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Introduction

In a classic study, Ayala et al. (1973) illustrated how inter-
specific competition models could be tested by fitting 
them to experimental data. Nevertheless, the great major-
ity of experiments on competition have not been designed 
to address theory directly. While much experimental and 
comparative evidence demonstrates the importance of com-
petition in diverse communities (Connell 1983; Schoener 
1983; Simberloff and Dayan 1991; Wootton 1994; Kaplan 
and Denno 2007; Hibbing et al. 2010), the data from most 
studies cannot be used to test models of interspecific com-
petition (Inouye 1999, 2001). A better relation between 
experimental results and theory would allow the validity of 
existing models, including their structure, assumptions, and 
predictions, to be tested. Ultimately, direct comparisons of 
theory and data might confirm the adequacy of existing the-
ory (Vandermeer 1969) or justify developing more sophisti-
cated models (Ayala et al. 1973).

Here we describe a model-based approach inspired by 
Ayala et al. (1973) and Inouye (2001) to investigate com-
petition between two species of amphibian, Rana tempo-
raria and Bufo bufo. These two anurans occupy freshwater 
wetlands across much of Western Eurasia during the larval 
stage of their life cycle and are usually found in the terres-
trial environment during the juvenile and adult stages. The 
species coexist both at local spatial scales within breed-
ing sites (Fig. 1) and at larger landscape scales (Nöllert 
and Nöllert 1992; Babik and Rafinski 2001; Van Buskirk 
2005). Therefore, any successful model of the interaction 
between R. temporaria and B. bufo must predict that they 
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coexist stably. Because tadpoles of these species occur at 
relatively high densities in discrete ponds, it is reasonable 
to expect that interactions are especially severe during the 
larval stage (Wilbur 1980; Pechmann 1995; Altwegg 2003). 
Therefore, our experiment was designed to estimate com-
petition among tadpoles within and between species. We 
first determined which of several competition models is 
the most appropriate to describe the interaction between R. 
temporaria and B. bufo, and then asked whether the esti-
mated parameters predicted stable coexistence.

Methods

The experiment included four replicates, each consisting of 
24 density combinations of R. temporaria and B. bufo. For 
each species, the design included a 4 × 5 complete facto-
rial design (5, 10, 20, and 40 individuals of the target spe-
cies, crossed with 0, 5, 10, 20, and 40 individuals of the 
other species). The treatment with zero individuals of both 
species was not included. One replicate of the treatment 
with ten B. bufo and zero R. temporaria was lost.

The experiment was conducted in ninety-six 80-l plas-
tic mesocosms (0.28 m2) placed outdoors in a field located 

on the campus of the University of Zurich, Switzerland. 
They were arranged in the field within two spatial blocks, 
with two replicates of each treatment per block. Two weeks 
prior to initiation of the experiment, we filled each meso-
cosm with tap water to which we added 40 g dried leaf lit-
ter and 2 g of commercial rabbit food; we then covered the 
mesocosms with lids made of 37 % shade cloth. Many fea-
tures of natural ponds are not present in mesocosms estab-
lished in this way, and these conditions might influence the 
outcome of interspecific competition (Wilbur 1987; Dun-
son and Travis 1991). However, the mesocosms described 
here supported diverse communities of microorganisms, 
zooplankton, and periphyton and provided sufficient food 
for the survival and growth of anuran larvae.

The tadpoles came from five clutches of each species, 
collected from a pond 30 km north of Zurich, Switzerland. 
The experiment began on 5 April 2012, when the tadpoles 
were 6–7 days old, weighed 25.4 ± 6.6 mg (mean ± stand-
ard deviation; R. temporaria) and 9.5 ± 3.0 mg (B. bufo), 
and were at Gosner (1960) stage 25. Tadpoles were ran-
domly chosen from different clutches in equal proportions 
and groups were assigned to mesocosms also at random. 
The experiment continued until 8 May, at which point all 
tadpoles were removed and we recorded the number of sur-
vivors of each species, along with their mass and develop-
mental stage. In mesocosms with more than ten survivors, 
we assessed Gosner stage in a randomly chosen sample of 
ten individuals of each species. The staged tadpoles were 
preserved in 10 % formalin.

