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Abstract The spectral deferred correction (SDC) method is an iterative scheme for
computing a higher-order collocation solution to an ODE by performing a series of
correction sweeps using a low-order timesteppingmethod. This paper examines a vari-
ation of SDC for the temporal integration of PDEs called multi-level spectral deferred
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corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an
FAS correction term, as in nonlinear multigrid methods, couples solutions on different
levels. Three different strategies to reduce the computational cost of correction sweeps
on the coarser levels are examined: reducing the degrees of freedom, reducing the order
of the spatial discretization, and reducing the accuracy when solving linear systems
arising in implicit temporal integration. Several numerical examples demonstrate the
effect of multi-level coarsening on the convergence and cost of SDC integration. In
particular, MLSDC can provide significant savings in compute time compared to SDC
for a three-dimensional problem.

Keywords Spectral deferred corrections ·Multi-level spectral deferred corrections ·
FAS correction · PFASST

Mathematics Subject Classification 65M55 · 65M70 · 65Y05

1 Introduction

The numerical approximation of initial value ordinary differential equations is a fun-
damental problem in computational science, and many integration methods for prob-
lems of different character have been developed [2,20,21]. Among different solution
strategies, this paper focuses on a class of iterative methods called Spectral Deferred
Corrections (SDC) [16], which is a variant of the defect and deferred correction
methods developed in the 1960s [3,15,34,35,41,45]. In SDC methods, high-order
temporal approximations are computed over a timestep by discretizing and approx-
imating a series of correction equations on intermediate substeps. These corrections
are applied iteratively to a provisional solution computed on the substeps, with each
iteration—or sweep—improving the solution and raising the formal order of accu-
racy of the method, see e.g. [11,13,44]. The correction equations are cast in the
form of a Picard integral equation containing an explicitly calculated term corre-
sponding to the temporal integration of the function values from the previous iter-
ation. Substeps in SDC methods are chosen to correspond to Gaussian quadrature
nodes, and hence the integrals can be stably computed to a very high order of accu-
racy.

One attractive feature of SDCmethods is that the numerical method used to approx-
imate the correction equations can be low-order (even first-order) accurate, while the
solution after many iterations can in principal be of arbitrarily high-order of accuracy.
This has been exploited to create SDC methods that allow the governing equations
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A multi-level spectral deferred correction method 845

to be split into two or more pieces that can be treated either implicitly or explicitly
and/or with different timesteps, see e.g. [5,6,28,31].

For high-order SDC methods constructed from low-order propagators, the provi-
sional solution and the solution after the first few correction iterations are of lower-
order compared to the final solution. Hence it is possible to reduce the computational
work done on these early iterations by reducing the number of substeps (i.e. quadrature
nodes) since higher-order integrals are not yet necessary. In [29,31], the number of
substeps used in initial iterations of SDC methods is appropriately reduced to match
the accuracy of the solution, and the methods there are referred to as ladder meth-
ods. Ladder methods progress from a low-order coarse solution to a high-order fine
solution by performing one or more SDC sweeps on the coarse level and then using
an interpolated (in time and possibly space) version of the solution as the provisional
solution for the next correction sweep. In both [29,31] the authors conclude that the
reduction in work obtained by using ladder methods is essentially offset by a cor-
responding decrease in accuracy, making ladder methods no more computationally
efficient than non-ladder SDC methods. On the other hand, in [27], SDC methods for
a method of lines discretizations of PDEs are explored wherein the ladder strategy
allows both spatial and temporal coarsening as well as the use of lower-order spatial
discretizations in initial iterations. The numerical results in [27] indicate that adding
spatial coarsening to SDC methods for PDEs can increase the overall efficiency of the
timestepping scheme, although this evidence is based only on numerical experiments
using simple test cases.

This paper significantly extends the idea of using spatial coarsening in SDC when
solving PDEs. A general multi-level strategy is analyzed wherein correction sweeps
are applied to different levels as in the V-cycles of multigrid methods (e.g. [7,8]). A
similar strategy is used in the parallel full approximation scheme in space and time
(PFASST), see [18,33] and also [38], to enable concurrency in time by iterating on
multiple timesteps simultaneously. As in nonlinear multigrid methods, multi-level
SDC applies an FAS-type correction to enhance the accuracy of the solution on coarse
levels. Therefore, someof the fine sweeps required by a single-level SDCalgorithmcan
be replaced by coarse sweeps, which are relatively cheaper when spatial coarsening
strategies are used. The paper introduces MLSDC and discusses three such spatial
coarsening strategies: (1) reducing the number of degrees of freedom, (2) reducing the
order of the discretization and (3) reducing the accuracy of implicit solves. To enable
the use of high-order compact stencils for spatial operators, several modifications to
SDC and MLSDC are presented that incorporate a weighting matrix. It is shown for
example problems in one and two dimensions that the number of MLSDC iterations
required to converge to the collocation solution can be fewer than for SDC, even
when the problem is poorly resolved in space. Furthermore, results from a three-
dimensional benchmark problem demonstrate that MLSDC can significantly reduce
time-to-solution compared to single-level SDC.

2 Multi-level spectral deferred corrections

The details of the MLSDC schemes are presented in this section. The original SDC
method is first reviewed in Sect. 2.1, while MLSDC along with a brief review of
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FAS corrections, the incorporation of weighting matrices and a discussion of different
coarsening strategies is presented in Sect. 2.2.

2.1 Spectral deferred corrections

SDC methods for ODEs were first introduced in [16], and were subsequently refined
and extended e.g. in [22,24,31,32]. SDC methods iteratively compute the solution to
the collocation equation by approximating a series of correction equations at spectral
quadrature nodes using low-order substepping methods. The derivation of SDC starts
from the Picard integral form of a generic IVP given by

u(t) = u0 +
∫ t

0
f
(
u(s), s

)
ds (1)

where t ∈ [0, T ], u0, u(t) ∈ R
N , and f : RN × R → R

N . We now focus on a single
timestep [Tn, Tn+1], which is divided into substeps by defining a set of quadrature
nodes on the interval. Here we consider Lobatto quadrature and denote M + 1 nodes
t := (tm)m=0,...,M such that Tn = t0 < t1 < · · · < tM = Tn+1. We now denote
the collocation polynomial on [Tn, Tn+1] by u p(t) and write Uj = u p(t j ) ≈ u(t j ).
In order to derive equations for the intermediate solutions Uj , we define quadrature
weights

qm, j := 1

�t

∫ tm

Tn
l j (s) ds, m = 0, . . . , M, j = 0, . . . , M (2)

where (l j ) j=0,...,M are the Lagrange polynomials defined by the nodes t , and �t =
TN+1−TN . Inserting u p(t) into (1) and noting that the quadraturewithweights defined
in (2) integrates the polynomial u p(t) exactly, we obtain

Um = u0 + �t
M∑
j=0

qm, j f (Uj , t j ), m = 0, . . . , M. (3)

For a more compact notation, we now define the integration matrix q to be the
M + 1 × M + 1 matrix consisting of entries qm, j . Note that because we use Gauss–
Lobatto nodes, the first row of q is all zeros. Next, we denote

U := [U0, . . . ,UM ]T ,

and
F(U) := [F0, . . . , FM ]T := [ f (U0, t0), . . . , f (UM , tM )]T .

