
Digital Object Identifier (DOI) 10.1007/s00220-014-2277-5
Commun. Math. Phys. 336, 905–932 (2015) Communications in

Mathematical
Physics

An Invariance Principle to Ferrari–Spohn Diffusions

Dmitry Ioffe1, Senya Shlosman2,3, Yvan Velenik4

1 William Davidson Faculty of Industrial Engineering and Management, Technion-Israel Institute
of Technology, Technion City, Haifa 32000, Israel. E-mail: ieioffe@technion.ac.il

2 Aix Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille, France
3 Institute of the Information Transmission Problems, RAS, Moscow, Russia.

E-mail: senya.shlosman@univ-amu.fr
4 Section de Mathématiques, Université de Genève, 2-4, rue du Lièvre, Case postale 64, 1211 Geneva,

Switzerland. E-mail: Yvan.Velenik@unige.ch

Received: 31 March 2014 / Accepted: 3 September 2014
Published online: 29 January 2015 – © Springer-Verlag Berlin Heidelberg 2015

Abstract: We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS
models or, equivalently, for a class of tilted random walk bridges in Z+. The limiting
objects are stationary reversible ergodic diffusions with drifts given by the logarithmic
derivatives of the ground states of associated singular Sturm–Liouville operators. In the
case of a linear area tilt, we recover the Ferrari–Spohn diffusion with log-Airy drift,
which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the
context of Brownian motions conditioned to stay above circular and parabolic barriers.

1. Introduction and Results

1.1. Physical motivations. We start with an informal description, in a restricted setting,
of the effective interface model at the core of our study; a detailed description in the
more general framework considered in the present work will be given in Sect. 1.3.

We consider a Gibbs random field (Xi )1≤i≤N , with Xi ∈ N for all i , and effective
Hamiltonian

Hλ =
N−1∑

i=1

Φ(Xi+1 − Xi ) +
N∑

i=1

Vλ(Xi ),

depending on a parameter λ > 0. Later, we shall allow rather general forms for the
interaction Φ and for the external potential Vλ. For the purpose of this introductory
section, let us however restrict the discussion to the physically very relevant case of
Vλ(x) = λx , and assume that Φ is symmetric and grows fast enough: for example,
Φ(x) = x2,Φ(x) = |x | orΦ(x) = ∞·1|x |>R . Let us denote byμN ;λ the corresponding
Gibbs measure with boundary condition X1 = X N = 0.

D.I. was supported by the Israeli Science Foundation grants 817/09 and 1723/14.
Y.V. was partially supported by the Swiss National Science Foundation.



906 D. Ioffe, S. Shlosman, Y. Velenik

With this choice, this model can be interpreted as follows. The random variable Xi
models the height of an interface above the site i . This interface separates an equilibrium
phase (above the interface) and a layer of unstable phase (delimited by the interface and
the wall located at height 0). The parameter λ corresponds to the excess free energy
associated to the unstable phase.

Of course, whenλ = 0, the distribution of X is just that of a random walk, conditioned
to stay positive, with distribution of jumps given by

px = e−Φ(x)∑
y e−Φ(y)

. (1.1)

In particular, the field delocalizes as N →∞. When λ > 0, however, the field remains
localized uniformly in N . We shall be mostly interested in the behavior as λ ↓ 0 (say,
either after letting N → ∞, or by assuming that N = N (λ) grows fast enough). In
that case, one can prove that the typical width of the layer is of order λ−1/3 and that the
correlation along the interface is of order λ−2/3 [1,14].

In the present work, we are interested in the scaling limit of the random field X as
λ ↓ 0, that is, in the limiting behavior of xλ(t) = λ1/3 X[λ−2/3t]. As stated in Theorem A
below, in the particular case considered here, the scaling limit is given by the diffusion
on (0,∞) with generator

σ 2

2

d2

dr2 + σ 2 ϕ
′
0

ϕ0

d

dr
,

where (see (1.1)) σ 2 = ∑
x x2 px andϕ0 = Ai( 3

√
2
σ 2 x−ω1)with−ω1 the first zero of the

Airy function Ai. This diffusion was first introduced by Ferrari and Spohn in the context
of Brownian motions conditioned to stay above circular and parabolic barriers [12].

This scaling limit should be common to a wide class of systems, of which the fol-
lowing are but a few examples:

– Critical prewetting in the 2d Ising model: behavior of the film of unstable negatively
magnetized layer induced by (−)-boundary conditions, in the presence of a positive
bulk magnetic field [18]; see Fig. 1.

– Interfacial adsorption at the interface between two equilibrium phases [13,17].
– Geometry of the top-most layer of the 2+1-dimensional SOS model above a wall [7].
– Island of activity in kinetically constrained models [5].

1.2. Limiting objects. Limiting objects are quantified in terms of Sturm–Liouville
problems.

A Sturm–Liouville problem. The basic space we shall work with is L2(R+). The nota-
tions ‖ · ‖2 and 〈·, ·〉2 are reserved for the corresponding norm and scalar product. Given
σ > 0 and a non-negative function q ∈ C2(R+) which satisfies limr→∞ q(r) = ∞,
consider the following family of singular Sturm–Liouville operators on R+:

L = Lσ,q = σ 2

2

d2

dr2 − q(r), (1.2)

with zero boundary condition ϕ(0) = 0.
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Fig. 1. A low-temperature two-dimensional Ising model in a box of sidelength N = 200 with negative
boundary condition and a positive magnetic field of the form h = c/N . When c is above a critical threshold,
the bulk of the system is occupied by a positively magnetized phase, while the walls are wet by a film of
(unstable) negatively magnetized phase [16]. For a slightly different geometry, it was shown in [18] that this
film has a width (along the walls) of order h−1/3+o(1) as h ↓ 0

It is a classical result [10] that L possesses a complete orthonormal family {ϕi } of
simple eigenfunctions in L2 (R+) with eigenvalues

0 > −ζ0 > −ζ1 > −ζ2 > . . . ; lim ζ j = ∞. (1.3)

The eigenfunctions ϕi are smooth and ϕi has exactly i zeroes in (0,∞), i = 0, 1, . . ..
The domain of (the closure of) L in L2(R+) is

D(L) =
{

f =
∑

i

aiϕi :
∑

i

ζ 2
i a2

i <∞
}

and L f = −
∑

i

ζi aiϕi for f ∈ D.

(1.4)

Clearly, D(L) is dense in L2(R+). Indeed, since any function f ∈ L2 can be written as

f = ∑
i aiϕi , the linear space of all finite linear combinations U =

{∑N
i=0 aiϕi

}
⊂

D(L) is dense in L2. For any function f = ∑
i aiϕi ∈ D(L), limN→∞ L

(∑N
i=0 aiϕi

) =
L f . In particular, U is a core for L.

If f = ∑
i aiϕi ∈ D and λ > −ζ0, one has

‖(λI− L) f ‖2 =
∥∥∥∥∥
∑

i

(λ + ζi )aiϕi

∥∥∥∥∥
2

≥ (λ + ζ0)‖ f ‖2, (1.5)

which shows that L + ζ0I is dissipative.
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Furthermore, for any λ > −ζ0, Range (λI− L) = L2(R+), and L has a compact
resolvent Rλ = (λI− L)−1. Indeed,

(λI− L)
∑

i

ai

λ + ζi
ϕi =

∑

i

aiϕi and Rλ

(
∑

i

aiϕi

)
=

∑

i

ai

λ + ζi
ϕi .

By the Hille–Yosida theorem, L + ζ0I generates a strongly continuous contraction semi-
group Tt on L2(R+). Explicitly,

Tt

(
∑

i

aiϕi

)
=

∑

i

e−(ζi−ζ0)t aiϕi . (1.6)

Ferrari–Spohn diffusions. Define

Gσ,qψ = 1

ϕ0
(L + ζ0) (ψϕ0) = σ 2

2

d2ψ

dr2 + σ 2 ϕ
′
0

ϕ0

dψ

dr
= σ 2

2ϕ2
0

d

dr

(
ϕ2

0
dψ

dr

)
. (1.7)

The sub-indices σ and q will be dropped whenever there is no risk of confusion. We
shall say that Gσ,q is the generator of a Ferrari–Spohn diffusion on (0,∞). The diffusion
itself is ergodic and reversible with respect to the measure dμ0(r) = ϕ2

0(r)dr . In the
sequel, we shall denote by St

σ,q the corresponding semigroup,

St
σ,qψ = 1

ϕ0
Tt (ψϕ0), (1.8)

and by Pσ,q the corresponding path measure.

1.3. Random walks with tilted areas. Let py be an irreducible random walk kernel on
Z. The probability of a finite trajectory X = (X1, X2, . . . , Xk) is p(X) = ∏

i pXi+1−Xi .
Let u, v ∈ N and M, N ∈ Z with M ≤ N . Let Pu,v

M,N ,+ be the family of trajectories
starting at u at time M , ending at v at time N and staying positive during the time
interval {M, . . . , N }. For N > 0, we shall use shorthand notations Pu,v

N ,+ = Pu,v
−N ,N ,+

and P̂u,v
N ,+ = Pu,v

1,N ,+.