Statistical analyses

First, we compared the ability of each of six competition 
models to describe the interaction between R. temporaria 
and B. bufo tadpoles. The models [listed in Electronic Sup-
plementary Material (ESM) Table A1] consist of difference 
equations that describe how the number of individuals of 
a particular species present in the next time-step (Xt+1) 
change with the numbers of individuals of the two com-
peting species present in the current time-step (Xt and Yt). 
Parameters of the models describe the population growth 
rates and carrying capacities of both species, competi-
tion between species, and the functional form of density 
dependence. Data can be used to differentiate these mod-
els by fitting the two surfaces that they describe: Xt+1 as 
a function of Xt and Yt, and the corresponding surface for 
Yt+1 (Ayala et al. 1973; Inouye 2001). Changes in popula-
tion size could not be determined in our study due to the 
complex life cycles and long generation times of the organ-
isms under study. We therefore assumed that changes in 
population size are proportional to a composite measure of 
individual fitness, as defined below. The coefficients that 
scale individual fitness to change in population size cannot 

Fig. 1  Average densities of Rana temporaria and Bufo bufo tad-
poles in pond samples collected mid-way through the larval period of 
both species, near Zurich, Switzerland. Data are from 79 ponds that 
were sampled on 321 occasions between 1997 and 2003 (each pond 
was sampled an average of 4.1 years). Sample sizes are the num-
ber of pond-sampling occasions. Field methods are as described by 
Van Buskirk (2005). Both species occurred at a higher density when 
they occurred together than when each occurred alone. The two spe-
cies were not associated in their presence/absence across all years 
(G = 0.41, P = 0.52, df = 1, N = 79 ponds; Sokal and Rohlf 1981). 
Nevertheless, larval densities of R. temporaria and B. bufo were 
somewhat positively correlated among ponds (r = 0.17, P = 0.13, 
N = 79 ponds) and among years within ponds (r = 0.06, N = 14 
ponds with at least 4 years of data and both species present)
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be estimated from our data, and these are integrated into 
the model parameters for growth rate and carrying capac-
ity; estimates of competition coefficients are unaffected by 
scaling (Inouye 2001; Hart and Marshall 2012).

“Fitness” was defined as survival to reproduction, which 
we predicted for each individual in the experiment using 
data from a different species of frog (Pseudacris maculata; 
Smith 1987). Smith (1987) estimated that survival to repro-
duction at age 2 years was related to size at metamorpho-
sis (SM) and date of metamorphosis (DM) in the following 
way: logit[survival to age 2] = −1.16 + 0.601 × SM − 0.
198 × DM. Both SM and DM are standardized [mean = 0, 
standard deviation (SD) = 1]. The intercept scales indicate 
mean survival which is therefore arbitrary. We substituted 
final mass for SM and final stage for DM, both standard-
ized so that the units of measurement were the same as 
those in Smith’s study. Individual fitness was estimated for 
each tadpole in the experiment; those that did not survive 
were assigned a value of 0. The exact coefficients are prob-
ably different in our study organisms than in P. maculata, 
but we are confident of the general form of this relationship 
because (1) coefficients relating size and age at emergence 
with 1-year survival in European water frogs (Altwegg and 
Reyer 2003) are similar to those estimated by Smith (1987) 
and (2) the link between larval and adult performance has 
been confirmed in other amphibian species (Berven and 
Gill 1983; Semlitsch et al. 1988; Berven 1990, 2009; Scott 
1994). Nevertheless, we evaluated the sensitivity of our 
results to the values of the coefficients by exploring the 
effect of increasing or decreasing each coefficient by 20 % 
(ESM Fig. S2). These manipulations never affected the 
general configuration of the isoclines or caused more than 
a 2 % change in the predicted equilibrium densities of the 
two species, calculated as described below.

Using nonlinear least squares model fitting, we fit the six 
competition models onto the mean values of relative fitness 
at the level of the mesocosm, ignoring spatial blocks. Mod-
els were compared using a small-sample version of Akai-
ke’s information criterion (AICc; Burnham and Anderson 
1998). The best model for both species was that of Hassell 
and Comins (1976). For R. temporaria, this model was 15 
AICc units better than the next-best model, and for B. bufo 
it was 3 AICc units better (see ESM Table S1). The Has-
sel–Comins model fit the data reasonably well in both spe-
cies (ESM Fig. S2). Therefore, we hereafter consider only 
the Hassel–Comins competition model because this model 
was well-supported by the data and has been successfully 
applied elsewhere (e.g., Inouye 1999). The modified model 
was

where w = relative fitness (=fitness/fitness of spe-
cies × averaged over all treatments), X and Y are the 

(1)w = X × �× [1+ c × (X + β × Y)]−b
,

numbers of conspecific and heterospecific tadpoles entering 
the experiment, respectively, λ and c are parameters related 
to population growth and carrying capacity, respectively, β 
is the competitive effect of species Y on species X, and b 
controls the functional form of density dependence.

