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Abstract

This thesis intends to present some advances in fuzzy statistical analyses. A particular dis-
tance between fuzzy numbers called the signed distance, seems to be appealing because
of its directional property. It has the ability of describing the direction of travel between two
fuzzy numbers. In addition, it has been often used as a fuzzy ranking tool or a defuzzification
operator. Despite the fact that this distance appears to have interesting properties, it presents
serious drawbacks. To overcome these problems, this thesis develops improved versions of
it given by two L2 metrics for which the first one is directional and preserves the properties of
the signed distance, and the other one is non-directional. Both sophisticated distances have
the advantage of taking into consideration the shapes of the fuzzy numbers and their possible
irregularities. The core aim of this thesis is therefore to apply these novel distances in a serie
of statistical approaches defined on the set of fuzzy numbers.

Based on the proposed distances, this thesis provides a methodology of testing hypothe-
ses in the fuzzy environment. This method of testing relies on the estimation of fuzzy confi-
dence intervals, where we consider not only the data as fuzzy, but also the hypotheses. As
such, the defended distances are used at different stages of the process of the inference test:
in the conception of the models themselves or as defuzzification operators of the obtained
fuzzy decisions. Moreover, since the traditional way of estimating fuzzy confidence intervals
is in some sense limited in terms of the chosen parameters and the involved distributions, this
thesis presents a practical procedure of estimation of such intervals based on the likelihood
method. This new procedure is seen as general, since it can be used with any type of pa-
rameter and without the obligation of a priori defining a particular distribution. Analogously
to this testing model, a definition of the fuzzy p-value described in the same setups with its
corrresponding decision rule is given. In this context, a defuzzification of this fuzzy p-value
can be of good use to get a crisp interpretable decision.

Furthermore, this thesis presents two conceptually different applications in which the de-
fended distances are involved. On a first stage, a novel methodology of assessment of lin-
guistic questionnaires is developed on two distinct levels: the global and the individual ones.
The proposed procedure has the great possibility of being able to treat the sampling weights
and the eventual missingness occuring in the concerned data sets. The second application
consists on an extension of the multi-ways analysis of variance to the space of fuzzy sets.
The decision related to the corresponding test statistic can be made according to two decision
rules: a heuristic one preserving the fuzzy nature of the sums of squares, and another crisp
one based on the defended distances.
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To illustrate these approaches, multiple empirical and simulation studies are displayed
using synthetic and real data sets. Note that a prominent objective of these studies is to
investigate empirically some different statistical contexts, and theoretically the use of the newly
introduced distances compared to known ones from one side, and to the results obtained from
the conventional statistical theory from another one. A recurrent general finding is that the
classical approach seems to be a particular case of the fuzzy one. As such, the mentioned
fuzzy approaches seem to be potentionally promising.

A coherent R package covering all the previously mentioned concepts with complete docu-
mentation and some use cases are finally described. This package is developed from scratch
in compliance with all the theoretical tools presented in a user-friendly comprehensive pro-
gramming environment with a big panoply of calculation methods.



Introduction

In statistical analyses, we usually encode the human opinion by discrete or continuous vari-
ables. In both cases, these real-valued modelling choices of the opinion are assumed to
be clear and precise. However, it is obvious that human perception is often involved by un-
certainty and subjectivity. Conventional statistical methods appear to be limited in terms of
capturing this uncertainty and describing it in a precise manner. Despite the fact that ex-
act modelling methods are widely used, vagueness in human response can not be avoided,
especially when it comes to a verbal language. By verbal language, we mean the inherent
semantics that a human would use to describe a given phenomena, such as "approximately",
"around", "maybe", "between good and bad", etc. In the same way, it is known that in tradi-
tional surveys, practitioners tend to use categorical variables for which the modalities are often
given by Likert scales. For instance, the concept of linguistic questionnaires arised. This type
of questionnaires is defined as a set of items, i.e. the questions, encoded by given categories.
The modalities are then called "linguistics". Linguistic questionnaires are used in a wide num-
ber of fields, for example in satisfaction surveys, in economic sciences, etc. It is clear to see
that getting exact answers from such questionnaires is in some sense impossible. It could be
because of the limited number of linguistics per question. Such questionnaires are strongly
affected by imprecision.