Assumptions on p. Assume that

∑

z

zpz = 0 =
∑

z

zp−z and p has finite exponential moments. (1.9)

In the sequel, we shall use the notation

σ 2 =
∑

z

z2 pz =
∑

z

z2 p−z = Varp(X) <∞. (1.10)
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The model. Let {Vλ}λ>0 be a family of self-potentials, Vλ : R+ → R+. Given λ > 0,
define the partition function

Zu,v
N ,+,λ =

∑

X∈Pu,v
N ,+

e−
∑N
−N Vλ(Xi )p(X), (1.11)

and, accordingly, the probability distribution

P
u,v
N ,+,λ(X) =

1

Zu,v
N ,+,λ

e−
∑N
−N Vλ(Xi )p(X). (1.12)

The term
∑N

−N Vλ(Xi ) represents a generalized (non-linear) area below the trajectory
X. It reduces to (a multiple of) the usual area when Vλ(x) = λx . We make the following
set of assumptions on Vλ:

Assumptions on Vλ. For any λ > 0, the function Vλ is continuous monotone increasing
and satisfies

Vλ(0) = 0 and lim
x→∞ Vλ(x) = ∞. (1.13)

In particular, the relation

H2
λVλ(Hλ) = 1 (1.14)

determines unambiguously the quantity Hλ. Furthermore, we make the assumptions that
limλ→0 Hλ = ∞ and that there exists a function q ∈ C2(R+) such that

lim
λ→0

H2
λVλ(r Hλ) = q(r), (1.15)

uniformly on compact subsets of R+. Note that Hλ, respectively H2
λ , is the spatial,

respectively temporal, scale for the invariance principle which is formulated below in
Theorem A.

Finally, we shall assume that there exist λ0 > 0 and a (continuous non-decreasing)
function q0 ≥ 0 with limr→∞ q0(r) = ∞ such that, for all λ ≤ λ0,

H2
λVλ(r Hλ) ≥ q0(r) on R+. (1.16)

1.4. Main result. It will be convenient to think about X as being frozen outside
{−N , . . . , N }. In this way, we can consider P

u,v
N ,+,λ as a distribution on the set of doubly

infinite paths N
Z.

We set hλ = H−1
λ . The paths are rescaled as follows: For t ∈ h2

λZ, define

xλ(t) = hλX H2
λ t =

1

Hλ
X H2

λ t . (1.17)

xλ(t) is then extended to t ∈ R by linear interpolation. In this way, we can talk about the
induced distribution of P

u,v
N ,+,λ on the space of continuous function C[−T, T ], for any

T ≥ 0.
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Theorem A. Let λN be a sequence satisfying limN→∞ λN = 0. Assume, furthermore,
that limN→∞ Nh2

λN
= +∞. Set xN (·) = xλN (·). Fix any c ∈ (0,∞). Then, as N →∞,

the distributions of xN (·) under P
u,v
N ,+,λ are, uniformly in u, v ≤ cHλN , weakly convergent

to the stationary Ferrari–Spohn diffusion xσ,q(·) on R+ with the generator Gσ,q specified
in (1.7).

Remark 1. The condition limN→∞ Nh2
λN

= +∞ or, equivalently, H2
λN


 N has a

transparent meaning: N is the size of the system, whereas H2
λN

is the correlation length
of the random walk with VλN -area tilts. A precise statement of this sort is formulated in
Proposition 5 in Sect. 3.4 below.

In the case Vλ(x) = λx , the typical height Hλ = λ− 1
3 , q(r) = r and the ground state ϕ0

is the rescaled Airy function:

ϕ0 = Ai(χr − ω1) and e0 = ω1

χ
, (1.18)

where −ω1 = −2.33811 . . . is the first zero of Ai and χ = 3
√

2
σ 2 . Indeed, for ϕ0 defined

as in (1.18),

d2

dr2 Ai(r) = rAi(r) ⇒ d2

dr2 ϕ0(r) = χ2(χr − ω1)ϕ0(r),

and one only needs to tune χ in order to adjust to the expression (1.2) for L.

2. Proofs

The proof is a combination of probabilistic estimates based on an early paper [14]
and rather straightforward functional analytic considerations. We shall first express the
partition functions Zu,v

N ,+,λ and, subsequently, the probability distributions P
u,v
N ,+,λ in terms

of powers of a transfer operator Tλ. For each λ, the operator Tλ gives rise, via Doob’s
transform, to a stationary positive-recurrent Markov chain Xλ with path measure Pλ.
In the sequel, we shall refer to Xλ as to the ground-state chain. Following (1.17), the
ground-state chains are rescaled as xλ(t) = hλXλ

H2
λ t

.

The proof of Theorem A comprises three steps:

STEP 1. As λ → 0, the finite-dimensional distributions of the rescaled ground-state
chains xλ converge to the finite-dimensional distributions of the Ferrari-Spohn diffusion
xσ,q . This is the content of Corollary 1 in Sect. 2.2.
STEP 2. Under our assumptions on p and on the family of potentials Vλ, the induced
family of distributions Pλ is tight on C[−T, T ] for any T < ∞. This is the content of
Proposition 4 in Sect. 3.3.
STEP 3. Under the conditions of Theorem A, the following happens: For each T ≥ 0,
the variational distance between the induced distributions on C[−T, T ] of P

u,v
N ,+,λN

and
of PλN tends to zero as N →∞. This is the content of Corollary 2 in Sect. 3.4.

Remark on constants. c1, ν1, κ1, c2, ν2, κ2, . . . denote positive constants which may
take different values in different Subsections, but are otherwise universal, in the sense
that the corresponding bounds hold uniformly in the range of the relevant parameters.
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2.1. The operator Tλ and its Doob transform. In the sequel, we shall make a slight
abuse of notation and identify the spaces �p(N) with sub-spaces of �p(Z):

�p(N) =
{
φ ∈ �p(Z) : φ(x) = 0 for x ≤ 0

}
.

For λ > 0, consider the operators T̃λ defined by

T̃λ[φ](x) =
∑

y

py−xe−
1
2 (Vλ(x)+Vλ(y))φ(y). (2.1)

In terms of T̃λ, the partition function can be expressed as

e
1
2 (Vλ(u)+Vλ(v))Zu,v

N ,+,λ = T̃2N
λ [1v](u). (2.2)

For each λ > 0, the operator T̃λ is positive on �p(N) and compact from �p(N) to �q(N)

for every p, q ∈ [1,∞] (we use �∞(N) for the Banach space of functions φ ∈ R
N which

tend to zero as x →∞). Indeed, {1x}x∈N is a basis of �p(N). Since, for x, y > 0,

T̃λ[1x](y) = e−
1
2 (Vλ(x)+Vλ(y)) px−y,

it follows that

T̃λ[1x] = e−
1
2 Vλ(x)

∑

y

px−ye−
1
2 Vλ(y)1y ⇒ ‖T̃λ[1x]‖p ≤ e−

1
2 Vλ(x)

∑

y

px−ye−
1
2 Vλ(y).

(2.3)

Hence, by the second condition in (1.13) and by the assumption on exponential tails of
p in (1.9), the closure {T̃λ[1x]} is compact in any �q(N) whenever λ > 0.

Since T̃λ is a positive operator (and since, e.g.,
∑

n 2−nT̃n
λ is strictly positive and still

compact), the Krein–Rutman Theorem [15, Theorem 6.3] applies, and T̃λ possesses a
strictly positive leading eigenfunction φλ (the same for all �p(N) spaces, by compact
embedding) of algebraic multiplicity one. Let Eλ be the corresponding leading eigen-
value. All the above reasoning applies to the adjoint operator T̃∗λ with matrix entries

T̃∗λ(x, y) = T̃λ(y, x) = e−
1
2 (Vλ(x)+Vλ(y)) px−y. (2.4)

Let φ∗λ be the Krein–Rutman eigenfunction (with the very same leading eigenvalue

Eλ) of T̃∗λ. As Theorem A indicates, the relevant spatial scale is given by hλ = H−1
λ .

To fix notation, we normalize φλ and φ∗λ as in (2.19) below, that is hλ
∑

x φλ(x)
2 =

hλ
∑

x

(
φ∗λ(x)

)2 = 1.

It will be convenient to work with the following normalized version Tλ of T̃λ: for
x, y ∈ N, let us introduce the kernel

Tλ(x, y) = 1

Eλ
T̃λ(x, y) = 1

Eλ
e−

1
2 (Vλ(x)+Vλ(y)) py−x. (2.5)

In this way, φλ and φ∗λ are the principal positive Krein–Rutman eigenfunctions of Tλ
and T∗λ with eigenvalue 1.
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Ground-state chains. Define

πλ(x, y) = 1

φλ(x)
Tλ(x, y)φλ(y) and π∗λ (x, y) =

1

φ∗λ(x)
T∗λ(x, y)φ∗λ(y). (2.6)

πλ and π∗λ are irreducible Markov kernels on N. The corresponding chains are positively
recurrent and have the invariant probability measure μλ(x) = cλφ∗λ(x)φλ(x). As we
shall prove below in Theorem 2, limλ→0

hλ
cλ
= 1.