The probable outcome of competition in this system 
was evaluated in several ways. As shown by Hassell and 
Comins (1976), coexistence is possible when the product of 
the two competition coefficients is <1. Also, the zero iso-
cline for species A (plotted on the horizontal axis) must be 
steeper than the isocline for species B near their point of 
intersection (Fig. 1 in Hassell and Comins 1976). Because 
we do not know how population growth scales with fitness, 
we drew what we call “mean-fitness isoclines” connecting 
all points which predicted w = 1. The intersect of the iso-
clines is the point at which individuals of both species have 
equal relative fitnesses. Mean-fitness isoclines correspond 
to zero-growth isoclines only if the population sizes of the 
two species remain constant when individuals have aver-
age fitness (i.e., only if R0 = 1 when mean w = 1). More 
often, the transition between population growth and decline 
will occur above or below the mean-fitness isoclines. This 
will influence their point(s) of intersection, but should not 
affect the general configuration of isoclines. Note that zero-
growth isoclines are linear in the Hassell–Comins model, 
but mean-fitness isoclines are not because increasing con-
specific density has both positive and negative effects; 
isoclines become linear after division on both sides by X 
(Eq. 1). We explored the dynamical behavior of the system 
in two ways. First, we superimposed “displacement vec-
tors” onto the phase diagram (Ayala et al. 1973), represent-
ing changes in population size between time-steps. As we 
did not measure population change in our study, the length 
of displacement vectors in each direction was proportional 
to (w − 1). This again assumes that the population declines 
when w < 1 and increases when w > 1. Vectors were cal-
culated separately for the two species and then summed 
to produce the displacement vector. We also simulated 
dynamics over 1,000 generations under the same assump-
tion on population change, starting at all two-species com-
binations of density between 1 and 40 at intervals of 1.

Next we explored the influence of conspecific and heter-
ospecific density on the separate components of individual 
performance assessed at the end of the experiment: sur-
vival, mass, and developmental stage. Using mixed-effects 
linear models on mean values at the level of the mesocosm, 
we regressed each component against log10-transformed 
numbers of Rana and Bufo + 1, and their interaction. Mod-
els included random effects for variation between blocks 
and heterogeneity between blocks in the effects of Rana 
density and Bufo density. In one set of models, perfor-
mance components were transformed to improve the dis-
tributions of residuals (arcsine-square root-transformation 
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for survival, ln-transformation for mass, and no transforma-
tion for stage). We used these models to evaluate signifi-
cance, which was determined by inspecting profile likeli-
hood confidence intervals (CIs) (Venzon and Moolgavkar 
1988). In a second set of models, performance traits were 
not transformed and the slopes were scaled by the pooled 
individual-level SD of the trait. These models were used for 
evaluating the magnitude of density effects because they 
produced estimates in comparable and easily interpretable 
units (SD units per ten-fold change in density). All analyses 
were implemented in R 3.1.2, using nls and lme4 R Core 
Team 2014).

Results

Competition was strongly asymmetric. The competition 
coefficient representing the per capita effect of R. tempo-
raria on B. bufo (0.218, 95 % CI 0.165−0.279) was nearly 
fivefold greater than that of B. bufo on R. temporaria 
(0.045, 95 % CI 0.027−0.064). The fitted models sug-
gest that the two species should coexist. First, the product 
of the competition coefficients was well below 1, a condi-
tion for coexistence in the Hassell–Comins model (Has-
sell and Comins 1976). The mean-fitness isoclines inter-
sected at two points (Fig. 2), with the upper intersection 

characterized by relatively steep mean-fitness isoclines for 
both species in a configuration that implies stability, and 
the lower intersection implying damped cycles in the abun-
dance of the two species. Displacement vectors originat-
ing at each of the 24 initial density combinations pointed 
towards the intersections of the isoclines (Fig. 2). This is 
a necessary consequence of high individual fitness at low 
density and lower-than-average fitness at high density, but 
the specific arrangement of vectors implies that the sys-
tem is strongly attracted to the upper intersection. Indeed, 
simulations confirmed that the system always converges 
upon the upper intersection, at 14.5 R. temporaria and 15.7 
B. bufo, assuming that change in population size from one 
time interval to the next is proportional to (w − 1).

