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Abstract: In one-dimensional real and complex dynamics, a map whose post-singular
(or post-critical) set is bounded and uniformly repelling is often called a Misiurewicz
map. In results hitherto, perturbing a Misiurewicz map is likely to give a non-hyperbolic
map, as per Jakobson’s Theorem for unimodal interval maps. This is despite genericity
of hyperbolic parameters (at least in the interval setting). We show the contrary holds
in the complex exponential family z �→ λ exp(z): Misiurewicz maps are Lebesgue
density points for hyperbolic parameters. As a by-product, we also show that Lyapunov
exponents almost never exist for exponential Misiurewicz maps. The lower Lyapunov
exponent is −∞ almost everywhere. The upper Lyapunov exponent is non-negative and
depends on the choice of metric.

1. Introduction

Jakobson’s Theorem [15] from 1981 is one of the more celebrated and striking results in
dynamical systems. In the real quadratic (or logistic) family fa : x �→ ax(1 − x),
Jakobson showed that there is a positive measure set of parameters a close to the
Chebyshev parameter a = 4 for which the map has an absolutely continuous, fa-
invariant probability measure μa . One can contrast this with the result [13,19], due to
Graczyk and Świa̧tek and to Lyubich, which states that the set of hyperbolic parame-
ters is open and dense, to emphasise the intricacy of quadratic dynamics. Rees in [26]
generalised Jakobson’s result to rational maps of the Riemann sphere. Benedicks and
Carleson extended these results to the Hénon family in [5]. In these settings, one starts
with a map with a repelling post-critical set, and sufficiently small perturbations are
likely to give non-hyperbolic parameters. In this paper we present a counter-example to
this paradigm in the complex exponential family.

In the exponential family fλ : z �→ λez , a parameter λ is called a Misiurewicz
parameter if { f n

λ (0) : n ≥ 0} ⊂ C is a bounded, hyperbolic repelling set. The simplest
example is for λ = 2π i . For Misiurewicz parameters, the Julia set is the entire complex
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plane (or, regarding f as a meromorphic map, the Julia set is the entire Riemann sphere).
In particular, there are dense orbits.

A parameter λ is called hyperbolic if fλ has an attracting periodic orbit. For hyperbolic
λ, almost every orbit is in the basin of attraction of the attracting periodic orbit. Any λ

with |λ| < 1/e is hyperbolic.

Main Theorem. In the complex exponential family, Misiurewicz parameters are
Lebesgue density points for the set of hyperbolic parameters.

By this we mean, if λ0 is a Misiurewicz parameter, H is the set of hyperbolic para-
meters and m denotes Lebesgue measure, then

lim
r→0+

m(B(λ0, r) ∩ H)

m(B(λ0, r))
= 1.

For Misiurewicz parameters in the exponential family, there is a conservative,σ -finite,
ergodic, absolutely-continuous invariant measure. It even has a real-analytic density off
the post-singular set [8]. However, it was shown in [10,17] that no absolutely continuous
invariant probability measure can exist. To prove the main theorem, strong estimates on
the dynamics of Misiurewicz maps are required. The same estimates, with only a slight
extension, permit one to show that for Misiurewicz maps, the Lyapunov exponent of a
point exists almost nowhere. We use D f to denote the derivative of f with respect to
the Euclidean metric.

Theorem 1. Let f be a Misiurewicz map from the exponential family. For Lebesgue
almost every z ∈ C,

lim inf
n→∞

1

n
log |D f n(z)| = −∞,

while

lim sup
n→∞

1

n
log |D f n(z)| = +∞. (1)

However, the plane is not compact and there is a choice of Riemannian metric. For
any metric ρ, let Dρg denote the derivative of g with respect to ρ. In particular, for the
spherical metric σ ,

Dσ g(z) := 1 + |z|2
1 + |g(z)|2 Dg(z).

Theorem 2. Let f be a Misiurewicz map from the exponential family. For Lebesgue
almost every z ∈ C and every Riemannian metric ρ,

lim inf
n→∞

1

n
log |Dρ f n(z)| = −∞ (2)

and

lim sup
n→∞

1

n
log |Dρ f n(z)| ≥ 0,

while for the spherical metric σ ,

lim sup
n→∞

1

n
log |Dσ f n(z)| = 0.
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One could replace log in Eq. (1) by any finite composition of logarithms and the result
would still hold, though we do not quite show this (and similarly for (2), remembering
to take absolute values); the number 4 in Lemma 25 was chosen rather arbitrarily.

For a class of maps of the unit interval with negative Schwarzian derivative, Keller
[16] showed that if lim supn→∞ 1

n log |D f n(x)| > 0 for almost every x , then there exists
an absolutely continuous invariant probability measure. Theorem 1 implies that the same
does not hold generally in the exponential family, at least for the Euclidean metric. It
would be interesting to know whether the following conjectures are equivalent.

Conjecture 1. Let f : z �→ λez. For the spherical metric σ and Lebesgue almost every
z ∈ C,

lim sup
n→∞

1

n
log |Dσ f n(z)| ≤ 0.

Conjecture 2. No map from the exponential family admits an absolutely continuous
invariant probability measure.

Misiurewicz parameters (and maps) have a long and involved history in the field
of one-dimensional dynamics. Introduced by Misiurewicz in [23] for smooth maps of
the interval, they became the first examples where some non-trivial condition on the
behaviour of critical orbits guaranteed the existence of absolutely continuous invariant
probability measures. This result was superseded by many more in interval dynamics,
see [7] for one of the latest and strongest. The concept of Misiurewicz parameter exists in
other contexts too, see [3,6,10,14] for example. The articles [4,15,26,30] all find positive
measure sets of non-hyperbolic parameters (indeed one admitting absolutely continuous
invariant probability measures) in a neighbourhood of Misiurewicz parameters. On the
other hand, Misiurewicz parameters have zero Lebesgue measure, in general [1,3,29].

In [30], Thunberg finds positive measure sets of non-hyperbolic parameters in uni-
modal families of interval maps with critical points of type exp(−|x |−α), provided
α < 1/8. We showed in [9] that if α ≥ 1, no absolutely continuous invariant probability
measure with positive entropy can exist, as was shown for Misiurewicz parameters in
the same setting in [6].

Structural instability of Misiurewicz parameters in the exponential family was shown
in [12,20,31]. For the (non-Misiurewicz) map z �→ ez , the orbit of 0 is a (wild) metric
attractor attracting almost every orbit [18,25], although generic orbits are dense. This
map is a density point for hyperbolic maps in the exponential family [32]. For those
interested in the structure of parameter space of the exponential family (as opposed to
metric properties), we refer to [27].

It has been suggested by Hubbard that hyperbolic parameters should have full measure
in the exponential family, see [24] (where it is shown that non-hyperbolic parameters
have full Hausdorff dimension). This would be a stronger conjecture than density of
hyperbolic parameters, and this paper and [32] could be viewed as first small steps in
that direction.

One could ask about the complex quadratic family fc : z �→ z2 + c with Julia set
Jc. Rivera-Letelier [28] showed that if c ∈ Jc and c is non-recurrent, then c is a density
point for hyperbolic parameters (ones for which c is in the basin of a periodic attractor,
finite or at infinity). Aspenberg in [2] extended this result to more general rational maps
for which the Julia set is not the whole sphere. In both of these cases, basins of periodic
attractors are open and dense in the sphere. It is natural in these cases to expect that,
with expansion along the post-critical orbits, a small perturbation is likely to send the
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critical orbits into the attracting basins. What is strange in the exponential setting is that
Misiurewicz parameters are density points for hyperbolic parameters even though the
Julia set at the Misiurewicz parameter is the whole space.

For a map fλ from the exponential family, fλ(z) = D fλ(z) and | fλ(z)| = |λ|e
(z), so
fλ is 2π i-periodic, fλ maps vertical lines to circles, horizontal lines to rays emanating
from 0, and rectangles of height 2π onto annuli centred at 0. Points far to the left get
mapped extremely close to 0, and points far to the right get mapped extremely far from 0.

In Appendix D of [22], Milnor shows that our choice of realisation of the exponential
family is, in some sense, as good as any other: any entire map with asymptotic values at
∞ and at some finite point, and without critical points, is conjugate to a map from the
exponential family. Alternative reasonable choices are gκ : z �→ ez +κ and gκ : z �→ eκz .

2. Global Definitions

Throughout the paper, let f = fλ0 : z �→ λ0 exp(z), for some Misiurewicz parameter
λ0 ∈ C; in particular the post-singular set

P( f ) := { f n(0) : n ≥ 0}
is a bounded hyperbolic repelling set, so there are n0, α > 0 such that |D f n0(z)| >

exp(2α) for all z ∈ P( f ). By continuity, we can fix ε0, δ ∈ (0, 1
2 ) such that for all

λ ∈ B(λ0, ε0) and all z ∈ B(P( f ), 3δ),

|D f n0
λ (z)| > exp(α).

Set V := B(P( f ), δ).
We shall denote by 
 > 1 the modulus giving a Koebe distortion bound of 2, that

is, the minimal number such that for any univalent map g on B(0,
), the distortion of
g on B(0, 1) is bounded by 2:

sup
y,z∈B(0,1)

∣
∣
∣
∣

Dg(y)

Dg(z)

∣
∣
∣
∣
≤ 2.

We shall repeatedly use the following fact.

Lemma 3. For any simply-connected open set U with dist(U, P( f )) > 
 diam(U ),
if f n(z) ∈ U then a neighbourhood of z is mapped biholomorphically onto U with
distortion bounded by 2.

Proof. Since P( f )∩ B( f n(z),
 diam(U )) = ∅, there is a neighbourhood of z mapped
biholomorphically onto B( f n(z),
 diam(U )). By definition of 
, a neighbourhood of
z gets mapped with distortion bounded by 2 onto B( f n(z), diam(U )) ⊃ U , as required.

�
The notation A(y; a1, a2) is used for the annulus centred on y ∈ C with inner and

outer radii of lengths a1, a2.
Denote by R(x) the right half-plane

R(x) := {z ∈ C : 
(z) ≥ x}
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and denote by L(x) the left half-plane C\R(x). Denote by Q the collection of squares
of the form

{z : 2kπ ≤ 
(z) < (2k + 2)π; 2 jπ ≤ �(z) < (2 j + 2)π},
for j, k ∈ Z. Each square has diameter 2

√
2π < 9.

Further definitions occur throughout the paper. These include constants δ0 ∈ (0, δ)

and N1, M > 0 at the start of Sect. 5; following Lemma 34, constants M0, r0 and
holomorphic motion h with h(0, λ) = aK (λ−λ0)

K to first order, with aK ∈ C\{0} and
K a positive integer; just prior to Proposition 35, ξn : λ �→ f n

λ (0).

3. Structure of the Proof

The following simple lemma guides the proof of the Main Theorem.

Lemma 4. For each C > 0, for all x large enough, the following holds. Let λ ∈ C

satisfy |λ| < x, let n ≥ 1 and suppose that the following holds.

(i) f n
λ maps a neighbourhood of 0 biholomorphically onto B( f n

λ (0), 1);

(ii) B( f n
λ (0), 1) ⊂ L(−ex+

√
x + 3π);

(iii) |D f n
λ (0)| < exp(Cex )|
( f n

λ (0))|4.

Then fλ has a hyperbolic attracting periodic orbit.

Proof. Set v = f n
λ (0) for the sake of readability. If x is large, so is −
(v), by (ii). Thus

exp(
(v)/2)|
(v)|4 < 1. (3)

Since 
(v) < −ex+
√

x + 3π ,

ex exp(
(v)/2)2
 exp(Cex ) < 1. (4)

Using a (Koebe) distortion bound of 2, f n
λ maps Bλ := B(0, 1/2
|D f n

λ (0)|) into
B(v, 1/
). Thus f n+1

λ (Bλ) is contained in B(0, r), with r = e|λ| exp(
(v)). Thanks to
(iii) and the bound |λ| < x ,

r2
|D f n
λ (0)| < ex exp(
(v))2
 exp(Cex )
(v)4 < 1,

the latter inequality obtained combining (3) and (4). Hence B(0, r) ⊂ Bλ.
Since f n+1

λ (Bλ) ⊂ B(0, r) and B(0, r) ⊂ Bλ, fλ has a hyperbolic attracting periodic
orbit. �
With expansion along the post-singular orbit of f , one can often transfer estimates for
large sets of points in phase space for f into estimates on the post-singular orbit of fλ
for large sets of parameters λ. It is natural, therefore, to try to find, for f , a large set of
points which enter the left half-plane with estimates related to those of the lemma. A
substantial portion of the paper comprises of this effort.

Note that as λ approaches λ0, there will be a huge build-up of derivative initially as
f j
λ (0) spends a long time near P( f ). To counteract this, one needs to land, eventually,

far off to the left, before getting mapped extremely close to 0 to cancel out the derivative
build-up.
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A general result [12] implies that for exponential Misiurewicz maps (amongst others),
every forward-invariant compact set is hyperbolic repelling (but with no rate estimate).
This in turn implies that the measure of the set of points remaining in any bounded
set for n iterates is exponentially small in n. However, to deal with smaller parameter
perturbations (for λ closer to λ0), we need to find large sets of points going ever further
to the left. Thus we need to know how the exponential rate depends on the size of the
bounded set. In Proposition 11, we obtain the relevant hyperbolicity estimates. For an
exponential Misiurewicz map the derivative grows exponentially fast, except when it is
slowed by the occasional passage close to zero.