The theory of fuzzy sets was firstly introduced by Zadeh (1965) to provide a framework
to treat such imprecisions. In this context, Zadeh (1975) asserted that linguistic variables are
"variables whose values are not numbers but words or sentences in a natural or artificial lan-
guage."1. Following Zadeh (1975), the advantage of using words is that linguistic variables are
usually less specific than number-valued ones. Hence, a convenient "treating" method should
be adopted in such cases. The idea behind fuzzy set theory is then to propose mathematical
models which capture the ambiguity contained in a human language. The point is then to
re-encode vague terms (eventually linguistics) in a more natural comprehensive way. By fuzzy
logic, researchers tend to construct fuzzy rule-based systems to treat such linguistic data, and
by that to aggregate the different vague answers related to a considered unit. Accordingly, by
means of the so-called extension principle, traditional statistical methods were extended into
the theory of fuzzy sets in order to be able to mine vague information by connecting them to
a human approximate reasoning. This fact is seen as giving statistical analyses a new flexible

1Zadeh (1975), p. 201.
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facet using fuzzy sets.

In the context of modelling information by fuzzy set theory, the information modelled by
fuzzy sets can be regarded by two main views as seen in Couso and Dubois (2014): the
epistemic and the ontic ones. The epistemic view is a representation of a real-valued quantity
assumed to be vague, as if the information is seen as incomplete, while the ontic view is a
precise representation of a naturely vague entity. These two definitions induce two schools of
approaches in fuzzy statistical analyses in terms of the definition of random variables in the
fuzzy environment. Thus, two conceptually different approaches are defined in this context:
the Kwakernaak (1979) - Kruse and Meyer (1987), and the Féron (1976a) - Puri and Ralescu
(1986). The Kwakernaak - Kruse and Meyer approach corresponds to the epistemic view of
objects. In other words, it is based on the fuzzy perception of an original real-valued entity.
Contrariwise, the Féron - Puri and Ralescu, corresponding to the ontic view assumes that the
initial entity is fuzzy by nature. Following these definitions, various fuzzy statistical methods
have been exposed.

Although fuzzy set theory is considered to be advantageous in terms of modelling uncer-
tain information, it presents severe limitations, mainly reduced to the following two problems:

• The space of fuzzy sets presents a semi-linear structure, instead of a linear one. This
semi-linearity in this space provokes difficulties in the computation of the difference arith-
metic operation between fuzzy numbers;

• It presents a lack in total ordering between fuzzy numbers in the space of fuzzy sets.

These problems can be overcome by well adapted metrics defined on the space of fuzzy
sets. In the Féron - Puri and Ralescu methodology such distances are particularly used due
to their connection with the difference arithmetic. In this context, many distances have been
introduced in the last decades. They are divided into directional and non-directional ones. Di-
rectional distances were less used than non-directional ones because of their lack in symmetry
and separability. In other terms, such distances can have negative values, signalizing the di-
rection of travel between two given fuzzy numbers. We are interested in a specific directional
distance called the signed distance (SGD), given in Yao and K. Wu (2000). We have used
this distance in many contexts, such as the evaluations of linguistic questionnaires shown in
Berkachy and Donzé (2016b) and Berkachy and Donzé (2016a) as instance, in fuzzy hypothe-
ses testing as proposed in Berkachy and Donzé (2017a), Berkachy and Donzé (2017c), etc.
In addition to its simplicity and flexibility, the SGD appeared to have nice properties. It has not
only been used as a ranking tool, but also as a defuzzification operator. Yet, the SGD shows
a serious drawback. In fact, this distance coincides with a central location measure. In other
terms, the spreads and the shapes of the fuzzy numbers can not be taken into consideration
in this calculation. Only a middle tendency measure often contained in the core set will even-
tually be concerned, while the possible irregularities in the shape are not at all counted. An
objective of this thesis is then to introduce an improved version of this distance denoted by the
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generalized signed distance (GSGD) to solve this problem. It will also be important to apply it
in a range of statistical analyses in order to understand its advantages and disadvantages. As
such, based on the SGD, we propose two L2 metrics which take into consideration the shapes
of the fuzzy numbers.

We intend to investigate the use of the aforementioned distances in hypotheses testing
procedures. Grzegorzewski (2000) and Grzegorzewski (2001) provided a method of testing
hypotheses by fuzzy confidence intervals, in which the data are supposed to be vague. By this
method, one would obtain fuzzy decisions. The author proposed then to defuzzify them. As
for us, we will extend this procedure in order to be able to take into consideration not only the
vagueness of the data, but also of the hypotheses. This case is shown in Berkachy and Donzé
(2019d). To complete our study, it appears that the use of traditional expressions of the fuzzy
confidence intervals are somehow limited, since they are introduced for specific parameters
with pre-defined distributions only. For this reason, we propose a practical methodology of
estimation of a fuzzy confidence interval by the well-known likelihood ratio method. This latter
can be used for any parameter, with any chosen distribution. The outputs of such hypotheses
testing procedures are fuzzy decisions for which a defuzzification is often required. Thus, we
would be interested to perform this step by the original SGD or the GSGD. Furthermore, from
the conventional statistical theories, it is familiar to calculate the p-value in the context of test-
ing hypotheses. It is the same in the fuzzy theory. Filzmoser and Viertl (2004) defined a fuzzy
p-value in a way to suppose that the data is fuzzy, while Parchami, Taheri, and Mashinchi
(2010) considered a definition where the fuzziness is rather a matter of hypotheses. In our
method seen in Berkachy and Donzé (2019b), we suppose that the hypotheses and the data
can simultaneously be vague. Since the fuzzy p-value is obviously of fuzzy type, then one
could imagine to defuzzify it using a prudent metric in order to get an interpretable decision.