In order to multiply the integration matrix q with the vector of the right-hand side
values, we define Q := q ⊗ IN where IN ∈ R

N×N is the identity matrix and ⊗ is the
Kronecker product. With these definitions, the set of equations in (3) can be written
more compactly as

U = U0 + �t Q F(U) (4)
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where U0 := U0 ⊗ IN . Equation (4) is an implicit equation for the unknowns in U ,
and is also referred to as the collocation formulation. Because we use Gauss–Lobatto
nodes, the value UM readily approximates the solution u(Tn+1).

Here, we consider ODEs that can be split into stiff ( f I ) and non-stiff ( f E ) pieces
so that

f (u(t), t) = f E
(
u(t), t

) + f I
(
u(t), t

)
.

SDC iterations begin by spreading the initial condition U0 to each of the collocation
nodes so that the provisional solutionU0 is given byU0 = [U0, · · · ,U0].Wedefineby

sm, j := 1

�t

∫ tm

tm−1

l j (s) ds, m = 1, . . . , M

the quadrature weights for node-to-note integration, approximating integrals over
[tm−1, tm], and as s the M × M + 1 matrix consisting of the entries sm, j . Note that
s can be easily constructed from the integration matrix q. Furthermore, we denote as
before S := s ⊗ IN . Then, the semi-implicit update equation corresponding to the
forward/backward Euler substepping method for computing Uk+1 is given by

Uk+1
m+1 = Uk+1

m + �tm
[
f E (Uk+1

m , tm) − f E (Uk
m, tm)

]
+�tm

[
f I (Uk+1

m+1, tm+1) − f I (Uk
m+1, tm+1)

] + �t Skm (5)

where Skm is the mth row of SF(Uk) and �tm := tm+1 − tm . The process of solving
(5) at each node is referred to as an SDC sweep or an SDC iteration (see Algorithm 1).
SDC with a fixed number of k iterations and first-order sweeps is formally O(�tk)
up to the accuracy of the underlying integration rule [12,44]. When SDC iterations
converge, the scheme becomes equivalent to the collocation scheme determined by
the quadrature nodes, and hence is of order 2M with M + 1 Lobatto nodes.

It has been shown [24,29] that in certain situations (particularly stiff equations)
the convergence of SDC iterates can slow down considerably for large values of
�t . For a fixed number of iterations, this lack of convergence is characterized by
order reduction. Hence in this study, to allow for a reasonable comparison of SDC
and MLSDC, we perform iterations until a specified convergence criterion is met.
Convergence is monitored by computing the SDC residual

rk = U0 + �t QF(Uk) − Uk, (6)

and the iteration is terminated when the norm of the residual drops below a prescribed
tolerance. Similarly, if SDC or MLSDC are used to solve the collocation problem
up to some fixed tolerance, one also observes a significant increase in the number of
iterations required to reach a set tolerance. Accelerating the convergence of SDC for
stiff problems has been studied in e.g. [24,43].
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Algorithm 1: IMEX SDC sweep algorithm.

Data: Initial U0, function evaluations F(Uk ) from the previous iteration, and (optionally) FAS
corrections τ .

Result: Solution Uk+1 and function evaluations F(Uk+1).

# Compute integrals
for m = 0 . . . M − 1 do

Skm ←− �t
∑M

j=0 sm, j (F
E,k
j + F I,k

j )

end

# Set initial condition and compute function evaluation

t ←− t0; U
k+1
0 ←− U0

FE,k+1
0 ←− f E (U0, t)

F I,k+1
0 ←− f I (U0, t)

# Forward/backward Euler substepping for correction
for m = 0 . . . M − 1 do

t ←− t + �tm

RHS ←− Uk+1
m + �tm

(
FE,k+1
m − FE,k

m − F I,k
m+1

) + Skm + τm

Uk+1
m+1 ←− Solve

(
U − �tm f I (U, t) = RHS

)
for U

FE,k+1
m+1 ←− f E (Uk+1

m+1, t)

F I,k+1
m+1 ←− f I (Uk+1

m+1, t)

end

The FAS correction, denoted by τ , is included here to elucidate how FAS corrections derived in Sect. 2.2
are incorporated into an SDC sweep – for plain, single level SDC algorithms the FAS correction τ would
be zero

2.2 Multi-level spectral deferred corrections

Inmulti-level SDC (MLSDC), SDC sweeps are performed on a hierarchy of discretiza-
tions or levels to solve the collocation equation (4). This section presents the details
of the MLSDC iterations for a generic set of levels, and in Sect. 2.2.4, three different
coarsening strategies are explored. For the following, we define levels � = 1 . . . L ,
where � = 1 is the discretization that is to be solved (referred to generically as the
fine level), and subsequent levels � = 2 . . . L are defined by successive coarsening of
a type to be specified later.

2.2.1 FAS correction

Solutions on differentMLSDC levels are coupled in the samemanner as used in the full
approximation scheme (FAS) for nonlinear multigrid methods (see e.g. [7]). The FAS
correction for coarse SDC iterations is determined by considering SDC as an iterative
method for solving the collocation formulation (4), where the operators A� are given
by A�(U�) ≡ U� − �t Q�F�(U�). Note that the approximations A� of the operator A
can differ substantially between levels as will be discussed in Sect. 2.2.4. Furthermore,
we assume that suitable restriction (denote by R) and interpolation operators between
levels are available, see Sect. 2.2.5. The FAS correction for coarse-grid sweeps is then
given by
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A multi-level spectral deferred correction method 849

τ�+1 = A�+1(RU�) − RA�(U�) = �t
(
RQ�F�(U�) − Q�+1F�+1(RU�)

)
. (7)

In particular, if the fine residual is zero (i.e., U� ≡ U0,� + �t Q�F�(U�)) the FAS-
corrected coarse equation becomes

U�+1 − �t Q�+1F�+1(U�+1) = RU0,� + �t
(
RQ�F�(U�) − Q�+1F�+1(RU�)

)
= RU� − �t Q�+1F�+1(RU�)

so that the coarse solution is the restriction of the fine solution. Note that formulti-level
schemes, FAS-corrections from finer levels need to be restricted and incorporated to
coarser levels as well, i.e. if on level � the equation is already corrected by τ� with

A�(U�) = U� − �t Q�F�(U�) − τ�,

the correction τ�+1 for level � + 1 is then given by

τ�+1 = A�+1(RU�) − RA�(U�) = �t
(
RQ�F�(U�) − Q�+1F�+1(RU�)

) + Rτ�.