Lemma 14 is useful and curiously does not hold for quadratic maps, say. The lemma
implies a distortion bound, which together with the derivative growth estimates, allows
one to relate large and small scales and hence, via a porosity-type argument, to estimate
how long it takes for a large proportion of points to make a first entry into a right half-
plane R(x). Boot-strapping, we show that for most of these points, the first entry actually
lands in R(x +2

√
x). In Sect. 6 we study the dynamics of points in a far-right half-plane,

showing that most points go further and further to the right before eventually landing
far out to the left.

These results are gathered together in Proposition 26, which says that if you start
from a reasonable, reasonably large set close to P( f ), then most points in that set first
enter a far-left half-plane in a bounded amount of time and with a derivative bound.
Points may land far to the left in that half-plane, so the derivative bound depends not
only on the half-plane but also on the real part of the landing location.

With the necessary ingredients in place, we pause to prove Theorems 1 and 2 in
Sect. 8. Only the estimate for the spherical derivative is a little complicated.

Returning to the proof of the main theorem, we begin our parameter-based estimates.
We show that points from Proposition 26 do not move too, too fast as the parameter
moves. The continuation of a point is defined to have a similar orbit and the same first
entry to the left half-plane. The estimates depend on the parameters considered being in
a tiny ball, the time being bounded and the orbit being a certain distance away from 0.

Going backwards from a large neighbourhood of a point in P( f ) to a tiny neigh-
bourhood of 0 (or of λ0) is more delicate, though at this stage the arguments are well-
understood. The estimates are also a little less cumbersome going forwards than back-
wards. For completeness, and because the desired estimates are not simple to extract
from [3] (itself based on [1]), we include proofs of the estimates. Sectors of small an-
nuli centred on λ0 in parameter space get mapped biholomorphically and with bounded
distortion onto reasonably large sets near P( f ) by the map λ �→ f n

λ (0), for some n
depending on the annulus, see Lemma 37.

With the various (parametric) derivative estimates, it is not too hard then, in Proposi-
tion 39, to match up most parameters with orbits and, using Lemma 4, to show that for
these parameters the maps are hyperbolic.

A note of comparison, Wang and Zhang [32] showed that 1 is a density point for
hyperbolic parameters. For g : z �→ ez , most points near 1 follow the orbit of 1 out
towards infinity until escaping a small neighbourhood of the orbit, then take more steps
towards +∞, then get mapped extremely close to −∞ and then super-close to 0 with
derivative close to 0. One only needs to study the dynamics close to infinity and along
the orbit of 1, so the arguments are relatively elegant and straightforward. Moreover, one
can calculate by hand that the derivative of λ �→ f n

λ (0) is positive (and increasing in n)
at 1, so in particular it is non-zero. If this were known to be the case for Misiurewicz
parameters, one would have K = 1 in Eq. (35) and one could deal with balls instead
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of annuli, a minor simplification. One could attempt the parameter exclusion method as
per [32] in the current setting, and it would work as long as one remains close to P( f ),
though something along the lines of Proposition 35 would of course still need to be
shown. However, continuing on beyond the comfort of a neighbourhood of P( f ), where
one has injectivity and distortion control, would likely lead to many sleepless nights.

4. Non-uniform Hyperbolicity

In this section we gather some estimates on the growth of the derivative along individual
orbits and their neighbourhoods. In the following section we will use these estimates to
compare small and large scales and derive some measure estimates. Recall that f = fλ0

and λ0 is a Misiurewicz parameter.

Lemma 5. The Julia set is C and |λ0| ≥ 1/e.

Proof. The first statement follows immediately from Theorems 3–5 of [11], since the
post-singular set is uniformly repelling. Were |λ0| < 1/e, then f (B(0, 1)) ⊂ B(0, 1)

and f would have an attracting fixed point. �
Lemma 6. For each z in C\P( f ), there are arbitrarily small neighbourhoods Uz on
which the first return map φ to Uz is expanding (that is, |Dφ| > γz > 1).

Proof. This is part (iii) of [8, Lemma 11], knowing that the Julia set is C. �
Lemma 7. Given any θ > 0, there is a β ∈ (0, 1) such that, for any z ∈ C and k ≥ 0,
if dist( f k(z), P( f )) ≥ θ then |D f k(z)| > β.

Proof. By Lemma 3, some neighbourhood W of z is mapped biholomorphically onto
B( f k(z), θ/
) with distortion bounded by 2. But f is not univalent on any ball of
radius π , so W cannot strictly contain a ball of radius π . Combining these two facts, the
derivative of f k on W cannot be too small. �
Lemma 8. There is an M > 3 such that, for all z ∈ C and k ≥ 1, if | f k(z)| ≥ M then
|D f k(z)| > 3.

Proof. Let θ > 0 and let β be given by Lemma 7, Take M > 3/β sufficiently large
that f (B(P( f ), θ)) ⊂ B(0, M). If f k(z) ≥ M then dist( f k−1(z), P( f )) ≥ θ , so
|D f k−1(z)| > β. But |D f k(z)| = | f k(z)||D f k−1(z)| ≥ Mβ > 3. �
Lemma 9. Given M1 > 1 there is an M2 > 1 such that, for all z ∈ C and k ≥ 2, if
| f k(z)| ≥ M2 then |D f k(z)| > M1| f k(z)|.
Proof. Take M2 large enough that | f k−1(z)| must be larger than M1 and | f k−2(z)| must
be larger than M , where M comes from Lemma 8. �
Lemma 10. There is some β1 > 0 such that, for each z ∈ C and k ≥ 1,

|D f k(z)| ≥ β1 inf
1≤ j≤k

| f j (z)|. (5)
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Proof. Let n ≤ k be maximal such that |D f n(z)| ≥ 1. If n ≥ 1 then

|D f n(z)| =
∏

1≤ j≤n

| f j (z)| ≥ inf
1≤ j≤n

| f j (z)|.

Note that if n = k, (5) holds with β1 = 1. Assume now that n < k. Let M be given
by Lemma 8, so | f j (z)| < M for j = n + 1, . . . k. By the chain rule and choice of n,
|D f k(z)| ≥ |D f k−n( f n(z))|. It now suffices to prove that

|D f k−n( f n(z))| ≥ β1 inf
n+1≤ j≤k

| f j (z)|.

Rewriting, it suffices to prove the lemma under the assumption | f j (z)| < M for j =
1, . . . , k.

Recall that V is globally defined in Sect. 2 as a small neighbourhood of the postsin-
gular set. We can divide the orbit into three pieces: a first stretch which ends outside V ,
a final stretch spent entirely inside V , and in between a single iterate. So, let n ≤ k be
maximal such that f n(z) /∈ V , if it exists, otherwise set n = 0. Let β ∈ (0, 1) be given
by Lemma 7. Then

|D f n(z)| ≥ β ≥ β| f n(z)|/M,

by assumption. If n = k, we are done (provided β1 ≤ β/M). So assume n < k. Now
f n+1(z), . . . , f k(z) ∈ V , by definition of n. Since |D f n0 | > 1 on V , it follows that
|D f k−n−1( f n+1(z))| is bounded below by the constant

β2 := min
1≤ j<n0

inf
y∈V

|D f j (y)| > 0.

Then |D f k(z)| ≥ ββ2|D f ( f n(z))|. Taking β1 := min(β/M, ββ2β3) works, where
β3 = |λ0|e−M . �

In the following proposition, we use exponential growth when one remains in a
neighbourhood of P( f ), exponential growth when one remains in a bounded region
disjoint from that neighbourhood, plus absolute growth if an iterate lands outside a
large bounded region, to give some sort of non-uniform hyperbolicity statement for
Misiurewicz maps.

Proposition 11. There are N , N1 > 0 such that for each z there is a j ≤ N +
N | log | f (z)|| with |D f j (z)| > 3 and |D f i (z)|, | f i (z)| ≤ N1 + | f (z)| for i = 1, . . . , j .

Proof. We can assume | f (z)| ≤ 3, otherwise one can simply take j = 1. Set p :=
1+n0�(2−log | f (z)|)/α�, and note that p is bounded by an affine function of | log | f (z)||.
Let k ≥ 1 be minimal such that f k(z) /∈ V . If k ≥ p,

|D f p(z)| ≥ | f (z)| exp(pα/n0) ≥ e2

and, setting j = p, we are done, for appropriately chosen N .
Otherwise, 1 ≤ k < p. Since f k(z) /∈ V , Lemma 7 provides a constant β > 0 (for

θ = δ, say) for which |D f k(z)| > β. Moreover, f k(z) ∈ Z := (B(0, 3) ∪ f (V ))\V .
Therefore it suffices to show that there is an N such that, for each y ∈ Z , there is a
j ≤ N with |D f j (y)| > 3/β.
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By Lemma 9, we can choose N1 large enough that Z ⊂ B(0, N1) (trivially) and that,
for any z ∈ C, if | f n(z)| ≥ N1 then |D f n(z)| > 3/β. Thus we restrict our attention
to those y which do not leave B(0, N1) for the first N iterates, for some large N to be
defined. We can cover the compact set W := B(0, N1)\V by a finite collection of balls
{Wl}L

l=1 on which the first return map is expanding, by Lemma 6, so there is a γ > 1
and each return map φl : Wl → Wl has derivative greater than γ .

Let q, r ∈ N satisfy βγ q > 3/β and βerα|λ0|e−N1 > 3/β. Set N := q Lrn0.
Consider the successive passages of y into W , at times k0, k1, . . . , say. By time kq L ,

if such exists, there must be some Wl which is passed through at least q times. Then
|D f kq L (y)| > βγ q > 3/β and if kq L ≤ N we are done.

Otherwise, at some point the orbit must spend a long period, at least rn0 long,
in B(0, N1)\W ⊂ V . That is, there is some a ≥ 0 such that f l(y) ∈ V for l =
a + 1, . . . , a + rn0 < N and such that a = 0 or f a(y) ∈ W . Since f a(y) ∈ B(0, N1),
| f a+1(y)| ≥ |λ0|e−N1 . But by definition of V ,

|D f rn0( f a+1(y))| ≥ exp(rα).

The choice of r entails β|D f rn0( f a+1(y))|| f a+1(y)| > 3/β, so |D f a+1+rn0(y)| > 3/β.
Noting that a + 1 + rn0 ≤ N , we conclude the proof. �

Recall that 
 > 1 is the constant giving a Koebe distortion bound of 2. The following
two lemmas are stated for maps in a neighbourhood of f which are uniformly expanding
on B(P( f ), 3δ), see Sect. 2.

Lemma 12. Given ε > 0 there is a δ0 ∈ (0, δ) such that the following holds. Let
λ ∈ B(λ0, ε0). If f k

λ (z) ∈ V for all 0 ≤ k ≤ p then there is a neighbourhood Wp of z,
contained in B(z, ε/|D f p

λ (z)|), mapped biholomorphically by f p
λ onto B( f p

λ (z),
δ0).

Proof. First we consider a bounded number of iterates. The distortion of fλ on V is
uniformly bounded (independently of λ ∈ B(λ0, ε0)). Therefore, given ε > 0 there is a
δ0 ∈ (0, ε/2
) such that, if y, fλ(y), . . . , f j

λ (y) ∈ V and 0 ≤ j ≤ n0 − 1, there is a

neighbourhood of y contained in B(y, 2δ) which is mapped biholomorphically by f j
λ

onto B( f j
λ (y), δ0


2).
Meanwhile, |D f n0

λ | > 1 on B(V, 2δ). It follows that, writing p = an0 + j with a, j ∈
N and 0 ≤ j ≤ n0 −1, a neighbourhood of z is mapped biholomorphically by f an0

λ onto
B( f an0

λ (z), 2δ). Combined with the previous paragraph, we deduce that a neighbourhood
of z is mapped by f p

λ biholomorphically onto B( f p
λ (z), δ0


2). Shrinking the target, a
neighbourhood Wp of z is mapped by f p

λ biholomorphically with distortion bounded
by 2 onto B( f p

λ (z), δ0
). Because of the distortion bound,

Wp ⊂ B(z, 2δ0
/|D f p
λ (z)) ⊂ B(z, ε/|D f p

λ (z)|),
as required. �

Lemma 13. There exists δ0 > 0 such that ifλ ∈ B(λ0, ε0), if f j
λ (z) ∈ V for j = 1, . . . , k

and if |D f k
λ (z)| > 1, then there is a neighbourhood U of z mapped biholomorphically

by f k
λ onto B( f k

λ (z),
δ0) with U ⊂ B(z, δ).
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Proof. By hypothesis, |D f k
λ (z)| = | fλ(z)||D f k−1

λ ( fλ(z))| > 1, so letting ε < δ/e and
taking δ0 from the preceding lemma, there is a neighbourhood W of fλ(z) contained
in B( fλ(z), ε| fλ(z)|) mapped biholomorphically onto B( f k

λ (z),
δ0). Since fλ is an
exponential map, fλ(B(z, δ)) ⊃ B( fλ(z), | fλ(z)|(1 − e−δ)). Since 0 < δ < 1, 1 −
e−δ > δ/e. By choice of ε, we deduce that B( fλ(z), ε| fλ(z)|) ⊂ fλ(B(z, δ)), so W ⊂
fλ(B(z, δ)). Therefore the relevant pullback U of W (that is, with z ∈ U ) is contained
in B(z, δ). �

The following lemma requires that the postsingular set is contained in V , so it only
holds for f = fλ0 .

Lemma 14. Let δ0 > 0 be given by Lemma 13. Let z ∈ C and suppose |D f k(z)| >

|D f j (z)| for all j = 0, . . . k − 1. Then there is a neighbourhood of z mapped biholo-
morphically by f k onto B( f k(z),
δ0).