Notice that

μλ(x)πλ(x, y) = μλ(y)π∗λ (y, x) = cλφ
∗
λ(x)Tλ(x, y)φλ(y). (2.7)

In the sequel, we shall denote by Pλ the stationary distribution on N
Z of the (direct)

ground-state chain which corresponds to πλ.

Variational description of Eλ and μλ. Let us formulate a Donsker–Varadhan type
formula for the principal eigenvalue Eλ of T̃λ or, equivalently, for the eigenvalue 1
of Tλ.

Theorem 1.

1 = sup
μ

inf
u∈U+

∑

x∈N

μ(x)
Tλ[u]

u
(x). (2.8)

Above, the first supremum is over probability measures on N, and

U+ = {u = vφλ : 0 < inf v ≤ sup v <∞} . (2.9)

Remark 2. Eventually, our proof of Theorem A will not rely on the variational for-
mula (2.8). Theorem 1 and its consequence, Proposition 1, are formulated and proved
in their own right, but also because they elucidate the type of variational convergence
behind Theorem 2 below.

Proof. As before, set hλ = H−1
λ and consider the following functional:

Fλ(μ) = 1

h2
λ

sup
u∈U+

∑

x∈N

μ(x)
(1− Tλ)u

u
(x). (2.10)

The coefficient h2
λ plays no role in the proof, it just fixes the proper scaling. The claim

of Theorem 1 will follow once we show that

Fλ(μλ) = 0 and Fλ(μ) > 0 whenever μ �= μλ. (2.11)

Taking u ≡ φλ, we readily infer that Fλ is non-negative. In order to check the first
statement in (2.11), we need to verify that

∑

x∈N

μλ(x)
(1− Tλ)u

u
(x) ≤ 0, (2.12)

whenever u = vφλ and v �≡ 1. Let us write v as v = eh . Then, using the notation (2.6),

∑

x∈N

μλ(x)
(1− Tλ)u

u
(x) =

∑

x∈N

(
1− e−hπλeh)

μλ(x) ≤
(
1− e−〈μλ,h〉+〈μλ,πλh〉) = 0,

where we used again Jensen’s inequality and the invariance of μλ: μλπλ = μλ.
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If μ = g2μλ and g is bounded away from 0 and ∞, then, taking u = gφλ,

∑

x∈N

μ(x)
(1− Tλ)u

u
(x) = 1

2

∑

x,y

π̂λ(x, y)(g(x)− g(y))2μλ(x), (2.13)

where π̂λ is the symmetrized kernel,

π̂λ(x, y) = 1

2
(πλ(x, y) + π∗λ (x, y)). (2.14)

By (2.7),

Fλ(g2μλ) ≥ cλ
4

∑

x,y

(g(x)− g(y)
hλ

)2
(φ∗λ(x)φλ(y) + φ∗λ(y)φλ(x)). (2.15)

We claim that (2.15) still holds when g is not bounded away from 0 and ∞. This will
follow if we show that there exists a sequence u� ∈ U+ such that

lim sup
�→∞

∑

x∈N

μλ(x)g2(x)
Tλ[u�φλ](x)
u�(x)φλ(x)

≤
∑

x∈N

μλ(x)g2(x)
Tλ[gφλ](x)
g(x)φλ(x)

= cλ
∑

x∈N

φ∗λ(x)g(x)Tλ[gφλ](x). (2.16)

Assume that g is not bounded away from zero and consider gn = g ∨ 1
n . Then,

∑

x∈N

μλ(x)g2(x)
Tλ[gnφλ](x)
gn(x)φλ(x)

≤ cλ
∑

x∈N

φ∗(x)g(x)Tλ[gnφλ](x).

By a monotone convergence argument, the right-hand side above converges (as n →∞)
to cλ

∑
x∈N

φ∗(x)g(x)Tλ[gφλ](x). If, in addition, g is not bounded above, then consider
gn,M = gn ∧ M ∈ U+. Define AM = {x : g(x) > M}. Then,

∑

x∈N

μλ(x)g2(x)
Tλ[gn,Mφλ](x)
gn,M (x)φλ(x)

≤
∑

x �∈AM

μλ(x)g2(x)
Tλ[gnφλ](x)
gn(x)φλ(x)

+
∑

x∈AM

μλ(x)g2(x).

Since limM→∞
∑

x∈AM
μλ(x)g2(x) = 0, the approximation procedure goes through as

claimed in (2.16). ��
As a byproduct, we obtain the following

Proposition 1. The functional Fλ is convex and lower-semicontinuous. It has a unique
minimum:

Fλ(μ) = 0 ⇔ μ = μλ. (2.17)

Furthermore, μλ is a quadratic minimum in the sense of (2.15).
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2.2. Convergence of eigenfunctions, invariant measures and semigroups. It will be con-
venient to think about Tλ and πλ as acting on the rescaled spaces �2(Nλ), where

Nλ = hλN and the scalar product is 〈u, v〉2,λ = hλ
∑

r∈Nλ

u(r)v(r). (2.18)

Accordingly, we rescale φλ and φ∗λ in such a way that

‖φλ‖2,λ = ‖φ∗λ‖2,λ = 1. (2.19)

We use the same notation μλ = cλφλφ∗λ for the rescaled probability measure on Nλ. In
other words, the constants cλ are defined via

1

cλ
=

∑

r∈Nλ

φλ(r)φ∗λ(r) or
hλ
cλ

= 〈φλ, φ∗λ〉2,λ, (2.20)

where φλ and φ∗λ are the principal eigenfunctions satisfying the normalization condi-
tion (2.19).

Remark 3. As in the case of �p(N), with a slight abuse of notation, we shall identify
�2(Nλ) with a closed linear sub-space of �2(Zλ), where Zλ = hλZ. Namely,

�2(Nλ) = {u ∈ �2(Zλ) : u(r) = 0 for all r ≤ 0} . (2.21)

In this way, if kλ is a kernel on Zλ, then the operators

u(·) �→ 1·∈Nλ

∑

s∈Zλ

kλ(s− ·)u(s) and u(·) �→ 1·∈Nλ

∑

s∈Zλ

kλ(· − s)(u(s)− u(·)),

can be considered as operators on �2(Nλ). Accordingly,
∑

s,r∈Zλ

kλ(s− r)(u(s)− u(r))u(r)

is a quadratic form on �2(Nλ).

In the sequel, we shall write pλ(r) = pHλr for the rescaled random walk kernel
on Zλ.

Convergence of Hilbert spaces. Let us fix a map ρλ : L2(R+)→ �2(Nλ)with ‖ρλ‖ ≤ 1.
The specific choice is not really important; for instance, we may define

ρλu(r) = 1
hλ

∫ r

r−hλ
u(s)ds. (2.22)

Definition 1. Let us say that a sequence uλ ∈ �2(Nλ) converges to u ∈ L2(R+), u =
s-lim uλ, if

lim
λ→0

‖uλ − ρλu‖2,λ = 0. (2.23)

We shall write limλ→0 instead of s-limλ→0 whenever no ambiguity arises.
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Compactness of eigenfunctions. The following two probabilistic estimates will be
proved in Sect. 3.

Lemma 1. Define eλ = −H2
λ log Eλ. Then,

0 < lim inf
λ→0

eλ ≤ lim sup
λ→0

eλ <∞. (2.24)

As we already noted, it follows from the compactness of Tλ that the eigenfunctions φλ
and φ∗λ belong to �p(Nλ) for any p ≥ 1 and λ > 0. The second probabilistic input is a
tail estimate on φλ and φ∗λ .

Lemma 2. There exist positive constants ν1 and ν2 such that

hλ
∑

r∈Nλ

φλ(r)1{r>K } ≤ ν1e−ν2 K Hλ(
√

Vλ(HλK )∧1) ≤ ν1e−ν2 K (
√

q0(K )∧Hλ), (2.25)

uniformly in K > 0 and λ ≤ λ0. The same holds for φ∗λ . In particular, both sequences
φλ and φ∗λ are bounded in �1(Nλ):

lim sup
λ→0

hλ
∑

r∈Nλ

φλ(r) <∞ and lim sup
λ→0

hλ
∑

r∈Nλ

φ∗λ(r) <∞. (2.26)

Using the two lemmas above and Rellich’s theorem (see, e.g., [2, Chapter 6]) on compact
embeddings of the Sobolev spaces H

1[a, b] into L2[a, b] for finite intervals [a, b], we
shall prove the following

Proposition 2. Under our assumptions on Vλ and p, the sequence φλ is sequentially
compact (in the sense of s-convergence as described above in (2.23)).

