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Abstract The objective of uncertainty quantification is to certify that a given phys-
ical, engineering or economic system satisfies multiple safety conditions with high
probability. A more ambitious goal is to actively influence the system so as to guar-
antee and maintain its safety, a scenario which can be modeled through a chance
constrained program. In this paper we assume that the parameters of the system are
governed by an ambiguous distribution that is only known to belong to an ambigu-
ity set characterized through generalized moment bounds and structural properties
such as symmetry, unimodality or independence patterns. We delineate the watershed
between tractability and intractability in ambiguity-averse uncertainty quantification
and chance constrained programming. Using tools from distributionally robust opti-
mization, we derive explicit conic reformulations for tractable problem classes and
suggest efficiently computable conservative approximations for intractable ones.
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1 Introduction

Consider a physical, engineering or economic system and encode its state through a
parameter vector z € R”. Suppose that the reliable operation of the system requires
that some safety constraints Sz < ¢ must be satisfied, where S € R7*P is termed
the technology matrix and t € R’ the right-hand side vector. Due to measurement
errors, limited observability and missing data, the parameter vector is uncertain for
the vast majority of systems of practical interest and must therefore be modeled as a
random variable Z governed by a probability distribution Q. In this situation a problem
of great practical importance is to certify that the system is safe with high confidence.
Formally, one should ascertain the satisfaction of the inequality Q[SZ < ¢] > 1 — ¢,
where € € (0, 1) represents a prescribed safety tolerance or violation probability.
Examples of societally relevant safety constraints include the prevention of blackouts
in electricity grids, the containment of inflation in national economies, the limitation of
seismic damages in structural engineering, the assurance of quality of service standards
in telecommunication systems, the limitation of the likelihood to develop cancer due
to the exposure to a substance etc., see [34].

In most real-life applications, evaluating the exact probability of safe operation
is very challenging, if not impossible. On the one hand, the probability distribution
Q is typically unknown as Q may only be indirectly observable through historical
samples, which could be explained by several strikingly different distributions. On
the other hand, even if Q was precisely known, the computation of Q[SZ < ¢] would
require the evaluation of an integral over a possibly high-dimensional polytope, which
is computationally cumbersome.

A remedy for the first difficulty is to adopt a distributionally robust approach and to
embrace the fact that QQ is merely known to belong to an ambiguity set P. This set is
typically defined as the family of all distributions that share certain known moments
(mean, variance, covariances, higher-order moments, median-absolute deviation etc.)
or known structural properties (symmetry, unimodality, multimodality, independence
patterns, tail behavior etc.) with the otherwise unknown distribution Q. The ambiguity
of Q prompts us to investigate the uncertainty quantification problem

inf P[Sz <], (D
PeP

which quantifies the worst-case probability of safe operation with respect to all distrib-
utions P € P. As Q € P by construction, the optimal value of (1) provides a conserv-
ative estimate (lower bound) for Q[SZ < ¢]. In order to certify the safety of the system
with respect to the true distribution Q, it is thus sufficient to show that the optimal value
of (1) exceeds 1 — €. Maybe surprisingly, the distributionally robust approach can also
mitigate the intractability of evaluating high-dimensional integrals. Using the duality
theory for moment problems in conjunction with the rich arsenal of modern robust
optimization techniques, one can show that worst-case probability problems of the
type (1) are computationally tractable across a wide variety of relevant ambiguity sets.

Rather than passively certifying the safety of a given system, a more ambitious goal
would be to actively influence the system so as to maintain its safety. This scenario can
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conveniently be captured by a robust chance constrained program, where x € X C
RY represents the vector of design decisions.

minimize ¢ ' x

subjectto x € X (2)
inf P[S(x)z <t(x)]>1—¢€
PeP

Here, the technology matrix S(x) = (s1(x),...,s 7)) T and the right-hand side
vector £(x) = (r1(x), ..., t;(x)T may depend on the design decisions in an affine
fashion, thatis, s j (x) = Sij+sj and?j(x) = t]Tx+tj,where S; e RV*P s, e RP,
tj e RN and tj € Rforall j € 7 ={1,..., J}. Moreover, ¢ € R encodes the costs
of different design decisions. We assume that problem (2) is tractable if it is stripped
of the probabilistic constraint. This is the case, for instance, if X is a polytope defined
by its facets or vertices.

The choice of the ambiguity set P should be guided by the following principles:
(i) The set P must contain Q with certainty (or at least with high confidence). (ii) The
structure of P should facilitate a tractable reformulation (or at least a tractable con-
servative approximation) of the uncertainty quantification problem (1) and the chance
constrained program (2). (iii) Among all ambiguity sets satisfying the properties (i)
and (ii), P should be chosen as small as possible in the sense of set inclusion. Property
(i) enables us to certify the safety of the system at hand under the unknown distri-
bution @ by solving the uncertainty quantification problem (1). Moreover, property
(ii) ensures that (1) and (2) can be solved efficiently, while property (iii) controls the
conservatism of the uncertainty quantification problem (1), thereby limiting the risk
that a safe system is not recognized as such.

After the fundamental papers [39,48], various ambiguity sets have been stud-
ied in the literature on uncertainty quantification [21,34] and distributionally robust
optimization [1]. Ambiguity sets of special interest include the Markov ambiguity
set containing all distributions with known mean and support [45], the Chebyshev
ambiguity set containing all distributions with known bounds on the first and second-
order moments [11,13,18,28,42,43,46,49,50], the Gauss ambiguity set containing
all unimodal distributions from within the Chebyshev ambiguity set [36,41], various
generalized Chebyshev ambiguity sets that specify asymmetric moments [11,12,32],
higher-order moments [6,27,40] or marginal moments [16,17], the median-absolute
deviation ambiguity set containing all symmetric distributions with known median
and mean absolute deviation [22], the Huber ambiguity set containing all distributions
with known upper bound on the expected Huber loss function [14,45], the Wasserstein
ambiguity set containing all distributions that are close to the empirical distribution
with respect to the Wasserstein metric [19,31,35], the Kullback—Leibler divergence
ambiguity set and likelihood ratio ambiguity set [9,24,25,28,44] containing all dis-
tributions that are sufficiently likely to have generated a given data set, the Hoeffding
ambiguity set containing all component-wise independent distributions with a box
support [3,7,9], the Bernstein ambiguity set containing all distributions from within
the Hoeffding ambiguity set subject to marginal moment bounds [33], several ¢-
divergence-based ambiguity sets [2,47] containing all discrete distributions close to a
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38 G. A. Hanasusanto et al.

given nominal distribution, goodness-of-fit ambiguity sets containing all distributions
that pass prescribed statistical tests [5] etc. The proposed terminology associates most
ambiguity sets with mathematicians who invented well-known probability inequalities
or statistical indicators related to the respective ambiguity sets.

In this paper we endeavor to

— present aunifying framework for formulating and solving uncertainty quantification
problems and robust chance constrained programs;

— demonstrate that many of the ambiguity sets listed above represent special cases of
a canonical ambiguity set underlying our unifying framework;

— delineate the watershed between tractability and intractability in uncertainty quan-
tification and robust chance constrained programming.