Analysis of the separate performance measures indicated 
that competitive effects were stronger on tadpole size and 
development than on survival and confirmed that the per 
capita impact of R. temporaria was usually higher than that 
of B. bufo. Tests of significance on the left side of Table 1 
show that, for both species, mass and stage were negatively 
influenced by increases in both conspecific and heterospe-
cific density; survival was never significantly affected by 
density and interactive effects were weak (ESM Fig. S3). 
The right side of Table 1 confirms that density-dependent 
declines in growth and development were about four to ten-
fold greater than the declines in survival. A tenfold increase 
in density caused a decline in survival of roughly 0.0–0.3 
SD units, a reduction in mass of 1.6–3.9 SD units, and a 
delay in development of 0.2–2.0 SD units. Competition 
affected the mass of R. temporaria at least twice as strongly 
as it affected development rate, and the impact of conspe-
cific density was more than double that of heterospecific 
density. For B. bufo, mass also responded more strongly 
than stage, and the impacts of conspecific and heterospe-
cific competitors were similar.

Discussion

The observation that natural populations of Rana tempo-
raria and Bufo bufo coexist during larval and adult stages 
implies that their interaction is stable. A variety of models 
have been proposed to describe the outcome of competi-
tion among two or more species and specify conditions 
under which coexistence is possible. The results of this 
study favor non-linear rather than linear forms of density 
dependence and specifically support the model of Hassell 
and Comins (1976), especially for R. temporaria. Many 
studies agree that linear density dependence, as represented 
by the Lotka–Volterra model, does not match empirical 
results (e.g., Wilbur 1977; Goldberg and Landa 1991; Hart 
and Marshall 2012). When data are compared explicitly 
with competition models, the models of Ricker (1954) or 

Fig. 2  Mean-fitness isoclines of the Hassell and Comins (1976) 
model estimated for competition between tadpoles of Rana tempo-
raria (solid line) and Bufo bufo (dashed line). Isoclines occur when 
relative fitness (w) is 1. Filled symbols The 24 density combinations 
in the experimental design, axes represent the number of hatchling 
tadpoles of the two species added to each 0.28-m2 mesocosm, arrows 
show the direction and relative magnitude of change that the system 
is predicted to experience in the next time-step under the assumption 
that population size increases when w > 1, arrow lengths are propor-
tional to (w − 1)
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Hassell and Comins (1976)—with the parameter b ≥ 1—
are often well supported (Inouye 1999; Paini et al. 2008; 
Hart and Marshall 2012; Kim et al. 2013).

Given an appropriate structure of the underlying com-
petition model, our experiment then estimated values of 
its parameters and suggested dynamic behavior of the sys-
tem. The competition coefficients suggest that the interac-
tion between tadpoles of the two species was asymmetric, 
with R. temporaria roughly fivefold stronger than B. bufo 
in terms of interspecific competition and twofold stronger 
in terms of intraspecific effect. Although asymmetric com-
petition can cause competitive exclusion of a competitively 
inferior species (May 1975; Hassell and Comins 1976), this 
was not predicted in our system because interspecific com-
petition was relatively weak in both directions (both βs well 
below 1). This result agrees with those reported in a size-
able portion of the relevant literature, indicating that asym-
metric competition among coexisting species is widespread 
(Lawton and Hassell 1981; Connell 1983; Schoener 1983; 
Kaplan and Denno 2007), including in amphibians (Morin 
and Johnson 1988; Pearman 2002; Richter-Boix et al. 2004; 
Behm et al. 2013). The mechanism generating asymmetry 
in this case might be related to the difference in body size, 
as has been noted elsewhere (Richter-Boix et al. 2004). 
Rana temporaria tadpoles were about 2.5-fold larger than 
those of B. bufo at hatching and remained so throughout the 
experiment; the former therefore may have consumed more 
resources per capita. An alternative explanation is that 
the two species have settled upon different evolutionary 
solutions to the trade-off between competitive ability and 
resistance to predators. This trade-off, observed in a wide 
variety of taxa, arises because traits that enable success in 

competitive interactions also confer high mortality from 
predators (Woodward 1983; McPeek 1990; Smith and Van 
Buskirk 1995; Wellborn 2002; Yoshida et al. 2004). Indeed, 
B. bufo tadpoles appear to be relatively weak competitors, 
and they typically occur in permanent wetlands with high 
densities of aquatic predators, especially fish (Van Buskirk 
2003, 2005).