Proof. The proof comprises two steps: We first show that we can restrict attention to
the compactness properties of the functions ψλ defined in (2.27) below. We then check
that the sequence ψλ satisfies the energy-type estimate (2.33), which enables a uniform
control of both tails of ψλ and of their Sobolev norms over R+. In this way, sequential
compactness follows by a standard diagonal argument.

STEP 1. In view of Lemma 2, rather than studying directly the functions φλ, we can
instead study the convergence properties of the functions

ψλ(r) = e−
1
2 Vλ(Hλr)φλ(r). (2.27)

Indeed, by (2.25), there exists a sequence δλ → 0 such that

lim
λ→0

hλ
∑

r∈Nλ

φ2
λ(r)1{Vλ(Hλr)>δλ} = 0. (2.28)

So, (2.28) implies that the norm of the difference ‖φλ−ψλ‖2,λ tends to zero, and hence
φλ − ψλ tends to zero in the sense of Definition 1.
STEP 2. In terms ofψλ, the eigenvalue equation T̃λφλ = Eλφλ reads as (recall Remark 3)

∑

s∈Zλ

pλ(s− r)(ψλ(s)− ψλ(r)) = (EλeVλ(Hλr) − 1)ψλ(r). (2.29)
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Multiplying both sides by −ψλ(r) and summing over r, we get

hλ
∑

r,s∈Zλ

pλ(s− r)
(−ψλ(r)ψλ(s) + ψ2

λ(r)

h2
λ

)
+ hλ

∑

r∈Nλ

EλeVλ(Hλr) − 1

h2
λ

ψ2
λ(r) = 0.

So, for the symmetrized kernel p̂λ(z) = (pλ(z) + pλ(−z))/2, we obtain

hλ
∑

r,s∈Zλ

p̂λ(s− r)
(ψλ(s)− ψλ(r)

hλ

)2
+ hλ

∑

r∈Nλ

EλeVλ(Hλr) − 1

h2
λ

ψ2
λ(r) = 0.

(2.30)

In view of Lemma 1, we may assume that there exists ē <∞ such that, possibly going
to a subsequence, the limit e = limλ→0 eλ exists and satisfies e < ē. So, we may
assume that Eλ ≥ e−ēh2

λ . Recall also our assumption (1.16) on the growth of Vλ. Let
r̄ = sup

{
r : q0(r) < ē

}
. Then, (2.30) implies that

hλ
∑

r,s∈Zλ

p̂λ(s− r)
(ψλ(s)− ψλ(r)

hλ

)2
+ hλ

∑

r≥r̄

q0(r)ψ2
λ(r) ≤ ē‖ψλ‖2

2,λ. (2.31)

By construction, ‖ψλ‖2
2,λ ≤ 1 and, as we have already mentioned, (2.28) implies that

actually limλ→0 ‖ψλ‖2
2,λ = 1.

Furthermore, since p is an irreducible kernel, there exists δ > 0 and a finite sequence
of integer states x0, x1, . . . , xn with p̂xi−xi−1 ≥ δ, which connects x0 = 0 to xn = 1.
Therefore,

∑

r,s∈Zλ

p̂λ(s − r)
(ψλ(s)− ψλ(r)

hλ

)2 ≥ δ

n2

∑

r∈Nλ

(ψλ(r)− ψλ(r − hλ)

hλ

)2
, (2.32)

where we use the elementary inequality

(z0 − z1)
2 + (z1 − z2)

2 + · · · + (zn−1 − zn)
2 ≥ 1

n
(z0 − zn)

2,

valid for all real zi . The additional 1/n in the prefactor 1/n2 in (2.32) is due to the fact
that each term (ψλ(s)− ψλ(r))2 is used in this way at most n times. Together with (2.31),
this implies the existence of two finite positive constants c1 and c2 such that

c1hλ
∑

r∈Nλ

(ψλ(r)− ψλ(r − hλ)

hλ

)2
+ hλ

∑

r≥r̄

q0(r)ψ2
λ(r) ≤ c2. (2.33)

This is the desired energy estimate, which holds for all λ > 0 small.
The rest of the proof is straightforward. Let Ψλ be the linear interpolation of ψλ: for

r ∈ Nλ ∪ {0} and t ∈ [0, 1],
Ψλ(r + thλ) = (1− t)ψλ(r) + tψλ(r + hλ).

The relation (2.33) and limr→∞ q0(r) = ∞ imply that limn→∞ ‖Ψλ1{r>n}‖2 = 0,
uniformly in λ small. On the other hand, the very same (2.33) and Rellich’s compact
embedding theorem imply that, for any n <∞, the family Ψλ1{r≤n} is subsequentially
compact in L2[0, n]. Alternatively, (2.33) implies that the linear interpolations Ψλ are
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uniformly continuous on [0, n] for each n fixed. We conclude that the family Ψλ is
subsequentially compact in L2(R+).

Remember how the map ρλ was defined in (2.22). SinceΨλ is the linear interpolation
of ψλ, and since limλ→0 hλ = 0, the energy estimate (2.33) evidently implies that

lim
λ→0

‖ψλ − ρλΨλ‖2,λ = 0.

Hence, ψλ is subsequentially compact as well. ��

Convergence of semigroups. Possibly going to a subsequence, we can assume that
lim eλ = e. We shall rely on Kurtz’s semigroup convergence theorem [11, Theo-
rem I.6.5]: Define

Lλ f (r) = Tλ − I

h2
λ

f (r). (2.34)

The following two statements are equivalent:

(a) For any u ∈ U , one can find a sequence uλ ∈ �2(Nλ) such that both limλ→0 uλ = u
and limλ→0 Lλuλ = (L + e)u.

(b) If limλ→0 fλ = f , then limλ→0 T
�H2

λ t�
λ fλ = e(L+eI)t f .

The above equivalence holds provided that the operators Tλ are linear contractions
(which is straightforward), and that e(L+eI)t is a strongly continuous semigroup with
generator L + eI, but that’s exactly how it was constructed, see (1.6). Recall that the
core U consists of finite linear combinations of eigenfunctions ϕ j . Equivalently, we
might have considered U ′ = C2

0[0,∞). Indeed, if χ0 is a smooth function which is 1 on
(−∞, 0] and 0 on [1,∞) and if χR(r) = χ0(r − R), then, for any j ,

lim
R→∞χRϕ j = ϕ j and lim

R→∞Lσ,q(χRϕ j ) = Lσ,qϕ j = −ζ jϕ j . (2.35)

Above, both convergences are pointwise and in L2(R+). In order to check the second
claim in (2.35), just note that

Lσ,q(χRϕ j ) = −ζ jϕ j +
σ 2

2
(ϕ jχ

′′
R + 2ϕ′jχ ′R),

and the conclusion follows, since both ϕ j and ϕ′j belong to L
2.

Consider, therefore, u ∈ C2
0[0,∞). Define uλ(r) = u(r). Clearly, limλ→0 uλ = u.

On the other hand (see Remark 3),

EλeVλ(Hλr)Lλuλ(r) = 1

h2
λ

( ∑

s∈Zλ

pλ(s− r)e
Vλ(Hλr)−Vλ(Hλs)

2 u(s)− EλeVλ(Hλr)uλ(r)
)

= 1

h2
λ

∑

s

pλ(s−r)
(
e

Vλ(Hλr)−Vλ(Hλs)
2 u(s)−u(r)

)
+

1−EλeVλ(Hλr)

h2
λ

u(r).

(2.36)

Choose R such that supp(u) ∈ [0, R]. Possibly going to a sub-sequence assume
that e = lim eλ exists. Then, by our assumptions on Vλ, the second term converges to
(e− q(r))u(r), uniformly in r ∈ [0, R].
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As for the first term in (2.36), note that, since uλ(s) ≡ 0 for s > R and pλ(s− r) ≤
e−cHλ|s−r|, we may restrict attention to r, s ≤ R + 1. But then, again by our assumptions
on Vλ, the quantity

|(Vλ(Hλs)− Vλ(Hλr))pλ(s− r)| = h2
λ |(q(s)− q(r)) pλ(s− r)| + o(h2

λ) = o(h2
λ).

Finally, by our assumptions (1.9) and (1.10) on the underlying random walk,

lim
λ→0

1

h2
λ

∑

s∈Zλ

pλ(s− ·)(u(s)− u(·)) = σ 2

2
u′′(·),

in the sense of Definition 1.
We have proved:

Proposition 3. Under our assumptions on Vλ and p, the following convergence (in the
sense of Definition 1), holds uniformly in t on compact subsets of R+: If limk→∞ eλk = e
and limk→∞ fλk = f , then

lim
k→∞T

�H2
λk

t�
λk

fλk = e(L+eI)t f. (2.37)

Convergence of eigenvalues and eigenfunctions.

