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Abstract Recently, Cánovas et al. presented an interesting result: the argminmapping
of a linear semi-infinite program under canonical perturbations is calm if and only if
some associated linear semi-infinite inequality system is calm. Using classical tools
from parametric optimization, we show that the if-direction of this condition holds in
a much more general framework of optimization models, while the opposite direction
may fail in the general case. In applications to special classes of problems, we apply
a more recent result on the intersection of calm multifunctions.
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1 Introduction

In this paper, we consider abstract nonlinear optimization problems in a finite dimen-
sional space, where both the objective function and the constraint set depend on some
parameter. Given such a problem, Lipschitz properties of the objective function and the
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feasible set mapping can be related with Lipschitz properties of the so-called argmin
mapping, which assigns to each parameter the (global) optimal solution set. We will
focus here to calmness of this multifunction. For the definition of calmness and other
Lipschitz-type concepts we refer to Sect. 2, for more details or recent surveys on
calmness see, e.g., [1–7].

Our main purpose is twofold: (a) to characterize under suitable assumptions the
calmness of the argmin mapping by means of the calmness of an auxiliary mapping,
which is defined as some restricted level set mapping, and (b) to apply this to per-
turbed (standard) finite and semi-infinite nonlinear programs. The stimulus to writing
the present note came from a recent paper by Cánovas et al. [1], where such a char-
acterization was given for the special class of linear semi-infinite programs under
canonical perturbations. It is shown there that, under the Slater CQ, the argmin map-
ping is calm if and only if some associated linear semi-infinite inequality system
is calm. We will study in how far this can be extended to a larger class of prob-
lems. If the constraints are defined by a system of inequalities, then the auxiliary
mapping under consideration is given by a system of inequalities, and so the calm-
ness of the argmin mapping can be checked via calmness of a parameter-dependent
inequality system. For linear and nonlinear (finite or semi-infinite) inequality sys-
tems, there are well-known conditions for calmness, however, sometimes given in
equivalent settings like local error bounds or metric subregularity; see, e.g., [4,7–
12].

Note that the authors of [1] essentially used the structure of the linear semi-infinite
setting, the special parametrization, and some subdifferential approach to calmness
by Azé and Corvellec [13]. In contrast to it, we will apply both classical tools from
parametric optimization (cf., e.g., [14–16]) and a basic intersection theorem for calm
multifunctions [3,14].

In fact, calmness is a rather weak stability concept for the argmin mapping, since it
may happen that, near some solution of the initial problem, there is no solution of the
perturbed problem. However, since calmness is a constraint qualification, it can be of
value in the study of two-level optimization problems.

The structure of the paper is as follows: In Sect. 2, the basic model and notation are
introduced, and some motivation and preliminary results are presented. In Sect. 3, it
will be shown that in our abstract setting (cf. (1) below), the calmness of the argmin
mapping at some reference point is implied by the calmness of thementioned auxiliary
mapping, provided that the Slater CQ is replaced, e.g., by the Aubin property of the
feasible set mapping at the reference point (which is equivalent to the Slater CQ in
the framework of [1]). It is worth noting that the proofs do not use any structure of
the feasible set and go only back to classical tools in parametric optimization from
the 1980ies. Examples will demonstrate that the opposite implication already fails
for finite nonlinear programs with linear objective function and a convex quadratic
constraint, or with a convex quadratic objective function and linear constraints. In
Sect. 4, we will discuss how to verify the assumptions of our main theorem in two
standard settings of parametric optimization problems. In particular, we will recall
from [3,14] a basic intersection theorem for calm multifunctions and show its appli-
cation to the special classes of problems under consideration. Section 5 gives some
conclusions.
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2 Notation and Preliminaries

In this paper, we study the basic parametric optimization problem

P(t) : f (x, t) → minx s.t. x ∈ M(t) , t varies near t̄, (1)

where we assume throughout that T is a normed linear space, the multifunction M :
T ⇒ R

n is closed (i.e., its graph, denoted by gphM , is closed), a reference point
(t̄, x̄) ∈ gph M is given, and the function f : R

n × T → R is Lipschitzian in
some neighborhood of (t̄, x̄). Recall that the domain and the graph of a multifunction
Φ : T ⇒ R

n are defined by domΦ := {t ∈ T | Φ(t) �= ∅} and gphΦ := {(t, x) ∈
T × R

n | x ∈ Φ(t)}, respectively.
M will be called the feasible set mapping of (1). Define by

Ψ (t) := argminx { f (x, t) | x ∈ M(t)}, t ∈ T,

ϕ(t) := inf x { f (x, t) | x ∈ M(t)}, t ∈ T, (2)

the argmin mapping (or optimal solution set mapping) and the infimum value function,
respectively, of the parametric program (1).