Coarse levels thus include the FAS corrections of all finer levels.

2.2.2 The MLSDC algorithm

The MLSDC scheme introduced here proceeds as follows. The initial condition U0
and its function evaluation are spread to each of the collocation nodes on the finest
level so that the first provisional solution U0

1 is given by

U0
1 = [U0, . . . ,U0].

A single MLSDC iteration then consists of the following steps:

1. Perform one fine SDC sweep using the values Uk
1 and F1(Uk

1 ). This will yield
provisional updated values Uk+1

1 and F1(U
k+1
1 ).

2. Sweep from fine to coarse: for each � = 2 . . . L:
(a) Restrict the fine values Uk+1

�−1 to the coarse values Uk
� and compute F�(Uk

� ).

(b) Compute the FAS correction τ k
� using F�−1(U

k+1
�−1 ), F�(Uk

� ), and τ k
�−1 (if avail-

able).
(c) Perform n� SDC sweeps with the values on level � beginning withUk

� , F�(Uk
� )

and the FAS correction τ k
� . This will yield new values Uk+1

� and F�(U
k+1
� ).

3. Sweep from coarse to fine: for each � = L − 1 . . . 1:
(a) Interpolate coarse grid correctionUk+1

�+1 −RUk+1
� and add toUk+1

� . Recompute

new values F�(U
k+1
� )

(b) If � > 1, perform n� SDC sweeps beginning with values Uk+1
� , F�(U

k+1
� )

and the FAS correction τ k
� . This will once again yield new values Uk+1

� and
F�(U

k+1
� ).
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Algorithm 2:MLSDC iteration for L levels.

Data: Initial Uk
1,0 and function evaluations Fk

1 from the previous iteration on the fine level.

Result: Solution Uk+1
�

and function evaluations Fk+1
�

on all levels.

# Perform fine sweep and check convergence criteria

Uk+1
1 , Fk+1

1 ←− SDCSweep
(
Uk
1 , Fk

1
)

if fine level has converged then
return

end

# Cycle from fine to coarse
for � = 1 . . . L − 1 do

# Restrict, re-evaluate, and save restriction (used later during interpolation)
for m = 0 . . . M do

Uk
�+1,m ←− Restrict

(
Uk+1

�,m

)
Fk
�+1,m ←− FEval

(
Uk+1

�+1,m

)
Ũ k

�+1,m ←− Uk
�+1,m

end
# Compute FAS correction and sweep

τ
�+1 ←− FAS

(
Fk+1

�
, Fk

�+1, τ
�

)
Uk+1

�+1 , F
k+1
�+1 ←− SDCSweep

(
Uk

�+1, Fk
�+1, τ

�+1

)
end

# Cycle from coarse to fine
for � = L − 1 . . . 2 do

# Interpolate coarse correction and re-evaluate
for m = 0 . . . M do

Uk+1
�,m ←− Uk+1

�,m + Interpolate
(
Uk+1

�+1,m − Ũ k
�+1,m

)
Fk+1
�,m ←− FEval

(
Uk+1

�,m

)
end

Uk+1
�

, Fk+1
�

←− SDCSweep
(
Uk+1

�
, Fk+1

�
, τ

�

)
end

# Return to finest level before next iteration
for m = 0 . . . M do

Uk+1
1,m ←− Uk+1

1,m + Interpolate
(
Uk+1
2,m − Ũ k

2,m
)

Fk+1
1,m ←− FEval

(
Uk+1
1,m

)
end

Note that when interpolating from coarse to fine levels the correction Uk+1
�+1 − RUk

�+1

is interpolated and subsequently added to Uk+1
� instead of simply overwriting the fine

values with interpolated coarse values. Also note that instead of interpolating solution
values Uk+1

�+1 to Uk+1
� and immediately re-evaluating the function values F�(U

k+1
� ),

the change in the function values can be interpolated as well. Doing so reduces the
cost of the interpolation step, but possibly at the cost of increasing the number of
MLSDC iterations required to reach convergence. Since no significant increase could
be observed during our tests, we skip the re-evaluation of the right-hand side and
use interpolation of the coarse function values throughout this work. The above is
summarized by Algorithm 2.

123



A multi-level spectral deferred correction method 851

2.2.3 Semi-implicit MLSDC with compact stencils

In order to achieve higher-order accuracywith finite difference discretizations in space,
the use of Mehrstellen discretizations is a common technique especially when using
multigrid methods [42]. While the straightforward use of larger stencils leads to larger
matrix bandwidths and higher communication costs during parallel runs, high-order
compact schemes allow for high-order accuracy with stencils of minimal extent [40].
The compact stencil for a given discretization is obtained by approximating the leading
order error term by a finite difference approximation of the right-hand side, resulting
in a weighting matrix. Discretizing e.g. the heat equation ut = ∇2u in space1 yields

Wut = Au

with system matrix A and weighting matrix W . Formally, the discrete Laplacian is
given by W−1A. Using this approach, a fourth-order approximation of the Laplacian
can be achieved using only nearest neighbors (three-point stencil in 1D, nine-point-
stencil in 2D, 19-point stencil in 3D). For further reading on compact schemes we
refer to [30,40,42].

The presence of a weighting matrix requires some modifications to MLSDC. We
start with the semi-implicit SDC update Eq. (5) given by

Uk+1
m+1 = Uk+1

m + �tm
[
f E (Uk+1

m , tm) − f E (Uk
m, tm)

]
+�tm

[
f I (Uk+1

m+1, tm) − f I (Uk
m+1, tm)

] + �t Skm . (8)

Next, we assume a linear, autonomous implicit part f I (U, t) = f I (U ) = W−1AU
for a spatial vectorU with sparse matricesW and A stemming from the discretization
of the Laplacian with compact stencils. Furthermore, we define

f̃ I (U ) = AU

so that
f̃ I (U ) = W f I (U ). (9)

With these definitions (8) becomes

(
I − �tm W−1A

)
Uk+1
m+1 = Uk+1

m + �tm
[
f E (Uk+1

m , tm) − f E (Uk
m, tm)

]
−�tm W−1AUk

m+1 + �t Skm .