Proof. If f j (z) ∈ V for j = 1, . . . , k, Lemma 13 produces the required neighbourhood.
Otherwise, there is a maximal j ≤ k for which f j (z) /∈ V . By Lemma 13 again, there is a
neighbourhood U of f j (z) mapped by f k− j biholomorphically onto B( f k(z),
δ0), and
U ⊂ B( f j (z), δ). But f j (z) /∈ V , so U ∩P( f ) = ∅. Therefore there is a neighbourhood
of z mapped by f j biholomorphically onto U . �

5. First Entry to a Right-Half Plane

Proposition 22 is the principal result of this section. It states that a large proportion of
points in a neighbourhood of P( f ) get mapped, in not too long time, far out to the right
and with derivative which is not too large. The idea behind the proof is porosity: at every
small scale, a certain proportion gets mapped far out. We use the expansivity estimates
from the previous section to transfer estimates from the large scale to the small scale.
We upgrade the proposition in Lemma 23 both topologically, obtaining a well-behaved
partition, and distance-wise, showing most points land a little further to the right than
claimed by the proposition. In the following two sections we will examine the dynamics
far out to the right and obtain estimates for first entry maps to a (far) left half-plane.

Let δ0 > 0 be the minimum of the δ0 given by Lemma 14 and by Lemma 12 (with
ε < 1/2, say). Let N1 be given by Proposition 11. By Lemma 9, there is an M > 100
such that, if | f n(z)| > M then |D f n(z)| > | f n(z)|/δ0. We can suppose moreover that

M > |λ0|eN1+diam(P( f ))+10
.

This choice of M is for future use [which the reader may choose to remember as a
sufficiently large constant], for example to obtain (7) in the proof of Lemma 20.

Recall Q,R, and L are globally defined in Sect. 2.

Lemma 15. There is a finite collection of sets U1, . . . , Up with corresponding numbers
nk ≥ 0, k = 1, . . . , p, such that f nk maps Uk biholomorphically onto an element of Q
contained in R(M), and such that for each y with |y| ≤ 2M, B(y, δ0) contains some Uk.

Proof. By transitivity of f , there is finite set Z such that dist(y, Z) < δ0/2 for all y with
|y| ≤ 2M , and such that for each z ∈ Z , there is an n such that f n(z) ∈ R(M + 2π).
For such z, n, let Q ∈ Q be the square containing f n(z), so Q ⊂ R(M). By choice
of M and by Lemma 3, there is a neighbourhood U of z which gets mapped by f n

biholomorphically onto Q with distortion bounded by 2. Since |D f n(z)| > | f n(z)|/δ0 >

M/δ0, we deduce that the diameter of U is bounded by 2
√

2π2δ0/M < δ0/2. Thus if
|y − z| < δ0/2, U ⊂ B(y, δ0). The result follows. �
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The following lemma deals with points in L(M). We shall deal with points to the
right subsequently.

Lemma 16. There is a countable collection of sets {Ui }i∈Z and a constant C > 1
such that the following holds. Each Ui is mapped by some f n, n ≥ 0, onto a square
Q ∈ Q with Q ⊂ R(M) with derivative bounded by C and distortion bounded by 2. If

(y) ≤ M, then B(y, δ0) contains as a subset an element of {Ui }i≥0.

Proof. Let Uk, nk for k = 1, . . . , p be given by Lemma 15. Taking translates by multi-
ples of 2π i of the sets U1, . . . Up deals with the points y ∈ C with −M ≤ 
(y) ≤ M .

If 
(y) < −M , by Proposition 11 there is a least j ≥ 1 with 3 < |D f j (y)| and for
this j , | f j (y)|, |D f j (y)| < N1 + 1 < M/2. By Lemma 14, there is a neighbourhood
of y mapped biholomorphically by f j onto B( f j (y),
δ0) with a corresponding sub-
neighbourhood W mapped by f j onto B( f j (y), δ0) with distortion bounded by 2 (by
choice of 
). On W we deduce 1 < 3/2 < |D f j | < M . The lower bound implies
W ⊂ B(y, δ0). Now B( f j (y), δ0) contains some Uk , with 1 ≤ k ≤ p. Thus there is
some Uy ⊂ W mapped by f j onto Uk . The derivative |D f j+nk | on Uy is bounded by
2N1 supUk

|D f nk |. Thus one can take C := M max1≤k≤p supUk
|D f nk |.

Countability of the collection of Uy obtained follows from countability of Q (and its
preimages). The distortion bound comes from Lemma 3. �
Lemma 17. Let Z denote the cone of positive linear combinations of 1 + i and 1− i . Let
y ≥ M. Let Q ∈ Q satisfy Q ⊂ R(y)\R(y + 7). Then there is a subset of Q mapped bi-
holomorphically onto a square Q′ ∈ Q satisfying Q′ ⊂ Z ∩R(|λ0|ey/2)\R(|λ0|eye7).

Proof. One quarter of any square of Q gets mapped injectively into Z . We have f (Q)∩
Z ⊂ R(|λ0|ey/

√
2), and f (Q) ∩ R(|λ0|ey+7) = ∅. Only a small proportion of squares

from Q in f (Q) ∩ Z intersect f (∂ Q), so we can pull back one of the other squares to
get the required subset. �
Lemma 18. Suppose Q ∈ Q satisfies Q ⊂ R(M). Let x > M. For some z ∈ Q and
some k ≥ 0, the ball B(z, 1/x3) ⊂ Q is mapped by f k univalently into R(x).

Proof. Suppose Q ⊂ R(y)\R(y + 7). We can assume y < x , otherwise the statement
holds trivially, with k = 0. By repeatedly applying Lemma 17, we can construct an
increasing sequence of numbers y = y0 < y1 < y2 < · · · and a decreasing sequence
of sets Q = V0 ⊃ V1 ⊃ · · · such that the following holds. For each k ≥ 0,
• f k(Vk) ∈ Q;
• f k(Vk) ⊂ R(yk)\R(yk + 7);
• |λ0|eyk/2 < yk+1 < e7|λ0|eyk ;
• | f k(z)| ≤ √

2(yk + 7) for z ∈ Vk (noting f k(z) is in the cone Z );
• the distortion of f k on Vk is bounded by 2 (by Lemma 3).

Since
√

y j+1 >
√|λ0|ey j /4 > 4

√
2(y j + 7) > y j , we deduce that

k
∏

j=1

√
2(y j + 7) < ((yk + 7)/2)

k−1
∏

j=1

√
y j+1 ≤ (yk + 7)yk/2 < y2

k .

Thus on Vk the derivative bound

|D f k | =
k

∏

j=1

| f j (z)| ≤
k

∏

j=1

√
2(y j + 7) < y2

k

applies.
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Let k ≥ 1 be minimal such that yk ≥ x . If f k(Vk−1) ⊂ L(2ex) (equivalently, if
f k(Vk−1) ∩ R(2ex) = ∅) then yk ≤ 2ex and |D f k | on Vk is bounded by (2ex)2.
Therefore Vk easily contains a ball of radius 1/x3. Otherwise, f k(Vk−1) is a geometric
annulus centred on zero and intersecting R(2ex), and the square f k−1(Vk−1) contains a
ball of radius 1/16 mapped by f into R(x), as is easy to check. The derivative of f k−1

on Vk−1 is bounded by y2
k−1 < x2, so pulling back the ball we get a set containing a ball

of radius 1/x3 once again, as required. �
Lemma 19. There is a constant γ > 0 such that if x > M the following holds.

If Q ∈ Q, there is a ball of radius γ /x3 inside Q which gets mapped univalently by
f n, for some n ≥ 0, into R(x) with distortion bounded by 2.

If 
(y) < M, then there is a ball of radius γ /x3 inside B(y, δ0) which gets mapped
univalently by f n, for some n ≥ 0, into R(x) with distortion bounded by 2.

Proof. This follows from Lemmas 16 and 18. �
The preceding lemma says that a certain proportion of everything at the large scale

gets mapped far out to the right. The next lemma deduces the same, but at small scales.

Lemma 20. There are constants κ > 0, M0 ≥ M such that the following holds. Given
r ∈ (0, 1), x ≥ M0 and z ∈ C, there is a finite collection of pairwise-disjoint balls
Bi ⊂ B(z, r), each of radius > e−2xr , and numbers ni ≥ 0 such that

• m(
⋃

i Bi )/m(B(z, r)) > κ/x6;
• f ni maps Bi univalently into R(x);
• |D f ni|Bi

| < e3x/r .

Proof. Note first that if f k maps a ball B into R(x), then f k is univalent on B, as
P( f ) ∩ R(x) = ∅.

Let n be minimal such that |D f n(z)| > 20/r . If there is some minimal k < n with
f k(z) ∈ R(x), we can just pull back B( f k(z), 1) to get a set containing B(z, r/40),
using the derivative estimate and a distortion bound of 2. Some large sector of B(z, r/40)

gets mapped by f k to R(
( f k(z))) and the lemma follows easily.
Otherwise, f n−1(z) /∈ R(x), implying

|D f n(z)| ≤ |λ0|ex 20/r, (6)

a bound we use later in the proof.
If | f n(z)| < M , then f n maps some neighbourhood W of z univalently onto

B( f n(z), δ0) with distortion bounded by 2, by Lemma 14. With γ given by Lemma 19,
for some j ≥ 0 there is a ball of radius γ /x3 in B( f n(z), δ0) which gets mapped by f j

with distortion bounded by 2 into R(x). As |D f n| < 2| f n(z)|20/r < 40M/r on W ,
pulling back this ball gives a subset of W containing a ball of radius (γ /x3)r/40M , as
required.

Now we treat the case | f n(z)| ≥ M . Let r ′ ≤ r be maximal such that f n−1(B(z, r ′)) ⊂
B( f n−1(z), 1). Set W := B(z, r ′). As a neighbourhood of z gets mapped biholomor-
phically onto by f n−1 onto B( f n−1(z), 1) and f is univalent on each ball of radius 1,
f n is biholomorphic on W . Since

| f n−1(z)| ≥ 
( f n−1(z)) > diam(P( f )) + 10
 (7)
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by choice of M , Lemma 3 implies that the distortion of f n−1 on W is bounded by 2.
Thus |D f n−1| < 40/r on W , so W ⊃ B(z, r/40). The distortion of f on any ball of
radius 1 is e2, so the distortion of f n on W is bounded by 2e2.

The advantage of choosing W in this way is due to the distortion bound: if we can
show f n(W ) contains at least one square Q ∈ Q, then the squares

{Q ∈ Q : Q ⊂ f n(W )}
fill some definite proportion of f n(W ). We now have two further subcases.

Suppose first that r ′ = r , so W = B(z, r). There is a Q ∈ Q containing f n(z),
so (by Lemma 3, as usual) a neighbourhood Wz of z gets mapped biholomorphically
onto Q by f n with distortion bounded by 2. Since |D f n(z)| > 20/r , we deduce that
diam(Wz) < r diam(Q)/10, hence Wz ⊂ B(z, r) = W . In particular, f n(W ) contains
at least one square from Q.

If we assume, on the other hand, that r ′ < r , then f n−1(W ) ⊃ B( f n−1(z), 1/2),
by bounded distortion, and f n(W ) is huge, in particular it contains at least one square
Q ∈ Q.

We have shown that in both subcases (so whenever | f n(z)| ≥ M), the squares
{Q ∈ Q : Q ⊂ f n(W )} fill some definite proportion of f n(W ). Consequently, there is
some independent constant γ ′ > 0 and a collection of pairwise-disjoint subsets Wi ⊂ W ,
each mapped by f n onto an element Qi of Q with m(

⋃

i Wi )/m(W ) > γ ′, say. One
can apply Lemma 19 on each Qi to obtain a ball B(y, γ /x3) ⊂ Qi say and some
l ≥ 0 such that f l maps the ball univalently into R(x). Let Zi := B(y, γ /
x3) and let
Vi = Wi ∩ f −n(Zi ). By the Koebe principle, if j, k ≥ 0 and j + k ≤ n + l, the distortion
of f j is bounded by 2 on f k(Vi ).

The distortion bound implies Vi contains a ball Bi of radius diam(Vi )/4,
so m(Bi )/m(Vi ) > 1/16. The bound (6) gives a bound on |D f n

|Bi
| of |λ0|ex 40/r , which

implies Bi has radius ≥ (γ /
x3)r/40|λ0|ex > e−2xr , provided x is large enough. This
is the required estimate on the radii.

Continuing on, let k ≤ n + l be minimal such that f k(Bi ) ⊂ R(x). Thus there is a
point in f k−1(Bi ) not in R(x), so, by bounded distortion, |D f | < 2|λ0|ex on f k−1(Bi ).
Univalence on f k−1(Bi ) implies this set does not contain a ball of radius π , so the
distortion bound of 2 for f k−1 on Bi and the estimate for the radius of Bi combine to
imply

|D f k−1
|Bi

| < 80π |λ0|ex x3
/rγ.

Thus |D f k
|Bi

| < 160π |λ0|2e2x
x3/rγ < e3x/r , if x is large enough.