Moreover, we define two auxiliary multifunctions,

Ψ 0(t) := argminx { f (x, t̄) | x ∈ M(t)}, t ∈ T,

L(t, μ) := {x ∈ M(t) | f (x, t̄) ≤ μ}, t ∈ T, μ ∈ R. (3)

Our aim is to characterize, under certain assumptions, the calmness of the argmin
mappings Ψ and Ψ 0 by means of the calmness of the auxiliary mapping L , and to
apply this to perturbed (finite and semi-infinite) nonlinear programs. We start with the
stability notions needed in the following. Denote by B the closed unit ball in T or Rn

and by B(z, r) the closed r -neighborhood of z in T orRn (in the corresponding norms).
We use the symbol ‖ ·‖ both for the norms inRn and T and put ‖(x, t)‖ := ‖x‖+‖t‖.
Further, write dist(z, X) := infx∈X ‖z − x‖ (with dist(z,∅) := +∞) for the distance
of z ∈ R

n to X , and let X + rY := {x + r y | x ∈ X, y ∈ Y } for X,Y ⊂ R
n and r ∈ R.

Let a multifunction Φ : T ⇒ R
n and (t̄, x̄) ∈ gphΦ be given. Φ is called calm at

(t̄, x̄) iff there are ε, δ, � > 0 such that

Φ(t) ∩ B(x̄, ε) ⊂ Φ(t̄) + �‖t − t̄‖B, ∀t ∈ B(t̄, δ), (4)

where Φ(t) ∩ B(x̄, ε) = ∅ for t �= t̄ is possible. Φ is said to have the Aubin property
at (t̄, x̄) iff there are ε, δ, � > 0 such that

Φ(t) ∩ B(x̄, ε) ⊂ Φ(t ′) + �‖t − t ′‖B, ∀t, t ′ ∈ B(t̄, δ). (5)

Φ is called Lipschitz lower semicontinuous (Lipschitz l.s.c.) at (t̄, x̄) iff there are
δ, � > 0 such that

dist(x̄, Φ(t)) ≤ �‖t − t̄‖, ∀t ∈ B(t̄, δ). (6)
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Note that (6) implies for each ε > 0, Φ(t) ∩ B(x̄, ε) �= ∅ if ‖t − t̄‖ ≤ min{δ, ε/�}.
Obviously, the Aubin property implies both calmness and Lipschitz lower semiconti-
nuity. Note that the opposite direction fails, let, e.g., Φ : R ⇒ R with Φ(t) = {0} for
t �= 0, Φ(0) = R, and (t̄, x̄) = (0, 0).

Now we recall the mentioned result by Cánovas et al. [1], which gave the impetus
for our studies and has been devoted to the following special setting of problem (1)
with parameter space T = R

n × C(I,R):

t = (c, b) ∈ T, f (x, t) = c′x, M(t) = {x ∈ R
n | a′

i x ≤ bi , i ∈ I }, (7)

where I is a compact Hausdorff space, C(I,R) is the linear space of continuous
functions i ∈ I → bi equippedwith the norm ‖b‖ := maxi∈I |bi |, and a ∈ (C(I,R))n

is given. This is a linear semi-infinite programwith canonical perturbations t = (c, b).
The main statement in [1, Thm. 3.1, Rem. 3.1] in the setting (7) says

Proposition 2.1 For a reference point (t̄, x̄) ∈ gphΨ with t̄ = (c̄, b̄) and under the
Slater CQ at b̄ (i.e., for some x̃, it holds a′

i x̃ < b̄i , ∀i ∈ I ), the following properties
are pairwise equivalent:

(i) Ψ is calm at (t̄, x̄),
(ii) Ψ 0 is calm at (b̄, x̄),
(iii) L is calm at ((t̄, c̄ ′ x̄), x̄).
Hence, in particular, the calmness of the argminmappingΨ = Ψ (c, b) can be checked
by the calmness of L = L(b, μ), which is described by an inequality system with
right-hand side perturbations only.