1 We adopt here and in the upcoming examples the following notation: Solutions of PDEs are denoted
with an underline, e.g. u, and depend continuously on one or more spatial variables and a time variable.
Discretizing a PDE in space by the method of lines results in an IVP with dimension N equal to the degrees
of freedom of the spatial discretization. The solution of such an IVP is a vector-valued function denoted by
a lower case letter, e.g. u, and depends continuously on time. The numerical approximation of u at some
point in time tm is denoted by a capital letter, e.g. Uk

m , where k corresponds to the iteration number.
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Since the operator
(
I − �tm W−1A

)
is not sparse, we avoid computing with it by

multiplying the equation above by W , so that

(W − �tm A)Uk+1
m+1 = WUk+1

m + �tmW
[
f E (Uk+1

m , tm) − f E (Uk
m, tm)

]
−�tm f̃ I (Uk

m+1) + �t S̃km (10)

where S̃km now represents the mth row of SF̃k(Uk), usingW f E (Uk
m, tm) and f̃ I (Uk

m)

instead of f E (Uk
m, tm) and f I (Uk

m) as integrands, that is S̃km = ∑M
j=0 sm, j

(
W f E (Uk

j ,

t j ) + f̃ I (Uk
j )

)
.

While this equation avoids the inversion ofW , the computation of the residual does
not. By Eq. (6), the mth component of the residual at iteration k reads either

rkm = U0 + �t
(
QF(Uk)

)
m

−Uk
m,

or, after multiplication with W ,

Wrkm = WU0 + �t
(
QF̃(Uk)

)
m

− WUk
m .

Both equations require the solution of a linear system with matrix W , either to
compute the components of F(Uk) from (9) or to retrieve rkm fromWrkm . Note that the
subscriptm denotes here themth column. Thus, we either need to obtain rkm fromWrkm
(in case W f E is stored during the SDC sweep) or f I from f̃ I (in case f E is stored).
In either case, solving a linear system with the weighting matrix becomes inevitable
for the computation of the formally correct residual.

Furthermore, evaluating (7) for the FAS correction also requires the explicit use of
f E and f I = W−1 f̃ I to compute RQ�F�(U�). Moreover, from (10) we note that
weighted SDC sweeps on coarse levels � + 1 require the computation of W�+1τ�+1,m
on all coarse nodes t� so that Q�+1F�+1(RU�) can be replaced by Q�+1 F̃�+1(RU�).
For spatial discretizations in which both parts f E and f I of the right-hand side make
use of weighting matrices WE andW I or e.g. for finite element discretizations with a
mass matrix, we note that similar modifications to the MLSDC scheme as presented
here must be made. The investigation of MLSDC for finite element discretizations is
left for future work.

2.2.4 Coarsening strategies

The goal in MLSDC methods is to reduce the total cost of the method by performing
SDC sweeps on coarsened levels at reduced computational cost. In this section we
describe the three types of spatial coarsening used in the numerical examples:

1. Reduced resolution in space: Use fewer degrees of freedom for the spatial
representation (e.g. nodes, cells, points, particles, etc.) on the coarse levels. This
directly translates into significant computational savings for evaluations of f ,
particularly for 3D problems. This approach requires spatial interpolation and
restriction operators to transfer the solution between levels.
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A multi-level spectral deferred correction method 853

2. Reduced order in space: Use a spatial discretization on the coarse levels
that is of reduced order. Lower-order finite difference stencils, for example, are
typically cheaper to evaluate than higher-order ones, see [36] for an application of
this strategy for the time-parallel Parareal method.

3. Reduced implicit solve in space: Use only a few iterations of a spatial
solver in every substep, if an implicit or implicit-explicit method is used in the
SDC sweeps. By not solving the linear or nonlinear system in each SDC substep
to full accuracy, savings in execution time can be achieved.

We note that a fourth possibility not pursued here is to use a simplified physical
representation of the problem on coarse levels. This approach requires a detailed
understanding of the problem to derive suitable coarse level models and appropriate
coarsening and interpolation operators. Similar ideas have been studied for Parareal
in [14,23].

The spatial coarsening strategies outlined above can significantly reduce the cost of
a coarse level SDC substep, but do not affect the number of substeps used. In principle,
it is also possible to reduce the number of quadrature nodes on coarser levels as in
the ladder schemes mentioned in the introduction. In this paper, no such temporal
coarsening is applied and we focus on the application of spatial coarsening strategies
which leads to a large reduction of the runtime for coarse level sweeps.

2.2.5 Transfer operators

In order to apply Strategy 1 and reduce the number of spatial degrees of freedom,
transfer operators between different levels are required. In the tests presented here that
are based on finite difference discretizations on simple cartesian meshes, the spatial
degrees of freedom are aligned, so that simple injection can be used for restriction.

We have observed that the order of the used spatial interpolation has a strong
impact on the convergence of MLSDC. While global information transfer when using
e.g. spectral methods does not influence the convergence properties of MLSDC, the
use of local Lagrangian interpolation for finite difference stencils has to be applied
with care. In numerical experiments not documented here, MLSDCwith simple linear
interpolation required twice as many iterations as MLSDC with fifth-order spatial
interpolation. Further, low resolutions in space combined with low-order interpolation
led to significant degradation of the convergence speed of MLSDC, while high spatial
resolutions were much less sensitive. Throughout the paper, Strategy 1 is applied with
third-order Lagrangian interpolation, which has proven to be sufficient in all cases
studied here.

We note that the transfer operators would be different if e.g. finite elements were
used and operators between element spaces of different order and/or on different
meshes would be required.

2.2.6 Stability of SDC and MLSDC

Stability domains for SDC are presented in e.g. [16]. The stability of semi-implicit
SDC is addressed in [31] and the issue of order reduction for stiff problems
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is discussed. Split SDC methods are further analyzed theoretically and numeri-
cally in [19]. A stability analysis for MLSDC is complicated by the fact that
it would need to consider the effects of the different spatial coarsening strate-
gies laid out in Sect. 2.2.4. Therefore, it cannot simply use Dahlquist’s test equa-
tion but has to resort to some well-defined PDE examples in order to assess
stability. Hence, for MLSDC the results presented here are experimental but
development of a theory for the convergence properties of MLSDC is ongoing
work. However, in all examples presented below, stability properties of SDC and
MLSDC appeared to be comparable, but a comprehensive analysis is left for future
work.

3 Numerical examples

In this section we investigate the performance of MLSDC for four numerical exam-
ples. First, in order to demonstrate that the FAS correction in MLSDC is not unus-
able for hyperbolic problems per se, performance for the 1D wave equation is stud-
ied in Sect. 3.1. To investigate performance for a nonlinear problem, MLSDC is
then applied to the 1D viscous Burgers’ equation in Sect. 3.2. A detailed inves-
tigation of different error components is given and we verify that the FAS cor-
rections allow the solutions on coarse levels to converge to the accuracy deter-
mined by the discretization on the finest level. The 2D Navier–Stokes equations
in vorticity–velocity form are solved in Sect. 3.3, showing again a reduction of
the number of required iterations by MLSDC, although using a coarsened spa-
tial resolution is found to have a negative impact on convergence, if the fine level
is already under-resolved. In Sect. 3.4, a fortran implementation of MLSDC is
applied to the three-dimensional Burgers’ equation and it is demonstrated that the
reduction in fine level sweeps translates into a significant reduction of comput-
ing time. Throughout all examples, we make use of a linear geometric multigrid
solver [10,42] with JOR relaxation in 3D and SOR relaxation 1D and 2D as smoothers,
to solve the linear problems in the implicit part as well as to solve the linear sys-
tem with the weighting matrix for the residual and the FAS correction. The paral-
lel implementation of the multigrid solver used for the last example is described
in [4].