We note to finish that m(Qi ) = 4π2 while m( f n(Vi )) = πγ 2/
2x6, so

m(Vi )/m(Wi ) > γ 2/
2x616π

for each i . Combining this with the uniform estimates for m(Bi )/m(Vi ), m(
⋃

i Wi )/

m(W ) and m(W )/m(B(z, r), we conclude m(
⋃

i Bi )/m(B(z, r)) > κ/x6 for some
κ > 0 independent of x . This completes the proof of the case | f n(z)| ≥ M . �

We call a square D dyadic if 2π2k D is an element of Q for some integer k ≥ 1; 2−k

is then called the scale of D. Since each ball contains a square of comparable size, and
vice versa, the previous lemma also holds for dyadic squares, with perhaps a slightly
smaller scale (which we estimate crudely).
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Lemma 21. There are constants κ > 0, M0 ≥ M such that the following holds. Let
k ≥ 3. Let x ≥ M0 and let D be a dyadic square of scale 2−k . Then there is a finite
collection of pairwise-disjoint dyadic squares Di ⊂ D, each of scale >e−3x 2−k , such
that

• m(
⋃

i Di )/m(D) > κ/x6;
• for each Di there is an ni ≥ 0 with f ni (Di ) ⊂ R(x);
• f ni is univalent on B(z,
 diam(Di )) for all z ∈ Di ;
• |D f ni|Di

| < e3x 2k .

If at all scales, a certain proportion gets mapped far out to the right, then almost every
point does. The next lemma gives bounds on the time needed for a large proportion of
points to get mapped far out to the right, together with a bound on the corresponding
derivatives.

Proposition 22. Let S be a bounded set. There is a constant M0 such that the following
holds. Let x > M0. Let S∗ denote the set of points z such that the first entry to R(x)

happens at time n(z) with

• |D f n(z)(z)| < ex9
/2;

• n(z) ≤ e2x .

Then m(S\S∗) ≤ 1/x.

Proof. Let κ, M0 come from Lemma 21. We can cover S with a finite number of dyadic
squares of scale 2−3, each contained in B(S, 1), and with total area a, say. If M ′ > M0
is sufficiently large, x > M ′ and p = x7, then

(1 − κ/x6)pa < e−κx/2a < 1/x .

At least a proportion κ/x6 of each of these dyadic squares is covered by dyadic squares
of scale ≥2−3e−3x given by Lemma 21. The remainder, less than (1 − κ/x6), can be
covered by other dyadic squares of scale ≥ 2−3e−3x and we can apply Lemma 21 to
each of these squares. Proceeding inductively, after p such applications, we end up with
a collection D of dyadic squares such that

m

(

S\
⋃

D∈D
D

)

≤ (1 − κ/x6)pa < 1/x

and such that each D ∈ D satisfies

• the scale of D is ≥ 2−3(e−3x )p;
• there is an nD ≥ 0, with f nD (D) ⊂ R(x);
• f nD is univalent on B(z,
 diam(D)) for all z ∈ D;
• |D f nD|D | < (e3x )p+1.

We wish to show that S∗ contains
⋃

D∈D D. For a point y ∈ D ∈ D, nD is not necessarily
the first entry time n(y) to R(x), but for all j < nD , Lemma 8 implies 3|D f j (y)| <

|D f nD (y)|, so |D f n(y)(y)| < (e3x )p+1 < ex9
/2.

It remains to show that nD is not too large. It can be assumed that nD is minimal such
that f nD (D) ⊂ R(x). Now f j on B(z, diam(D)) is univalent with distortion bounded
by 2 for all j ≤ nD , by choice of 
, so f j (B(z, diam(D))) cannot contain a ball of
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radius π for any j < nD and thus has diameter bounded by 4π . In particular, it does not
intersect R(x + 4π). Thus for 1 ≤ j ≤ nD , f j (D) ⊂ B(0, |λ0|ex+4π ).

By Proposition 11, inside the region B(0, |λ0|ex+4π ) the derivative multiplies by at
least 3 at least every C0ex steps for some C0 > 0. Therefore

3nD/C0ex
< |D f nD|D |,

so taking logs and using the estimate for the derivative,

nD/C0ex < 3x(p + 1),

nD < C0(p + 1)(3x)ex < e2x ,

provided x is large enough, x > M ′′ say. We reset M0 := max(M ′, M ′′). �
Next we show that the first entry usually happens a bit further to the right, and we

recover some Markov property (equal or disjoint) which keeps the subsequent arguments
from getting too messy.

Lemma 23. Given C > 0, there exists M0 such that, if A ⊂ B(P( f ), 1) is a
simply-connected open set with ∂ A of length at most C, then for all x > M0 the following
holds.

There exists a set A∗ ⊂ A\B(∂ A, x−1/4) and a partition W of A∗ into elements W
with associated numbers nW , such that

• m(A\A∗) < 1/2 log x;
• |D f nW | < ex9

on W ;
• nW ≤ e2x ;
• nW is the first entry time to R(x + log 3

2 );
• f nW maps W biholomorphically onto a square from Q;
• f nW (W ) ⊂ R(x + 2

√
x).

Proof. In the proof, the sets W obtained will be mapped biholomorphically by corre-
sponding f nW onto unions of squares of Q rather than onto single squares. This is of no
import, as there will be a subpartition of each W whose elements each get mapped by
f nW onto an element of Q.

For large x , a standard estimate for the area of a tubular neighbourhood gives

m(B(∂ A, 2x−1/4)) ≤ 4Cx−1/4 + 4πx−1/2 < 8Cx−1/4.

Therefore, setting Ax := A\B(∂ A, 2x−1/4), we have m(Ax ) > m(A) − 8Cx−1/4.
Let S∗ be given by Proposition 22 for S = B(P( f ), 1) (and x sufficiently large). Set

A′ := S∗ ∩ Ax , so
m(A\A′) < 1/x + 8Cx−1/4. (8)

Let z ∈ A′ and let n0 = n0(z) be the associated number n(z) given by Proposition 22.
Then n0 is the first entry time of z to R(x), while n0 ≤ e2x and

|D f n0(z)| < ex9
/2. (9)

Suppose first, in case one, that 
( f n0(z)) < 2π�(x + x3/4)/2π�. Let T denote the
partial strip

{w : x ≤ 
(w) < 2π�(x + x3/4)/2π�; 2 jπ ≤ �(w) < (2 j + 2)π}
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containing f n0(z), for the relevant integer j . By Lemma 9 (with M1 = 2 say), the
connected set W∗ containing z mapped univalently by f n0 onto T has diameter less than
x3/4/x = x−1/4, while z ∈ Ax , so W∗ ⊂ A\B(∂ A, x−1/4). Let T+ := T ∩ R(2π�(x +
3
√

x)/2π�), and set Wz := W∗ ∩ f −n0(T+). Note Wz does not necessarily contain z.
Then m(T \T+)/m(T ) < 4

√
x/x3/4, so

m(Wz)/m(W∗) ≥ 1 − 16x−1/4,

using a distortion bound of 2 from Lemma 3.
If, in case two, 
( f n0(z)) ≥ 2π�(x + x3/4)/2π�, let T denote the partial strip

{w : 2πk ≤ 
( f n0(w)) < 2π(k + 1); 2 jπ ≤ �(w) < (2 j + 2)π}
containing f n0(z), for the relevant integers k, j . As before, by Lemma 9 (with M1 =
2π

√
2 say), the connected set Wz = W∗ containing z mapped univalently by f n0 onto T

has diameter less than 1/x < x−1/4, and f n0 on Wz has distortion bounded by 2. Again
we deduce Wz ⊂ A\B(∂ A, x−1/4).

In both cases, for j < n0, f j (Wz) has diameter bounded by 2x3/4/x < log 3
2 , so

f j (Wz)∩R(x + log 3
2 ) = ∅. Meanwhile, f n0(Wz) ⊂ R(x + 2

√
x). In particular, on Wz ,

n0 is the first entry time to R(x + log 3
2 ).

We claim that for z1, z2 ∈ A′, the sets W1 = Wz1 , W2 = Wz2 are either equal or
disjoint. Let n1 = n0(z1), n2 = n0(z2). The partial strips f n1(W1), f n2(W2) are either
equal or disjoint. If n1 = n2 it follows that W1, W2 are either equal or disjoint. So suppose
n1 < n2 and W1 ∩ W2 �= ∅. But f n1(W1) ⊂ R(x +

√
x), so f n1(W2)∩R(x +

√
x) �= ∅,

contradicting f j (W2) ∩ R(x + log 3
2 ) = ∅ for j < n2, from the previous paragraph. We

conclude that the claim holds.
We thus obtain a (necessarily finite) pairwise-disjoint collection W of (such) subsets

W ⊂ A\B(∂ A, x−1/4) with

m

(
⋃

W∈W
W

)

=
∑

W
m(W ) ≥ (1 − 16x−1/4)m(A′). (10)

Set A∗ := ⋃

W∈W W . Together with (8), (10) implies

m(A\A∗) ≤ m(A) − m(A′) + 16x−1/4m(A′)
< 1/x + 8Cx−1/4 + 16x−1/4m(B(P( f ), 1))

< 1/2 log x .

If W = Wz for some z ∈ A′, set nW := n0(z), so n0 < e2x . The distortion bound of
2 combined with (9) gives the required derivative estimate |D f nW | < ex9

on W . �

6. Far-Right Dynamics

The dynamics far to the right is relatively easy to understand (and long-known, see for
example [18,21,25]). Far-right squares from Q get mapped to enormous annuli, with
approximately half getting mapped farther to the left, and half getting mapped farther to
the right. That which gets mapped to the right, subsequently half of it gets mapped even
farther to the left, half even farther to the right, and so on. Thus most points far to the
right get mapped reasonably quickly very far to the left. A mathematical formulation is
given by the following two lemmas.
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Lemma 24. Suppose n, S are such that f n maps S biholomorphically onto some Q ∈ Q.
Provided the real rumber y satisfying 
(Q) = [y, y + 2π) is large enough, there is a
finite partition of S into subsets S∗, SL , S1, S2, . . . , Sp such that the following holds:

• m(S∗) < m(S)/2y;
• f n+1(SL) ⊂ L(−ey−√

y/2);
• m(S)/9 < m(S1 ∪ · · · ∪ Sp) < 7

8 m(S);
• each Sl , 1 ≤ l ≤ p is mapped by f n+1 biholomorphically onto an element of Q

contained in R(ey−√
y/2);

• |
( f n+1(z))|2 > | f n+1(z)| for all z ∈ S\S∗.

Proof. The proof will use that A := f (Q) is a gigantic annulus, so most of it (by area)
is a long way from the imaginary axis. By Lemma 3, taking y large, the distortion of f n

on S is bounded by 2. Note that on Q, the distortion of f is bounded by e2π , so on S,
the distortion of f n+1 is bounded by 2e2π .

For r = |λ0|ey , the annulus A has inner radius r and outer radius re2π . Its area is
πr2(e4π − 1). Let X be the subset of A consisting of points close to the imaginary axis
and close to f (∂ Q) defined by

X := {z ∈ A : |
(z)| ≤ |λ0|−1re−√
y/2 + 2π} ∪ B( f (∂ Q), 2π).

Then m(X) is bounded by 2|λ0|e2πr2e−√
y/2. Thus m(X)/m(A) < e−√

y/3, say, for
large y. From this and the distortion bound we deduce that m(S ∩ f −n−1(X)) <

m(S)/2y, provided y is large enough.
Set SL := f −n−1(A ∩ L(0)\X). Then f n+1(SL) ⊂ L(−ey−√

y/2).
Let Y be the union of squares from Q containing points of A ∩ R(0)\X . From the

definition of X , Y ⊂ A\ f (∂ Q) and Y ⊂ R(ey−√
y/2). As

4

9
m(Q) < m( f −1(Y ) ∩ Q) < m(Q)/2,

using a distortion bound of 2 we deduce m(S)/9 < m( f −n−1(Y ) ∩ S) < 7
8 m(S) (one

could improve this estimate to approximately 1
2 m(S), but it is unnecessary). One can

clearly partition the pullback of Y into the required sets S1, . . . , Sp.
Set S∗ := S\(SL ∪ S1 ∪ · · · ∪ Sp). Since f n+1(S∗) ⊂ X , we have from above that

m(S∗) < m(S)/2y.
For z ∈ S\S∗, we have

ey−√
y/2 ≤ |
( f n+1(z))| ≤ | f n+1(z)| ≤ |λ0|eye2π < e3y/2 ≤ |
( f n+1(z))|2.

�
The square root terms in the following lemma are not exactly elegant, but they are

used in the proof of Proposition 26.

Lemma 25. Let E : y → ey. Let Q ∈ Q and suppose Q ⊂ R(x + 2
√

x). If x > 0
is sufficiently large, there is a set Q0 ⊂ Q such that m(Q0)/m(Q) > 1/x and for all
z ∈ Q0, there is an integer k = k(z) such that the following holds:

• 1 ≤ k ≤ x;
• f k(z) ∈ L(−ex+

√
x ) ∩ L(−Ek(x));
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• |D f k(z)| < | f k(z)|2 < |
( f k(z))|4;
• m({z ∈ Q0 : k(z) ≥ 4}) > m(Q)/1000.

Moreover, for 1 ≤ j < k, f j (z) ∈ R(E j (x)) and |D f j (z)| < | f j (z)|2.

Proof. Note that if y ≥ x + 2
√

x , then

y − √

y/2 ≥ x + 2
√

x −
√

(x + 2
√

x)/2 > x +
√

x .