In [45] it has been shown that most moment-based ambiguity sets emerge as spe-
cial cases of a canonical ambiguity set that contains all distributions under which
the probabilities of some conic-representable confidence sets fall between prescribed
upper and lower bounds, and the mean values of the uncertain parameters satisfy a
linear equality constraint. While [45] describes methods for computing worst-case
expectations of biconvex loss functions, the focus of the present paper is to compute
worst-case probabilities, that is, worst-case expectations of discontinuous indicator
functions. Moreover, while [45] focuses exclusively on moment-based ambiguity sets,
the present paper investigates a much richer class of ambiguity sets characterized both
in terms of moment constraints and structural information such as symmetry, uni-
modality, multimodality, independence patterns etc. In particular, we also show that
several classical inequalities of probability theory as well as their multidimensional
generalizations emerge as special cases of our unified framework.

The overarching objective of this work is to review broad classes of uncertainty
quantification and chance constrained programming problems that are computation-
ally tractable. An intimately related secondary objective is to explore the boundaries
of tractability. It is thus natural to focus attention on linear safety constraints in the
probabilistic expressions of (1) and (2). Indeed, the uncertainty quantification prob-
lem (1) becomes intractable already in the presence a single convex quadratic safety
constraint, even if the underlying ambiguity set contains all distributions supported on
a polytope.

Theorem 1 Evaluating the quadratic uncertainty quantification problem
inf P[||Sz|, <t 3
inf P[]sz], =] 3
is strongly N'P-hard even if the ambiguity set satisfies
P = {IF’GPO(RP) . P[C% <d] = 1},

where Po(RF) denotes the set of all probability distributions on R .

The remainder of the paper develops as follows. Section 2 discusses the design of
ambiguity sets using moment constraints and structural information. Sects. 3 and 4
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provide tractable reformulations and complexity results for various uncertainty quan-
tification and chance constrained programming problems, respectively. An efficient
approximation algorithm for intractable problems is reported in Sect. 5, and a summary
of the main results is provided in Sect. 6. All proofs are relegated to an accompanying
technical report [23].

Notation A generalized inequality x <x y with respect to a proper (closed, convex,
pointed, solid) cone C implies that y—x € C. We denote by S” (S_};) the space (cone) of
all symmetric (positive semidefinite) matrices in RP*P anduse X < Y as anotational
shorthand for the matrix inequality X <Si Y where X, Y e SP. The cone dual to a
proper cone K is denoted as K. We use Py(B) to represent the set of all probability
distributions supported on a Borel subset B of R”. If P € Py(R¥ x R?) represents
the joint distribution of two random vectors 7 € R” and it € R?, then IT;P € Py(R)
denotes the marginal distribution of Z under P. We extend this definition to ambiguity
sets P C Po(RF x R?) by setting [T;P = Upep{IT:P}. For two sets A and B the
relation A € B indicates that A is a subset of the relative interior of B. For a logical
expression &, we define [jg) = 1 if £ is true; = 0 otherwise.

2 Ambiguity sets

We first propose a canonical representation of ambiguity sets as intersections of
moment ambiguity sets (characterizing features of Q such as the mean, variance
or median-absolute deviation) and structural ambiguity sets (describing symmetry,
unimodality or independence properties etc.). We define the moment and structural
ambiguity sets of interest in Sects. 2.1 and 2.2, respectively, and we showcase the
expressiveness of our framework in Sect. 2.3.

2.1 Nested moment ambiguity sets

As in [45], we focus on nested moment ambiguity sets of the form

i p oo Ep[AZ+ Bi] =b,
Pr=1FePo@®" xR )'P[(Z,ﬁ)eci]e[gi,ﬁi] vier[® @

where IPis a joint distribution of the random vector 7 € R appearing in the uncertainty
quantification and chance constrained programming problems and some auxiliary
random vector # € RZ. We assume that A € REXP B e RKXC p ¢ RX and
7 ={1,..., I}, while the confidence sets C; satisfy

G =|@w e R xR : Ciz + Diu <, ;] s)

with C; € REXP D; € RLi*C d; e RLi and K; being proper cones. Note that the
inclusion of the auxiliary vector # in P" seems redundant as & could be absorbed in Z.
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In the next section, however, we will impose structural requirements on the marginal
distribution of Z that do not affect &. We allow K or Q to be zero, in which case the
expectation condition in (4) is void or the random vector # is absent, respectively. We
also assume that C; is essentially strictly feasible,! Ei’ﬁi € [0, 1] and P, < p; for
all i € Z. Nested moment ambiguity sets of the form (4) have been used in [45] to
evaluate worst-case expectations of convex functions. Here, we use them to compute
worst-case probabilities of polytopes. As we will see shortly, allowing for multiple
confidence sets C; enables us to model arich variety of ambiguity sets. By designing the
confidence sets C; appropriately, for example, we can prescribe the modality structure
of Z, or we can specify confidence regions for the moments of Z if these moments are
estimated from historical samples, see [45].
In the remainder we impose the following regularity conditions.

(B) The confidence set C; has probability one, that is, P, = Pr = 1, and all other
confidence sets C;,i = 1, ..., I — 1, are bounded subsets of C;.
(N) Foralli,i’ € Z,i # i’, we have either C; € C;r, C;y € C; or C; N Cyr = 0.

The boundedness condition (B) implies that the confidence set C; contains the support
of the joint random vector (Z, ). This does not restrict generality since we are free to
choose C; = RP x RZ, but it simplifies some model formulations in later sections.
Condition (B) also stipulates that the confidence setsC;,i = 1, ..., [ —1, are bounded.
This is necessary to obtain tractable formulations for the uncertainty quantification
and chance constrained programming problems. The nesting condition (N) imposes
a strict partial order on the confidence sets C; with respect to the €-relation, and it
also requires that incomparable sets are disjoint. We remark that for two sets C; and
C;r, the relation C; € C;r can be verified efficiently in many cases, for instance if both
sets are polyhedral. All examples studied in this paper satisfy the nesting condition by
construction. The importance of the nesting condition is highlighted by the following
result, which is proven in [45, Theorem 2].

Theorem 2 Verifying whether the nested moment ambiguity set P" defined in (4) is
empty is strongly N'P-hard even if P" does not involve any expectation conditions
(i.e., K = 0) and there are only two bounded (second-order) conic representable
confidence sets Cy, Co» with C1 € Cp but Cy & C,.

Theorem 2 implies that if the nesting condition (N) is violated, then the uncertainty
quantification and chance constrained programming problems are strongly N P-hard.
Some results in this paper require that in addition to (N), any set C; that contains another
set C;s, C;y € C;, must have an affine dimension of at least 2. This dimensionality
condition will be satisfied by all examples in this paper, and it certainly holds for most
applications of practical interest.

1 We call C; essentially strictly feasible if there is (z, u) € C; that satisfies all non-polyhedral constraints
in (5) strictly, see [4].
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2.2 Structural ambiguity sets

As highlighted in [45], nested moment ambiguity sets of the form (4) allow us to
model an abundance of (generalized) moment conditions. However, they fail to capture
commonly encountered structural properties of the marginal distribution of Z. In the
remainder of the paper, we will thus intersect the nested moment ambiguity set (4) with
various structural ambiguity sets that capture features such as symmetry, unimodality
or independence. We require all structural ambiguity sets to be convex and weakly
closed. For ease of exposition, we temporarily set Q = 0, thus assuming that there
are no auxiliary random variables @, but we will revoke this restriction at the end of
this section.