In the examples below, we compare the number of sweeps on the fine and most
expensive level required by SDC or MLSDC to converge up to a set tolerance. For
SDC, which sweeps only on the fine level, this number is identical to the number of
iterations. For MLSDC, each iteration consists of one cycle through the level hier-
archy, starting from the finest level, going up to the coarsest and then down again,
with one SDC sweep on each level on the way up and down, cf. Algorithm 2.
Except for the last iteration, the final fine sweep is also the first fine sweep of
the next iteration, so that for MLSDC the number of fine sweeps is equal to the
number of iterations plus one. Note that a factor of two coarsening in the spatial
resolution in each dimension yields a factor of eight reduction in degrees of free-
dom in three dimensions, which makes coarse level sweeps significantly less expen-
sive.
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Table 1 Average number of fine level sweeps over all time-steps of SDC andMLSDC for thewave equation
example to reach a residual of ‖rk‖∞ ≤ 5 × 10−8

M SDC MLSDC(1,2)

3 18.5 11.1

5 17.6 10.6

7 14.3 8.2

The numbers in parentheses after MLSDC indicate the used coarsening strategies, see Sect. 2.2.4

3.1 Wave equation

For spatial multigrid, the FAS formalism is mostly derived and analyzed for stationary
elliptic or parabolic problems, although there are examples of applications to hyper-
bolic problems as well [1,37]. Here, as a first test, we investigate the performance of
MLSDC for a simple 1D wave equation to verify that the FAS procedure as used in
MLSDCdoes not break down for a hyperbolic problemper se. The problem considered
here, with the wave equation written as a first order system, reads

ut (x, t) + vx (x, t) = 0

vt (x, t) + ux (x, t) = 0

on x ∈ [0, 1] with periodic boundary conditions and

u(x, 0) = exp

(
−1

2

(
x − 0.5

0.1

)2
)

, v(x, 0) = 0

for 0 ≤ t ≤ T . For the spatial derivatives, centered differences of 4th order with
128 points are used on the fine level and of 2nd order with 64 points on the coarse.
Both SDC and MLSDC perform 40 timesteps of length �t = 0.025 to integrate up
to T = 1.0 and iterations on each step are performed until

∥∥rk∥∥∞ ≤ 5 × 10−8. The
average number of fine level sweeps over all steps for SDC and MLSDC is shown in
Table 1 for three different values of M . In all cases, MLSDC leads to savings in terms
of required fine level sweeps. We note that for a fine level spatial resolution of only 64
points, using spatial coarsening has a significant negative effect on the performance of
MLSDC (not documented here): This suggests that for a problem which is spatially
under-resolved on the finest level, further coarsening the spatial resolution within
MLSDC might hurt performance, see also Sect. 3.3.

3.2 1D viscous Burgers’ equation

In this section we investigate the effect of coarsening in MLSDC by considering the
nonlinear viscous Burgers’ equation
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ut + u · ux = νuxx , x ∈ [−1, 1], t ∈ [0, tend]
u(x, 0) = u0(x)

u(−1, t) = u(1, t), (11)

with ν > 0 and initial condition

u0(x) = exp

(
− x2

σ 2

)
, σ = 0.1

corresponding to a Gaussian peak strongly localized around x = 0. We denote the
evaluation of the continuous function u on a given spatial meshwith points (xi )i=1,...,N
with a subscript N , so that

uN (t) := (
u(xi , t)

)
i=1,...,N ∈ R

N .

Discretization of (11) in space then yields an initial value problem

ut (t) = fN (u(t)), u(t) ∈ R
N , t ∈ [0, tend]

u(0) = u0N (12)

with solution u. Finally, we denote by uN ,M,�t,k ∈ R
N the result of solving (12)

with k iterations of MLSDC using a timestep of �t , M substeps (or M + 1 Lobatto
collocation nodes), and an N -point spatial mesh on the finest level over one time step.

Two runs are performed here, solving (11) with ν = 1.0 and ν = 0.1 with a single
MLSDC timestep tend = �t = 0.01. MLSDC with two levels with 7 Gauss–Lobatto
collocation points is used with a spatial mesh of N = 256 points on the fine level, and
N = 128 on the coarse level (Strategy 1). The advective term is discretized using a
5th-order WENO finite difference method [26] on the fine level and a simple 1st-order
upwind scheme on the coarse level. For the Laplacian, a 4th-order compact stencil is
used on the fine level and a 2nd-order stencil is used on the coarse level (Strategy 2).
The advective term is treated explicitly while the diffusion term is treated implicitly.
The resulting linear system is solved using a linear multigrid solver with a tolerance
of 5 × 10−14 on the fine level but solved only approximately using a single V-cycle
on the coarse level (Strategy 3). A fixed number of K = 80 MLSDC iterations is
performed here without setting a tolerance for the MLSDC residual.

In order to assess the different error components, a reference PDE solution uN (�t)
is computed with a single-level SDC scheme on a mesh with N = 1,024 points using
M + 1 = 9 and �t = 10−4. An ODE solution u(�t) is computed by running single-
level SDC using M + 1 = 9, �t = 10−4 and the same spatial discretization as on the
fine level of the MLSDC run. Finally, the collocation solution ucoll(�t) is computed
by performing 100 iterations of single-level SDC with M + 1 = 7 and again the
same spatial discretization as the MLSDC fine level. Reference ODE and collocation
solutions are computed for the coarse level using the same parameters and theMLSDC
coarse level spatial discretization.
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3.2.1 Error components in MLSDC

The relative error of the fully discrete MLSDC solution to the analytical solution u of
the PDE (11) after a single timestep of length �t is given by

εPDE :=
∥∥uN (�t) − uN ,M,�t,k

∥∥∥∥uN (�t)
∥∥ , (13)

where ‖ · ‖ denotes some norm on R
N . All errors are hereafter reported using the

maximum norm ‖ · ‖∞. The error εPDE includes contributions from three sources

εN :=
∥∥uN (�t) − u(�t)

∥∥∥∥uN (�t)
∥∥ ≈ (i)—relative spatial error,

ε�t :=
∥∥u(�t) − ucoll(�t)

∥∥∥∥uN (�t)
∥∥ ≈ (ii)—relative temporal error,

εcoll :=
∥∥ucoll(�t) − uN ,M,�t,k

∥∥∥∥uN (�t)
∥∥ ≈ (iii)—iteration error,

with ucoll denoting the exact solution of the collocation equation (4). Here, (i) is
the spatial discretization error; (ii) is the temporal discretization error, which is the
error from replacing the analytical Picard formulation (1) with the discrete collocation
problem (4); and (iii) is the error from solving the collocation equation approximately
using the MLSDC iteration. The PDE error (13) can be estimated using the triangle
inequality according to

εPDE ≤ εN + ε�t + εcoll.

