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Abstract When a frictional interface is subject to a

localized shear load, it is often (experimentally) observed

that local slip events propagate until they arrest naturally

before reaching the edge of the interface. We develop a

theoretical model based on linear elastic fracture mechan-

ics to describe the propagation of such precursory slip. The

model’s prediction of precursor lengths as a function of

external load is in good quantitative agreement with lab-

oratory experiments as well as with dynamic simulations,

and provides thereby evidence to recognize frictional slip

as a fracture phenomenon. We show that predicted pre-

cursor lengths depend, within given uncertainty ranges,

mainly on the kinetic friction coefficient, and only weakly

on other interface and material parameters. By simplifying

the fracture mechanics model, we also reveal sources for

the observed nonlinearity in the growth of precursor

lengths as a function of the applied force. The discrete

nature of precursors as well as the shear tractions caused by

frustrated Poisson’s expansion is found to be the dominant

factors. Finally, we apply our model to a different, sym-

metric setup and provide a prediction of the propagation

distance of frictional slip for future experiments.

Keywords Stick-slip � Friction mechanisms �
Unlubricated friction � Linear elastic fracture mechanics

1 Introduction

Recent laboratory experiments have shown that nominally

flat interfaces between solids under a localized quasi-static

shear load may present local slip precursors well before

global sliding [1, 2]. These findings on the transition from

sticking to sliding have attracted wide attention [3–8].

They have important implications in engineering as well as

earthquake science, where spatially concentrated loads

appear at the base of the seismogenic zone of most faults,

and ruptures propagate over parts of the interfaces [9, 10].

In the experiments, two PMMA (acrylic glass) blocks are

brought into contact under a constant normal load FN. A

shear load FS is applied to the top block (slider) via a

pusher located close to the interface (Fig. 1a). In this side-

driven setup, local slip fronts nucleate episodically at the

trailing edge and propagate over parts of the interface. The

precursor length is proportional to the applied load until

approximately the middle of the interface. From this point

on, the propagation distance increases as a function of the

applied load considerably faster (e.g., see experimental

data from [1] shown in Fig. 4a). Once a slip event propa-

gates over the entire interface, global sliding occurs.

The remarkable increase of precursor lengths and its

nonlinear relation to the applied shear force FS were shown

to be highly reproducible and, if normalized by sample

length and normal force, unique and independent of the

slider geometry (length or height), of the normal load, and

of the pusher position [1, 4]. In essence, episodic nucle-

ation and subsequent spontaneous arrest of precursor fronts

arise from the spatial concentration of interface stresses

induced by the applied load [11]. Several numerical mod-

els, one-dimensional spring-mass chains with arbitrary

normal loads [2, 6] as well as two-dimensional spring-mass

models [4], were proposed to simulate the mechanics of
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precursors and to analyze the relation between the nor-

malized precursor length and the measured macroscopic

force ratio FS=FN. They confirmed experimental observa-

tions showing the absence of influence of the slider

geometry and produced nonlinear evolution of the precur-

sor length. However, none of these numerical simulations

provided quantitative comparison to experimental data.

The main reasons being inconsistent interface stresses due

to the discrete nature [2, 4, 6] or the one-dimensional

geometry [2, 6] of these models.

In addition to numerical models, only few theoretical

approaches have been proposed so far. A quasi-static

one-dimensional model [3] applied a simplified stress

criterion, inspired by Griffith’s energetic criterion, to

study the kinematics of the transition from static to stick-

slip friction and showed that it is dominated by the

system instead of the small-scale parameters. Another

analytical model [6] applied a reverse approach. Given a

precursor length, they describe the interface stresses after

precursor arrest and compute the associated macroscopic

shear force by integration of the interface shear tractions.

Even though these theoretical models offer interesting

intuition about the propagation length of precursors, they

do not give new insights about the mechanics of friction

nor do they provide quantitative comparison with

experiments. There are several causes to this discrepancy.

As for the numerical simulations, the one-dimensional

geometry and the arbitrary initial stress states can result

in inconsistent predictions. Moreover, the simplistic

propagation criteria and the use of post-precursor instead

of pre-precursor stress states are additional limitations of

existing models.