In this work we focus on structural ambiguity sets P € Po(R”) that possess a
Choquet representation, whereby every distribution P € P can be written as a mixture
(i.e., an infinite convex combination) of extremal distributions of P. Thus, for every
Borel set B € B(R”) we require that

P[B] = / V,(B) M(dv), ©)
y

where V,, v € V € RV, represents the family of extremal distributions (extreme
points) of P, and M € Py(V) is the mixture distribution generating IP. This implies
that the family of extreme points admits a finite-dimensional parameterization. In
distributionally robust optimization such structural ambiguity sets were first studied
in [36]. We show next that this abstract framework covers several practically relevant
classes of structural ambiguity sets.

Symmetry Let P* be the set of all point symmetric distributions on R” with center
m. Thus, P € P* if and only if P[B] = P[2m — B] for all Borel sets B € B(R?). The
extremal distributions of P are
1 1 P
Vy = 58,, + 552,,,_1, forv e R",
where &, and 82,,—, denote the Dirac distributions that place all probability mass on
the points v and 2m — v, respectively.

Unimodality A distribution P is called unimodal with center m if P[t(B — m)]/t"
is non-increasing in # > O for all B € BR?P), see e.g. [15]. The definition implies
that if P has a continuous density function p(z), then PP is unimodal if and only if
p(t(z — m)) is non-increasing in r > 0 for any z € R”. The extreme points of the set
of unimodal distributions are the radial distributions V,, v € R”, that are supported
on line segments from m to v and that satisfy

Vo (Im,m+t(v —m)]) =¥ Vi el0,1].

a-Unimodality For a > 0, let P“ be the set of a-unimodal distributions with center
m, that is, P € P“ if and only if P[t(B — m)]/t* is non-increasing in r > 0 for all
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B € B(RP), see [15]. Note that an a-unimodal distribution on R¥ is unimodal in the
usual senseif « = P.Moreover, if an a-unimodal distribution has a continuous density
function p(z), then t*~F p(¢(z — m)) is non-increasing in > 0 for any z € R”. The
extreme points of P% are the radial distributions V,, v € R”, that are supported on
line segments [m, v] and that satisfy

Vo (m,m+t(v —m)]) =1* Vrel0,l1].

Multimodality Consider the ambiguity set generated by the convex combination
Zf: | A P¥(m;) of a-unimodal ambiguity sets P%(m,) with centers m,, r =
1,..., Rand Zle A = 1. This ambiguity set contains all «-multimodal distributions
with a mode of probability mass A, > O centered at m, foreachr = 1,..., R. The
extremal distributions of this ambiguity set are representable as V, = Zf: 1MV,
forv = (vy,...,vg) € RRP where V,,, for v, € R” is any extremal distribution
of the set P“(m,),r =1,..., R.

Independence Let P' be the set of all distributions on R under which the compo-
nents of the random vector Z are independent. One readily verifies that P’ violates
our convexity assumption. Indeed, we have &, e € P!, but the components of Z
are perfectly correlated under the mixture distribution %50 + %8e. We will show in
Sect. 3 that the uncertainty quantification and chance constrained programming prob-
lems are typically intractable for ambiguity sets that impose independence among the
components of Z.

Remark 1 Tn the presence of auxiliary random variables # € R with Q > 0, the
above structural ambiguity sets are redefined as the families of all distributions [P €
Po(PP x RC) whose marginal projections IT;P display the structural properties (e.g.,
symmetry or «-unimodality etc.) outlined above.

2.3 Examples

The ambiguity sets that can be generated by intersecting a nested moment ambiguity
set of the form (4) with a Choquet-representable structural ambiguity set display a
remarkable diversity. We now show that many ambiguity sets from the recent literature
can be expressed as instances of this class.

Example 1 (Chebyshev Ambiguity Set) Let P be the ambiguity set of all distributions

on R” with mean L€ R? whose covariance matrix is bounded above by ¥ € SP,
that is,

P={PeP®) Ep[f]=p Ep[(E-w)(E-n)|<Z}. O

Consider the following instance of the nested moment ambiguity set (4), which
involves the auxiliary random matrix U € RP*P,
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Uncertainty quantification and chance constrained programming 43

Ep [Z] =nu, Ep [ﬁ:l =X,

P = PeWRPXRPXP):P[( : (E_JL)T)M}ZI ;
G-n) U g

Since P’ only contains one confidence set with probability bounds P, = P =1
the boundedness condition (B) and the nesting condition (N) are trivially satisfied.
Moreover, a Schur complement argument implies that [T’ = P. The Chebyshev
ambiguity set has been studied extensively in distributionally robust optimization [13,
18,45,49] and can also be generalized to account for uncertainty in the mean and/or
covariance matrix of Z, see e.g. [13,45].

If we intersect the nested moment ambiguity set from Example 1 with the structural
ambiguity set of all unimodal distributions, then we recover an ambiguity set that has
been studied in [41] and is closely related to a tightened Chebyshev-type inequality
due to Gauss [20].

Example 2 (Gauss Ambiguity Set) Let P be the ambiguity set of all unimodal distri-
butions on R” with center m € R? and mean u € R¥ whose covariance matrix is
bounded above by ¥ € SP that is,

» P is unimodal with center m,
P={PePy(R’): ©

- - ~ T
Epk]=M,EPUZ—Mﬂz—u)]<Z
In analogy to the previous example, the ambiguity set

IT;P is unimodal with center m,
Ep[z] = Ep|0]=7.

1 (z—fL)T) ]_
Pl ) 70 =

satisfies (B) and (N) as well as IT; P’ = P.

P ={P e Py(RF x RF*F)y: (10)

Examples 1 and 2 rely on classical statistical indicators—the mean and variance—
to characterize the unknown distribution Q. In the next two examples, we describe Q
through location and dispersion measures from robust statistics, namely the median,
the median-absolute deviation and the Huber loss function. While reminiscent of the
mean and variance, these indicators may be more reliable as they are easier to estimate
from data, see [10,45].

Example 3 (Median-Absolute Deviation Ambiguity Set) Let P be the ambiguity set
of all symmetric distributions on R” with center m € R? whose median absolute
deviation is bounded above by f € Ri, that is,

P is symmetric with center m,

_ Py .
P=1PecPR )'Ep[|2—m|]§f ,

(1)
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where the absolute value is understood to apply component-wise. Note that for sym-
metric distributions, the median coincides with the center. Consider the following
instance of (4), which involves the auxiliary random vector & € RP.

IT;P is symmetric with center m,
P =1Pe PR xR"): Pla>7—m, a>m—-7] =1, (12)
Ep @] = f

Since P’ involves only a single confidence set with probability bounds p,=p1=1L
the boundedness condition (B) and the nesting condition (N) are trivially satisfied.
Moreover, one readily verifies that IT; P' = P.

Example 4 (Huber Ambiguity Set) Consider the ambiguity set
P={PeP®") :Eplzl = n, Ep[Hs(fTE—nD| <g},

where ut, f € RP, g € R, and Hpg(z) is the Huber loss function with prescribed
robustness parameter § > 0, that is, Hg(z) = %zz if |zl < B;=8 (|z| — %,3)
otherwise, see [26]. The expected Huber loss function represents a robust dispersion
measure that generalizes the variance (for 8 — ©0) and the mean absolute deviation
(for B — 0). Consider now the following instance of (4), which involves the auxiliary
random variables i, v, w € R;.

Ep[Z] = p. Ep[w]=g.

’_ P 3. 1 2
Pr= e PR xRy : IP’[E (fTZ—i—ﬁ—ﬁ) + B + D) Sﬁ)} =1
(13)
It has been shown in [45] that P’ satisfies IT; P’ = P. Since P’ only involves a single
confidence set with probability bounds P, = = p; = 1, the boundedness condition (B)

and the nesting condition (N) are tr1v1ally satisfied.