Theorem 2. Under our assumptions on Vλ and p,

ζ0 = lim
λ→0

eλ, ϕ0 = lim
λ→0

φλ = lim
λ→0

φ∗λ and lim
λ→0

cλ
hλ

= 1. (2.38)

Proof. By Lemma 1, the set {eλ} is bounded and, by Proposition 2, the set {φλ} is
sequentially compact. Let λk↘0 be a sequence such that both e = limk→∞ eλk and
ϕ = limk→∞ φλk exist. Then Proposition 3 implies that

ϕ = e(L+eI)tϕ.

By compactness, ‖ϕ‖2 = 1. In other words, ϕ is a non-negative normalized L2(R+)-
eigenfunction of L with eigenvalue −e. Which means that ϕ = ϕ0 and e = ζ0. Exactly
the same argument applies to φ∗λ .

By construction (see (2.20)), 1 ≡ cλ
∑

r∈Nλ
φλ(r)φ∗λ(r) = cλ

hλ
〈φλ, φ∗λ〉2,λ. Since,

by the second assertion of (2.38), limλ→0〈φλ, φ∗λ〉2,λ = ‖ϕ0‖2
2 = 1, the last claim of

Theorem 2 follows as well. ��

Convergence of finite-dimensional distributions. Recall our notations Pλ and Pσ,q for
the path measures of the ground-state chain Xn and the Ferrari-Spohn diffusion x(t).
Recall also our rescaling of the ground-state chain: xλ(t) = hλX�H2

λ t�.

Corollary 1. For any k, any 0 < s1 < s2 < · · · < sk and for any collection of bounded
continuous functions u0, . . . , uk ∈ Cb(R+),

lim
λ→0

Eλ{u0(xλ(0))u1(xλ(s1)) · · · uk(xλ(sk))}
= Eσ,q{u0(x(0))u1(x(s1)) · · · uk(x(sk))}. (2.39)
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Proof. Set s0 = 0 and ti = si − si−1. Since μλ = cλφ∗λφλ and in view of the expres-
sions (2.6) for transition probabilities πλ of the ground-state chain, the rightmost asymp-
totic relation in (2.38), and (1.8) for Ferrari–Spohn semigroups, the target formula (2.39)
can be written as

lim
λ→0

hλ
∑

r∈Nλ

φ∗λ(r)uλ,0(r)T
�H2

λ t1�
λ

(
uλ,1T

�H2
λ t2�

λ

(
uλ,2 · · ·T�H2

λ tk�
λ (uλ,kφλ) · · ·

))
(r)

=
∫ ∞

0
ϕ0(r)u0(r)Tt1

(
u1Tt2

(
u2 · · ·Ttk (ukϕ0) · · ·

))
(r) dr, (2.40)

where uλ,i and ui coincide on Nλ. Theorem 2 implies that limλ→0 φλ = ϕ0 and
limλ→0 φ

∗
λ = ϕ0. Hence, by induction, (2.40) is a consequence of Proposition 3 and

the following two elementary facts:

(a) If lim vλ = v and uλ(r) = u(r) with u being a bounded continuous function, then
limλ→0 vλuλ = vu.

(b) If lim uλ = u and lim vλ = v, then limλ→0〈uλ, vλ〉2,λ = 〈u, v〉2. ��

3. Probabilistic Tools

The derivations of the probabilistic estimates given below are based on the techniques
and ideas developed in [14]. Nevertheless, because our setting is slightly different and
for completeness, we provide detailed proofs. In addition, one of the needed claims
from [14] (Theorem 1.2 therein) contains a mistake, which we correct here.

Recall our notation P̂u,v
N ,+ = Pu,v

1,N ,+. As before, given a path X = (X1, . . . , X N ),

set p(X) = ∏N−1
i=1 pXi+1−Xi . Define P̂u,∅

N ,+ = ∪v∈Z+P̂u,v
N ,+ and consider the partition

functions

Ẑu,∅
N ,+,λ =

∑

X∈P̂u,∅
N ,+

e−
∑N

i=1 Vλ(Xi ) p(X).

More generally, given any subset C ⊂ P̂u,∅
N ,+ , we denote by

Ẑu,∅
N ,+,λ[C] =

∑

X∈C
e−

∑N
i=1 Vλ(Xi ) p(X),

the partition function restricted to paths satisfying the constraint C.

3.1. Proof of Lemma 1. The proof will rely on the following identity which, exactly as
(2.2), is straightforward from the very definition of T̃λ in (2.1):

Ẑu,∅
N ,+,λ = e−

1
2 Vλ(u)T̃N

λ [ fλ](u),

where fλ(x) = e− 1
2 Vλ(x). Since fλ is positive,

log Eλ = lim
N→∞

1

N
log Ẑu,∅

N ,+,λ, (3.1)
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Hλ

u

Δ

2KHλ

N1

Fig. 2. The construction for the lower bound in the proof of Lemma 1

for all u ∈ Z
+. In particular, the claim of Lemma 1 will follow from lower and upper

bounds on Ẑu,∅
N ,+,λ for finite values of N and λ. In the sequel, we shall allow rather general

values of the boundary condition u. Of course, to derive the claim of Lemma 1, we could
as well take u = 0.

We shall compare the tilted partition functions Ẑu,∅
N ,+,λ and Ẑu,∅

N ,+,0. The latter equals
to the probability that the random walk starting at u stays positive for first N steps of its
life. This probability is evidently non-decreasing with u and, as is well known (see for
instance [3]), it is of order N−1 for u = 1. In particular,

lim
N→∞

1

N
log Ẑu,∅

N ,+,0 = 0, (3.2)

uniformly in u ∈ N.

Lower bound on Ẑu,∅
N ,+,λ and upper bound on eλ. We claim that there exist finite constants

e and c1 such that, for any K ≥ 1 fixed,

Ẑu,∅
N ,+,λ ≥ e−eN H−2

λ −c1 K
√

q(2K ) Ẑu,∅
N ,+,0, (3.3)

uniformly in λ small, 0 ≤ u ≤ K Hλ and

N � Δ = Δ(K , λ) = K H2
λ√

q(2K )
. (3.4)

In view of (3.1) and (3.2), this implies that eλ = −H2
λ log Eλ ≤ e for all λ sufficiently

small.
In order to check (3.3), we restrict the partition function to trajectories made of two

pieces (see Fig. 2). The left part is used to bring the interface below Hλ; in the remaining
piece, the interface remains inside a tube of height Hλ.

We consider the events1

DL =
{
X ∈ P̂u,∅

N ,+ : max
i∈{1,...,Δ} Xi ≤ 2K Hλ, XΔ ∈ [ 1

3 Hλ,
2
3 Hλ]

}
,

DM = {
X ∈ P̂u,∅

N ,+ : max
i∈{Δ,...,N } Xi ≤ Hλ

}
.

Then

Ẑu,∅
N ,+,λ ≥ e−ΔVλ(2K Hλ)−(N−Δ)Vλ(Hλ) p(DL ∩DM | P̂u,∅

N ,+ ) Ẑu,∅
N ,+,0.

1 Here and several times in the sequel, we assume numbers like Δ to be integers whenever it is desirable.
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b2k−1 b2k b2k+1

εH2
λ

√
εHλ

2
√

εHλ

Fig. 3. The event Bk occurs if the path visits both leftmost and rightmost shaded areas. The event Ck occurs
if, in addition, it also visits the third one

By the assumptions (1.14) and (1.15), H2
λVλ(rHλ) < 2q(r) uniformly in r ∈ [0, 2K ],

for all λ sufficiently small. Hence, for such λ, the exponent in the right-hand side is

bounded below by e−2K
√

q(2K )−2N H−2
λ .

It remains to estimate p(DL ∩DM |Pu,∅
N ,+ ). By the invariance principle (for a random

walk conditioned to stay positive; see first [4, Theorem 1] and then [8, Theorem 1.1]),

lim inf
N→∞ p(DL |Pu,∅

N ,+ ) ≥ e−c2 K
√

q(2K ),

for some absolute constant c2 > 0, provided that λ be small enough.
On the other hand, letting D′ = {sup0≤i≤H2

λ
Xi ≤ Hλ} ∩ {X!H2

λ " ∈ [
1
3 Hλ,

2
3 Hλ]}, it

follows from the Markov property that

inf
�∈[ 1

3 Hλ,
2
3 Hλ]

p(DM | X L = �, Xi ≥ 0 ∀Δ ≤ i ≤ N )

≥
{

inf
�∈[ 1

3 Hλ,
2
3 Hλ]

p(D′ | X0 = �, Xi ≥ 0 ∀Δ ≤ i ≤ H2
λ )

}!N/H2
λ "

≥ e−c3 N H−2
λ .

Upper bound on Ẑu,∅
N ,+,λ and lower bound on eλ. We claim that there exist λ̄ > 0 and a

positive constant e such that

Ẑu,∅
N ,+,λ ≤ e−eN H−2

λ Ẑu,∅
N ,+,0, (3.5)

uniformly in u ≥ 0, N ≥ H2
λ and λ < λ̄.