In this study, we present a theoretical model based on

linear elastic fracture mechanics (LEFM) that predicts the

kinematics of slip precursors at frictional interfaces. Such

LEFM approaches have long been used in earthquake

modeling [12–14], and recently, experimental evidence

was provided by measurements of LEFM strain fields

around Sub-Rayleigh slip fronts [15]. We here develop this

concept into a quantitative model that incorporates the

continuum nature of fracture mechanics theory as well as

interface stress states resulting from the exact system

geometry. The aim of this model is to be as simple as

possible while comprising the essential features of fracture

mechanics theory (more precisely LEFM) and addressing

the shortcomings of previous theoretical models. With this

approach, we study the link between meso-scale properties

and the macro-scale response of a solid-body system con-

taining a frictional interface. Friction mechanisms acting at

even smaller scales (i.e., atomic scale) are incorporated in a

local (meso-scale) friction law.

Specifically, we use real interfacial stress states from a

two-dimensional geometry to provide a prediction of the

precursor length based on the shear load measured before

the slip event and compare our results quantitatively with

experimental data. In addition, we analyze the influence of

several material and interface parameters, which has not

been done before, and point out various sources of the

precursor length nonlinearity. This analysis is further

extended by considering simplifications of our model,

which provide a fundamental understanding of the origin of

the nonlinearity of the precursor length evolution.

2 Model

As in [1], the studied system is modeled by a rectangular

thin plate of length L ¼ 200 mm, height H ¼ 75 mm and

thickness b ¼ 6 mm, in contact with a much thicker

deformable base block of dimensions 300� 30� 27 mm.

A pusher of width wp ¼ 5 mm is applied at height

hp ¼ 6 mm from the interface. The material properties are

assumed to be viscoelastic, with Poisson’s ratio m, viscous

Ev and static E1 Young’s moduli. The resulting instanta-

neous Young’s modulus is given by E0 ¼ Ev þ E1. The

long-term behavior of the modeled system, for instance the

stress state of the interface due to the external loading, is

computed using the static Young’s modulus E1. The

dynamic mechanisms, as for example the stress drop, are,

however, affected by the instantaneous Young’s modulus.

The viscous time scale, as it is usually given by the vis-

cosity parameter g, is not explicitly incorporated into this

model due to the clear time-scale separation of the studied

problem. In fact, the propagation duration of a typical slip

front is considerably shorter than the viscous time scale,

and the time between two precursors is considerably

longer. A linear slip-weakening friction law [16, 17] is

applied at the interface, describing the frictional strength as

ssðd; xÞ ¼ max lk; ls þ d=dc lk � lsð Þð ÞrðxÞ ; ð1Þ

where ls and lk are the static and kinetic friction coeffi-

cients, dc is the characteristic weakening length, d is the

local interface slip, rðxÞ is the contact pressure and x is the

coordinate along the interface. More advanced friction

laws, such as velocity-weakening and velocity-strength-

ening friction, have been used in the past to model pre-

cursor mechanics at PMMA interfaces [5, 18–21]. Even

though these models describe well the propagation of

frictional slow fronts, they are not indispensable to model

the propagation distance of precursors, as shown with

dynamic finite-element simulations using slip-weakening

friction [22]. Here, the emphasis is on simplicity and the

slip-weakening friction law enables simple determination

of the interface’s fracture toughness, which is essential to

LEFM theory.
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The unruptured tractions at the interface are computed

by static finite-element simulations. An applied normal

displacement resulting in a unit normal force on the top

boundary leads to a normal traction rNðxÞ satisfying the

following condition b
R L

0
rNðxÞdx ¼ 1 N. The resulting

contact pressure (Fig. 1b) is approximately uniform in the

central 80 % of the interface and presents singularities at

the edges due to the perfect rectangular shape of the

specimen. Poisson’s lateral expansion is frustrated at the

interface by the frictional strength leading to a shear trac-

tion sNðxÞ, which is approximately linear and symmetric

with respect to the center point of the interface. Similarly,

rSðxÞ and sSðxÞ result from an applied pusher displacement

leading to a unit horizontal force and satisfy therefore

b
R L

0
sSðxÞdx ¼ 1 N. As shown in Fig. 1c, sSðxÞ presents a

maximum close to the trailing edge, which will eventually

lead to the initiation of precursors. Due to the fixed top

boundary and the Poisson’s effect, the contact pressure

induced by the shear load contributes to the normal force,

i.e., b
R L

0
rSðxÞdx 6¼ 0 N.

It is important to note that although the unruptured

interface tractions are computed by static finite-element

simulations, the following model is theoretical and inde-

pendent of numerical simulations. Any interface stress

state, also experimental data, could be used as starting

point for our model.