3 Calmness Conditions for the Argmin Mapping

In this section, we derive the main result of our note, namely, the implication L calm
⇒ Ψ calm for the general model. Consider again the basic parametric optimization
problem (1) and assume that

M is a closed multifunction, (t̄, x̄) ∈ gphΨ is a given point, and f is
Lipschitzian on some neighborhood � f of (x̄, t̄) with modulus � f > 0.

(8)

There are some standard tools in parametric optimization, which relate Lipschitz prop-
erties of the objective function f and the feasible setmappingM to aLipschitz property
of the optimal value function. Define the mappings

ΨV (t) := argminx { f (x, t) | x ∈ M(t) ∩ V }, t ∈ T,

ϕV (t) := inf x { f (x, t) | x ∈ M(t) ∩ V }, t ∈ T, (9)

for given V ⊂ R
n . Following [6], we will use the notion of calmness of a function

and say that ϕV is calm at t̄ ∈ dom ϕV (also called pointwise Lipschitz at t̄) iff there
is some neighborhood D of t̄ such that

|ϕV (t) − ϕV (t̄)| ≤ �‖t − t̄‖ holds for some � ≥ 0 and all t ∈ dom ϕV ∩ D.
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We borrow here an idea from [15,16] to get the following result.

Lemma 3.1 Consider the problem (1) under the assumptions (8). Suppose for some
ε, δ, �M > 0 and U = B(t̄, δ), V = B(x̄, ε) that one has V ×U ⊂ � f and

∅ �= M(t) ∩ V ⊂ M(t̄) + �M‖t − t̄‖B, ∀t ∈ U, (10)

dist(x̄, M(t)) ≤ �M‖t − t̄‖, ∀t ∈ U. (11)

Then, the function ϕV is calm at t̄ .

Proof Let δ′ = ε/�M and t ∈ U ∩ B(t̄, δ′). Then, M(t) ∩ V is nonempty and
compact, and hence, by continuity of f and the Weierstrass Theorem, we observe
ΨV (t) �= ∅. By (10), we then find for any y ∈ ΨV (t) some ȳ ∈ M(t̄) such that
‖y − ȳ‖ ≤ �M‖t − t̄‖ ≤ ε. Hence, Lipschitz continuity of f on V ×U leads to

ϕV (t̄) ≤ f (ȳ, t̄) ≤ f (y, t) + | f (y, t) − f (ȳ, t̄)| ≤ ϕV (t) + � f (‖y − ȳ‖ + ‖t − t̄‖),

and so

ϕV (t̄) ≤ ϕV (t) + � f (�M + 1)‖t − t̄‖.

Furthermore, by (11) there is some z ∈ M(t) such that ‖z − x̄‖ ≤ �M‖t − t̄‖ ≤ ε,
and it follows by similar arguments

ϕV (t) ≤ f (z, t) ≤ f (x̄, t̄) + | f (z, t) − f (x̄, t̄)| ≤ ϕV (t̄) + � f (�M + 1)‖t − t̄‖.

Therefore, ϕV is calm at t̄ with modulus � f (�M + 1). ��
Now we relate Lipschitz properties of the objective function and the feasible set map-
ping with the calmness of the argmin mapping under the assumption that the auxiliary
multifunction L , introduced in (3), is calm.

Theorem 3.1 Consider the problem (1) under the assumptions (8). Suppose that, for
the reference point (t̄, x̄) ∈ gphΨ ,

(i) the feasible set mapping M is calm and Lipschitz l.s.c. at (t̄, x̄) and
(ii) the multifunction L = L(t, μ) in (3) is calm at ( (t̄, ϕ(t̄)) , x̄ ).

Then, the argmin mapping Ψ is calm at (t̄, x̄).

Proof Let us start with the simple observation that, for given t ∈ T and V ⊂ R
n ,

Ψ (t) ∩ V �= ∅ ⇒ ΨV (t) = Ψ (t) ∩ V . (12)

Indeed, if Ψ (t) ∩ V �= ∅, then ϕ(t) = f (xt , t) ≤ f (x) particularly holds for some
xt ∈ M(t) ∩ V and all x ∈ M(t) ∩ V . Hence, ϕ(t) = ϕV (t) and so