Moreover ey−√
y/2 > ex+

√
x > ex + 2

√
ex . Inductively applying Lemma 24, we obtain

sets Q = Y 0 ⊃ Y 1 ⊃ · · · and a collection of pairwise-disjoint sets S0
L , S1

L , . . . , S0∗ , S1∗,

. . . for which

• for 0 ≤ j ≤ l, f j (Y l) ⊂ R
(

E j (x) + 2
√

E j (x)
)

⊂ R(E j (x));

• Y l can be partitioned into sets mapped biholomorphically by f l onto squares from
Q (which together with the previous point allows one to proceed inductively);

• Y l = Sl
L ∪ Sl∗ ∪ Y l+1;

• m(Sl∗) < m(Q)
(

1
2El (x)

)

;
• m(Q)/9l < m(Yl) < m(Q)( 7

8 )l;
• for z ∈ Sl

L , f l+1(z) ∈ L(−ex+
√

x ) ∩ L(−El+1(x));
• for z ∈ Sl

L and 1 ≤ j ≤ l + 1, | f j (z)| < |
( f j (z))|2.

Thus Y l = Q\(S0
L ∪ · · · ∪ Sl−1

L ∪ S0∗ ∪ · · · ∪ Sl−1∗ ). Set Q0 := S0
L ∪ · · · ∪ S�x�−1

L , so

Q0 = Q\
(

Y �x� ∪ S0∗ ∪ · · · ∪ S�x�∗
)

. From the two measure estimates,

m(Q0)/m(Q) >

⎛

⎝1 −
(

7

8

)�x�
−

∑

l≥0

1

2El(x)

⎞

⎠ > 1/x .

For z ∈ Sl
L , we set k(z) := l + 1. If z ∈ Y 3\Q∗ then k(z) ≥ 4, and m(Y 3\Q∗)/m(Q) ≥

9−3 − 1/x > 1/1000.
It only remains to check the derivative. We have, for z ∈ Sl

L and 1 ≤ j ≤ l,

| f j (z)|2 < |
( f j (z))|2 < |λ0|e
( f j (z)) = | f j+1(z)|

so, for 0 ≤ j ≤ l,

|D f j+1(z)| =
j+1
∏

a=1

| f a(z)|

≤ | f j+1(z)|1+ 1
2 + 1

4 +···+2− j

≤ | f j+1(z)|2 ≤ |
( f j+1(z))|4,

as required. �
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7. First Entry to the Left Half-Plane

A key claim in the following proposition is that for many points, the first entry to
L(−|λ0|ex ) actually lands in L(−ex+

√
x ). This added distance will be needed, see

Lemma 4.

Proposition 26. Given C > 0, there exists M0 such that, if A ⊂ B(P( f ), 1) is a simply-
connected open set with ∂ A of length at most C, then for all x > M0 the following holds.
There is a set A0 of points z ∈ A\B(∂ A, x−1/4) such that the first entry to L(−2|λ0|ex )

happens at time n(z) with

(i) f n(z)(z) ∈ L(−ex+
√

x )

(ii) ex < |D f n(z)(z)| < ex9 |
( f n(z)(z))|4;
(iii) n(z) ≤ e3x ;
(iv) there exists n0(z) < n(z) for which |D f l(z)| < ex9

for l ≤ n0 and for which, for
l = n0(z) + 1, . . . , n(z),

|D f l(z)| < ex9 | f l(z)|2;

(v) inf j+k≤n(z) |D f j ( f k(z))| > 2 exp(−2|λ0|ex );

and with m(A\A0) ≤ 1/ log x.

Proof. Let A∗, with its attendant partition W , be given by Lemma 23. Let W ∈ W and
let nW be given by Lemma 23. Let Q = f nW (W ) ∈ Q, and note Q ⊂ R(x + 2

√
x). Let

Q0(W ) = Q0 be given by Lemma 25. Set

A0 :=
⋃

W∈W
W ∩ f −nW (Q0(W )).

Then (i)–(iv) are immediately obtained combining the estimates of Lemma 23 and
Lemma 25, with n0(z) = nW for z ∈ W .

It remains to justify (v) and the measure estimate. Now n0(z) is the first entry time
to R(x + log 3

2 ), so for 1 ≤ j ≤ n(z),

| f j (z)| ≥ |λ0| exp(−3

2
|λ0|ex ) > 2 exp(−2|λ0|ex )/β1,

where β1 comes from Lemma 10, and (5) implies (v). For the measure estimate, note
m(Q0)/m(Q) > 1 − 1/x so, with a distortion bound of 2 for f nW on W ,

m(A0)/m(A∗) > 1 − 4/x .

Meanwhile, m(A\A∗) < 1/2 log x and m(A∗) < m(B(P( f ), 1)) so

m(A\A0) < 1/2 log x + m(A∗)4/x < 1/ log x,

as required. �
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8. Lyapunov Exponents Almost Never Exist

In this section we prove Theorems 1 and 2. We shall use the fact that Lebesgue measure is
conservative and ergodic, see [10], to go from statements about positive-measure subsets
to statements about full-measure subsets.

Lemma 27. For almost every z and any Riemannian metric ρ,

lim sup
n→∞

1

n
log |Dρ f n(z)| ≥ 0.

Proof. By Lemma 8 say, there is an M such that the first return map φ to B(M + 1, 1)

has |Dφ| > 3. Since Lebesgue measure is conservative and ergodic, almost every z
enters B(M + 1, 1) infinitely often. Thus for almost every z, there is a sequence nk
with f nk (z) ∈ B(M + 1, 1) and |D f nk (z)| → +∞. Since B(M + 1, 1) is bounded,
|D f nk

ρ (z)| → +∞. �
Lemma 28. For almost every z and any Riemannian metric ρ,

lim inf
n→∞

1

n
log |Dρ f n(z)| = −∞. (11)

For almost every z and the Euclidean metric,

lim sup
n→∞

1

n
log |D f n(z)| = +∞. (12)

Proof. Let x > 0 be large. Let A = B(0, 1), say, and let A∗ and its attendant partition
W be given by Lemma 23. Then m(A∗) > π/2 say. Let W ∈ W and let nW ≤ e2x

be given by Lemma 23. Then |D f nW | < ex9
on W , and QW := f nW (W ) ∈ Q and

QW ⊂ R(x + 2
√

x).
By Lemma 25 there is a subset SW ⊂ QW with m(SW ) ≥ m(QW )/1000 for which

the following holds. Let z ∈ W ∩ f −nW (SW ) and set w := f nW (z). There is a k = k(z)
with 4 ≤ k ≤ x ,

• f k(w) ∈ L(−E4(x)), where E : y �→ ey ;
• for 1 ≤ j ≤ k, |D f j (w)| < | f j (w)|2 < |
( f j (w)|4.

Then (Lemma 9 (with M1 > 1 and x > M2) gives the first inequality)

|D f nW +k(z)| > | f nW +k(z)| > E4(x).

Meanwhile, nW + k ≤ e2x + x < 2e2x . Thus

1

nW + k
log |D f nW +k(z)| > E3(x)/2e2x � x .

Going one step further will give us a tiny derivative.

|D f nW +k+1(z)| ≤ ex9 |
( f k(w)|4|λ0| exp(
( f k(w)))

≤ ex9
exp(
( f k(w))/2)

≤ exp(−E4(x)/2 + x9)

≤ exp(−E4(x)/3).
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Again, nW + k + 1 < 2e2x , from which we deduce

1

nW + k + 1
log |D f nW +k+1(z)| � −x .

Let Xx = ⋃

W∈W (W ∩ f −nW (SW )). Using a distortion bound of 2, we obtain from
the construction that

m(Xx ) > m(A∗) min
W

m(SW )

4m(QW )
> π/8000

and that for each z ∈ Xx , there is an n with

1

n
log |D f n(z)| > x,

1

n + 1
log |D f n+1(z)| < −x .

Necessarily, f n+1(z) ∈ B(0, 1), so for some C > 0 depending only on ρ,

1

n + 1
log |D f n+1

ρ (z)| < −Cx .

Taking a sequence of x j tending to +∞, we obtain sets Xx j each with measure
at least π/8000 and contained in the bounded set B(0, 1). Thus there is a set X∞ of
positive measure for which each z ∈ X∞ is in infinitely many of the Xx j . Thus (11),
(12) hold for all z ∈ X∞, which implies (11), (12) hold for all z ∈ ⋃

n≥0 f −n(X∞).
Using ergodicity and conservativity of Lebesgue measure [10],

⋃

n≥0 f −n(X∞) has full
measure, completing the proof. �
Showing that the upper Lyapunov exponent is 0 almost everywhere for the spherical
metric is more subtle. We need the following lemma.

Let H : t �→ exp(t1/10). For t large enough, H(t) > t and H2(t) > et .

Lemma 29. Let R > 0 be sufficiently large and let Q ∈ Q be a subset of L(−R)

satisfying |z| < 2|
(z)|2 for all z ∈ Q. Let Z ⊂ C and nZ ≥ 0 be such that f nZ maps
Z biholomorphically onto Q. There is a subset Z0 ⊂ Z and for each z ∈ Z0 a number
n(z) ≥ 1 such that the following holds.

• For j = 1, . . . , n(z),

1

j
log |Dσ f j ( f nZ (z))| < 1/ log R;

• m(Z\Z0)/m(Z) < 1/ log log R;
• if z ∈ Z0, f nZ +n(z)(z) ∈ L(−H(R));
• | f nZ +n(z)(z)| < 2|
( f nZ +n(z)(z))|2;
• there is a finite partition of Z0 into sets Ui with associated numbers ni , such that

n(z) = ni for z ∈ Ui , and such that f nZ +ni maps Ui biholomorphically onto an
element of Q.
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Proof. Let y ≥ R satisfy 
(Q) = [−y −2π,−y). Let By = B(0, |λ0|e−y), so f (Q) ⊂
By . Let δ0 be given by Lemma 12, so 0 < δ0 < δ. Let nQ be the maximal positive integer
such that f j (By) ⊂ B( f j (0), δ0) for j = 0, 1, . . . , nQ . According to Lemma 12 then,
a neighbourhood of 0 is mapped biholomorphically onto B( f nQ (0),
δ0). Thus the
distortion of f nQ on By is bounded by 2. Since diam(By)/2 = |λ0|e−y ≥ |D f | on Q
and since δ0 < δ < 1/2, it follows that

|D f 1+ j | < 1 (13)

on Q for j = 0, . . . , nQ . Meanwhile, since δ0 < δ, for j = 0, . . . , nQ we have
f j (By) ⊂ V ⊂ B(0, M), so the derivative at each step is bounded by M .

For j < y/2 log M ,
|D f j | < e j log M < ey/2 (14)

on By . Thus for z ∈ Q, for j < y/2 log M ,

|Dσ f 1+ j (z)| <
(

1 + |z2|
)

|λ0|e−ye j log M

<
(

1 + |
(z)|4
)

|λ0|e−y+y/2 < (y + 3π)4e−y/2 < e−y/3, (15)

say. In particular, for z ∈ Q and j = 1, . . . , �y/2 log M�,

1

j
log |Dσ f j (z)| < 0. (16)

This is our first estimate on the spherical derivative along the initial orbits of points in
Q. From (13) we obtain, for z ∈ Q and j = 1 + �y/2 log M�, . . . , 1 + nQ ,

1

j
log |Dσ f j (z)| <

1

j
log(1 + |z|2) <

2 log M

y
log(y + 3π)4 < y−1/2 ≤ R−1/2 (17)

say. Combining (16) and (17) gives

1

j
log |Dσ f j (z)| < R−1/2 (18)

for all z ∈ Q and j = 1, . . . , 1 + nQ .
Now we have to study what happens at times greater than nQ . By choice of nQ , we

deduce diam( f nQ (By)) > δ0/M . Combined with (15), it follows that nQ ≥ y/2 log M .
It follows from the distortion bound that there is some ν0 > 0, independent of R, Q, for
which m( f nQ+1(Q)) > ν0. Furthermore, f nQ+1(∂ Q) has length bounded by 10πδ0 <

5π < 20.
Let x := y1/10. We claim that if W j , n j for j = 1, 2 are such that n j is the first

entry time of points in W j to L(−2|λ0|ex ), such that f n j (W j ) ⊂ L(−ex+
√

x + 2π) and
such that f n j maps W j biholomorphically onto an element of Q, then W1 and W2 are
pairwise disjoint. If n1 = n2, this is obvious since Q is a partition. If n1 < n2, then
diam( f n1(W2)) < e−x by Lemma 9, so f n1(W1) ∩ f n1(W2) = ∅, by the first entry
property, proving the claim.

Set A := f nQ+1(Q\∂ Q), so A is a simply-connected open set and, from above,
∂ A < 20. C = 20 and let A0 ⊂ A be given by Proposition 26, and for z ∈ A0,
let k0(z), k(z) be the numbers n0(z), n(z) ≤ e3x given by Proposition 26. Then k(z)
is the first entry time of z ∈ A0 to L(−ex ) and f k(z)(z) ∈ L(−ex+

√
x ). Let Wz be the
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neighbourhood of z mapped biholomorphically by f k(z) onto the element ofQ containing
f k(z)(z), so f k(z)(Wz) ⊂ L(−ex+

√
x ). Since dist(A0, ∂ A) ≥ x−1/4, Wz ⊂ A.

By the claim, we obtain a cover of A0 by a finite collection W of pairwise-disjoint sets
W of the form Wz, z ∈ A0. Extend the definition of k0, k to z′ ∈ Wz by k0(z′) = k0(z),
k(z′) = k(z). Set kW = k(z) for z ∈ W . On each W the distortion of f j is bounded by
2 for j = 1, . . . , kW (as P( f ) ∩ B( f kW (W ),
 diam( f kW (W ))) = ∅). Let us denote

A′ :=
⋃

W∈W
W.

The measure estimate of Proposition 26 implies

m(A′) > m( f nQ+1(Q)) − 1/ log x > m( f nQ+1(Q))(1 − 1/ν0 log x). (19)

Let

Z0 := Z ∩ f −nQ−1−nZ (A′).