In addition to the PDE error, we define the error between the MLSDC solution and
the analytical solution of the semi-discrete ODE (12) as

εODE :=
∥∥u(�t) − uN ,M,�t,k

∥∥∥∥uN (�t)
∥∥ ≤ ε�t + εcoll. (14)

Note that εODE contains contributions from (ii) and (iii), and once theMLSDC iteration
has converged, error (14) reduces to the error arising from replacing the exact Picard
integral (1) by the collocation formula (4).

The three different error components ofMLSDC, εPDE, εODE and εcoll are expected
to saturate at different levels as k → ∞ according to

εPDE → max{εN , ε�t },
εODE → ε�t , and

εcoll → 0.

123



858 R. Speck et al.

The crucial point here is that due to the presence of the FAS correction included in
MLSDC, we expect εPDE, εODE and εcoll on all levels to saturate at values of εN
and ε�t determined by the discretization used on the finest level. That is, the FAS
correction should allow MLSDC to represent the solution on all coarse levels to the
same accuracy as on the finest level. This is verified in Sect. 3.2.2.

3.2.2 Convergence of MLSDC on all levels

Figure 1 shows the three error components εPDE (green squares), εODE (blue diamonds)
and εcoll (red circles) for ν = 0.1 (upper) and ν = 1.0 (lower) plotted against the
iteration number k. The errors on the fine level are shown on the left in Fig. 1a, c,
while errors on the coarse mesh are shown on the right. Furthermore, the estimated

(a) (b)

(c) (d)

Fig. 1 Errors on fine and coarse level of MLSDC vs. iteration count. The dashed line indicates the spatial
error εN while the dot-dashed line indicates the temporal error ε�t . The red circles indicate the difference
εcoll betweenMLSDCand the collocation solution, the blue diamonds indicate the difference εODE between
MLSDC and the ODE solution and the green squares indicate the difference εPDE between MLSDC and
the PDE solution. In c and d, εODE is nearly identical to εPDE. Note how the FAS correction in MLSDC
allows the coarse level to attain the same accuracy as the fine level solution: the saturation limits on the fine
and coarse mesh are identical (color figure online)
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Table 2 Number of fine level sweeps required to reach a residual of ‖rk‖∞ ≤ 10−5 for SDC and multi-
level SDC for Burgers’ equation with ν = 0.1 and ν = 1.0

ν = 0.1 ν = 1.0

Method # Fine sweeps Method # Fine sweeps

SDC 4 SDC 12

MLSDC 3 MLSDC 7

spatial discretization error εN (dashed) and temporal discretization error ε�t (dash-
dotted) are indicated by black lines.

For ν = 0.1,we note that the PDEerror εPDE on the fine level (Fig. 1a, c) saturates—
as expected—at a level determined by the spatial discretization error εN ; and the ODE
error εODE saturates at the level of the temporal discretization error ε�t . The collocation
error εcoll saturates at near machine accuracy. Increasing the viscosity to ν = 1.0, the
spatial error remains at about 10−7 on the fine level but the time discretization error
significantly increases compared to ν = 0.1. Thus in Fig. 1c, both the PDE and the
ODE error saturate at the value indicated by ε�t . Once again, the collocation error
goes down to machine accuracy, although the rate of convergence is somewhat slower
compared to ν = 0.1.

On the coarse level (Fig. 1b, d), the estimated spatial error εN is noticeably higher
because the values of N are smaller and the order of the spatial discretization is lower.
However, as expected, the coarse level error ofMLSDC saturates at values determined
by the accuracy of the finest level. The saturation of εPDE and εODE are identical in the
left and right figures, despite the difference in εN and ε�t . This demonstrates that the
FAS correction inMLSDC allows the solutions on coarse levels to obtain the accuracy
of the finest level as long as sufficiently many iterations are performed.

3.2.3 Required iterations

Table 2 shows the number of fine level sweeps required by SDC andMLSDC to reduce
the infinity norm of the residual rk , see (6), below 10−5. For both setups, ν = 0.1 as
well as ν = 1.0, MLSDC reduces the number of required fine sweeps compared to
single-level SDC. In turn, however, MLSDC adds some overhead from coarse level
sweeps. If these are cheap enough, the reduced iteration number will result in reduced
computing time, cf. Sect. 3.4.

3.2.4 Stopping criteria

Note that the overall PDE error of the solution is not reduced further by additional
iterations once εcoll ≤ max{εN , ε�t }.

In Fig. 1a–d, this corresponds to the point where the line with red circles (iteration
error) drops below the dot-dashed line (indicating ε�t ) or dashed line (indicating εN ).
TheMLSDC solution, however, continues to converge to the collocation solution. In a
scenariowhere the PDE error is themain criterion for the quality of a solution, iterating
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beyond εPDE no longer improves the solution. This suggests adaptively setting the
tolerance for the residual of the MLSDC iteration in accordance with error estimators
for εN and ε�t to avoid unnecessary further iterations.

3.3 Shear layer instability

In this example,we study the behavior ofMLSDC in the casewhere the exact solution is
not well resolved.We consider a shear layer instability in a 2D doubly periodic domain
governed by the vorticity–velocity formulation of the 2D Navier–Stokes equations
given by

ωt + u · ∇ω = ν∇2ω

with velocity u ∈ R
2 × [0,∞), vorticity ω = ∇ × u ∈ R

×[0,∞) and viscosity
ν ∈ R

+. We consider the spatial domain [0, 1]2 with periodic boundary conditions in
all directions and the initial conditions

u01(x, y) = −1.0 + tanh(ρ(0.5 − y)) + tanh(ρ(y − 0.25))

u02(x, y) = −δ sin(2π(x + 0.25)).

These initial conditions correspond to two horizontal shear layers, of “thickness” ρ =
50, at y = 0.75 and y = 0.25, with a disturbance of magnitude δ = 0.05 in the vertical
velocity u2. As in Sect. 3.2, the system is split into implicit/explicit parts according to

ωt = f E (ω) + f I (ω)

where

f E (ω) = −u · ∇ω

f I (ω) = ν∇2ω.

While the implicit term f I is discretized and solved as before, we apply a stream-
function approach for the explicit term f E : for periodic boundary conditions, we can
assume u = ∇ × ψ for a solenoidal streamfunction ψ . Thus,

ω = ∇ × (∇ × ψ) = −∇2ψ.