Once the unruptured interface tractions, caused by

external loadings, are known, the effective interface trac-

tions are then modeled by linear superposition of these

tractions and the stress drops due to previous interface

ruptures. The normal rrðx; tÞ and shear srðx; tÞ tractions

after r � 1 precursors, for any FNðtÞ and FSðtÞ, and after

viscous relaxation are given by

rrðx; tÞ ¼ ~FNðtÞ rNðxÞ þ ~FSðtÞ rSðxÞ ð2Þ

srðx; tÞ ¼ ~FNðtÞ sNðxÞ þ ~FSðtÞ sSðxÞ þ
E1
E0

Xr�1

i¼1

DsiðxÞ ;

ð3Þ

with ~FNðtÞ and ~FSðtÞ ensuring that the macroscopic normal

and shear loads are always equal to FNðtÞ and FSðtÞ, e.g.,

b
R L

0
rrðx; tÞdx ¼ FNðtÞ and b

R L

0
srðx; tÞdx ¼ FSðtÞ. Note

that ~FNðtÞ 6¼ FNðtÞ because b
R L

0
rSðx; tÞdx 6¼ 0 N as men-

tioned above. The change in the shear tractions caused by

interface rupture i is introduced as DsiðxÞ, while contact

pressure changes are neglected. As shown by [22, 23], the

bulk material’s viscoelasticity results in a partial restitution

of pre-rupture shear tractions. Given that the viscous time

scale is faster than the duration between two precursors,

full viscoelastic restitution is assumed and the stress drops

can therefore be multiplied by E1=E0. Furthermore, a non-

adhesion condition defines that where rrðxÞ� 0 we impose:

rrðxÞ ¼ 0 and srðxÞ ¼ 0. An example of an effective stress

state without a stress drop is shown in Fig. 1d. The contact

pressure is rather uniform, while the shear traction presents

an important peak close to the trailing edge, which is at the

origin of slip nucleations.

Considering local slip events as interface ruptures, we

model their propagation using LEFM [24], which implies

that every rupture modifies the stress state of the interface

behind as well as ahead of its tip. An example of how shear

tractions change during a slip event is shown in Fig. 2a for

a rupture with arrest position x=L ¼ 0:55. The shear

(a)

(b)

(c)

(d)

Fig. 1 a Setup of the side-driven system. A thin slider is pressed by a

constant normal load FN onto a thicker base block. The rigid block

(shown in black) used to apply the normal load is frictionless and does

not allow for rotation. A pusher applies a slowly increasing shear load

FS to the slider. (inset) Zoom on the pusher. b Static stress state at the

interface for an applied normal load. Note the convention of positive

r for compression. c Static stress state at the interface for an applied

unit shear load. d Interface stresses for an unruptured linear

combination of both loadings with FN ¼ 5FS and normalized by the

average interface stress
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tractions before and after an interface rupture (in time) are

denoted with a superscript � and þ, respectively. The

arrest of the precursor creates a peak at x=L ¼ 0:55 and a

square root decrease in shear tractions for x=L [ 0:55 (see

sþr ). The peaks in s�r at x=L ¼ 0:3� 0:5 are the remains of

stress concentrations of previous precursors. After the

current rupture, they are erased due to the linear slip-

weakening friction law (see sþr ) and will partially reappear

over time. This effect was shown to be the result of the

bulk’s visco-elasticity [22, 23].

The tractions before and after the rupture r are linked by

the stress change DsrðxÞ through sþr ðxÞ ¼ s�r ðxÞ þ DsrðxÞ.
The stress s�r is equal to srðxÞ (Eq. 3) for FN and FS at the

time of the rupture. The stress sþr ðxÞ is the result of the

rupture and can be separated into three different areas as

described below.

At the rupture tip, there is a process (weakening) zone,

where d\dc and in which the shear traction drops from the

static frictional strength ssð0; xÞ to the kinetic strength

ssðdc; xÞ. A linear slip-weakening friction law results

within the process zone in a nonlinear shear traction dis-

tribution, which, for reasons of simplicity, is here approx-

imated by a linear function. The size of a static linear

process zone is given by w ¼ 9pK2
IIðlÞ=½32 r2

r ðlÞ ðls � lkÞ2�

[16], where l is the arrest position of the precursor and KII

the mode II stress intensity factor. The leading end of the

process zone is at x ¼ la and the trailing end at

x ¼ la � w ¼ lb. The position la of the leading end is

determined by the stress concentration as defined below,

which always results in a process zone that satisfies

lb\l\la.

Behind the process zone, the stress state is imposed by

the friction law (Eq. 1). Because d[ dc everywhere, we

can write sþr ðxÞ ¼ ssðdc; xÞ ¼ lkrrðxÞ for x\lb.