We close this section by reviewing a data-driven ambiguity set that can be con-
structed directly from independent samples of the unknown distribution Q. In contrast
to the previous examples, this ambiguity set converges to the singleton {Q} as the num-
ber of available samples tends to infinity. For a detailed discussion of this ambiguity
set we refer to [31].

Example 5 (Wasserstein Ambiguity Set) Suppose that we have observed independent
samples z;,i € Z = {1, ..., I}, of an unknown data-generating distribution Q with
bounded support, and assume for ease of exposition that z; # z; fori, j € Z,i # j.

If we denote by P = %Z{:l Jz, the empirical distribution, then the Wasserstein
ambiguity set of size r > 0 is defined as

P={PeP®R):dy(P.P) <r) (14)

and thus contains all distributions that reside within the ball of radius r around PP with
respect to the Wasserstein metric of order p > 1. For any (marginal) distributions P
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and PP, of two P-dimensional random vectors z1 and Z», respectively, the Wasserstein
distance dl‘;’ (P1, IP>) of order p is defined as

dy (Py,P2) = inf Ep[[1Z1 — 22l ]
s.t. P e Po(RP x RP)
P[Z) € B] = P[Z; € B]
P[Z, € B] = P»[Z; € B]

(15)
] VB € B(RP),

see e.g. [37]. Note that (15) can be viewed as a transportation problem that minimizes
the expectation of ||z — Z2||, over all possible joint distributions IP of Z; and Z, with
marginals IP; and P,, respectively. If u € Ry denotes an upper bound on the Euclidean
diameter of the support of @, then the ambiguity set

, b Epliig] =r, PLZ, &, i) € R?PH!] =1,
[ B XR):PUEZZHP:_M;,]:W Vi=1,...,1
(16)

constitutes an instance of (4) that satisfies the boundedness condition (B) and the
nesting condition (N). Moreover, we have I1; P’ = {P} and IT; P’ = P.

3 Uncertainty quantification

In this section we develop tractable reformulations for instances of the uncertainty
quantification problem (1) under the premise that /P constitutes a nested ambiguity
set of the form (4) or an intersection of (4) with the set of symmetric or o-unimodal
distributions. We also show that the uncertainty quantification problem is generically
intractable for ambiguity sets that impose independence among the components of Z.
The results of this section generalize the results of [22] to instances of (4) with I > 1
confidence sets.

Our tractability results rely on an interpretation of the uncertainty quantification
problem (1) as a generalized moment problem of the type [38, Equation (3.2)] whose
semi-infinite dual [38, Equation (3.4)] lends itself for further simplification. Strong
duality holds under the Slater condition [38, Equation (3.12)], which we henceforth
abbreviate as (S). For nonempty ambiguity sets, this condition is non-restrictive and
can always be enforced by slightly perturbing the parameters b, p. and p;, but it is
cumbersome to state and verify explicitly for the generic nested a amb1gu1ty set (4).
Many examples considered in this paper involve only a single confidence set (I = 1)
and no structural information, in which case the Slater condition (S) simplifies to the
requirement that b belongs to the interior of the convex set {Az + Bu : (z,u) € C1}.

We are now in the position to state our first tractability result.

Theorem 3 (Moment Ambiguity Sets) If P = P" is an instance of (4) that satisfies
the boundedness condition (B), the nesting condition (N) and the Slater condition (S),
then the worst-case probability (1) coincides with the optimal value of the conic
optimization problem
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sup b’y + D p.hi — Diki
icl
st. y eRE, Ak eRi, ¢, €k, iel
TnjeRy, (L) eLl, ¥;; €K7, G j)el
Z Oir — ki) +d] ¢, < 1 a7
i'e A®) Viel
Aly=Cl¢;, BTy =D/¢,
Z (Air — Kir) +d,'T'ﬁij —Tjt; <0
=) V@i, j) € L,
Ay +vjs;=Cly;;,, Bly =Dy,

where A(i) = {i} U {i/ €el:C e C',-r} represents the index set of all supersets
(antecedents) of C;, while L ={(i, j) € Z x J : A(z, u) € C; .s}—z > 1}

The index set £ contains the pair (i, j) € Z x J if there are realizations (z, u) € C;
that violate the j-th constraint in (1). One can verify efficiently whether (i, j) € £ by
checking whether the optimal value of the convex optimization problem sup {s;.rz :
(z,u) € C;} is strictly larger than ¢;.

Problem (17) is a conic optimization problem whose size scales polynomially in
the size of S and ¢ in problem (1) as well as the description of the ambiguity set P”
in (4). Moreover, if all cones /C; are polyhedral, then (17) is a linear program. We
illustrate Theorem 3 with two examples.

Example 6 (Generalized Chebyshev Bounds) Theorem 3 allows us to compute the
worst-case probability of the event §Z < ¢ if the distribution of Z is only known to
belong to the Chebyshev ambiguity set (7) from Example 1. Thereby, we recover a
generalized multivariate Chebyshev inequality that was discovered in [43]. As P =
IT;P', where P’ is defined in (8), we have infpep P [SZ < t] = infpepr P [SZ < t].
For ¥ > 0, P’ is an instance of (4) that satisfies the conditions (B), (S) and (N). Thus,
we can use Theorem 3 to reformulate the uncertainty quantification problem as the
semidefinite program

sup B—p'y —(Z+pun'.T)
st. BeR, yeRP, Irest, rjeRy, jel

— 1,7 P 1 o\ T
(11 Py )bﬂ, (f”’ R )>0 vjeL
04 r §(y+rjsj) r
(18)

where L={jeJ:s; #0 Vv t; <O}

Example 7 (Data-Driven Uncertainty Quantification) Theorem 3 further allows us to
compute the worst-case probability of the event Sz < ¢ if the distribution of Z is an
element of the Wasserstein ambiguity set (14) from Example 5. Thereby we recover
a data-driven probability inequality first discovered in [31]. As P = IT; P/, where P’
is defined in (16), we have infpep P[SZ < t| = infpep P [SZ < t]. Moreover, P’
is an instance of (4) that satisfies the conditions (B) and (N). Even though P’ fails
to satisfy the Slater condition (S), one can show that Theorem 3 remains valid [31].
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Thus, the uncertainty quantification problem (1) can be reformulated as the convex
optimization problem

1
1

sup 7 Zl,Bz —yr

e

st. BeRlyeRy, teRX (19)
pi <1
lzijsilly <v
Bi + tijS]TEi < Tjtj

]Vjej Vi=1,...,1,

where ¢ is defined through 1y ql = 1. Note that as r — 0, the variable y can be
driven to infinity at essentialfy no cost. Thus, the optimal value of (19) converges to
the fraction of the samples z;,i = 1, ..., I, that satisfy §Z; < ¢. Problem (19) reduces
to a linear program for p € {1, co}.

We now consider instances of the uncertainty quantification problem (1) where P
emerges from the intersection of a nested moment ambiguity set P” of the form (4)
with the set of all symmetric distributions P° centered around m. In order to derive a
tractable reformulation for this problem class, we require that P” satisfies the following
technical dimensionality condition:

(D) The ambiguity set satisfies / = 1 (support only), or it satisfies Q > 0 (the vector
u is not absent) and all confidence sets C;, i € Z, are bounded.