The required partition of Z0 is

{Z ∩ f −nQ−1−nZ (W ) : W ∈ W}.
With the distortion of f on Q bounded by e2π , and distortion bounds of 2 for f nZ on Z
and for f nQ on f (Q), we derive from (19) that

m(Z0)/m(Z) > 1 − (4e2π )2/ν0 log x > 1 − 1/ log log x10 ≥ 1 − 1/ log log R.

Let z ∈ Z0 and let w := f nZ (z) ∈ Q. Since w ∈ Q, in (18) we estimated
1
j log |Dσ f j (w)| for j = 1, . . . , nQ + 1, while f nQ+1(w) ∈ B(0, M). Now we consider

higher iterates. For j = nQ + 2, . . . , 1 + nQ + k0( f 1+nQ (w)), we have the estimate

|D f j (w)| < 2ex9
coming from Proposition 26, whence

1

j
log |Dσ f j (w)| <

1

nQ
log((1 + M2)2ex9

) <
4 log M

y
(y9/10 + log(1 + M2))

< 5(log M)y−1/10

< 1/ log R. (20)

For j = 2 + nQ + k0( f 1+nQ (w)), . . . , 1 + nQ + k( f 1+nQ (w)), we have the estimate

|D f j (w)| < 2ex9 | f j (w)|2 again coming from Proposition 26, whence

1

j
log |Dσ f j (w)| <

1

nQ
log

(
1 + M2

1 + | f j (w)|2 2ex9 | f j (w)|2
)

<
1

nQ
log((1 + M2)2ex9

)

< 1/ log R, (21)

as before.
Set n(z) := nZ + 1 + nQ + k( f nZ +1+nQ ((z))). Combining (18), (20) and (21) gives

the required estimates on the spherical derivatives.
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Once more from Proposition 26, for z ∈ Z0,

| f n(z)(z)| < 2|
( f n(z)(z))|2,

and, since ex = ey1/10 ≥ H(R),

f n(z)(z) ∈ L(−ex ) ⊂ L(−H(R)),

as required. �

Lemma 30. For almost every z and the spherical metric σ ,

lim sup
n→∞

1

n
log |Dσ f n(z)| = 0.

Proof. As before, by conservativity and ergodicity, we only need to show the result for
a positive-measure set. Let R � 0 and let S ∈ Q with S ⊂ L(−R). Let E : t �→ et .
Repeatedly applying Lemma 29, in the limit we obtain a set S∞ for which

m(S∞)/m(S) ≥
∞
∏

j=0

(

1 − 1

log log H j (R)

)

≥
∞
∏

j=0

(

1 − 1

log log H2 j (R)

) (

1 − 1

log log H2 j+1(R)

)

>

∞
∏

j=0

(

1 − 1

log log E j (R)

)2

> 0,

and for which, for each z ∈ S∞, there is a strictly increasing sequence n j , j = 0, 1, . . .

such that

1

k
log |Dσ f k( f n j (z))| <

1

log H j (R)

for k = 1, . . . , n j+1 − n j . Consequently, for each z in the positive-measure set S∞,

lim sup
n→∞

1

n
log |Dσ f n(z)| ≤ 0.

�
Theorems 1 and 2 follow immediately from Lemmas 27, 28 and 30. �
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9. Basic Parametric Estimates

We denote by log the principal branch of logarithm; it sends a neighbourhood of 1 in C to
a neighbourhood of 0. In this section we commence our study of maps with parameters
λ in a neighbourhood of λ0.

Let z, λ1, λ2 ∈ C and suppose | log(λ1/λ2)| is small. Let gi : z �→ λi ez for i = 1, 2.
write z j := g j

1 (z) for j ≥ 0. Suppose we have constructed yk+1, . . . , yn for some
0 ≤ k < n and that 1 − y j/z j is small for j = k + 1, . . . , n. We can formally set

α j = α j (λ1, λ2, z) := log(λ1/λ2) + log(y j/z j ) − (y j − z j )/z j . (22)

While |1 − y j/z j | < 1
2 , (22) gives

|α j | < | log(λ1/λ2)| + |(y j − z j )/z j |2. (23)

Set
yk := zk + (yk+1 − zk+1)/zk+1 + αk+1, (24)

so g2(yk) = yk+1. It follows that

yk − zk = yn − zn

Dgn−k
1 (zk)

+
n

∑

j=k+1

α j

Dg j−k−1
1 (zk)

. (25)

We shall use the above in Lemmas 31 and 33. The following proof just uses that
λ1, λ2 are super-close and n is not too big, while to prove Lemma 33, we use expansion
to get summability in (25).

Lemma 31. Let x > 10 and c0 ≥ 1/e. Let λ1, λ2 ∈ C\{0} with β := | log(λ1/λ2)| <

exp(−9c0ex ), and let gi : z �→ λi ez for i = 1, 2. Let n ≤ e3x and let z = z0 ∈ C.
Suppose that

inf
j+k≤n

|Dgk
1(g j

1 (z))| > exp(−2c0ex ).

Then there is a y0 = y(z, λ1, λ2, n) with gn
2 (y0) = gn

1 (z) and, for all j ≤ n,

|g j
2 (y0) − g j

1 (z0)| ≤ β exp(3c0ex ) < exp(−c0ex ) (26)

Moreover, for all j + k ≤ n,

| log Dgk
2(g j

2 (y0))/Dgk
1(g j

1 (z0))| < exp(−ex ). (27)

Proof. The second inequality in (26) follows from the definition of β.
We commence by proving existence of y0 satisfying (26) by induction on n. Write

z j = g j (z) for j = 0, . . . , n. So assume, for j = 1, . . . , n, that there exists y j =
y(z j , λ1, λ2, n − j) satisfying |y j − z j | ≤ β exp(3c0ex ) and, for j = 1, . . . , n − 1,
g2(y j ) = y j+1. Existence of yn = zn = y(zn, λ1, λ2, 0) is trivial.

Define y0 as per (24), so g2(y0) = y1. From (25) and the hypotheses on n and the
derivatives, one deduces for k ≥ 0 that

|yk − zk | ≤ e3x exp(2c0ex ) max
j>k

|α j |.
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For k ≥ 1, |zk | > exp(−2c0ex ) (by the derivative estimate), so

|yk − zk |/|zk | ≤ e3x exp(4c0ex ) max
j>k

|α j |. (28)

By (28) and (23), for k ≥ 1,

|αk | < β + 3e6x exp(8c0ex+1) max
j>k

|α j |2 < β + β−1 max
j>k

|α j |2/4.

Now |αn| = β, so by induction it follows that |α j | ≤ 2β for j = 1, . . . , n. Hence
|y0 − z0| ≤ 2βe3x exp(2c0ex ) ≤ β exp(3c0ex ). Thus y0 satisfies (26), completing the
inductive argument.

To show (27), recall |αl | ≤ 2β and (28) and note that

∣
∣
∣
∣
∣
log

Dgk
2(g j

2 (y0))

Dgk
1(g j

1 (z0))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

j+k
∑

l= j+1

log yl/zl

∣
∣
∣
∣
∣
∣

≤
j+k
∑

l= j+1

2

∣
∣
∣
∣

yl − zl

zl

∣
∣
∣
∣

≤ e3x 4βe3x exp(4c0ex )

< exp(−ex ).

�
Given a function R : C

2 → C, for j = 1, 2 we let D j R(z1, z2) denote the partial
derivative of R with respect to the j th variable, evaluated at the point (z1, z2).

Lemma 32. Let x > 10. Let B := {λ ∈ C : | log(λ/λ0)| < exp(−10|λ0|ex )}. Suppose
U is a simply-connected open set. Let n ≤ e3x . Suppose for all z ∈ U that

inf
j+k≤n

|D f j ( f k(z))| > 2 exp(−2|λ0|ex ). (29)

Then there is a holomorphic map R : U × B → C such that

f n
λ (R(z, λ)) = f n(z) (30)

with

• for j = 0, . . . , n,

| f j (z) − f j
λ (R(z, λ))| < e−x ; (31)

• |D1 R(z, λ)| < exp(−ex );
• |D2 R(z, λ)| < exp(4|λ0|ex ).

Proof. Note that ifλ1, λ2 ∈ B then | log(λ1/λ2)| < 2 exp(−10|λ0|ex ) < exp(−9|λ0|ex ).
With c0 = |λ0|, for each z ∈ U , λ ∈ B, Lemma 31 spits out a point R(z, λ) :=
y(z, λ0, λ, n) with | f j (z) − f j

λ (R(z, λ))| < exp(−|λ0|ex ) < e−x for j = 0, . . . , n.
We can immediately write R(z, λ) = φλ ◦ f n(z) where φλ is the appropriate inverse
branch of f n

λ , but it takes some work to show what appropriate is, and in particular that
the branches vary continuously and so are well-defined.

By (26),

| f j
λ (R(z, λ)) − f j (z)| < exp(−|λ0|ex ) < 1/2 (32)
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for j = 0, . . . , n. Since fλ is univalent on each ball of radius π , R(z, λ) is the unique
point z′ with f n

λ (z′) = f n(z) for which | f j
λ (z′)− f j (z)| < 1 for all j = 0, . . . , n. Now

(27) and (29) imply

inf
j+k≤n

|D f j
λ ( f k

λ (R(z, λ))| > exp(−2|λ0|ex ),

so, for λ′ ∈ B, we can apply Lemma 31 again to obtain points y(R(z, λ), λ, λ′, n).
Again, for j = 0, . . . , n,

| f j
λ (R(z, λ)) − f j

λ′(y(R(z, λ), λ, λ′, n))| < exp(−|λ0|ex ) < 1/2

so with (32), the triangle inequality and uniqueness, one obtains

y(R(z, λ), λ, λ′, n) = R(z, λ′).

The estimate (26) then implies that

|R(z, λ) − R(z, λ′)| ≤ | log(λ/λ′)| exp(3|λ0|ex )

so R(z, ·) is continuous, with Lipschitz bound exp(4|λ0|ex ), say. Therefore the ‘ap-
propriate’ inverse branches φλ vary holomorphically, and R(z, ·) is holomorphic with
|D2 R(z, λ)| ≤ exp(4|λ0|ex ).

Differentiating (30) gives D1 R(z, λ) = D f n(z)/D f n
λ (R(z, λ)), so (27) implies

| log D1 R(z, λ)| < exp(−ex ),

and holomorphicity of R, as required. �
The following lemma concerning existence of the holomorphic motion h is well-

known. We include the elementary proof for completeness, and because it gives the
Lipschitz-type constant M0 without invoking λ-lemmas.

Lemma 33. There exists r0, M0 > 0 and a function h : P( f ) × B(λ0, r0) for which the
following hold. For each z ∈ P( f ) and for λ ∈ B(λ0, r0), λ �→ h(z, λ) is holomorphic,
while z �→ h(z, λ) is injective, and |h(z, λ) − z| ≤ M0|λ − λ0|. For such z, λ and all
n ≥ 0,

f n
λ (h(z, λ)) = h( f n(z), λ). (33)

Proof. Note that if (33) holds with n = 1 then it holds for all n ≥ 0.
Since P( f ) is a compact, forward-invariant, hyperbolic repelling set, there is a con-

stant M1 > 1 such that
∑

j≥1 |D f j (z)|−1 < M1 for all z ∈ P( f ), and there is an
η ∈ (0, 1) such that B(0, η)∩P( f ) = {0}. Choose r0 > 0 such that, for allλ ∈ B(λ0, r0),

rλ := max(| log(λ/λ0)|, |λ − λ0|) < η2/4M2
1 .

As an intermediate step, we shall inductively construct functions hn which shall
converge to h. Let h0 : (z, λ) �→ z and suppose for j = 1, . . . , n − 1 we have functions
h j : P( f ) × B(λ0, r0) → C such that, for all (z, λ) ∈ P( f ) × B(λ0, r0),

• h j−1( f (z), λ) = fλ(h j (z, λ));
• |h j (z, λ) − z| ≤ 2M1rλ.
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Then for each such pair (z, λ) we have the sequences z = z0, z1 = f (z), . . . , zn =
f n(z) and y1 = hn−1(z1, λ), . . . , yn = zn and the corresponding sequence of α j =
α j (λ0, λ, z) as defined in (22). Then define y0 by (24), whence fλ(y0) = y1. For j ≥ 1,
by supposition, |y j − z j | ≤ 2M1rλ, while z j ∈ P( f )\{0} so |z j | ≥ η. In particular,
|(y j − z j )/z j | ≤ 2M1rλ/η. Inserting this estimate into (23), we obtain

|α j | ≤ | log(λ/λ0)| + 4M2
1 r2

λ/η2 ≤ 2rλ.

By (25) and the definition of M1, we deduce that |y0 − z0| ≤ 2M1rλ. Define hn(z, λ) :=
y0. Then

hn−1( f (z), λ) = fλ(hn(z, λ)) and |hn(z, λ) − z| ≤ 2M1rλ. (34)

To conclude the inductive construction of hn , note that a h1 clearly exists satisfying the
required properties. Thus (34) holds for each n.

Consequently |hn−1( f (z), λ) − f (z)| ≤ 2M1rλ < η, while | f (z)| ≥ η, so hn−1
( f (z), λ) �= 0 and

λ �→ hn(z, λ) = f −1
λ (hn−1( f (z), λ))

is well-defined and holomorphic, upon choosing the appropriate branch of f −1
λ .