Let us fix some small ε > 0 (which does not have to be very small; one can optimize
over it at the end of the proof). The idea behind the proof is that a typical trajectory has
many disjoint segments of the length at least εH2

λ ,which are at a distance at least
√
εHλ

from the wall.
We partition the interval {1, . . . , N } into Nλ disjoint intervals b1, . . . , bNλ of length

εH2
λ and, possibly, one additional shorter rightmost interval.
We say that the event Bk occurs if (see Fig. 3)

max
i∈b2k−1

Xi > 2
√
εHλ and max

i∈b2k+1
Xi > 2

√
εHλ. (3.6)
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Let us denote by G the number of indices k for which the event Bk occurs. It follows
from the CLT that there exists κ1 > 0 such that

inf
v,w≥0

p
(

max
1≤i≤εH2

λ

Xi > 2
√
εHλ

∣∣ Pv,w
1,εH2

λ ,+

)
> κ1. (3.7)

Observe that the events {maxi∈b2 j−1 Xi > 2
√
εHλ}, j = 1, . . . , Nλ/2, are conditionally

independent given the trajectories in the intervals b2k . As a result, (3.7) implies that there
exists κ2 > 0 such that

p(G ≤ 1
8κ

2
1 Nλ | P̂u,∅

N ,+ ) ≤ e−κ2 Nλ , (3.8)

uniformly in u.
Similarly, let us say that the event Ck occurs if Bk occurs and (see Fig. 3)

min
i∈b2k

Xi <
√
εHλ,

and let us denote by G ′ the number of indices such that Ck occurs.
The occurrence of Ck enforces a downward fluctuation at least as large as

√
εHλ on a

time interval of length at most 3εH2
λ . The functional CLT [9, Theorem 2.4] implies that

such an event has probability at most κ3, for some κ3 < 1, uniformly in λ small. This
implies that there exists κ4 > 0, such that

p
(
G ′ ≥ 1 + κ3

2
g

∣∣ P̂u,∅
N ,+ ;G = g

) ≤ e−κ4g, (3.9)

uniformly in u and g. Altogether, (3.8) and (3.9) yield

p
(
G − G ′ ≤ 1− κ3

8
κ2

1 Nλ
∣∣ P̂u,∅

N ,+

) ≤ e−κ5 Nλ ≤ e−κ6ε
−1 H−2

λ N . (3.10)

The quantity G − G ′ provides a lower bound on the number of disjoint intervals b2k of
length εH2

λ such that mini∈b2k Xi ≥ √
εHλ. Therefore,

N∑

i=1

Vλ(Xi ) ≥ (G − G ′)εH2
λV (

√
εHλ) ≥ (G − G ′)εq0(

√
ε) ≥ κ7q0(

√
ε)H−2

λ N ,

(3.11)

whenever G−G ′ ≥ κ7 Nλ. Take κ7 = 1−κ3
8 κ2

1 . The conclusion (3.5) follows from (3.10)
and (3.11). ��

3.2. Proof of Lemma 2. We shall prove Lemma 2 only for φ∗λ . The proof for φλ is a literal
repetition for reversed walks. For the sake of notations, we shall think of Tλ in (2.5) as
acting on non-rescaled spaces �2(N), with the norm

〈u, v〉2,λ = hλ
∑

r∈N

u(r)v(r).

Compare with (2.18).
Similarly, we shall think of φλ and φ∗λ as of functions on N. Recall the normalizing

constant cλ which was introduced in (2.20), and recall that μλ(x) = cλφλ(x)φ∗λ(x) is
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N1

2M

M

N − r

u
v

y

Fig. 4. The last exit decomposition in (3.14). After time N − r , the path cannot visit the shaded area and has
to end up above level 2M

the invariant measure of the positively recurrent chain on N with transition probabilities
πλ specified in (2.6). Define gM (x) = 1{x>M} = ∑

x>M 1x. Then,

lim
N→∞TN

λ gM (·) = φλ(·) lim
N→∞π

N
λ

[
∑

x>M

1x

φλ(x)

]
(·) = φλ(·)

∑

x>M

μλ(x)
φλ(x)

= cλφλ(·)
∑

x>M

φ∗λ(x), (3.12)

for any λ > 0.
For v > M and k ≥ 0 let Qv,M

k,+ be the family of k-step paths X = (x0, . . . , xk)which
start at v, x0 = v, stay above level M , and end up above level 2M , xk > 2M . We employ
the notation (see (2.5))

Tk
λ{Qv,M

k,+ } =
∑

X∈Qv,M
k,+

k∏

1

Tλ(xi−1, xi ). (3.13)

By convention, T0
λ{Qv,M

0,+ } = 1{v>2M}.
Let us fix 0 < y < M and consider paths X ∈ P̂y,∅

N ,+ ending up above level 2M ,
X N > 2M . By the last exit decomposition from {1, . . . ,M} (see Fig. 4),

TN
λ g2M (y) =

∑

u≤M

∑

v>M

N−1∑

r=1

TN−r−1
λ [1u] (y)Tλ(u, v)T

r−1
λ {Qv,M

r−1,+}

=
∑

u≤M

∑

v>M

N−1∑

r=1

TN−r−1
λ [1u] (y)E−1

λ pv−ue−
Vλ(u)+Vλ(v)

2 Tr−1
λ {Qv,M

r−1,+}.

(3.14)

Taking the limit N →∞, we infer from (3.12), (3.14) and positivity of φλ and cλ that
∑

x>2M

φ∗λ(x) =
∑

u≤M

φ∗λ(u)
∑

v>M

E−1
λ pv−ue−

Vλ(u)+Vλ(v)
2

∑

r≥0

Tr
λ{Qv,M

r,+ }. (3.15)

Let us try to derive an upper bound on

max
u≤M

∑

v>M

E−1
λ pv−ue−

Vλ(u)+Vλ(v)
2

∑

r≥0

Tr
λ{Qv,M

r,+ }. (3.16)
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For simplicity, we shall prove directly the second inequality in (2.25). The arguments
rely on the lower bound H2

λVλ(M) ≥ q0(hλM). If instead we keep track of the original
quantity H2

λVλ(M), then the first inequality in (2.25) will follow.
By Lemma 1 and by our assumptions on p and Vλ,

E−1
λ pv−ue−

Vλ(u)+Vλ(v)
2 ≤ exp

{−c1h2
λ

(
q0(hλM)− 1

)− c2(v − M)
}
. (3.17)

On the other hand, Lemma 1 and crude estimates on the values of the potential V above
level M and of the hitting probability of the half-line {2M, 2M + 1, . . .} by an r -step
random walk which starts at v imply that, for r > 1,

Tr
λ{Qv,M

r,+ } ≤ E−r
λ e−rh2

λq0(hλM)p(Xr > 2M − v)

≤ exp
{
−c3h2

λr
(
q0(hλM)− 1

)− c4
(2M − v)2+

r
∧ (2M − v)+

}
. (3.18)

Indeed, the second term in the exponent on the right-hand side above follows from the

exponential Markov inequality p(Xr > a) ≤ e−c4
a2

+
r ∧a+ .

The right-hand sides of both (3.17) and (3.18) are already independent of u. Let us
sum over v > M . If r = 0, then v has to satisfy v > 2M . Using (3.17),

∑

v>2M

E−1
λ pv−ue−

Vλ(u)+Vλ(v)
2 ≤ exp

{−c5
(
h2
λ

(
q0(hλM)− 1

)
+ M

)}
. (3.19)

For r > 0, we take advantage of both upper bounds (3.17) and (3.18) above:

∑

v>M

e−c2(v−M)−c4
(2M−v)2+

r ∧(2M−v)+ ≤ e−c6
M2
r ∧M . (3.20)

Putting things together for M = HλK , we conclude that the expression in (3.16) is
bounded above by

e−c7 HλK +
∑

r≥1

exp
{
−c8

(
h2
λrq0(K ) +

(HλK )2

r
∧ HλK

)} ≤ c10e−c9 K (
√

q0(K )∧Hλ),

(3.21)

uniformly in K > 0 and λ sufficiently small.
Coming back to (3.15), we infer: For any K > 0 fixed,

∑

x>HλK

φ∗λ(x) ≤ c11e−c12 K
√

q0(K )
∑

x

φ∗λ(x), (3.22)

for all λ < λ0(K ). Notice that
∑

x φ
∗
λ(x) <∞ by compactness of Tλ.

Let us return to our basic rescaling (2.19) of φλ and φ∗λ as unit norm elements of
�2(Nλ). The bound (3.22) can be rewritten as

hλ
∑

r>K

φ∗λ(r) ≤ c11e−c12 K
√

q0(K )‖φ∗λ‖1,λ. (3.23)

Since hλ
∑

r≤K φ
∗
λ(r) ≤

√
K‖φ∗λ‖2,λ =

√
K , we conclude that {‖φ∗λ‖1,λ} is a bounded

sequence. The bound (2.26) and, in view of (3.23), also (2.25) follow. ��
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3.3. Tightness of (xλ,Pλ). Fix any T <∞ and consider the family of rescaled processes
xλ defined in (1.17). Precisely, xλ is the linear interpolation of the rescaled stationary
ergodic ground-state chain X = Xλ with transition probabilities πλ defined in (2.6) and
invariant distribution μλ. With a slight abuse of notation, we shall continue to use Pλ

for the induced distribution of xλ(·) on C[−T, T ].
Proposition 4. The family (xλ,Pλ) is tight on C[−T, T ].