Ahead of the slip event appears a stress concentration

caused by the stress drop occurring behind the rupture tip.

The stress change ahead is given in first-order approxi-

mation as DsrðxÞ � KIIðlÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� lÞ

p
. Because frictional

rupture does not allow for stress singularities, the frictional

strength limits the maximal shear traction, similar to the

assumption of a small plastic zone size in fracture

mechanics. Therefore the position of the leading end of the

process zone is determined such that lsrrðlaÞ ¼
s�r ðlaÞ þ KIIðlÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðla � lÞ

p
.

This is only a simplified approximation to the correct

description of the stress state around a cohesive crack. In

fact, the details have no significant effect on the precursor

load–length relation studied here, and even neglecting

entirely the process zone results in virtually the same

observations with isolated shorter slip events that do not

affect the load–length relation of the expanding precursors.

The stress change caused by an interface rupture can

therefore be summarized as

DsrðxÞ ¼

KIIðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� lÞ

p for x [ la ð4aÞ

DsrðlbÞ þ
x� lb

w
Dspz for lb\x\la ð4bÞ

lkrrðxÞ � s�r ðxÞ for x� lb ; ð4cÞ

8
>>>>><

>>>>>:

with Dspz ¼ DsrðlaÞ � DsrðlbÞ. The process zone is char-

acterized by l the arrest position of the rupture, la and lb the

leading and trailing end, respectively, and w ¼ la � lb the

process zone size. Note that DsrðlaÞ and DsrðlbÞ, which are

needed in Eq. (4b), are given by Eq. (4a) and Eq. (4c),

respectively.

The mode II stress intensity factor for a non-uniform

shear stress drop Dsr along an edge crack of length a in a

semi-infinite solid can be deduced from Equation 8.3

in [25] by integration:

KIIðaÞ ¼
2
ffiffiffiffiffiffi
pa
p

Z a

0

DsrðsÞFðs=aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðs=aÞ2

q ds ð5Þ

with Fðs=aÞ ¼ 1þ 0:3ð1� ðs=aÞ5=4Þ and DsrðsÞ ¼
lkrrðsÞ � s�r ðsÞ because the integration is along the crack

interface and the process zone is neglected. A different

0.0
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3.5
τ r
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P
a)

(a)

τ−
r (before rupture)

τ+
r (after rupture)
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(b)
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Fig. 2 a Interfacial shear tractions before and after an interface

rupture. These tractions are obtained by 13 iterations of Eqs. 3 and 4

and based on unruptured interface tractions sN and sS originally

computed by static finite-element simulations. b Fracture toughness

KIIc and stress intensity factor K�II (before) and KþII (after) the rupture

shown in a

23 Page 4 of 10 Tribol Lett (2015) 57:23

123



possible choice of stress intensity factor is a semi-infinite

crack approaching the edge of a semi-infinite solid

(Equation 9.5 in [25]). On the studied system, this stress

intensity factor leads to an almost identical precursor loa-

d–length relation as in the model with Eq. 5. Only a

slightly steeper curve at l=L [ 0:5 is observed (not shown

here). As Dsr is multiplied by the nonlinear factor

Fðs=aÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðs=aÞ2

q
over the crack face, the stress inten-

sity factor is one possible source of nonlinearity in pre-

cursor mechanics.

Given that the slider is a thin plate, the fracture tough-

ness is computed in the plane-stress approximation with the

frictional fracture energy G by:

KIIcðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 GðxÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0

ðls � lkÞdc

2
rrðxÞ

r

: ð6Þ

The fracture toughness is computed using E0 because the

characteristic frictional weakening time is significantly

smaller than the relaxation time of the viscoelastic material

[26].

Neglecting any dynamic effect, the precursor length l for

a given stress state of the interface is determined by the

position at which the stress intensity factor becomes

smaller than the fracture toughness:

K�II ðlÞ ¼ KIIcðlÞ and
dK�II ðlÞ

dx
\

dKIIcðlÞ
dx

: ð7Þ

An example is shown in Fig. 2b. The stress intensity factor

right after an event KþII is significantly lower than KIIc;

hence, a finite load increment is required to nucleate the

next precursor event.