Since the hn(z, ·) are uniformly bounded, we can extract a convergent subsequence
with holomorphic limit h(z, ·) with the same Lipschitz bound |h(z, λ) − z| ≤ 2M1rλ.
One can take M0 := 2M1. The map h satisfies (33) for n = 1 and thus for all n. We
claim that, for given λ, h(z, λ) is the unique point zλ such that | f n

λ (zλ) − f n(z)| < δ

for all n ≥ 0. Now f n0
λ is uniformly expanding on B( f n(z), 3δ) for each n. Therefore

there is only one point, z′, for which f n
λ (z′) ∈ B( f n

λ (zλ), 2δ) for all n ≥ 0 and z′ = zλ,
proving the claim. Therefore the map h is unique and z �→ h(z, λ) is injective. �

10. Parameter Space to Phase Space Near P( f )

The following lemma is another form of the standard Koebe distortion lemma.

Lemma 34. Given ε′ > 0 there is a δ′ > 0 such that if g is any univalent function on
the unit disc, one can write

Dg(z) = Dg(0)[1 + θ(z)],
where θ is a holomorphic function on B(0, δ′) with |θ | < ε′.

Proof. The distortion of g is bounded by 2 on B(0, 1/
), so |Dg(z)| ≤ 2|Dg(0)| on
that ball. By Cauchy’s integral formula, |D2g| ≤ 4
|Dg(0)| on B(0, 1/2
). Integrating
gives |Dg(z)− Dg(0)| ≤ 4|z|
|Dg(0)|, on B(0, 1/2
). Taking δ′ = ε′/4
, the result
follows. �

The ideas in this section are not especially new, though the exposition and the formu-
lation of results are. The reader may wish to compare this section with [3, Sections 3, 4]
and [1, Section 3]. The useful result is Lemma 37; it follows easily from the following
proposition.

Recall the definitions of Sect. 2, where n0, α, ε0, δ and V were fixed. Let h, M0, r0
be given by Lemma 33. Now h(0, ·) is a holomorphic function of λ. A priori it could be
identically zero, however Misiurewicz maps are not structurally stable [20,31], so h �≡ 0,
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see [3, Lemma 2.1]. Therefore, there exist an integer K ≥ 1 and a non-zero constant aK
such that h(0, λ) = aK (λ − λ0)

K + higher order terms. Thus given ε1 ∈ (0, 1), there is
an r(ε1) > 0 for which we can write

h(0, λ) = aK (λ − λ0)
K [1 + θ0(λ)], (35)

where θ0 is holomorphic on B(λ0, r(ε1)) with norm bounded by ε1. In particular, for
λ ∈ B(λ0, r(ε1)),

∣
∣
∣aK (λ − λ0)

K
∣
∣
∣ /2 ≤ |h(0, λ)| ≤ 2

∣
∣
∣aK (λ − λ0)

K
∣
∣
∣ . (36)

For n ≥ 0, let us denote by ξn the holomorphic map defined by

ξn(λ) = f n
λ (0).

Proposition 35. Given ε > 0, there exist constants δ1, r3, C0, C1 > 0 such that, for all
r ∈ (0, r3), the following holds. Let n = n(r, δ1) be maximal such that

f j
λ (B(0, 2|h(0, λ)|)) ⊂ B( f j (0), δ1) ⊂ V (37)

for j = 0, . . . , n and all λ ∈ B(λ0, 2r).
Then ξn(B(λ0, 2r)) ⊂ B( f n(0), δ1),

Dξn(λ) = −D f n(0)K aK (λ − λ0)
K−1 [1 + θ5(λ)] ,

where θ5 is a holomorphic function on the annulus A(λ0; r/4, r) with |θ5| < ε, and

1/C0r < |Dξn(λ)| < C0/r.

Moreover, |D f n
λ (0)| ≤ C1/r K for all λ ∈ B(λ0, r).

Proof. Taking δ1 < δ, B( f j (0), δ1) ⊂ V . From (37), the statement ξn(B(λ0, 2r)) ⊂
B( f n(0), δ1) is trivial. We shall expend much effort to compare D f n

λ (z), D f n
λ (0) and

D f n(0).
Assume ε ∈ (0, 1) and set ε1 = ε/16. Let δ′ be given by Lemma 34 for ε′ = ε1 and

let δ1 ∈ (0, min(δ0δ
′, δ)/2) satisfy

δ1eMn0+α
∑

k≥0

e−kα/n0 < ε1/8. (38)

Let r1 be the number r(ε1) > 0 for which (35) holds. Let r satisfy

0 < r < min(ε0, r0, r1, δ1/M0)/2 (39)

and let n = n(r, δ1) be given by (37).
By (37) and choice of δ1,

f n
λ (B(0, 2|h(0, λ)|)) ⊂ B( f n

λ (0), 2δ1) ⊂ B( f n
λ (0), δ0). (40)

By Lemma 12, noting 
 > 1, a neighbourhood of 0 is mapped biholomorphically by f n
λ

onto B( f n
λ (0), δ0). By (40), this neighbourhood necessarily contains B(0, 2|hλ(0, λ)|),

and δ0/2δ1 ≥ δ′ plus choice of δ′ then implies

D f n
λ (z) = D f n

λ (0)[1 + γ (z, λ)], (41)
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where γ (·, λ) is a holomorphic function on B(0, 2|h(0, λ)|) bounded by ε1, and this for
each λ ∈ B(λ0, 2r).

Integrating along a ray from 0 to z, we obtain

f n
λ (z) = f n

λ (0) + zD f n
λ (0)[1 + γ1(z, λ)], (42)

where γ1(z, λ) := 1
z

∫ z
0 γ (w, λ), with |γ1(z, λ)| ≤ ε1.

Applying (42), with z = h(0, λ), gives

f n
λ (0) − f n

λ (h(0, λ)) = −D f n
λ (0)h(0, λ) [1 + θ(λ)] , (43)

where θ is the holomorphic function λ �→ θ(λ) := γ1(h(0, λ), λ) with norm bounded
by ε1.

Now we wish to compare D f n
λ with D f n at 0. First we show n is not too large.

By (36), there is a λ1 ∈ B(λ0, 2r) for which |h(0, λ1)| > |aK |r K . Since |D f n0 | >

exp(α) on V , if kn0 ≤ n then

B( f kn0(0), 2δ1) ⊃ f kn0(B(0, 2|h(0, λ1)|)) ⊃ B( f kn0(0), ekαaK r K ).

Thus αn/n0 ≤ log(2δ1r−K /|aK |). In particular, there exists a c0 > 0 for which

n = n(r, δ1) < −c0 log r.

This implies that rn(r, δ1) → 0 as r → 0.
Recall |λ0| ≥ 1

e and V ⊂ B(0, M−2), so |D fλ| ≥ e−M on V for all λ ∈ B(λ0, 1/2e).
By the same Koebe distortion bound that gave (41), and the estimates

|D f k
λ ( f j

λ (0))| ≥ e−n0 M exp(�k/n0�α)

for k + j = n, we deduce that the images of B(0, 2|h(0, λ)|) under f j are exponentially
small in n − j :

diam( f j (B(0, 2|h(0, λ)|))) ≤ 2δ1en0 M+αe( j−n)α/n0 . (44)

Meanwhile, by definition of h, for all j ≥ 0,

h( f j (0), λ) = f j
λ (h(0, λ)) ∈ f j

λ (B(0, 2|h(0, λ)|)),
while |h(z, λ) − z| ≤ M0|λ − λ0|. Hence

dist( f j (0), f j
λ (B(0, 2|h(0, λ)|))) ≤ M0|λ − λ0|. (45)

For j ≤ n, combining (45) and (44) gives

| f j (0) − f j
λ (0)| ≤ M0|λ − λ0| + 2δ1en0 M+αe( j−n)α/n0 .

As an exponential map, D f (y)/D f (y′) = ey−y′
. By (38), there is a uniform bound

n−1
∑

j=0

| log |D f ( f j (0))/D f ( f j
λ (0))|| ≤

n−1
∑

j=0

| f j (0) − f j
λ (0)| < 2M0rn + ε1/4, (46)
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while D f/D fλ = λ0/λ. Thus for k ≤ n,

| log |D f k(0)/D f k
λ (0)|| < 2M0rn + ε1/4 + |n log(λ0/λ)|

< 2M0rn + ε1/4 + 2n|λ − λ0|/|λ0|. (47)

But from above, rn → 0. Thus if r is sufficiently small,

| log |D f n(0)/D f n
λ (0)|| < ε1/2

so
D f n

λ (0) = D f n(0)[1 + θ1(λ)] (48)

with θ1 a holomorphic function on B(λ0, 2r) with norm bounded by ε1. With (43), we
obtain

f n
λ (0) − f n

λ (h(0, λ)) = −D f n(0)h(0, λ) [1 + θ2(λ)] , (49)

where θ2 = (1 + θ)(1 + θ1) is a holomorphic function with norm bounded by 3ε1.
Using (35), we can substitute in for h to obtain

f n
λ (0) − f n

λ (h(0, λ)) = −D f n(0)aK (λ − λ0)
K [1 + θ3(λ)] , (50)

where θ3 := (1+θ2)(1+θ0) is holomorphic with norm bounded by 5ε1 on B(λ0, 2r). By
Cauchy’s integral formula, |Dθ3(λ)| < 10ε1/r on B(λ0, r), whence |λ−λ0||Dθ3(λ)| <

10ε1. Thus, on B(λ0, r), the derivative of (50) can be written

−D f n(0)K aK (λ − λ0)
K−1 [1 + θ4(λ)] , (51)

where 1 + θ4(λ) := (1 + θ3(λ)) + (λ − λ0)Dθ3(λ)/K , so |θ4(λ)| < 15ε1.

Now we have all the distortion-like estimates we need, let us estimate the size of
the derivative. By maximality of n, there exists λ1 ∈ B(λ0, 2r) for which f n+1

λ1
(B(0,

2|h(0, λ1)|)) �⊂ B( f n+1(0), δ1), which, combined with (45) implies

diam( f n+1
λ1

(B(0, 2|h(0, λ1)|))) ≥ δ1 − M0|λ1 − λ0| > δ1 − M0r > δ1/2. (52)

The derivative is bounded by M on V , so (52) implies

diam( f n
λ1

(B(0, 2|h(0, λ1)|))) ≥ δ1/2M. (53)

Therefore, for some z ∈ B(0, 2|h(0, λ1)|),

|D f n
λ1

(z)| ≥ δ1

4M |h(0, λ1)| . (54)

The bounds (48) and (41) give good distortion control, combining to give D f n
λ (z) =

D f n(0)[(1 + θ(λ))(1 + γ (z, λ))], so (54) implies

|D f n(0)||h(0, λ1)| > δ1/8M,

in turn implying, via (36),

|D f n(0)||aK |(2r)K > δ1/16M. (55)

If |λ − λ0| ≥ r/4 then
|λ − λ0|K−1

r K
≥ 1

4K−1r
. (56)
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From (55) and (56), we deduce that, on the annulus A(λ0; r/4, 2r),

|D f n(0)|K |aK ||λ − λ0|K−1|1 + θ4(λ)| > K δ1/28K Mr. (57)

Now ξn(λ) = f n
λ (0), so adding and subtracting the same term,

ξn(λ) = f n
λ (0) − f n

λ (h(0, λ)) + h( f n(0), λ),

and (50) gives, on B(λ0, 2r),

ξn(λ) = −D f n(0)aK (λ − λ0)
K [1 + θ3(λ)] + h( f n(0), λ). (58)

Let D2h denote the partial derivative of h with respect to the second variable. Taking
the derivative on both sides of (58), and using (51),

Dξn(λ) = D f n(0)K aK (λ − λ0)
K−1 [1 + θ4(λ)] + D2h( f n(0), λ). (59)

Now |h(z, λ) − z| ≤ M0|λ − λ0| for z ∈ P( f ) and λ ∈ B(λ0, r0), so by Cauchy’s
integral formula, |D2h(z, λ)| ≤ 2M0 on B(λ0, r). Therefore, if r is small enough the
bound (57) together with (59) entails that

Dξn(λ) = −D f n(0)K aK (λ − λ0)
K−1 [1 + θ5(λ)] , (60)

where θ5 is a holomorphic function on A(λ0; r/4, r) with norm bounded by 16ε1. Setting
C0 := 29K M/K δ1, taking absolute values of (60) and using (55), we obtain

|Dξn(λ)| > 1/C0r.

It remains to provide the upper bound for |D f n
λ (0)|. This follows simply from (55)

and (48). �
Lemma 36. Let g be a holomorphic map defined on an open convex set U. Suppose

(Dg(z)) > 0 for all z ∈ U. Then g is injective.

Proof. Integrating Dg along a line from z1 to z2 in U , one cannot obtain 0. �
Given an annulus A(y; a1, a2) and k ≥ 2, the k rays leaving y with angles 2 jπ/k for

j ≤ k divide A(y; a1, a2) into k (open) congruent pieces which we will call k-sectors
of A(y; a1, a2).

Lemma 37. Given ε′ > 0, there exists r3, γ ∈ (0, 1) and ν0, C, C0, C1 > 0 such that
for all r ∈ (0, r3), the following holds. There exists n ≥ 1 such that ξn maps each
4K -sector W of A(λ0; γ r, r) injectively onto a simply-connected, open set ξn(W ) with
m(ξn(W )) > ν0 and the length of ∂ξn(W ) bounded by C. For j ≤ n, ξ j (W ) ⊂ V .

For λ, λ′ ∈ W ,

1/C0r ≤ |Dξn(λ)|
and

∣
∣
∣
∣

Dξn(λ)

Dξn(λ′)

∣
∣
∣
∣
< 1 + ε′.