ΨV (t) = M(t) ∩ V ∩ {x | f (x, t) = ϕ(t)} = Ψ (t) ∩ V,
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which gives (12), and we turn to the main part of the proof.
Since M and L are calm at (t̄, x̄) and ((t̄, ϕ(t̄)), x̄), respectively, we may assume

that there are some positive real numbers δ, ε, �M , and �L such that withU = B(t̄, δ),
V = B(x̄, ε) and μ̄ = ϕ(t̄), both the relations

M(t) ∩ V ⊂ M(t̄) + �M‖t − t̄‖B, ∀t ∈ U, and

L(t, μ) ∩ V ⊂ L(t̄, μ̄) + �L(‖t − t̄‖ + |μ − μ̄|)B, ∀t ∈ U, ∀μ ∈ B(μ̄, δ), (13)

hold true. Let U and V be small enough such that f is Lipschitzian on V × U with
modulus � f according to (8). Since M is Lipschitz l.s.c. at (t̄, x̄), the radius δ > 0
may be considered already small enough such that (11) and

M(t) ∩ V �= ∅, ∀ t ∈ U = B(t̄, δ)

are satisfied. Hence, we may assume the relations (10), (11) and (13) hold all together.
By Lemma 3.1, then there is some modulus �ϕ > 0 such that, for some neighborhood
Ũ ⊂ U of t̄ ,

|ϕV (t) − ϕV (t̄)| ≤ �ϕ‖t − t̄‖, ∀t ∈ Ũ ∩ domΨV . (14)

Now let U ′ ⊂ Ũ be a (closed) neighborhood of t̄ such that, for all t ∈ U ′ and all
x ∈ V , both

�ϕ‖t − t̄‖ ≤ δ

2
and | f (x, t) − f (x, t̄)| ≤ � f ‖t − t̄‖ ≤ δ

2
(15)

hold true. By definition and (12), one has L(t̄, ϕ(t̄)) = Ψ (t̄), ΨV (t̄) = Ψ (t̄)∩V and

x ∈ Ψ (t) ⇔ ( x ∈ M(t) and f (x, t) ≤ ϕ(t) )

⇔ ( x ∈ M(t) and f (x, t̄) ≤ ϕ(t) + f (x, t̄) − f (x, t) )

⇔ x ∈ L(t, μ(x, t)) where μ(x, t) := ϕ(t) + f (x, t̄) − f (x, t).

Consider any t ∈ U ′ and suppose Ψ (t) ∩ V �= ∅, otherwise the calmness definition
with respect to U ′ and V is trivially satisfied. Hence, we obtain due to (12)

ΨV (t) = Ψ (t) ∩ V and ϕ(t) = ϕV (t)

as well as, by (14) and (15),

|μ(x, t) − ϕ(t̄)| = |ϕV (t) + f (x, t̄) − f (x, t) − ϕV (t̄)|
≤ |ϕV (t) − ϕV (t̄)| + | f (x, t̄) − f (x, t)| ≤ δ.

This allows to apply (13) (recall μ̄ = ϕ(t̄) and L(t̄, μ̄) = Ψ (t̄)), and it follows

Ψ (t) ∩ V = L(t, μ(x, t)) ∩ V ⊂ Ψ (t̄) + �L(‖t − t̄‖ + |μ(x, t) − μ̄|)B,
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where |μ(x, t) − μ̄| ≤ |ϕV (t) − ϕV (t̄)| + | f (x, t̄) − f (x, t)| ≤ (�ϕ + � f )‖t − t̄‖,
i.e.,

Ψ (t) ∩ V ⊂ Ψ (t̄) + �L(1 + �ϕ + � f )‖t − t̄‖)B.

This completes the proof. ��
In consequence, we have at the related points that

L is calm ⇒ Ψ is calm (and hence, trivially, Ψ 0 is calm),

provided M is calm and Lipschitz lower semicontinuous. The opposite implication is
not true; this is illustrated by the following simple examples. Both examples concern
the model (7) with canonical perturbations, except for the linearity of all problem
functions.

Example 3.1 Consider the parametric problem

min x2 − cx s.t. − 1 + b1 ≤ x ≤ 1 + b2, (c, b1, b2) varies near (0, 0, 0).