We refer to [9] for more details. To compute f Ep,N (ω) with order-p operators on an
N × N mesh, we therefore solve the Poisson problem

−∇2ψ = ω
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(a) (b)

Fig. 2 Vorticity of the solution of the shear layer instability at t = 1.0 on the fine level (left) and coarse
level (right) using MLSDC(1,2,3(1))

forψ using the linear multigrid method described previously, calculate the discretized
version of u = ∇ × ψ and finally compute the discretization of u · ∇ω, both with
order-p operators.

Two levels with M + 1 = 9 collocation nodes are used with a 128 × 128 point
spatial mesh and a fourth order stencil on the fine level. Different combinations of
coarsening are tested (the numbers in parentheses correspond to the strategies as listed
in Sect. 2.2.4):

1. MLSDC(1,2) uses a coarsened 64×64 point mesh on the coarse level and second-
order stencils.

2. MLSDC(1,2,3(1)) as MLSDC(1,2) but also solves the implicit linear systems in
the coarse SDC sweep only approximately with a single V-cycle.

3. MLSDC(1,2,3(2)) as MLSDC(1,2,3(1)) but with two V-cycles.
4. MLSDC(2,3(1)) uses also a 128×128 point mesh on the coarse level, but second-

order stencils and approximate linear solves using a single V-cycle.

The simulation computes 256 timesteps of MLSDC up to a final time t = 1.0. As
reference, a classical SDC solution is computed using 1024 timestepswithM+1 = 13
collocation nodes and the fine level spatial discretization. Both SDC and MLSDC
iterate until the residual satisfies ‖rk‖∞ ≤ 10−12.

3.3.1 Vorticity field on all levels

Figure 2 shows the vorticity field at the end of the simulation on the fine and the
coarse level. The relative maximum error εODE at time t = 1 is approximately 10−12

(which corresponds to the spatial and temporal residual thresholds that were used for
all runs in this example).We note that simply running SDCwith the coarse level spatial
discretization fromMLSDC(1,2) gives completely unsatisfactory results (not shown):
spurious vortices exist in addition to the two correct vortices and strong spurious
oscillations are present in the vorticity field. In contrast, the coarse level solution from
MLSDC shown in Fig. 2b looks reasonable, again because of the FAS correction.
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Table 3 Average number of
fine level sweeps required to
converge for SDC and MLSDC
for the shear layer instability

The numbers indicate the
different coarsening strategies

Method # Fine sweeps on average

SDC 6.46

MLSDC(1,2) 6.64

MLSDC(1,2,3(1)) 6.62

MLSDC(1,2,3(2)) 6.64

MLSDC(2,3(1)) 5.26

3.3.2 Required iterations

Table 3 shows the average number of fine level sweeps over all timesteps required by
SDC and MLSDC to converge. The configurations MLSDC(1,2), MLSDC(1,2,3(1))
and MLSDC(1,2,3(2)) do not reduce the number of sweeps, but instead lead to a
small increase. Avoiding a coarsened spatial mesh in MLSDC(2,3(1)), however, saves
a small amount of fine sweeps compared to SDC. Note that here, in contrast to the
example presented in Sect. 3.4, Strategy 1 has a significant negative impact on the
performance of MLSDC. This illustrates that coarsening in MLSDC cannot be used
in the same way for every problem: a careful adaption of the employed strategies to
the problem at hand is necessary.

3.4 Three-dimensional viscous Burgers’ equation

To demonstrate that MLSDC can not only reduce iterations but also runtime, we
consider viscous Burgers’ equation in three dimensions

ut (x, t) + u(x, t) · ∇u(x, t) = ν∇2u(x, t), x ∈ [0, 1]3, 0 ≤ t ≤ 1

with x = (x, y, z), initial value

u(x, t) = exp

(
− (x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

σ 2

)
, σ = 0.1,

homogeneousDirichlet boundary condition and diffusion coefficients ν = 0.1 and ν =
1.0. The problem is solved using a fortran implementation of MLSDC combined
with a c implementation of a parallel multigrid solver (PMG) in space [4]. A single
timestep of length �t = 0.01 is performed with MLSDC, corresponding to CFL
numbers from the diffusive term on the fine level, that is

Cdiff := ν�t

�x2
,

of about Cdiff = 66 (for ν = 0.1) and Cdiff = 656 (for ν = 1.0). The diffusion
term is integrated implicitly using PMG to solve the corresponding linear system and
the advection term is treated explicitly. Simulations are run on 512 cores on the IBM
BlueGene/Q JUQUEEN at the Jülich Supercomputing Centre.
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Table 4 Number of required fine level sweeps and resulting runtimes in seconds by SDC and MLSDC for
3D viscous Burgers’ equation

ν = 0.1 ν = 1.0

Method F-Sweeps Runtime (s) Method F-Sweeps Runtime (s)

M + 1 = 3 Gauss–Lobatto nodes

SDC 9 39.4 SDC 16 74.1

MLSDC(1,2) 4 26.2 MLSDC(1,2) 8 49.1

MLSDC(1,2,3(2)) 4 25.6 MLSDC(1,2,3(2)) 8 47.0

MLSDC(1,2,3(1)) 5 29.7 MLSDC(1,2,3(1)) 8 46.7

M + 1 = 5 Gauss–Lobatto nodes

SDC 7 59.5 SDC 18 162.7

MLSDC(1,2) 3 40.8 MLSDC(1,2) 9 105.6

MLSDC(1,2,3(2)) 3 39.8 MLSDC(1,2,3(2)) 9 101.5

MLSDC(1,2,3(1)) 8 79.7 MLSDC(1,2,3(1)) 14 142.8

M + 1 = 7 Gauss–Lobatto nodes

SDC 5 82.4 SDC 17 224.7

MLSDC(1,2) 2 46.1 MLSDC(1,2) 8 139.5

MLSDC(1,2,3(2)) 3 57.2 MLSDC(1,2,3(2)) 9 148.1

MLSDC(1,2,3(1)) 11 147.2 MLSDC(1,2,3(1)) 44 560.4

The numbers in parentheses after MLSDC indicate the employed coarsening strategies, see Sect. 2.2.4.
Reduced implicit solves are indicated by 3(n) where n indicates the fixed number of multigrid V-cycles.
Otherwise, PMG iterates until a residual of 10−12 is reached or the iteration stalls. The tolerance for the
SDC/MLSDC iteration is 10−5

MLSDC is run with M + 1 = 3, M + 1 = 5 and M + 1 = 7 Gauss–Lobatto nodes
with a tolerance for the residual of 10−5. Two MLSDC levels are used with all three
types of coarsening applied:

1. The fine level uses a 2553 point mesh and the coarse level 1273.
2. A 4th-order compact difference stencil for the Laplacian and a 5th-order

WENO [26] for the advection term are used on the fine level; a 2nd-order stencil
for the Laplacian and a 1st-order upwind scheme for advection on the coarse.

3. The accuracy of the implicit solve on the coarse level is varied by fixing the number
of V-cycles of PMG on this level.