Moreover, |D f n
λ (0)| ≤ C1/r K for all λ ∈ B(λ0, r).
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Proof. Let γ < 1 satisfy γ K > 1 − ε′/3. With ε = ε′/3, let δ1, r3, C0, C1, θ5 be
given by Proposition 35, let r ∈ (0, r3) and let n be defined as per Proposition 35. Then
ξ j (B(λ0, r)) ⊂ V for j ≤ n.

Let γ ∈ ( 1
2 , 1) and let W be a 4K -sector of A(λ0; γ r, r). Let Ŵ denote the convex

hull of W , so Ŵ is contained in a 4K -sector W ′ of A(λ0; r/4, r). Now

{(λ − λ0)
K−1 : λ ∈ W ′}

lies (strictly) in a quadrant of the plane. Since |θ5| < |ε| < 1/
√

2 on A(λ0; r/4, r),

{1 + θ5(λ) : λ ∈ W ′}
is also a subset of a quadrant. Thus

Dξn(λ) = −D f n(0)K aK (λ − λ0)
K−1 [1 + θ5(λ)] (61)

lies in a fixed half-plane for all λ ∈ Ŵ . By Lemma 36, ξn is injective on Ŵ and thus is
injective on W .

The derivative estimate |Dξn(λ)| > 1/C0r on W implies the image has measure at
least ν0, for some ν0 > 0 depending on γ but not on r . Injectivity and bounded distortion
give an upper bound on r |Dξn|, since the measure of V is bounded. The length of ∂W
is bounded by a constant times r , so the upper bound on r |Dξn| implies that the length
of ∂ξn(W ) is bounded by a constant C > 0.

The distortion estimate follows from (61), as choice of γ and the bound |θ5| < ε′/3
give

∣
∣
∣
∣

Dξn(λ)

Dξn(λ′)

∣
∣
∣
∣
< 1/(1 − ε′/3)2 < 1 + ε′.

The derivative estimate of |D f n
λ (0)| ≤ C1/r K comes directly from Proposition 35.

�

11. Parameter Dependence at the Large Scale

Lemma 32 allows us to show that some sets which get mapped eventually onto a square
far out to the left do not move very fast as the parameter λ varies, so if λ does not vary
much, the intersection remains large. Later on we will show that for relatively large sets
of parameters, the orbit of 0 under fλ lands in one of these intersections.

Lemma 38. Let C, ν0 > 0. There is an M2 > 0 such that for x > M2, the following
holds. Suppose A ⊂ B(P( f ), 1) is a simply-connected open set satisfying m(A) > ν0
and with ∂ A having length at most C. Let B := {λ : | log(λ0/λ)| < exp(−10|λ0|ex )}.
There is a collection {Ul}L

l=1 of pairwise-disjoint subsets of A and numbers nl , together
with a map R : ⋃

l Ul × B → A\B(∂ A, e−x ) such that

• m(
⋃

l Ul)/m(A) ≥ 1 − 1/ log log x;
• R(z, λ0) = z;
• on eachUl×B, R is holomorphic, | log D1 R| < exp(−ex )and |D2 R| < exp(4|λ0|ex );
• for z ∈ R(Ul , λ),

|D f nl
λ (z)| < 3ex9 |
( f nl (z))|4;
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• for each λ, the sets R(Ul , λ) for l = 1, . . . , L are pairwise-disjoint;
• for z ∈ R(Ul , λ), a neighbourhood Vz of z with diameter bounded by e−x gets mapped

biholomorphically by f nl
λ onto

B( f nl
λ (z), 1) ⊂ L(−ex+

√
x + 3π).

Proof. Given C, ν0 > 0, let x � 0 be large enough to apply Proposition 26. Let
A0 ⊂ A\B(∂ A, x−1/4) and n(z) for z ∈ A0 be given by Proposition 26, so m(A\A0) ≤
1/ log x and n(z) ≤ e3x .

For z ∈ A0, let Qz be the element of Q containing f n(z)(z). Let Uz be the neighbour-
hood of z mapped biholomorphically by f n(z) onto Qz . Clearly Qz ⊂ L(−ex+

√
x + 2π),

and for j < n(z), the diameter of f j (Uz) is bounded by e−x (see Lemma 9 to treat
j ≤ n(z) − 2, while |D f | ≥ ex+

√
x on f n(z)−1(Uz)). Since n(z) is also the first entry

time of z to L(−2|λ0|ex ), f j (Uz) ⊂ R(−2|λ0|ex − 1) for j < n(z). It follows that if
z′ ∈ A0 and Uz ∩ Uz′ �= ∅ then n(z) = n(z′) and Uz = Uz′ . Thus the neighbourhoods
Uz , for z ∈ A0, form a finite (since n(z) is bounded), pairwise-disjoint collection which
we can write as {Ul}L

l=1, setting nl := n(z) for some z ∈ Ul ∩ A0. The collection is a
cover of A0 and thus has measure at least m(A) − 1/ log x . Since m(A) > ν0, for large
x we obtain the required measure estimate.

We can write Ql = f nl (Ul) ∈ Q. Let Ûl ⊃ Ul denote the set containing Ul mapped
biholomorphically by f nl onto B(Ql , 1) ⊂ L(−ex+

√
x + 3π). Applying Lemma 3, the

distortion of f nl is bounded by 2 on each Ûl , and since A0 ∩ Ûl �= ∅, the estimates of
Proposition 26 imply that for z ∈ Ûl ,

|D f nl (z)| < 2ex9
sup
y∈Ûl

|
( f nl (y))|4 < 2ex9 |
( f nl (z)) + 2π |4 (62)

and

inf
j+k≤nl

|D f j ( f k(z))| > 2 exp(−2|λ0|ex ).

We can therefore apply Lemma 32 to obtain a holomorphic map Rl : Ûl × B → C,
where Rl(z, λ0) = z and, for (z, λ) ∈ Ûl × B,

f −nl
λ ◦ Rl(z, λ) = f nl (z).

By Lemma 32, | log D1 Rl | < exp(−ex ) and |D2 Rl(z, λ)| < exp(4|λ0|ex ). The former
implies

|D f nl
λ (R(z, λ))|/|D f nl (z)| ≈ 1,

for all λ ∈ B, which combined with (62) produces the bound

|D f nl
λ (y)| < 2ex9 |
( f nl (z)) + 2π |4 < 3ex9 |
( f nl (z))|4

for y ∈ Rl(Ûl , λ). As f nl
λ maps Rl(Ûl , λ) biholomorphically onto B(Ql , 1), for each

z ∈ Rl(Ul , λ) there is a neighbourhood Vz mapped biholomorphically by f nl
λ onto

B( f nl
λ (z), 1) ⊂ B(Ql , 1). By Lemma 9, say, the diameter of Vz is bounded by e−x .

From before, f j (Ul) ⊂ R(−2|λ0|ex − 1) and the diameter of f j (Ul) is bounded by
e−x for j < nl . From (31), dist( f j

λ (z), f j (Ul)) < e−x for all z ∈ Rl(Ul , λ). Thus nl is
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the first entry time for each point of R(Ul , λ) (under iteration by fλ) to L(−2|λ0|ex −2).
Thus if R(Ul , λ) ∩ R(Ul ′ , λ) �= ∅, nl = nl ′ , so Ql = Ql ′ (as Ql and Ql ′ either coincide
or are disjoint), so R(Ul , λ) = R(Ul ′ , λ). In particular, the sets Rl(Ul , λ), 1 ≤ l ≤ L ,
are pairwise-disjoint. Define R as the map whose restriction to each Ul is Rl .

It remains to show that R(Ul , B) ⊂ A\B(∂ A, e−x ). From above, dist(z, Ul) < e−x

for every z ∈ R(Ul , λ) and each λ ∈ B, and Ul has diameter less than e−x . Therefore

sup
z′,z∈Ul

sup
λ∈B

|R(z′, λ) − z| < 2e−x .

Since there exists z ∈ Ul ∩ A0, so z ∈ A\B(∂ A, x−1/4), and x−1/4 > 3e−x , we deduce
that R(Ul , B) ⊂ A\B(∂ A, e−x ), as required. �

12. Proof of Main Theorem

The main theorem follows from the following proposition. The number K is, we recall,
the local degree of h(0, ·) at λ0, while ξn(λ) = f n

λ (0). We denote by H the set of
hyperbolic parameters.

We shall use the estimates for passing from parameter to phase space near P( f )

of Lemma 37, and the estimates of Lemma 38 to go from near P( f ) to far out to the
left. Their combination allows us to apply Lemma 4 to find large sets of hyperbolic
parameters.

Proposition 39. Given ε > 0, there exists γ, r4 > 0 such that for every r ∈ (0, r4) and
every 4K -sector W of A(λ0; γ r, r),

m(H ∩ W )

m(W )
> 1 − ε.

Proof. Let r3, γ, ν0, C, C0, C1 be given by Lemma 37, for ε′ = ε/4. For these C, ν0,
let M2 be given by Lemma 38. Let C2 > 0 be large enough that

C1 exp(11K |λ0|ex )3ex9
< exp(C2ex )

for all x > M2. Let M3 > M2 be large enough that

• 1/ log log M3 < ε/3;
• M3 > C0, C2;
• Lemma 4 holds for the constant C2 for all x > M3;
• r4 := exp(−11|λ0|eM3) < r3.

Let r ∈ (0, r4), so we can fix x > M3 satisfying r = exp(−11|λ0|ex ). Let n be given
by Lemma 37, let W be as per the statement and set A := ξn(W ). From Lemma 37, ξn
is injective with distortion bounded by 1 + ε/4 and A is a simply-connected open set
with length of ∂ A bounded by C . Moreover 1/C0r < |Dξn| on W . The distortion bound
implies

|Dξn| <

√

m(A)

m(W )
(1 + ε/4). (63)

Meanwhile, B(λ0, r) ⊂ B := {λ : | log(λ0/λ)| < exp(−10|λ0|ex )}, so we can apply
Lemma 38, obtaining R : ⋃L

l=1 Ul × B → A\B(∂ A, e−x ) together with the numbers
{nl}L

l=1 and the estimates | log D1 R| < exp(−ex )| and |D2 R| < exp(4|λ0|ex ).
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Fix l for now, and let z ∈ Ul . Let

Yz := {R(z, λ) : λ ∈ B} ⊂ A\B(∂ A, e−x ).

As exp(11|λ0|ex )/C0 = 1/C0r < |Dξn|,
|D2 R| < exp(e−x )|Dξn|. (64)

Hence the map y �→ R(z, ξ−1
n (y)) is a strict contraction on Yz and it has a unique fixed

point yz ∈ Yz ⊂ A. Let �(z) := ξ−1
n (yz), so ξn(�(z)) = R(z,�(z)).

Now Dξn − D2 R �= 0, so we can apply the implicit function theorem to deduce
that z �→ �(z) is holomorphic on each Ul . Suppose �(z) = �(z1). From Lemma 38,
for each λ, the sets R(Ul , λ) are pairwise-disjoint, so z and z1 must be in the same Ul .
But on each Ul × {λ}, R is a homeomorphism, so z = z1. Thus �(z) is injective on
U := ⋃L

l=1 Ul . The map � gives the link between parameter space and phase space.
Taking derivative of ξn(�(z)) = R(z,�(z)) with respect to z,

Dξn(�(z))D�(z) = D1 R(z,�(z)) + D2 R(z,�(z))D�(z),

so

D�(z) = D1 R(z,�(z))

−D2 R(z,�(z)) + Dξn(�(z))
. (65)

Together with (64) and the estimate for | log D1 R|, (65) implies |D�(z)| > (1 − e−x )/

|Dξn(�(z))|, say. Using (63) and integrating |D�|2 over U ,

m(�(U )) > m(U )
(1 − e−x )2

(1 + ε/4)2

m(W )

m(A)
.

From Lemma 38 and choice of M3, m(U )/m(A) ≥ 1 − 1/ log log x > 1 − ε/3. Thus

m(�(U ))/m(W ) ≥ (1 − e−x )2

(1 + ε/4)2 (1 − ε/3) > 1 − ε. (66)

We have shown that �(U ) is a relatively large set. Next we show that it consists of
hyperbolic parameters.

Let λ ∈ �(Ul) say and set z := R(�−1(λ), λ) = f n
λ (0). Let Vz be given by

Lemmma 38, so Vz of z with diameter bounded by e−x gets mapped biholomorphically
onto B( f nl

λ (z), 1). For j ≤ n, we know f j
λ (0) ∈ V , so by Lemma 12, a neighbourhood

of 0 gets mapped biholomorphically onto B( f n
λ (0),
δ0) ⊃ B(z, e−x ). Therefore a

neighbourhood of 0 gets mapped biholomorphically by f n+nl
λ onto

B( f n+nl
λ (0), 1) ⊂ L(−ex+

√
x + 3π).

From Lemma 38, we have

|D f nl
λ (z)| < 3ex9 |
( f nl (z))|4,

while Lemma 37 states that |D f n
λ (0)| < C1/r K . Recalling r = exp(−11|λ0|ex ) and

the choice of C2, we obtain

|D f n+nl
λ (0)| < C1 exp(11K |λ0|ex )3ex9 |
( f n+nl

λ (0))|4 < exp(C2ex )|
( f n+nl
λ (0))|4.
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Applying Lemma 4, λ is a hyperbolic parameter. This holds for each λ ∈ �(U ), so
�(U ) ⊂ H . Thus (66) gives

m(H ∩ W )

m(W )
≥ m(�(U ))

m(W )
≥ 1 − ε,

as required. �
The statement of the main theorem follows immediately from Proposition 39, so its

proof is now complete.
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