Obviously, Ψ (c, b) = { 12c} for small |c| and b = (b1, b2) near 0. Hence, Ψ is calm at
the origin, the same for Ψ 0(b) = Ψ (0, b), while ϕ(c, b) = − 1

4c
2 is Lipschitz near the

origin. The Slater CQ is satisfied; hence the constraint set mapping M has the Aubin
property. For μ = ε2 (ε > 0 small) and b = 0, the set

L(0, μ) = {x | − 1 ≤ x ≤ 1, x2 ≤ μ}

contains xμ = ε. Since dist(xμ, L(0, 0)) = ε = √
μ, the mapping L is not calm at the

origin. In the example, the level sets of the objective function, F(μ) = {x | x2 ≤ μ},
are not calm at (μ̄, x̄) = (0, 0). ��
Example 3.2 For the canonically perturbed problem

min y − c1x − c2y s.t. x2 − y ≤ b, (c1, c2, b) varies near (0, 0, 0),

the optimal solution mapping

Ψ (c1, c2, b) =
{(

c1
2(1 − c2)

,
c21

4(1 − c2)2
− b

)}

is Lipschitz near (0, 0, 0), and hence calm at the origin, the same for the mapping
Ψ 0(b) = Ψ (0, 0, b). However,

L(b, μ) = {(x, y) | y ≤ μ, x2 − y ≤ b}

is not calm at the origin, one has only to choose b ≡ 0 andμ ↓ 0. Again, the Slater CQ
is satisfied, and so the constraint set mapping M has the Aubin property. In contrast to

123



J Optim Theory Appl (2015) 165:708–719 715

Example 3.1, the level set mapping of the objective function, F(μ) = {(x, y) | y ≤ μ},
is calm at the origin. ��

4 Calm Intersections and Application to Special Classes

In this section, the assumptions of Theorem 3.1 are discussed in the context of two
special classes of optimization problems (1) including canonical perturbations: (i)
a perturbed (finite) nonlinear optimization problem with differentiable data, (ii) a
perturbed convex semi-infinite optimization problem covering the model studied in
[1].

Of particular interest are calmness conditions for the intersection mapping
L(t, μ) = M(t) ∩ {x | f (x, t̄) ≤ μ}. For this reason, we start by recalling from
[3,14] some basic intersection theorem for calm multifunctions.

4.1 Calm Intersections

Below, we shall apply Thm. 2.5 in [3] (cf. also [14, Thm. 3.6]) for closed mappings
S : Y ⇒ X and T : Z ⇒ X between metric spaces X,Y, Z , namely,

Theorem 4.1 (calm intersections)Let S be calm at (ȳ, x̄), T be calm at (z̄, x̄) and T−1

be pseudo-Lipschitz (i.e., have the Aubin property) at (x̄, z̄). Moreover, let H(z) =
S(ȳ) ∩ T (z) be calm at (z̄, x̄). Then, 	(y, z) = S(y) ∩ T (z) is calm at (ȳ, z̄, x̄).

Note.Of course, if 	 is calm, then the restricted mapping H is also calm at the related
point.

Example 4.1 To illustrate the theorem, consider 	(y, z) = S(y) ∩ T (z), where y =
(y1, y2) ∈ R

2, z ∈ R,

S(y) = {(x1, x2) | x2 + x21 ≥ y1, x2 ≥ y2}, T (z) = {(x1, x2) | x2 ≤ z}.

Put x̄1 = x̄2 = ȳ1 = ȳ2 = z̄ = 0. Then, the Mangasarian-Fromovitz constraint
qualification (MFCQ) is satisfied for S(0) at x̄ = 0. Therefore, by Robinson’s classical
result [17], S is even pseudo-Lipschitz and hence calm at the origin. T and T−1 (given
by linear inequalities) are calm and pseudo-Lipschitz.

Finally, we consider H(z) = S(0) ∩ T (z). If z < 0, then H(z) = ∅, while for
z ≥ 0, H(z) is given by the linear inequalities 0 ≤ x2 ≤ z, since x2 ≥ 0 implies
x2 + x21 ≥ 0. In consequence, H is calm at the origin, and the theorem says that 	

has the same property. ��
When applying the theorem to the model (1) and the definition (3) of L , with f (x) =
f (x, t̄) for some given t̄ , we obtain

L(t, μ) = F(μ) ∩ M(t), where F(μ) = {x | f (x) ≤ μ}. (16)

In this context, we may put S = F, T = M in order to obtain
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Proposition 4.1 Let F be calm at (μ̄, x̄), M be calm at (t̄, x̄) and M−1 have the Aubin
property at (x̄, t̄). Moreover, let H1(t) = F(μ̄) ∩ M(t) be calm at (t̄, x̄). Then, L is
calm at (t̄, μ̄, x̄).