Proof of Proposition 4. Recall that the invariant measure μλ at λ > 0 is given by
μλ = cλφλφ∗λ . Thus, by Theorem 2, the sequence {xλ(0)} is tight. It remains to show
that, for each ε, ν > 0, there exists δ > 0 such that

Pλ

(
max

0≤t≤δ |xλ(t)− xλ(0)| > ε
) ≤ νδ. (3.24)

For any event A ∈ σ(Xn : 0 ≤ n ≤ δH2
λ ), and for any x, y ∈ N, let us define

Ax,y =
{
X ⊂ A : X0 = x, XδH2

λ
= y

}
. As in (3.13), we employ the notation

T
δH2

λ

λ {Ax,y} =
∑

X∈Ax,y

δH2
λ∏

1

Tλ(xi−1, xi ). (3.25)

for the corresponding restricted partition function. In this way,

Pλ(A) = cλ
∑

x,y∈N

φ∗λ(x)T
δH2

λ

λ {Ax,y}φλ(y). (3.26)

Since Vλ ≥ 0,

T
δH2

λ

λ {Ax,y} ≤ e−δH2
λ log Eλp(Ax,y).

By Lemma 1, {−eλ = H2
λ log Eλ} is a bounded sequence. In the case of

A = {
max

0≤n≤δH2
λ

|Xn − X0| > εHλ
}
,

the upper bound on the probabilities

p(Ax,y) ≤ κ1
hλ√
δ

e−κ2
ε2
δ
∧(εHλ) (3.27)

holds uniformly in δ, ε > 0, x, y ∈ N and λ small. By Theorem 2, cλ/hλ is bounded.
Putting things together, we infer that

1

δ
Pλ

(
max

0≤t≤δ |xλ(t)− xλ(0)| > ε
) ≤ κ3e−κ2

ε2
δ
∧(εHλ)− 3

2 log δh2
λ

∑

x,y∈N

φ∗λ(x)φλ(y)

= κ3e−κ2
ε2
δ
∧(εHλ)− 3

2 log δ‖φ∗λ‖1,λ‖φλ‖1,λ, (3.28)

uniformly in δ, ε > 0 and λ small. Since ‖φλ‖1,λ and ‖φ∗λ‖1,λ are bounded and since
Hλ is bounded away from zero, we are home. ��
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ηHλ

2ηHλ

H2
λ

Ik

Fig. 5. The interval Ik is η-good if both paths X1 and X2 stay inside the shaded area and take values smaller
than ηHλ at the boundaries of the interval

3.4. Asymptotic ground-state structure of P
u,v
N ,+,λ. Let us fix C > 0 and T > 1. For

λ > 0, u, v ≤ C Hλ and N > 2T H2
λ , we are going to compare the restriction P

u,v,T
N ,+,λ of

P
u,v
N ,+,λ to the σ -algebra

Fλ,T = σ(Xi : −T H2
λ ≤ i ≤ T H2

λ )

with the restriction P
T
λ of Pλ to Fλ,T .

Proposition 5. There exists c1 > 0 and K = K (C, T ) <∞ such that

‖Pu,v,T
N ,+,λ − P

T
λ ‖Var ≤ 2e−c1 N H−2

λ , (3.29)

uniformly in λ small, N > (T + K )H2
λ and u, v ≤ C Hλ. Above, ‖ · ‖Var is the total

variational norm.

As an immediate consequence, we deduce the following

Corollary 2. Let λN be a sequence satisfying the assumptions of Theorem A. Let C, T <

∞ be fixed and assume that the sequences uN , vN ∈ N satisfy uN , vN ≤ C HλN .
Consider the sequence of processes xN (·) = xλN (·) defined via linear interpolation
from (1.17). With a slight abuse of notation, let P

u,v,T
N ,+,λ and P

T
λN

denote the induced

distributions on C[−T, T ] of P
u,v
N ,+,λN

and, respectively, of the direct ground-state chain
measure PλN . Then,

lim
N→∞‖P

u,v,T
N ,+,λN

− P
T
λN
‖Var = 0. (3.30)

Proof (Proof of Proposition 5). We shall use a coupling argument, considering two inde-
pendent copies X1 and X2 of the process, with possibly different boundary conditions.

The first step is to show that we can typically find many pieces of tubes of length H2
λ

and height of order Hλ inside which both paths are confined.
Let us first split the interval of length 2N + 1 into

m = �(2N + 1)/H2
λ �

consecutive disjoint intervals I1, I2, . . . , Im , of length H2
λ (plus, possibly, a final interval

of shorter length). We say that the interval Ik is η-good if (see Fig. 5)

max
i∈Ik

X1
i < 2ηHλ, max

i∈Ik
X2

i < 2ηHλ

and the values of Xi ; i = 1, 2, at the end-points of Ik are less than ηHλ.
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I3k+1 I3k+2 I3k+3

2ηHλ

H2
λ

ηHλ

Fig. 6. When mini∈I3k+1 X1
i < ηHλ and mini∈I3k+3 X1

i < ηHλ, there is a uniformly (inλ) positive probability

that maxi∈I3k+2 X1
i < 2ηHλ while taking values smaller than ηHλ at the boundary of I3k+2 (black dots). The

white vertices correspond to the position of the path at times �1
k and r1

k

Lemma 3. Given the realizations of the two paths X1 and X2, let us denote by M the
number of η-good intervals of the form I3k+2, 0 ≤ k < m/3. Then, there exist η, c2 > 0,
ρ > 0 and K0 <∞ such that

P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(M < ρ m

3 ) ≤ e−c2 N H−2
λ ,

uniformly in λ small, 0 ≤ u, v ≤ C Hλ and N ≥ K0 H2
λ .

Proof. We first show that it is very unlikely for X1 or X2 to stay far away from the
wall for a long time. Indeed, let us write B for the number of intervals Ik such that
mini∈Ik Xi > ηHλ. Then, for any ε > 0, there exists η(C, ε) such that for all η >
η(C, ε),

P
u,v
N ,+,λ(B > εm) ≤ e−c3 N H−2

λ , (3.31)

for some constant c3 > 0, uniformly in 0 ≤ u, v ≤ C Hλ. Indeed, on the event B > εm,

N∑

i=−N

Vλ(Xi ) ≥ εm H2
λVλ(ηHλ) ≥ εq0(η)(2N H−2

λ − 1),

which provides an upper bound on Zu,v
N ,+,λ[B > εm].

Remark 4. A similar argument applies for the stationary measure Pλ. This means that
we may derive our target (3.29) for Pλ(· | X−N , X N ≤ ηHλ) instead of deriving it for
Pλ itself.

The claim (3.31) then follows by using the lower bound (3.3) on the partition function
(and taking η large enough).

Let us say that the triple (I3k+1, I3k+2, I3k+3) is potentially η-good if (see Fig. 6)

min
i∈I3k+1

X1
i < ηHλ, min

i∈I3k+1
X2

i < ηHλ, min
i∈I3k+3

X1
i < ηHλ, min

i∈I3k+3
X2

i < ηHλ.

Let us denote by M̃ the number of potentially η-good triples. We deduce from (3.31)
that, for any ε > 0, we can find η such that

P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(M̃ ≤ (1− ε)m

3 ) ≤ e−c4 N H−2
λ ,

for some c4 > 0.
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Now, given a potentially η-good triple (I3k+1, I3k+2, I3k+3), let

�1
k = min

{
i ∈ I3k+1 : X1

i < ηHλ
}
, r1

k = max
{

i ∈ I3k+3 : X1
i < ηHλ

}
.

Conditionally on X1
�1

k
and X1

r1
k
, the probability that X1

i ≤ 2ηHλ for all �1
k < i < r1

k and

that both walks sit below ηHλ at the end-points of I3k+2 is bounded away from zero,
uniformly in λ. Indeed, uniformly in x, y < ηHλ, n ≤ 3H2

λ and 1 ≤ k < m ≤ n,

P
x,y
n,+,λ

(
max

i
X1

i ≤ 2ηHλ; X1
k < ηHλ; X1

m < ηHλ
)

≥ e−6q(2η)
P

x,y
n,+,0

(
max

i
X1

i ≤ 2ηHλ; X1
k < ηHλ; X1

m < ηHλ
)
,

since nVλ(2ηHλ) ≤ 6q(2η) (and Ẑx,y
n,+,λ ≤ 1). That the latter probability is bounded

below is a consequence of the invariance principle.
The claim of the lemma now follows easily, since, conditionally on the pieces of

paths between r1
k−1 and �1

k , these events are independent (and since the same argument
can be made independently for X2). ��
Now that we know that we can find O(N H−2

λ ) η-good intervals, the main observation
is that, inside each such interval, there is a uniformly positive probability that the two
paths meet. Let us make this more precise:

Definition. For n
3 ≤ m ≤ n, let Rx,y

n,m[η]be the set of paths X = (X1, . . . , Xm) satisfying
X1 = x, Xm = y and 0 < Xi < 2η

√
n, i = 1, . . . , n. We shall employ the short-hand

notation Rx,y
n [η] = Rx,y

n,n[η]; the argument η will often be dropped when no ambiguity
arises. We also set Rx,y,+

n,m = Rx,y
n,m[∞].