Moreover, for the multi-indices i = (i, i) € Z? ranging over pairs of confidence
setsand j = (j*, j7) € (J U {0})? indexing pairs of inequalities in the uncertainty
quantification problem, we define the set

(z,ut) € Ci+, (—z,u™) € C;-
Dyj={G@u",u)eRF xRCxRC: j*>0= sl z>1y . (20)
jT>0= —s;.r_z>tj7

and we impose the following feasibility condition.

(F) Foranyi= (it,i7) € Z?and j = (j*, j7) € (J U{0)?2, if Dyj # @, then Dy
is essentially strictly feasible.

Condition (F) is a mild technical condition that is satisfied, for example, if the cones
Ki, i € Z, are polyhedral.

Theorem 4 (Symmetry) Assume that P = P" N'P*, where P" is an instance of the
nested moment ambiguity set (4) that satisfies the boundedness condition (B), the
nesting condition (N), the dimensionality condition (D) and the feasibility condition
(F), whereas P* is the set of all distributions P € Py (R? x R9) under which IT;P is
point symmetric around m = 0. If the Slater condition (S) holds, then the worst-case
probability (1) coincides with the optimal value of the conic program
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sup by + D phi — Piki
iel
st. yeRK, A keRL
,./,+€’Cl+7¢ EIC, ’Xl.] Xl.] €R+a (l.])e‘c
D i—k)+ D i—k) @1)
ieAGiT) ieAli™)
+dT ++dT¢ — Xt~ x-S wi b V@) e L,
+ T +
wu C 1/,1‘] = Xij it le 5j-
BT)’ = DT+'/fJr DT Vi

wherei= (it,i7)eT?andj= (jT,j~) € (J U{0})? are multi-indices,
={ap e xuOn?: Dy £9)

with Dyj defined in (20), wj = I} j+—o) + ]IU—:O], so=0andty=0.

In analogy to Theorem 3, Theorem 4 provides a reformulation that scales polyno-
mially in the input data. Note also that (21) reduces to a linear program whenever the
cones KC; for i € 7 are polyhedral.

We emphasize that in Theorem 4, the center of symmetry is set to 0 merely to
simplify the exposition. This is without loss of generality and can always be accom-
plished by a coordinate shift. Moreover, we note that one can efficiently verify whether
(i,j) € L.If j > 0, for example, we have (i, j) € L if and only if the optimal value of
the convex optimization problem

sup mln{s +T L s,z—t—}
J

st. (z,ut,u )eRPxRQx]RQ

(Z,u )GCﬁ»,( Z,u )6017

is strictly positive. We illustrate Theorem 4 with two examples.

Example 8 (Uncertainty Quantification with Robust Dispersion Measures) Let P be
the median-absolute deviation ambiguity set (11) from Example 3. Note that P =
IT;P’, where P’ is defined in (12). Moreover, P’ can be viewed as the intersection of
a moment ambiguity set P" of the form (4) with / = 1 and a structural ambiguity
set P* containing all distributions P € Py(R” x R”) under which IT;P is symmetric
around m. For f > 0, P’ satisfies the conditions (B), (N), (D), (F) and (S). Thus,
we can employ a coordinate shift and use Theorem 4 to reformulate the uncertainty
quantification problem (1) as the tractable linear program

sup o — fT}'
st. aeR, yeRK, xj+,xj_ eRy, jel
Xj+sj+ =X S =2¥, x5 8- — Xj+sj+ <2y ’
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where j = (j, j7) € (J U {0})? is a multi-index ranging over

jT >0 = sj.r_(m—z) > -

£=[je(ju{()})2: |:E|ze]RP; jT>0 = ST+(m+Z)>tj+:H

wj = HU+:O] + HU—:O], so=0and 7 =0.

Example 9 (Data-Driven Uncertainty Quantification, cont’d) Let P = P'NP?, where
P’ is the lifted Wasserstein ambiguity set (16) from Example 5 and P* is the set of all
distributions P € Po(R¥ x RF x R) with the property that IT;P is point symmetric
around m. If u is a strict upper bound on the Euclidean diameter of the support of Q,
then the ambiguity set P’ satisfies the conditions (B), (N), (D) and (F). Even though
P’ fails to satisfy (S), it can be shown that Theorem 4 remains valid if r is sufficiently
large. Thus, we can reformulate the uncertainty quantification problem as the convex
optimization problem

1
sup Z,Bi —yr
ieZ
st. BeRlyeR,
X Xj Ry, vy v €RP G j) el
viilly < v Ivllg < v, v + vi}T= X Si+ = X S
Bi+ + Bi- + v G —m) vy (m —Z;-) V(. j) € L,
—|—Xi}r(sz+m —tj+) + Xij_(s;.r,m —1j-) < wj

wherei= (i*,i7)and j = (j*, j ) are multi-indices ranging over
i+ T
I P 5 ) pJ >0 = s, (m+2z)>1;+
ﬂ—[(l,J)GI x (J U{0hH .|:E|z€R Ym0 sj_(m—z)>tj7 ,

wj = ]I[j+:0] + H[jfzo], 50 = 0,7 = 0,and ¢ > 1 is defined through % + é =1.
Problem (19) is a linear program if we choose p € {1, oo}.

Next, we consider instances of the uncertainty quantification problem (1) where
‘P emerges from an intersection of the nested moment ambiguity set (4) with the
set of all «-unimodal distributions P*. In order to facilitate tractable reformulations,
we restrict our attention to the subclass of epigraphic moment ambiguity sets. An
epigraphic moment ambiguity set is an instance of (4) with / = 1 (i.e., it contains
no confidence set other than the support), where the interaction between Z and # is
captured through the epigraph constraint in

C ={(z,u)eRPxRQ:Clz <k, d1, 8(2) <k, u}, (22)

where C; € RL*P d, e K and K; € RE1 Ky € R€ are proper cones. We require
that the function g : RP — R2 is Ky-convex [8, Section 3.6.2] and that the set
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{(z,u) € RP x RC : g(z) <k, u} is representable through conic inequalities and
additional auxiliary variables [45]. We remark that any confidence set of the form (5)
can be expressed as an instance of (22) and vice versa. Epigraphic ambiguity sets
become a special case of (4) with I = 1, however, if structural properties are imposed
on the marginal projection IT;PP.

Theorem 5 (Unimodality) Assume that P = P¢ N 'P* where P¢ is an epigraphic
moment ambiguity set and P% is the structural ambiguity set of all distributions P €
Po(RF x RQ) with the property that IT;P is a-unimodal around z = 0. If the Slater
condition (S) holds and t > 0, then the uncertainty quantification problem (1) is
equivalent to the semi-infinite program

sup B+b'y
st. BeR,y ERK,‘[J‘ ERL Yo, ¥, €], jel
-B'y e K3
o T
ﬂ+(a 1Az+Bg"‘(z)) y+(d1—C1z)T¢0§ 1 (23)

.
,3+( a Az-i-Bga(Z)) y+W@i—Ci)'y;
a+1

trsz = G e <0 Vel

vz € R?,

where L = {j € J:3(z,u) e CY .s;.rz - ()} and g%(z) = fol g(17) ar®~dr.

Unlike the previous results in this section, Theorem 5 does not provide a tractable
reformulation per se. Instead, the tractability of problem (23) is determined by the
properties of the function g% () that appears in the semi-infinite constraints of (23).
In the following, we present two examples for which problem (23) has a tractable
reformulation.