Setting S = M, T = F we obtain

Proposition 4.2 Let M be calm at (t̄, x̄), F be calm at (μ̄, x̄) and F−1 have the Aubin
property at (x̄, μ̄). Moreover, let H2(μ) = M(t̄) ∩ F(μ) be calm at (μ̄, x̄). Then, L
is calm at (t̄, μ̄, x̄).

Again, calmness of H1 and H2, respectively, is necessary for calmness of L .

Example 4.2 Using example 4.1 we may easily obtain calm mappings L and Ψ 0 at
the origin. Consider (the non-convex problem)

P(t1, t2) : min {x2 | x2 + x21 ≥ t1, x2 ≥ t2}.

Putting μ = z in (16), L(t̄, μ) = L(0, μ) coincides with H(z) of Example 4.1.
Moreover, we have

Ψ 0(0, 0) = {(x1, 0) | x1 ∈ R}, Ψ 0(t1, t2) = {(x1, t2) | t2 + x21 ≥ t1}.

If t2 ≥ t1, again all components x1 are allowed inΨ 0(t1, t2). If t2 < t1, then x21 ≥ t1−t2
is required, but dist( (x1, t2), Ψ 0(0, 0) ) ≤ |t2| verifies calmness of Ψ 0.

Replacing x21 by −x21 one obtains a well-known non-calm example satisfying the
Slater CQ. ��
Note that, for the calmness assumption on the level set mapping F , there are several
known conditions how to check this; see, e.g., [4,9,10,13,18,19]. It is automatically
satisfied if f (·, t̄) is linear-affine.

Evidently, F−1(x) = {μ | μ ≥ f (x)} has the Aubin property, if f is locally
Lipschitz. Similarly, M−1(x) = {b | b ≥ g(x)} has the Aubin property, if g : Rn →
R
m is locally Lipschitz. All these mappings are calm for usual linear programming

(cf. [8]).
In Example 3.2 (L is not calm) all assumptions of Prop. 4.2 are satisfied, except for

the calmness of the mapping

H2(μ) = M(0) ∩ F(μ) = {(x, y) | x2 ≤ y, y ≤ μ},

while in Example 3.1 both F and H2 are not calm.

4.2 Nonlinear Programs with Differentiable Data

Consider the parametric optimization problem

P(t), t = (p, c, b) : h(x, p) + c′x → minx s.t. gi (x, p) ≤ bi , i ∈ I, (17)
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where I = {1, . . . ,m}, t ∈ T = R
q+n+m varies near some reference parameter t̄ =

( p̄, c̄, b̄), and the functions h, gi are continuously differentiable on someneighborhood
of a given pair (x̄, p̄). The canonical perturbations (c, b) were included to obtain
equivalent conditions for the assumed Lipschitz stability properties. It is not a problem
to add finitely many equality constraints, but we avoid this to keep technicalities as
small as possible. Define

f (x, t) = f (x, p, c) := h(x, p) + c′x, t ∈ T,

M(t) = M(p, b) := {x ∈ R
n | gi (x, p) ≤ bi , i ∈ I }, t ∈ T ;

then the multifunctions Ψ , Ψ 0, L , and F are defined as above. Suppose that (t̄, x̄) ∈
gphΨ with t̄ = ( p̄, c̄, b̄), and let us discuss the assumptions of Theorem 3.1.

M is calm and Lipschitz l.s.c.: M is Lipschitz l.s.c. at (( p̄, b̄), x̄) if and only if
the MFCQ is satisfied for M( p̄, b̄) at x̄ ; see [11, Lemma 1]. This, however, is by
Robinson’s classical result [17] equivalent to the Aubin property of M at (( p̄, b̄), x̄),
which implies calmness of M at this point.

L is calm: Let us discuss the assumptions of Prop. 4.2. Because of the previous
observation we assume MFCQ at the point of interest. Hence M is calm. Since the
data are C1 and hence locally Lipschitz, F−1 has the Aubin property—as discussed
above.

Let μ̄ = f (x̄, t̄), and define q(x) := f (x, t̄) − μ̄, d := dim [∇q(x̄)Rn] and
dε := dim [q(B(x̄, ε)∩R

+] for ε > 0. Then, F(β) = {x | q(x) ≤ β} is calm at (0, x̄)
if and only if there is some ε0 > 0 such that d = dε for all ε ∈ (0, ε0) (cf. [19, Prop.
3.13]). Equivalently, F is calm at (0, x̄) if and only if either ∇q(x̄) �= 0 holds true, or
x̄ is a local maximizer of q (cf. [4, Prop. 3]).

