opposite is
seen for mouse data. The correlation between species is higher
for RNA-seq than for microarray (Figure 3 and Supplementary
Figure S54). Our observations imply that past results, which

Figure 6. Comparison between tissue-specificity parameters calculated on RNA-seq of 27 tissues versus microarray of 32 tissue in human data sets. All correlations

have P-value <2.2 � 10�16. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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relied on microarray data for the evolutionary interpretation of
tissue specificity, should be treated with great caution.

With any method of calculating tissue specificity, it should
be noted that if the proportion of closely related tissues (e.g. dif-
ferent parts of the brain) in the set of tissues is high, the tissue
specificity will be biased. Moreover, usually a large proportion
of tissue-specific genes are testis specific, so special care should
be taken in comparing data sets with and without testis. Thus,
in general, during the analysis of tissue specificity, care should
be taken in sampling the tissues used.

For studying the evolution of gene expression, we show here
that tissue specificity is a biologically relevant parameter that
has strong conservation between relatively closely related spe-
cies such as human and mouse. Our results show that using a
robust method such as Tau allows evolutionary comparisons
even when tissue sampling somewhat differs (e.g. correlation
with 27 versus 16 tissues). In light of the difficulties of compar-
ing expression levels between species [16, 60, 61], tissue specifi-
city holds promise not only as a confounding factor to take into
account in molecular evolution [20], but also as a measure of
biological function that can be compared between genes and be-
tween species.

Tissue specificity is also important for biomedical applica-
tions, as, for example, cancer malignancies can be very tissue
specific [62]. More broadly, causative eQTLs identified by gen-
ome-wide association study can affect tissue-specific regulation
of genes, which is linked to a weak enrichment in disease
association of single nucleotide polymorphisms [63].

Conclusion

The best overall method to measure expression specificity ap-
pears to be Tau, which is reassuring, considering the number of
studies in which it has been used. Counts is the simplest
method, and if the threshold is chosen properly, it shows good
results, although with a tendency to under-call tissue-specific
genes. Gini is similar to Tau in its performance. These methods
allow to capture a signal that has both functional and evolution-
ary significance to the genes that are studied.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/

Acknowledgements

We thank Marta Rosikiewicz, Iakov Davydov and Andrea
Komljenovic for their helpful comments and suggestions.
We thank anonymous reviewers for their constructive com-
ments on an earlier version of this manuscript.

Funding

This work was supported by the Swiss National Science
Foundation (grants number 31003A 133011/1 and
31003A_153341/1) and Etat de Vaud.

References
1. Subramanian S, Kumar S. Gene expression intensity shapes

evolutionary rates of the proteins encoded by the vertebrate
genome. Genetics 2004;168:373–81.

2. Duret L, Mouchiroud D. Determinants of substitution rates in
mammalian genes: expression pattern affects selection in-
tensity but not mutation rate. Mol Biol Evol 2000;17:68–74.

3. Park SG, Choi SS. Expression breadth and expression abun-
dance behave differently in correlations with evolutionary
rates. BMC Evol Biol 2010;10:241.

4. Lercher MJ, Urrutia AO, Hurst LD. Clustering of housekeeping
genes provides a unified model of gene order in the human
genome. Nat Genet 2002;31:180–3.

5. Vinogradov AE. Isochores and tissue-specificity. Nucleic Acids
Res 2003;31:5212–20.

6. Ponger L, Duret L, Mouchiroud D. Determinants of CpG is-
lands: expression in early embryo and isochore structure.
Genome Res 2001;11:1854–60.

7. Liu W, Mei R, Ryder TB, et al. Analysis of high density
expressino microarrays with signed-rank call algorithms.
Bioinformatics 2002;18:1593–9.

8. Wagner GP, Kin K, Lynch VJ. A model based criterion for gene
expression calls using RNA-seq data. Theory Biosci
2013;132:159–64.

9. Hebenstreit D, Fang M, Gu M, et al. RNA sequencing reveals
two major classes of gene expression levels in metazoan
cells. Mol Syst Biol 2011;7:497.

10.Dezso Z, Nikolsky Y, Sviridov E, et al. A comprehensive func-
tional analysis of tissue specificity of human gene expres-
sion. BMC Biol 2008;6:49.
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