Example 10 (Generalized Gauss Bounds) Theorem 5 allows us to compute the worst-
case probability of the event SZ < ¢ if the distribution of Z belongs to the Gauss
ambiguity set P defined in equation (9) of Example 2. Since P = II;P’ for the
ambiguity set P’ defined in (10), we have infpep P [SZ < t] = infpep P [SZ < t].
Moreover, the lifted ambiguity set P’ satisfies the conditions of Theorem 5 if ¥ > 0,
Sm < t and C; is defined as

={@ ) eR" xRP" g0 s U},

where g(z) = zz! is S_{-convex. Applying a coordinate shift and employing The-
orem 5 allows us to reformulate the uncertainty quantification problem (1) over the
Gauss ambiguity set as a semi-infinite program. Thereby, we recover a generalized
multivariate Gauss inequality that was discovered in [41]. Since g%(z) = 5 +2zz
can be computed explicitly, we may use standard robust optimization techniques to
further simplify this semi-infinite program to the finite convex program
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sup B—(pu—m)'y —(Z+(pu—-—m)(p—m)",T)
st. BeR,yeRP, resl t;eR;,jel
1— 1 o 7T
(l o 'B 2a+ly )%0
2a+1y a+2 T
a+1 a
el 5] Tm) T =8 (y )

1 ) =0 VjeLl,

(24)
where £ = {j € J : s; # 0}. Note that (24) is equivalent to a tractable semidefinite
programif « is rational, in which case the nonlinear term in the second matrix inequality
can be linearized by using a well-known conic expansion of power functions, see

e.g. [4, Section 2.3.1].

Example 11 (Mean-Absolute Deviation and Unimodality) Let P be the ambiguity set
of all distributions on R? that are a-unimodal with mean and center m and whose
mean-absolute deviation is bounded above by f, that is,

P []P’ € Po(RP PP is «-unimodal with center m }
= 0

VB [2] = m Ep [ m] <
Since IT; P’ = P for the ambiguity set P’ defined as

IT;Pis e-unimodal with center m,
P = (A s T a1 |

we have infpep P [SZ < t] = infpepr P [SZ < t]. Moreover, P’ satisfies the con-
ditions of Theorem 5 if we define g(z) = |z — m| and require that Sm < ¢ and
f > 0. Applying a coordinate shift and using Theorem 5 in conjunction with standard
robust optimization techniques, we can thus reformulate the uncertainty quantification
problem (1) as the finite convex program

sup B— fTn
st. BeR,OeR peR tjeRy,jel
nz0=-np=1

o (25)
> —0 > —
a+1" w1l Ui =T

= (o (=)

where £ = {j € J : s5; # 0}. Note that (25) can be reformulated as a tractable
second-order cone program if « is rational, see [4, Section 2.3.1].

VjeL,

In addition to evaluating the worst-case probability (1), practical applications often
require simulation runs under the distribution that attains the worst-case probability.
We can construct such worst-case distributions from the dual problems of (17, 21)
and (23). In the interest of space, we do not embark on this pathway and instead refer
the interested reader to [22,43].
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To conclude this section, we investigate the tractability of the uncertainty quantifi-
cation problem (1) when the components of Z are mutually independent under every
distribution within the ambiguity set P.

Theorem 6 (Independence) The uncertainty quantification problem (1) over the ambi-
guity set P defined as

P=P'N {]P’ € Po(RP x R?) : the components of z are independent under ]P’} ,

where P" is the moment ambiguity set (4), is N'P-hard even if (B) and (N) are satisfied
and K = 0 (no expectation constraints).

One can show that if in addition to the assumptions of Theorem 6, the ambiguity
set P" satisfies I = 1 (that is, there are no confidence sets other than the support),
then the uncertainty quantification problem (1) reduces to a robust feasibility problem
that can be solved efficiently. Also, if the moment ambiguity set in Theorem 6 satisfies
K >0but I =1andC; =R? x RZ, then problem (1) evaluates to 1 if both § = 0
and ¢ > 0 and to O otherwise.

4 Chance constrained programming

We now study chance constrained programs of the form (2), where the safety of the
underlying system can be actively enhanced by adjusting the design decisions x € RY.
It turns out that the tractability of (2) is intimately related to the number of rows J
of the technology matrix S(x) and the right-hand side vector #(x). Hence, Sect. 4.1
is devoted to individual chance constraints where J = 1, and Sect. 4.2 studies joint
chance constraints where J > 1.

4.1 Individual chance constraints

As J = 1 throughout this section, we can simplify the notation if we denote the
technology matrix by s(x) " and the right-hand side vector by 7 (x).

We first study instances of the chance constrained program (2) where the ambiguity
set is of the form (4). To derive a tractable reformulation for such problems, we restrict
our attention to the subclass of Markov ambiguity sets, which are defined as instances
of (4) with / = 1 and p | = P1 = 1. Note that these ambiguity sets involve no
confidence sets other than the support. We emphasize that apart from the Wasserstein
ambiguity set all other examples of Sect. 2.3 constitute either Markov ambiguity sets
or result from intersections of Markov ambiguity sets with structural ambiguity sets.
Note that Markov ambiguity sets satisfy the conditions (B) and (N).

Theorem 7 (Moment Ambiguity Sets) If P is a Markov ambiguity set satisfying (S)

and J = 1, then the chance constraint in (2) is satisfied if and only if there are B € R,
y eRK ¢, ¥ € K%, © € Ry such that
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B+b'y>(U—-e1, p+dip<t, B+d] ¥ <t(x)
ATy =g, B'y=D]¢ (26)
ATy +sx)=C{y, B'y =D[y.

Note that (26) is a system of linear constraints that scales polynomially in the
description of problem (2). The next result shows that the restriction to Markov ambi-
guity sets in Theorem 7 is necessary.

Theorem 8 If P is an instance of (4) with 1 > 1, then the chance constrained
program (2) is strongly N'P-hard even if J = 1, K = 0 (no expectation constraints)
and the boundedness condition (B) as well as the nesting condition (N) are satisfied,
while X is a polyhedron.

We illustrate the tractable reformulation of Theorem 7 with two examples.

Example 12 (Chebyshev Ambiguity Set) We can use Theorem 7 to derive a tractable
reformulation for individual chance constraints over the Chebyshev ambiguity set P
defined in Example 1 with ¥ > 0. We have P = IT;P’ for the Markov ambiguity
set P’ defined in (8). Theorem 7 thus implies that the individual chance constraint
infpep P[s(x)7Z < t(x)] is satisfied if and only if there exist 8 € R, y € RF,
I €SP andt € Ry with

B—n'y —(T+pp". T)>1-61

T— :3 %y—r) 0
( %y r kl T
n@ —p L —seo) )
(%(y Zs@)) r # 0.

Moreover, one can show that this constraint system is satisfied if and only if

/16;6 |23+ w70 <0,

which is a second-order cone constraint, see [18].

Example 13 (Huber Ambiguity Set) Theorem 7 allows us to derive a tractable refor-
mulation for individual chance constraints over the Huber ambiguity set P defined in
Example 4, assuming that f ' g < g. We have P = IT; P’ for the Markov ambiguity
set P’ defined in (13). Theorem 7 thus implies that the individual chance constraint
infpep P [s(x)TZ < t(x)] is satisfied if and only if there are «, vo, v; € R, ¥ € R”
and 7, ¢, L9, A1 € Ry that satisfy the following semi-definite constraints.

a—¢g>{1—-e)r

Ao Vo Al Vg
(vo %¢) = (w %¢) =
a+ro =<7, ¥=2w0f, —Bd <21 <pe
A —tx) +5@) TR0, Ptsx) =2uf, —Bp <2v < B
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We now consider instances of the chance constrained program (2) where P is gener-
ated by intersecting a Markov ambiguity set with the set of all symmetric distributions
Ps.