Up to this point, we presented how the precursor length

can be predicted for any given interface stress state. In

order to complete the proposed model, we need to deter-

mine the shear force at which a slip event is expected. As

the initiation of the rupture occurs at the trailing edge of the

system and a rupture only propagates where the stress

intensity factor is larger than the fracture toughness, we

introduce a length scale ln that represents the size of the

nucleation zone, and define that the next precursor occurs

when the following condition is satisfied:

K�II ðlnÞ ¼ KIIcðlnÞ and
dK�II ðlnÞ

dx
[

dKIIcðlnÞ
dx

: ð8Þ

The slip nucleation zone size ln acts like a seed crack to the

propagation of an interface rupture and can be thought of as

the stable slip zone that occurs before dynamic ruptures

[27, 28]. Its size may vary from one to another slip event,

but is chosen to be constant in our model. However, testing

different values for ln has shown that below a critical

length, it has only a negligible influence on the precursor

load–length relation. Decreasing ln only leads to slightly

less precursors. The result is only weakly sensitive to ln

because of the high gradient in K�II to the left of its peak

point (see blue curve in Figs. 2b and 3 for x=L\0:12),

which results from the shear stress concentration (see s�r in

Fig. 2a and Eq. 5). As a consequence, the critical length

above which ln affects the load–length prediction corre-

sponds here approximately to the position of the maximum

of K�II . In this work, we chose ln=L ¼ 0:06, which is below

the critical length and results in approximately the same

precursor occurrence frequency as in the experiment of [1].

Before comparing our model with experimental data and

studying the influence of various parameters, we here sum-

marize the events occurring during a cycle of an interface

rupture in order to provide the reader with a basic intuition of

the observed phenomenon. Considering an interface stress

state at which a slip event occurs (e.g., Fig. 2a), a rupture

propagates from the trailing (left) edge until a point where

the stress intensity factor becomes smaller than the fracture

toughness (Eq. 7 and Fig. 2b). Behind the rupture occurs a

stress drop and ahead of the tip a stress concentration as

described by Eq. 4. The stress concentrations of previous

ruptures are erased because behind the process zone the

friction law imposes shear tractions that depend only on the

kinetic friction coefficient and the contact pressure. The

viscous memory effect of the bulk material restores these

0.0 0.2 0.4 0.6 0.8 1.0

normalized position x/L

0.00

0.02

0.04

0.06

0.08

0.10

SI
F

(M
Pa

m
1/

2 )

K+
II of prec. 12

K−
II of prec. 13

KIIc of prec. 13

Fig. 3 The evolution of the stress intensity factor is shown during the

period between two precursors. Directly after precursor 12, the stress

intensity factor KþII is zero along the interface and nonzero ahead of the

arrest position, as shown by the dash-dotted dark orange curve. Viscous

relaxation of the bulk material, illustrated by the dash-dotted orange

curves going from dark to bright, leads to a partial recovery of the pre-

rupture stress intensity factor. Further, the increasing external shear

load lifts continuously the stress intensity factor, as shown by the solid

blue curves going from bright to dark. When the area of K�II [ KIIc

reaches the slip nucleation zone characterized by x� ln ¼ 0:06L, the

next precursor propagates. For simplicity, the effects of the viscous

relaxation and the external loading are here illustrated sequentially. In

reality, they occur simultaneously. However, if complete relaxation

occurs between two precursors, the sequential and simultaneous

approaches are equivalent (Color figure online)
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concentrations partially over time [22]. Directly after the

rupture and before viscous relaxation, the stress intensity

factor is zero along the interface up to the arrest position (see

KþII in Figs. 2b and 3). Thus, additional external shear

loading is needed to reach a new interface stress state that

allows for the propagation of a slip event. While the external

loading increases, the stress intensity factor exceeds the

fracture toughness first, for this particular setup, at approx-

imately x=L ¼ 0:15 and shortly after at a position close to the

last arrest position (see Fig. 3). Nevertheless, no rupture

initiates because the shear traction is still below the static

strength, srðxÞ\ssð0; xÞ (at the last arrest position due to

viscous relaxation), and the stress intensity factor should be

higher than the fracture toughness starting from the edge

(and not solely in the middle of interface). For even higher

external shear loads, the area with K�II [ KIIc expands and

once it reaches the seed crack at the edge, and satisfies Eq. 8,

a new slip event occurs and the cycle starts over again.

3 Results and Discussion

3.1 Comparison to Experimental Data

In Fig. 4a, we compare the LEFM prediction (blue dots) with

experimental data from [1] (gray triangles). Material

parameters correspond to PMMA [29] and interface

parameters are deduced from experimental measure-

ments [1, 15, 30]: E1 ¼ 2:6 GPa, Ev ¼ 3:0 GPa, m ¼
0:37; ls ¼ 0:9; lk ¼ 0:45; dc ¼ 1 lm, and FN ¼ 3300 N.