It remains to check that the mapping

H2(μ) = M(t̄) ∩ F(μ) = {x | g(x, p̄) ≤ b̄ , h( p̄, x) + c̄ ′x ≤ μ}

is calm. Obviously, H2(μ) is now defined by a finite inequality system with dif-
ferentiable data and right-hand side perturbations, and one can apply corresponding
calmness characterizations for such systems; see, e.g., [4,7,9–12].

4.3 Convex Semi-infinite Optimization Problems

Here, the basic model is the canonically perturbed semi-infinite program

P(t), t = (c, b) : h(x) + c′x → minx s.t. gi (x) ≤ bi , i ∈ I, (18)

where we suppose throughout that the index set I is a compact Hausdorff space, the
real-valued functions h, gi (i ∈ I ) are convex on R

n , (i, x) → gi (x) is continuous,
the pair (c, b) varies in the parameter space T := R

n × C(I,R) near some given
t̄ = (c̄, b̄) ∈ T . The multifunctions Ψ , Ψ 0, L , and F are defined as above, when
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setting

f (x, t) = f (x, c) := h(x) + c′x, t ∈ T,

M(t) = M(b) := {x ∈ R
n | gi (x) ≤ bi , i ∈ I }, t ∈ T .

The model (18) covers the linear semi-infinite setting in (7), discussed in [1], by
putting h(x) ≡ 0 and gi (x) = a′

i x . In [1], the Slater constraint qualification (SCQ)
was supposed in the equivalence theorem, which was recalled in Prop. 2.1 above. Let
us also suppose SCQ at M(b̄), i.e.,

∃x̃ : gi (̃x) < b̄i , ∀i ∈ I.

We again check the assumptions of Theorem 3.1. Suppose (t̄, x̄) ∈ gphΨ .
M is calmandLipschitz l.s.c.: SCQatM(b̄) implies thatM has theAubin property at

(b̄, x̄), and vice versa. This equivalence is essentially a consequence of the Robinson–
Ursescu Theorem (cf. [20]). It was proved for the linear semi-infinite setting in [21,
Thm. 2.1], for I being a compact Hausdorff space, and in our setting (18) in [22,
Lemma 3], for I being a compact metric space. Hence, under SCQ at M(b̄), M is both
calm and Lipschitz l.s.c at (b̄, x̄).

L is calm: Again, we discuss the assumptions of Prop. 4.2. M is calm because of
the SCQ. F−1 has the Aubin property, since f is convex.

For calmness of the convex level set mapping F see, e.g., [4,5,9,10,18]. In par-
ticular, if x̄ is not an unconstrained minimizer of f (·, c̄), then F is calm at (μ̄, x̄),
since the Slater condition for the level set mapping F holds, i.e., f (̃x, c̄) < f (x̄, c̄)
for some x̃ . This is equivalent to the Aubin property of F at (μ̄, x̄) with μ̄ = f (x̄, c̄),
by the Robinson–Ursescu theorem [20].

It remains to check that

H2(μ) = M(b̄) ∩ {x | h(x) + c̄ ′x ≤ μ}

is calm at (μ̄, x̄), but this reduces to calmness of a (semi-infinite) inequality system
with right-hand side perturbations, for this one finds conditions, e.g., in [1,4,9,11].

5 Conclusions

This paper has been devoted to the question whether calmness of the optimal set
mapping of a parameter-dependent nonlinear program at some reference point can be
characterized by calmness of some restricted level set mapping, provided the feasible
set mapping is calm and Lipschitz l.s.c. at the given point. As mentioned in the intro-
duction, this question was inspired by a recent positive answer to it in the context of
canonically perturbed linear semi-infinite problems, given by Canovas et al. [1] (see
Proposition 2.1 above). It has turned out that one direction of this equivalence can be
extended to a wide class of parametric nonlinear programs, in particular to perturbed
(finite) nonlinear programs with differentiable data and canonically perturbed con-
vex semi-infinite programs: calmness of the restricted level set mapping L defined in
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Sect. 2 implies calmness of the optimal set mapping under some CQ. Simple examples
have shown that the opposite direction is not true if the objective function or some
constraints are nonlinear.
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