Three runs are performed, each with a different number of V-cycles on the coarse
level. In the first run, the coarse level linear systems are solved to full accuracy,
whereas the second and third runs use one and two V-cycles of PMG on the coarse
level, respectively, instead of solving to full accuracy. These cases are referred to as
MLSDC(1,2), MLSDC(1,2,3(1)), and MLSDC(1,2,3(2)). On the fine level, implicit
systems are always solved to full accuracy (the PMG multigrid iteration reaches a
tolerance of reach a tolerance of 10−12 or stalls).

Required iterations and runtimes.Table 4 shows both the required fine level sweeps for
SDC andMLSDC as well as the total runtimes in seconds for ν = 0.1 and ν = 1.0 for
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three different values ofM .MLSDC(1,2) andMLSDC(1,2,3(2)) in all casesmanage to
significantly reduce the number of fine sweeps required for convergence in comparison
to single-level SDC, typically by about a factor of two. These savings in fine level
sweeps translate into runtime savings on the order of 30–40 %. For 3 and 5 quadrature
nodes, there is no negative impact in terms of additional fine sweeps by using a
reduced implicit solve on the coarse level and MLSDC(1,2,3(2)) is therefore faster
than MLSDC(1,2). However, since coarse level V-cycles are very cheap due to spatial
coarsening, the additional savings in runtime are small. For 7 quadrature nodes, using
a reduced implicit solve on the coarse level in MLSDC(1,2,3(2)) comes at the price
of an additional MLSDC iteration and therefore, MLSDC(1,2) is the fastest variant in
this case.

Using only a single V-cycle for implicit solves on the coarse grid in MLSDC
(1,2,3(1)) results in a modest to significant increase in the number of requiredMLSDC
iterations compared toMLSDC(1,2,3(2)) in almost all cases. The only exception is the
run with 3 nodes and ν = 0.1. Therefore, MLSDC(1,2,3(1)) is typically significantly
slower than MLSDC(1,2) or MLSDC(1,2,3(2)) and not recommended for use in three
dimensions. For 7 quadrature nodes, using only a single V-cycle leads to a dramatic
increase in the number of required fine sweeps and MLSDC becomes much slower
than single level SDC, indicating that the inaccurate coarse level has a negative impact
on convergence.

4 Discussion

The paper analyzes the multi-level spectral deferred correction method (MLSDC),
an extension to the original single-level spectral deferred corrections (SDC) as well
as ladder SDC methods. In contrast to SDC, MLSDC performs correction sweeps in
time on a hierarchy of discretization levels, similar to V-cycles in classical multigrid.
An FAS correction is used to increase the accuracy on coarse levels. The paper also
presents a new procedure to incorporate weighting matrices arising in higher-order
compact finite difference stencils into the SDC method. The advantage of MLSDC is
that it shifts computational work from the fine level to coarse levels, thereby reducing
the number of fine SDC sweeps and, therefore, the time-to-solution.

For MLSDC to be efficient, a reduced representation of the problem on the coarse
levels has to be used in order to make coarse level sweeps cheap in terms of com-
puting time. Three strategies are investigated numerically, namely (1) using fewer
degrees of freedom, (2) reducing the order of the discretization, and (3) reducing
the accuracy of the linear solver in implicit substeps on the coarse level. Numeri-
cal results are presented for the wave equation, viscous Burgers’ equation in 1D and
3D and for the 2D Navier–Stokes equation in vorticity–velocity formulation. It is
demonstrated that because of the FAS correction, the solutions on all levels converge
up to the accuracy determined by the discretization on the finest level. More signif-
icantly, in all four examples, MLSDC can reduce the number of fine level sweeps
required to converge compared to single level SDC. For the 3D example this trans-
lates directly into significantly reduced computing times in comparison to single-level
SDC.
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One potential continuation of this work is to investigate reducing the accuracy of
implicit solves on the fine level in MLSDC as well. In [39], so called inexact spectral
deferred corrections (ISDC) methods are considered, where implicit solves at each
SDC node are replaced by a small number of multigrid V-cycles. As with MLSDC,
the reduced cost of implicit solves are somewhat offset by an increase in the number
of SDC iterations required for convergence. Nevertheless, numerical results in [39]
demonstrate an overall reduction of cost for ISDC methods versus SDC for certain
test cases. The optimal combination of coarsening and reducing V-cycles for SDC
methods using multigrid for implicit solves appears to be problem-dependent, and an
analysis of this topic is in preparation.

TheMLSDC algorithm has also been applied toAdaptiveMeshRefinement (AMR)
methods popular in finite-volume methods for conservative systems. In the AMR +
MLSDCalgorithm, eachAMR level is associatedwith its ownMLSDC level, resulting
in a hierarchy of hybrid space/time discretizations with increasing space/time resolu-
tion.When a new (high resolution) level is added to theAMRhierarchy, a newMLSDC
level is created. The resulting scheme differs from traditional sub-cycling AMR time-
stepping schemes in a few notable aspects: fine level sub-cycling is achieved through
increased temporal resolution of theMLSDCnodes; flux corrections across coarse/fine
AMRgrid boundaries are naturally incorporated into theMLSDCFAS correction; fine
AMR ghost cells eventually become high-order accurate through the iterative nature
of MLSDC V-cycling; and finally, the cost of implicit solves on all levels decreases
with each MLSDC V-cycle as initial guesses improve. Preliminary results suggest
that the AMR+MLSDC algorithm can be successfully applied to the compressible
Navier–Stokes equations with stiff chemistry for the direct numerical simulation of
combustion problems. A detailed description of the AMR+MLSDC algorithm with
applications is currently in preparation.

Finally, the impact and performance of the coarsening strategies presented here
are also of relevance to the parallel full approximation scheme in space and time
(PFASST) [17,18,33,38] algorithm, which is a time-parallel scheme for ODEs and
PDEs. LikeMLSDC, PFASST employs a hierarchy of levels but performs SDC sweeps
on multiple time intervals concurrently with corrections to initial conditions being
communicated forward in time during the iterations. Parallel efficiency in PFASST
can be achieved because fine SDC sweeps are done in parallel while sweeps on the
coarsest level are in essence done serially. In the PFASST algorithm, there is a trade-
off between decreasing the cost on coarse levels to improve parallel efficiency and
retaining good accuracy on the coarse level to minimize the number of parallel iter-
ations required to converge. In [18] it was shown that, for mesh-based PDE dis-
cretizations, using a spatial mesh with fewer points on the coarse level in conjunction
with a reduced number of quadrature nodes, led to a method with significant par-
allel speed up. Incorporating the additional coarsening strategies presented here for
MLSDC into PFASST would further reduce the cost of coarse levels, but it is unclear
how this might translate into an increase in the number of parallel PFASST iterations
required.

Acknowledgments The plots were generated with the Python Matplotlib [25] package.
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