The LEFM prediction is in good quantitative agreement with

experimental data and retrieves well the nonlinearity of the

length vs. load curve. It is also in good quantitative agree-

ment with results from dynamic finite-element simulations

presented in [23] (Fig. 4a, red squares). These simulations

are in plane-stress (slider) and plane-strain (base) approxi-

mation with the same geometry, material and interface

parameters as for the LEFM model (for more details

see [23]). Further, we also confirm the observation of [4]

that the slider geometry does not influence the normalized

precursor length behavior by changing the slider length to

L ¼ 0:14 m (see cyan triangles in Fig. 4a).

The force increment between each precursor event is

nearly constant in both the experimental data [1] and the

prediction from the LEFM model. In the experiments, this

is likely to be caused by the stress state of the interface

close to the trailing edge being almost identical after each

slip event. As a consequence, the slowly expanding quasi-

static slip zone, which governs nucleation, reaches each

time its critical length for the same force increment. In the

LEFM model, this mechanism is well captured by the

constant nucleation length ln. However, the applied

nucleation condition in our LEFM model is only a sim-

plification of a considerably more complex phenomenon,

which is still not well understood. For some problems, the

critical nucleation length has been determined by proving

the absence of a quasi-static solution for longer

cracks [27, 28].

We present in Fig. 4b the influence of various material

and interface properties with variations of the order of their

uncertainties. The value of lk is estimated by the macro-

scopic force ratio FS=FN measured directly after a slip

event, which is often lk � 0:4� 0:45 [1]. Introducing an

0.1 0.2 0.3 0.4 0.5

macroscopic force ratio FS/FN
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Fig. 4 Evolution of normalized precursor length with increasing

macroscopic force ratio FS=FN. a Comparison of LEFM theory with

experimental data from [1], and dynamic finite-element simulations

from [23]. b Influence of different interface and material parameters.

Parameters that are changed with respect to the reference case are

given in the legend. The variation of the equivalent slip distance D for

lk ¼ 0:45 corresponds to the uncertainty range of the frictional

fracture energy deduced from experiments [15]. c Comparison of full

LEFM theory with simplified models. Model A: Traction changes due

to interface ruptures are neglected (Eq. 3 is replaced by Eq. 9). Model

B: Interface shear tractions due to frustrated Poisson’s expansion are

neglected (sNðxÞ ¼ 0). Model AB: combination of model A and

model B (Eq. 3 is replaced by Eq. 9 and sNðxÞ ¼ 0) (Color figure

online)
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equivalent slip distance D ¼ ls � lkð Þdc=2 enables us to

write Eq. 6 as KIIcðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 D rðxÞ

p
. According to the

experiment-based estimation of the frictional fracture

energy of PMMA interfaces reported in [15], the uncer-

tainty of the equivalent slip distance can be determined to

be within the range of D ¼ 0:22� 0:06 lm for lk ¼ 0:45.

With the exception of lk, the variations of all material

and interface parameters within their uncertainties have

negligible effects on the l=L � FS=FN relation (Fig. 4b).

Even neglecting entirely the viscoelasticity of the bulk

material (E0 ¼ E1, which leads to Ev ¼ 0 GPa) does not

affect the precursor behavior. This weak influence origi-

nates from the square root contribution of E0 and D to KIIc.

Only a change of lk within its uncertainty range results in

an important shift of the l=L � FS=FN curve due to its

additional contribution to KII (Eqs. 4 and 5).

3.2 Test of Model Assumptions

We have shown that the LEFM model is able to produce an

accurate prediction of the precursor load–length curve and

reproduce the transition from the initial linear length

increase to faster increase at a finite value of load. In the

following, we aim at giving a more fundamental under-

standing of the origin of the load–length curve, by identi-

fying several sources of the nonlinearity in this scaling.

This is done by removing different components from the

LEFM model.

We present in Fig. 4c a simplification of the theoretical

model (denoted model A), which is based on the same

LEFM approach, but where any change in the interface

tractions due to slip is neglected. Equation 3 is therefore

replaced by

srðx; tÞ ¼ ~FNðtÞ sNðxÞ þ ~FSðtÞ sSðxÞ ; ð9Þ

but the stress intensity factor is still computed with Eqs. 5

and (4c). Under these conditions, the discrete nature of

precursors is lost. The length associated with a given mac-

roscopic force ratio is independent of the slip history of the

interface and corresponds to the length that the first precursor

would reach if it is initiated at that specific loading. The

loss in discreteness results in a more (but still not) linear

l=L � FS=FN relation. In this simplified model, for a given

FS, the stress drop close to the trailing edge is larger than in

the reference case, resulting in a higher value of KII and in

longer precursors. But for l=L [ 0:7, this effect is compen-

sated in the full theory by the stress redistribution close to the

arrest position of the previous precursor.