Theorem 9 (Symmetry) Assume that P = P" (P*, where P™ is a Markov ambiguity
set that satisfies the dimensionality condition (D) as well as the feasibility condition
(F), and P° is the set of all distributions P € Py(RF x RC) with the property that
IT;P is point symmetric around m = 0. If the Slater condition (S) holds, then the
chance constraint in (2) with J = 1 and € € (0, 1/2) is satisfied if and only if there
areBeR y eRE ¢yt ¥~ € K7 and © € Ry such that

B+by = (-6, B+dip =<t
2+d{ (Wt +y ) —tx) <7, Cl@T—y)=s50x) 27)
B'y=D/yt=D]y~ =D]¢.

In analogy to Theorem 7, Theorem 9 reexpresses the individual chance constraint
as a finite set of tractable constraints. One can show that a Markov ambiguity set
P™ satisfies the feasibility condition (F) whenever the projected support {z € R” :
Ju e R2.(z,u) € C1} is point symmetric around m = 0. The restriction to Markov
ambiguity sets in Theorem 9 is again necessary.

Theorem 10 If P = P" N P* where P" is an instance of (4) with I > 1 and P*
is the set of all distributions P € Py(RP x R2) with the property that IT;P is point
symmetric around m = 0, then the chance constrained program (2) is strongly N'P-
hard even if J = 1, K = 0 (no expectation constraints) and the conditions (B), (N),
(D) and (F) are satisfied, while X is a polyhedron.

We illustrate the tractable reformulation of Theorem 9 with an example.

Example 14 (Median-Absolute Deviation and Symmetry) We can use Theorem 9 to
derive a tractable reformulation for individual chance constraints over the median-
absolute deviation ambiguity set P defined in Example 3 with f > 0. Note that we
have P = IT; P’ for P’ defined in (12). If we assume that € € (0, 1/2) and apply a
coordinate shift, then all conditions of Theorem 9 are met and the chance constraint
in (2) is satisfied if and only if

ifT|s(x>| +ms(x) < 1(x),
e

which can be expressed by a system of 2P + 1 linear inequalities.

Next, we consider instances of the chance constrained program (2) where the ambi-
guity set P emerges from the intersection of an epigraphic moment ambiguity set with
the set of all unimodal distributions P“.

Theorem 11 (Unimodality) Assume that P = P¢ NP where P° is an epigraphic
moment ambiguity set, whereas P%, a > 1, is the set of all distributions P € Py (]RP X
RQ) with the property that IT;P is a-unimodal around z = 0. If the Slater condition (S)
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holds, J = 1 andt(x) > 0 forall x € X, then the chance constraint in (2) is satisfied
ifand only if thereare B e R,y e RE, 1 e R, ¢, ¥ € K} such that

B+bTy=(-er, —BTyTe K

B+ ([xi 1Az—i—Bg"‘(z)) y +(d; —Clz)Td) <7
T P (28)
ﬂ+(ailAZ+Bg“(z)) y+di —Ci)'y Ve e R

1 a

a+1
+s(x) Tz — @D T (x)ai <0

We remark that the term —r#lt(x)aa? is convex on {(zr,x) € R4y x X} since
a > 0andt(x) > 0 forall x € X. If « is a rational number exceeding 1, that is,
if « = p/q for some p,q € N with p > ¢, then the epigraph of this term can be
expressed through O(p) second-order conic constraints, see e.g. [41, Lemma 4.2].
In analogy to the formulation (23) of Theorem 5, the tractability of (28) depends on
the functional form of g“(-). We close this section with an example for which the
constraint system (28) has a tractable reformulation.

Example 15 (Gauss Ambiguity Set) Theorem 11 allows us to derive a tractable refor-
mulation for individual chance constraints over the Gauss ambiguity set P defined in
Example 2 whenever X > 0. Since P = [T; P’ for P’ defined in (10), we can replace
P in the chance constrained program (2) with P’. The lifted ambiguity set P’ satisfies
the conditions of Theorem 11 if we set

= {(z, U) e RP x RP*P . g(z) < U},

where g(z) = zz'is Si—convex, and require that the mode m satisfies s(x)Tm < 1(x)
forall x € X. Applying a coordinate shift, using Theorem 11 and employing standard
robust optimization techniques allows us to conclude that the chance constraint in (2)
is satisfied if and only if there exist 8 € R, y € RP, T € S_I; and 7 € R} such that

/3—(u—m)Ty—<E+(u—m)(u—m)T,F>zl—e
(1r;ﬁ %“%}’T)bﬂ

Jati? anl .
a+l 1 _a
T T @) @) TmET =B L (35y - s() o
_ 0.
L ey —sw) =t

4.2 Joint chance constraints
We now study joint chance constrained programs of the form (2) where J > 1.

Until recently, such problems were suspected to be generically intractable, and the
majority of the literature focused on conservative approximations via Bonferroni’s
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inequality [33], distributionally robust conditional value-at-risk constraints [11,49]
and component-wise quasi-concave functions [30]. In the following, we present an
exact tractable reformulation of problem (2) for a specific class of ambiguity sets, and
we argue that this tractability result is unlikely to extend to more general settings. The
results of this section originate from [22], and thus we do not repeat the proofs here.

We first consider instances of (2) where the ambiguity set is of the form (4). To
obtain tractable reformulations for such problems, we restrict our attention to conic
moment ambiguity sets, which we define as Markov ambiguity sets withd| = 0. Conic
moment ambiguity sets form a strict subclass of the epigraphic moment ambiguity sets
introduced in Sect. 3. Nevertheless, they are expressive enough to capture moment con-
straints involving many interesting dispersion measures such as the mean-absolute
deviation E |-|, the mean-semideviation E[-]; and the mean-maximum deviation
E I/l oo-

Theorem 12 Assume that the technology matrix of the chance constraint in (2) is
fixed, that is, S(x) = S. Let P be a conic moment ambiguity set satisfying (S), and
assume that (s j,0) ¢ pol(Cy) for all j € J, where pol(Cy) denotes the polar cone
of C1. Then the chance constraint in (2) is satisfied if and only if there exist y € RX,
dekitjeRiandy; € K, j €T, with

1+b'y>1-¢,ATy=Cl¢p,B'y=D¢
ATy +15;=C{¥;,B'y=D[y;

[P
rj—tj(x)

wheres;, j =1,...,J, denotes the j-th row of S as a column vector.

. (29)
<7 +1j(x) vied,
2

Note that (29) is a system of conic-quadratic constraints that scales polynomially
with the description of the chance constraint (2). In contrast to all other results in this
paper, joint chance constraints thus require a conic-quadratic reformulation even for
ambiguity sets with a polyhedral support.

The following two results show that both the restriction to conic moment ambiguity
sets and to fixed technology matrices is critical in Theorem 12.

Theorem 13 The joint chance constrained program (2) is strongly N'P-hard even if
S(x) = S and P is an epigraphic moment ambiguity set whose support C| represents
a hypercube.

Theorem 14 [f the technology matrix S(x) depends on x, then the joint chance con-
strained program (2) is strongly N'P-hard even if P constitutes a conic moment
ambiguity set.