Proposition 6. There exists η0 > 0 such that the following happens: For every η ≥ η0,
one can find n0 = n0(η) ∈ N and p = p(η) > 0 such that

P
x,y
n,+,0 ⊗ P

z,w
n,+,0(∃i : X1

i = X2
i |Rx,y

n ×Rz,w
n ) ≥ p, (3.32)

uniformly in n ≥ n0 and x, y, z,w ∈ (0, η√n] ∩ N.

Proposition 6 is a statement about random walks with transition probabilities p. We
relegate the proof to the Appendix and proceed with the proof of Proposition 5.

First of all pick n = H2
λ and note that, in view of Assumption (1.15), the following

happens: For any x, y ≤ ηHλ and any path X ∈ Rx,y
n [η], the value of the potential

satisfies

0 ≤
n∑

1

Vλ(Xi ) ≤ nVλ(2η
√

n) = H2
λVλ(2ηHλ) ≤ 2q(2η), (3.33)

for all λ sufficiently small. In fact, (3.33) was precisely the reason to introduce the notion
of η-good intervals. An immediate consequence of (3.32) and (3.33) is that

P
x,y
H2
λ ,+,λ

⊗ P
z,w
H2
λ ,+,λ

(∃i : X1
i = X2

i |Rx,y
H2
λ

×Rz,w
H2
λ

) ≥ pe−4q(2η), (3.34)

for all λ sufficiently small. The formula (3.34) provides a uniform lower bound on
probability of coupling inside an η-good interval.
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Consider the product measures P
0,0
N ,+,λN

⊗ P
u,v
N ,+,λ. Let M be the event that the paths

X1 and X2 meet both on the left and on the right of the segment [−T, T ]. It follows
from Lemma 3 and (3.34) that there exist K = K (C, T ) and c5 > 0 such that

P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(M) ≥ 1− e−c5 N H−2

λ , (3.35)

uniformly in λ small, u, v ≤ C Hλ and N > (K + T )Hλ.
For � < −T H2

λ , r > T H2
λ and x, y ∈ N, let Mx,y

�,r ⊂ M be the event that � is

the leftmost meeting point of X1, X2, and X1
� = X2

� = x, whereas r is the rightmost
meeting point of X1, X2, and X1

r = X2
r = y. In this notation, M is the disjoint union,

M = ∪Mx,y
�,r .

Let A ∈ Fλ,T . Then,

P
u,v
N ,+,λ(A) = P

0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(Ω ×A)

= P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(Ω ×A;Mc) +

∑

�,r
x,y

P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(Ω ×A;Mx,y

�,r ).

However,

P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(Ω ×A;Mx,y

�,r ) = P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(A×Ω;Mx,y

�,r ).

Therefore,
∣∣∣Pu,v

N ,+,λ(A)− P
0,0
N ,+,λ(A)

∣∣∣ ≤ P
0,0
N ,+,λ ⊗ P

u,v
N ,+,λ(Mc),

which, in view of Remark 4 and (3.35), implies (3.29). ��

A. Proof of Proposition 6

We shall employ here our original notation p for the path measure of the underlying
random walk. Our argument is based on the second moment method, which is put to
work using the following input from [6,9]:

Bounds on probabilities of random walks to stay positive. There exists η0, such that for
any η ≥ η0 the following happens: One can find n0 = n0(η), c1 = c1(η) and c2 = c2(η)

such that

c1
xy

n3/2 ≤ p(Rx,y
n,m [η]) ≤ c2

xy
n3/2 , (A.1)

uniformly n ≥ n0, n
3 ≤ m ≤ n and 1 ≤ x, y ≤ η

√
n. Indeed, in view of the invariance

principle for random walk bridges [9, Theorem 2.4], the restriction Xi ≤ 2η
√

n may be
removed from Rx,y

n,m[η] in the following sense: There exists c = c(η) ∈ [1,∞), such
that

1 ≤ p(Rx,y,+
n,m )

p(Rx,y
n,m[η])

≤ c(η), (A.2)
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2n/3

2η
√

n x

1
z

n/3

u

n

w
y

η
√

n

Fig. 7. The decomposition of p⊗ p(N |Rx,y
n ×Rz,w

n )

uniformly in n ≥ n0, n
3 ≤ m ≤ n and x, y ≤ η√n. Hence, the two-sided inequality (A.1)

can be verified along the lines of the proof of Theorem 4.3 in [6], where a stronger
asymptotic statement was derived for a more restricted range of parameters.

Let 1 ≤ x, y, z,w ≤ η√n and consider now the product measure,

p⊗ p
(
· |Rx,y

n [η]×Rz,w
n [η]

)
.

Let N be the number of intersections of the two replicas X1 and X2 during the time
interval [ n

3 ,
2n
3 ] below level η

√
n. Precisely,

N = #
{
� ∈ [n

3
,

2n

3
] : X1

� = X2
� ≤ η

√
n
} =

2n
3∑

�= n
3

∑

u≤η√n

1{X1
�=X2

�=u}. (A.3)

Lower bound on the expectation p⊗ p(N |Rx,y
n ×Rz,w

n ). The expectation

p⊗ p(N |Rx,y
n ×Rz,w

n ) =
2n
3∑

�= n
3

∑

u≤η√n

Φn(�,u; x, y, z,w),

where (see Fig. 7)

Φn(�,u; x, y, z,w) = p(Rx,u
n,�)p(Rz,u

n,�)p(Ru,y
n,n−�)p(Ru,w

n,n−�)
p(Rx,y

n,�)p(Rz,w
n,� )

.

By (A.1),

Φn(�,u; x, y, z,w) ≥ c3
u4

n3 ,

uniformly in all the arguments in question. Consequently,

p⊗ p(N |Rx,y
n ×Rz,w

n ) ≥ c4(η)
√

n, (A.4)

also uniformly in x, . . . ,w ≤ η√n.
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2η
√

n x

1
z

n/3

u
w

η
√

n
y

n2n/3

v

Fig. 8. The decomposition of p⊗ p(N 2 |Rx,y
n ×Rz,w

n )

Upper bound on the expectation p⊗ p(N 2 |Rx,y
n ×Rz,w

n ). The expectation

p⊗ p(N 2 |Rx,y
n ×Rz,w

n ) ≤
2n
3∑

�,m= n
3

�≤m

∑

u,v≤η√n

Ψn(�,u;m, v; x, y, z,w),

where (see Fig. 8)

Ψn(�,u;m, v; x, y, z,w) = p(Rx,u
n,�)p(Rz,u

n,�)pm−�(u, v)2p(Rv,y
n,n−m)p(Rv,w

n,n−m)

p(Rx,y
n,�)p(Rz,w

n,� )
.

(A.5)

Above, pr (u, v) is a short-hand notation for p(Xr = v | X0 = u). The inequality in (A.5)
is due to the fact that we ignore the positivity condition on the interval �, . . . ,m.

By (A.1),

Ψn(�,u;m, v; x, y, z,w) ≤ c6(η)
pm−�(u, v)2

n
,

uniformly in all the arguments in question. Consequently,

2n
3∑

�,m= n
3

�≤m

∑

u,v≤η√n

Ψn(�,u;m, v; x, y, z,w) ≤ c7
√

n

n
3∑

r=0

∑

v

pr (0, v)2.

The double sum on the right-hand side above is equal to the expectation of the number
of intersections of two independent p-walks during the first n

3 steps of their life. It is
bounded above by c8

√
n. We conclude that

p⊗ p(N 2 |Rx,y
n ×Rz,w

n ) ≤ c9n. (A.6)

The lower and upper bounds (A.4) and (A.6) imply the existence of ν = ν(η) > 0,
such that

p⊗ p(N 2 |Rx,y
n ×Rz,w

n ) ≤ ν[p⊗ p(N |Rx,y
n ×Rz,w

n )]2, (A.7)

uniformly in x, y, z,w ≤ η√n. Set E = p⊗p(N |Rx,y
n ×Rz,w

n ). By the Paley–Zygmund
inequality,

p⊗ p(N > αE |Rx,y
n ×Rz,w

n ) ≥ (1− α)2
ν

, (A.8)

for every α ≤ 1. (3.32) follows.
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