The locally syntopic occurrence of R. temporaria and 
B. bufo across much of Europe and the abundance patterns 
of larvae in our field sites are mostly consistent with the 
predictions of theory. Indeed, their completely independ-
ent patterns of occurrence imply that the two species pay 
little attention to each other (Fig. 1). The approximately 
equal densities of the two species in ponds where they 
co-occur are also consistent with the model (although 
this prediction depends on how population growth rate 
scales with relative fitness). However, the fact that R. 
temporaria and B. bufo larval densities were somewhat 
positively correlated in our field survey seems incompat-
ible with the finding that tadpoles compete strongly. For 
B. bufo, the predicted equilibrium density in the absence 
of competition was well above the density under coexist-
ence (Fig. 2), but the observed density in ponds without 
R. temporaria competitors was lower (Fig. 1). An obvious 
explanation is that wetlands vary in overall quality so that 
both species occur together at higher larval density in sites 
of higher quality; this produces a positive density correla-
tion despite a negative interspecific interaction (e.g., Gas-
con 1992; Schmitz and Suttle 2001; Thurnheer and Reyer 
2001). More generally, our experimental and field data 
highlight challenges associated with using non-experimen-
tal field data to test predictions on abundance from theory 

Table 1  Two assessments of the competitive effects of Rana temporaria and Bufo bufo tadpoles on survival, body size, and developmental stage 
measured on the last day of the experiment

Both methods estimate the effects of the log10-transformed density of conspecific and heterospecific tadpoles; slopes therefore represent the 
change in response with a tenfold increase in competitor density. All models include random effects for differences between blocks and hetero-
geneity between blocks in the effects of Rana density and Bufo density, but these effects were never significant in likelihood-ratio tests. The left 
side of the table is appropriate for evaluating significance: survival was arcsine-square root-transformed, mass was ln-transformed, and stage was 
untransformed. The right side of the table is appropriate for comparing effect sizes: responses were untransformed and slopes were rescaled to 
units of standard deviation among individual tadpoles pooled across treatments

Significant at * P < 0.05 and ** P < 0.01 judged from the profile likelihood confidence intervals 

Source Original/transformed units Standard deviation units

Survival Mass Stage Survival Mass Stage

 Responding species: Rana temporaria

 Rana density −0.066 −0.934** −3.048** −0.316 −3.839 −1.864

 Bufo density −0.040 −0.295** −0.305 −0.235 −1.581 −0.186

 Rana × Bufo 0.017 0.145 0.038 0.103 0.902 0.023

 Responding species: Bufo bufo

 Rana density −0.141 −0.629** −2.844* −0.239 −3.937 −2.022

 Bufo density −0.058 −0.550** −1.951* −0.031 −3.499 −1.387

 Rana × Bufo 0.076 0.147 0.757 0.124 1.546 0.539
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and experiment (Werner 1998). In our case, it is clear that 
intra- and interspecific competition among larvae are not 
the only processes affecting the occurrence and abun-
dance of these two species. Many environmental factors 
are known to influence amphibian larval abundance (Van 
Buskirk 2005; Werner et al. 2007a), and processes taking 
place during the terrestrial stage of the life cycle can influ-
ence occurrence and abundance (Joly et al. 2001; Werner 
et al. 2007b; Hamer and Parris 2011).

One value of linking experimental data and models in 
the study of species interactions is that explicit predictions 
on system dynamics can be made and tested. Applying this 
approach to organisms that have complex life cycles—such 
as amphibians—is difficult because of the uncertain con-
nection between individual performance and population 
dynamics. This issue may be overcome by studying model 
species with relatively accessible life cycles, such as Dros-
ophila (Ayala et al. 1973; Prout and McChesney 1985). In 
non-model organisms, the issue will have to be overcome 
by studying multiple life stages simultaneously (e.g., Alt-
wegg and Reyer 2003), better connecting the performance 
of individuals with their contributions to population growth 
(e.g., Berven 2009), and developing appropriate models of 
species interactions in multi-stage organisms (e.g., Moll 
and Brown 2008).
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