As noted before, the shear tractions at the interface

result not only from the macroscopic shear load but also,

due to frustrated Poisson’s expansion, from the normal

load. The influence of the latter is analyzed in model B.

The shear contribution of the macroscopic normal load

is removed by setting artificially sNðxÞ ¼ 0 8x. All

remaining interface tractions are kept the same as for the

reference case. The resulting propagation distances repor-

ted with respect to the macroscopic force ratio are shown in

Fig. 4c. For any given shear force FS, the precursor length

is longer for the simplified model B than for the reference

model. For l=L\0:5, this is the logic consequence of

neglecting sNðxÞ which acts against the driving traction

sSðxÞ. Beyond the central point of the interface, the pre-

cursor lengths increase faster but still less than in the ref-

erence system, where sNðxÞ contributes to the propagation

of precursors. From a global perspective, the precursor

load–length curve is still nonlinear (but less than the ref-

erence model). This indicates that the interfacial shear

traction resulting from frustrated Poisson’s expansion is

one but not the only source of nonlinearity in the system.

We also present the results of the simplified model AB,

which is the combination of model A and B, where stress

drops due to interface ruptures as well as shear traction

caused by frustrated Poisson’s expansion are neglected. As

for model A, the discrete nature of precursors is lost in

model AB. The precursor load–length relation, which is

shown in Fig. 4c, is almost perfectly linear indicating that

most sources of nonlinearity (at least for the studied system

and parameter range) are eliminated from this simplified

model. The nonlinear form of the stress intensity factor,

which is still part of model AB, does not seem to affect the

precursor propagation distance much within the length of

the interface.

3.3 Insights from a Minimalistic Model

In the previous section, we simplified the LEFM model by

removing different components in order to analyze their

contributions to the nonlinearity of the precursor load–

length relation. In this section, we apply fracture mechanics

in an even simpler model.

Let us assume, in order to simplify the computation of

the stress intensity factor, that the edge crack considered so

far is half of a central shear crack at a weak interface of

length 2L. The interface is subjected to a linear shear load

and to a point shear load at the center of the crack (see

inset in Fig. 5). The linear shear load corresponds in the full

model to the effect of the frustrated Poisson’s expansion.

The point load represents the localized shear load caused

by the pusher. The stress drop along this interface is

therefore given by

Ds xð Þ ¼ 2smax
N

L
jxj � L

2

� �

þ FS dðxÞ � sd ; ð10Þ

where smax
N is the maximal shear traction (at x ¼ L) due to

frustrated Poisson’s expansion, FS is the amplitude of the
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point load, dðxÞ is the Dirac delta function and sd is the

dynamic shear stress left behind the crack.

The stress intensity factor of a central crack of length 2a

is found by integration of equation 5.11 of [25]:

KII að Þ ¼ 2

ffiffiffi
a

p

r Z a

0

DsðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2
p ds ð11Þ

¼
ffiffiffiffiffiffi
pa
p

smax
N

4

p
a

L
� 1

� �

þ 2

p
FS

a
� sd

� �

: ð12Þ

Using the same propagation criterion to predict precursor

length l as for the full theory, we can write KIIðlÞ ¼ KIIcðlÞ,
which leads to
ffiffiffiffi
lc

L

r

¼
ffiffiffi
l

L

r
smax

N

lkrN

4

p
l

L
� 1

� �

þ 2

plk

FS

FN

L

l
� 1

� �
ð13Þ

where lc ¼ K2
IIc=ðps2

dÞ is a characteristic interface length,

and the dynamic interface traction is given by the friction

law as sd ¼ lkrN ¼ lkFN=L.

The characteristic length is in our parameter domain

much smaller than the interface length. Therefore, we can

write
ffiffiffiffiffiffiffiffiffi
lc=L

p
� 0, and Eq. 13 becomes

FS

FN

¼ plk

2

l

L
þ smax

N

rN

l

L

p
2
� 2

l

L

� �

: ð14Þ

With this simplifications, the macroscopic force ratio

depends nonlinearly on the normalized precursor length

and is controlled by two parameters: the kinetic friction

coefficient lk and the Poisson’s expansion effect smax
N =rN.