Chance constraints with fixed technology matrices arise naturally, for example, in
inventory control, cash matching, unit commitment or airline revenue management
problems etc. We illustrate the tractable reformulation offered by Theorem 12 with
two examples.
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Example 16 (Mean-Absolute Deviation) Theorem 12 allows us to derive a tractable
reformulation of joint chance constraints over mean-absolute deviation ambiguity
sets P of the form

P={PePy®): Ep ] = . Ep[iz - ul] < £}

where the absolute value is understood to apply component-wise and f > 0. Consider
now an instance of (4) involving the auxiliary random vector i € R”.

’_ P p,. Eplz] =n.Ep[a] = f.
P —<IP’€770(R x R )'P[flzz—ﬂ,ﬂZu—Z]zl

One readily verifies that P = IT;P’ and the lifted ambiguity set P’ satisfies the
conditions of Theorem 12. We thus conclude that the joint chance constraint in (2) is
satisfied if and only if there exist y, B € R” and 7, € Ry, j € £, with

1+fTy>1—¢, —y=B8=>y
-y =B+rTisi=>y

2 T VjeJ.
[P | EpwR

Example 17 (Mean Semi-Deviation) Theorem 12 also allows us to derive a tractable
reformulation of joint chance constraints over more general mean semi-deviation ambi-
guity sets P of the form

73={}P’GPO(]RP):EP[Z]=M,EP[Z—M]+§f+,EP[M—5]+§f_}7

where the operator [-]; = max{-, 0} applies component-wise and f*, f~ > 0. Con-
sider the following instance of (4), which involves the auxiliary random vectors
at,a” e R”.

Ep[z] =n.Pla".d =0]=1,
P'={PePy@®R" xR xRP): Bp[at] = fH Bpla ] =f",
Pla* >z —p,a~ >p—z]=1

One readily verifies that P = IT;P" and the lifted ambiguity set P’ satisfies the
conditions of Theorem 12. We thus conclude that the joint chance constraint in (2) is
satisfied if and only if there exist 8, y*,y~ € R?, 0j.n; € Ri, j € JuU{0}, and
7, € Ry, j e J, with

I+(DHTy P+ () Ty >21-¢
B=00—ny y"< 00, Yy =-m
B+tisj=80;—n;, yt<-6;,y =-n;

; T Vjed.
H[Tj —tj(x)+s]T,JH ST +Hti(xX)—s;p
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If the ambiguity set of Theorem 12 is restricted to distributions P € P with point
symmetric marginals IT;[P, then the joint chance constrained program (2) is strongly
N'P-hard even if the support set C; is a cone.

Theorem 15 If the ambiguity set P satisfies P = P N P° where P is a conic
moment ambiguity set and P is the set of all distributions P € Po(RF x RC) with the
property that IT;P is point symmetric around m = 0, then the joint chance constrained
program (2) is strongly N'P-hard even if S(x) = S.

Finally, if the ambiguity set P in Theorem 12 is restricted to contain only dis-
tributions P € P under which IT;P is «-unimodal, then the intractability results of
Theorems 13 and 14 remain valid since any distribution can be approximated arbitrar-
ily well—in the weak sense—by an «-unimodal distribution with sufficiently large
o > 0, see e.g. [41]. To our best knowledge, the complexity of the joint chance con-
strained program (2) has not been settled for S(x) = S and for P generated by the
intersection of a conic moment ambiguity set and the structural ambiguity set P% of
all unimodal distributions.

5 Approximation algorithm

While the uncertainty quantification problem (1) can be solved efficiently for a broad
range of ambiguity sets (see Sect. 3), the associated chance constrained programs (2)
frequently become intractable (see Sect. 4). In this section, we therefore report a
heuristic for chance constrained programs that determines ‘good’ but in general sub-
optimal decisions even if the associated instance of (2) is intractable. The key idea is
to decompose problem (2) into an uncertainty quantification problem that evaluates
the worst-case probability of the chance constraint in (2) for a fixed decision x and a
policy improvement problem that aims to improve the current decision x.

To this end, we introduce a unified notation for the uncertainty quantification
problems (17), (21) and (23). We denote the objective function of the unified uncer-
tainty quantification problem by Q(¥), where we combine all decision variables
to a single vector ¥. Likewise, we represent the constraints of the unified uncer-
tainty quantification problem as ¥ € Q(x), where we replace the coefficient matrix
S=(s1,...,s;)" with Sx)=(s1(x),..., s7(x) T and the right-hand side vector
t with ¢(x) = (11(x), ..., t7(x)) 7. Thus, a decision x € X is feasible in the chance
constrained program (2) if and only if there is ¥ € Q(x) such that Q(¢) > 1 — €.
This chance constrained program is nonconvex in general as the constraint system
¥ € Q(x) may involve bilinear couplings between x and some components of ¥. We
thus decompose ¥ into a subvector y that contains all variables which are coupled with
x and the subvector p that contains the remaining variables. The chance constrained
program (2) can then be formulated as follows.

minimize ¢ x
subjectto x € X, (x, p) € Q(x) (30)
Ox,p)=1—c¢
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Table 1 Definitions of x and p for some of the ambiguity sets studied in this paper

Ambiguity set Coupled decisions x Uncoupled decisions p
Moment information (Theorem 3) ({zij}ij) (y, Ao, (i} {'ﬁij}ij)
Moments + symmetry (Theorem 4) ({Xi}_}ija {XiJT }ij) (y, A, K, {W;}}ij, {'/’i}}ij)
Moments + unimodality (Example 10) ({‘L’j}j) B,r,I)

Moments + unimodality (Example 11) ({rj }j) (B,6,1)

BLOCK COORDINATE DESCENT ALGORITHM.
1. Initialization. For a given initial feasible solution =, set the objec-
tive value to fO «— c¢'a” and the iteration counter to t «— 1.

2. Uncertainty Quantification. Let (x*, p*) be an optimal solution to

sup {Q(x.p) = (x.p) € Q=" )}

and set x* «— x*.

3. Policy Improvement. Let (x*, p*) be an optimal solution to
inf{c'z:zeX, Qx' . p)>1-¢ (x',p) € Qx)}
@.,p

and set &' — x*, pt — p* and f* — ¢ x*.
4. Termination Criterion. If [f! — f!=1| < §, where § > 0 is a small
convergence threshold, then terminate with the solution x*. Otherwise,

set t < t+ 1 and go to Step 2.

Fig. 1 Block coordinate descent algorithm for problem (30)

Table 1 exemplifies the definitions of x and p for some popular ambiguity sets, and
Fig. 1 presents a block coordinate descent algorithm for solving (30). The algorithm
requires a feasible point x° as input. Note that the optimization problems solved in
Steps 2 and 3 of the algorithm are convex and can thus be solved efficiently. For any
threshold § > 0, the algorithm terminates after finitely many iterations to a partial
optimum of the chance constrained program (30), that is, a feasible point (x*, x*, p*)
where (x*, p*) maximizes (30) for fixed x* and Q(x*, p*) represents the worst-case
probability that the system is safe under the fixed decision x*. For a convergence proof
we refer to [29].

6 Summary

Table 2 summarizes the results of this paper. We reiterate that conic moment ambiguity
sets form a strict subclass of epigraphic moment ambiguity sets and the class of
epigraphic moment ambiguity sets coincides with the class of Markov ambiguity sets.
Neither statement is true, however, if the corresponding moment ambiguity set is
intersected with a structural ambiguity set.
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Xujew ASojouyod)
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