Note that this prediction neglects all stress redistributions,

as in models A and AB. The evolution of l=L � FS=FN

from Eq. 14 is shown in Fig. 5 with smax
N =rN ¼ 0:25 and

lk ¼ 0:45 (thick red curve). The scaling compares well

with its equivalent of model A (see Fig. 4c). If shear

tractions due to frustrated Poisson’s expansion are elimi-

nated (smax
N ¼ 0), Eq. 14 predicts a linear load–length

relation with a proportionality factor plk=2. This predic-

tion (green curve in Fig. 5) can be related to the almost

linear evolution of model AB. The kinetic friction coeffi-

cient lk appears in this scaling, whereas other interface

parameters were neglected through the assumption that the

characteristic length is much smaller than the interface

(lc 	 L). As already observed for the full LEFM theory, its

influence on the load–length curve is obvious (compare

thin with thick lines in Fig. 5), and small values of lk lead

to longer precursors for given FS=FN.

3.4 LEFM Prediction for Symmetric Setup

Up to this point, we have compared our model to existing

experimental data, analyzed the influence of different

material and interface parameters, and have studied the

nonlinearity of the precursor load–length relation. Now, we

can use our LEFM model to predict the response of a

different system for which no experimental data has been

published yet.

The setup studied so far consists of a thin slider on a

thicker base, which presents characteristics of a bi-material

interface due to differences in the effective stiffness. This bi-

material property influences the rupture propagation [31]. It

is potentially interesting to remove this effect from experi-

mental observations of frictional precursors by using a setup

with a single-material interface. We thus consider a sym-

metric system, where the base has the same geometry as the

slider (in all three directions) and provide first insights to the

propagation of precursors along a single-material interface.

In this system, the nonzero sN due to frustrated Poisson’s

expansion (see Fig. 1b) is naturally eliminated. Also all other

interface traction components are different in a symmetric

setup and are computed with additional static finite-element

simulations. An example of an effective normalized contact

pressure of the symmetric setup is shown in Fig. 6a (solid

pink line) and compared with the normalized contact pres-

sure of the reference setup (dashed blue line), which was

already reported in Fig. 1d. As expected, the main difference

is the absence of the edge singularity in the symmetric setup

at x=L [ 0:9, which will only have a small influence on the

precursor mechanics. In Fig. 6b, the normalized shear trac-

tion at the interface of the symmetric setup (solid pink line)

and the reference setup (dashed blue line) are compared. The

symmetric setup is generally a system of lower stiffness,

which leads to a peak at approximately x=L ¼ 0:05 that is

smaller than in the reference setup but a stress level that is

considerably higher up to x=L ¼ 0:7.

The precursor load–length prediction of our LEFM model

for the symmetric setup is shown in Fig. 6c (pink stars) and

Fig. 5 Precursor load–length relation of minimalistic model for

various values of c ¼ smax
N =rN and lk. If the effect of frustrated

Poisson’s expansion is removed (c ¼ 0), then the precursor length

increases linearly with the macroscopic force ratio. Generally, a

smaller kinetic friction coefficient leads to longer precursors for a

given macroscopic shear load. (inset) Geometry and loading of

minimalistic model
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compared with the prediction for the reference system

(blue dots), which was already shown in Fig. 4. In the

symmetric setup, the first precursor appears at higher

macroscopic force ratio, which is the result of the lower

stress peak in srðxÞ (see Fig. 6b). The length of the first

precursor is about the same than the precursor propagating

at the same FS=FN in the reference system. However, the

precursor lengths increase faster in the symmetric system

and the load–length relation presents an inflection point

between the third and fourth precursors. Moreover, there

are considerably less precursors in the prediction for the

symmetric setup (precursor length increments are larger),

which indicates that it is harder to experimentally observe

precursors in such a system.

4 Conclusion

We showed that a theoretical model based on LEFM predicts

quantitatively well the precursor behavior observed in lab-

oratory experiments [1]. Using this model, we showed that

the kinetic friction coefficient is a key to an accurate pre-

diction of the precursor length as it directly affects the stress

intensity factor through the stress drop along the interface

crack. Moreover, we showed that the variation of material

parameters (within their uncertainty range) does not affect

the observed precursor load–length relation. By simplifying

this model in various ways, we analyzed different aspects

that influence the nonlinearity of the precursor growth and

demonstrated that the shear tractions due to frustrated Pois-

son’s expansion and the discrete nature of precursors are the

main sources of the observed nonlinearity. The redistribution

of the shear tractions along the interface caused by each

precursor is essential to the load–length relation. With the

results of this theoretical description of slip precursors, we

provide evidence for considering frictional slip and precur-

sors as a fracture phenomenon.
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