We would like after to explore the influence of the use of the defended distances in some
other statistical contexts. For this purpose, we chose two conceptually different procedures:
the evaluation of linguistic questionnaires as seen in Berkachy and Donzé (2016a) for exam-
ple, and the Mult-FANOVA as presented in Berkachy and Donzé (2018b) for the univariate
case. For the first case, we propose to aggregate the records of the units of a given linguis-
tic questionnaire modelled by fuzzy numbers, on a global and an individual levels. These
assessments can be done using the original and the improved signed distances, seen as
ranking operators. By our method, one could take into account the sampling weights and the
missing values in the data. For the missingness problem, indicators of information’s rate are
also defined on both levels. Their aim is to give indications of the quantity of missing values in
the answers of a given unit or in the complete data set. For the second case, in terms of the
defended distances, we recall the methods of the fuzzy multi-ways analysis of variance. As
such, we propose two exploratory decision rules: one based on using a convenient distance
(the original or the generalized signed distances as instance), and another heuristic one. To
illustrate these approaches, we provide applications on real data sets from different contexts.
A finding of this study is to confirm that in our situations the involved classical statistical anal-
yses seem to be a particular case of the fuzzy analyses.
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In terms of the usability of the aforementioned methodologies, we propose a complete
coherent R package composed by a plenty of functions covering the contents of all the de-
fined concepts. This user-friendly package is constructed on the basis of the packages
FuzzyNumbers shown in Gagolewski (2014), and polynom given in Venables, Hornik, and
Maechler (2019). The presented functions are validated on several data sets, coming from
multiple sources.

We can summarize the main contributions of this thesis in the following manner:

• to introduce an improved versions of the signed distance which preserve its properties,
by taking into account the shape of the concerned fuzzy numbers;

• to propose the definitions of different statistical measures and point estimators with re-
spect to the signed distance and its improved forms;

• to provide a practical procedure of computation of fuzzy confidence intervals by the
likelihood ratio method, where any type of parameter can be used without the obligation
of a priori defining the distribution of the data set. For this calculation, we propose to use
the bootstrap technique to empirically estimate the required distribution and we introduce
two different algorithms for the construction of the bootstrap samples;

• to expose a method of testing hypotheses by fuzzy confidence intervals where the data
as well as the hypotheses are assumed to be fuzzy. The fuzzy decisions, i.e. outcome
of such methods, can also be defuzzified by a convenient distance;

• to propose a procedure of calculation of the fuzzy p-value by considering simultaneously
the fuzziness of the data and of the hypotheses, followed by the corresponding decision
rule. In this case, it would be useful to defuzzify this fuzzy p-value in some situations;

• to introduce a general method of evaluations of linguistic questionnaires based on the
signed distance and its generalized forms at the global and the individual levels, taking
into account the sampling weights and the eventual missing values in the data set;

• to expose a fuzzy multi-ways analysis of variance in the fuzzy environment. For this
purpose, two exploratory decision rules are given: one based on a chosen distance
such as the signed distance and its improved version, and the other based on a heuristic
procedure where the fuzzy nature is preserved;

• to apply the previous theoretical methodologies on synthetic and real data sets;

• to develop a coherent self-sustaining R package where all the prior theoretical method-
ologies are implemented in a user-friendly programming environment with very few de-
pendencies.

This thesis, composed of 3 parts, is organized as follows. The first one divided into 5
chapters is devoted to the theoretical results where we expose in Chapter 1 the fundamental
concepts of the theory of fuzzy sets. In Chapter 2, we briefly recall the idea behind the fuzzy
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rule-based systems composed by 3 steps: fuzzification, IF-THEN rules, and defuzzification.
Chapter 3 covers several known distances with their properties, as well as the signed dis-
tance. Accordingly, the aim of this chapter is to develop two new L2 metrics called the dθ

?

SGD
and the generalized signed distance dGSGD. Similary to the signed distance, this latter is direc-
tional, but where the shapes of the considered fuzzy numbers are taken into account during
the calculations. In Chapter 4, we recall the two approaches of random variables in the fuzzy
environment: the Kwakernaak - Kruse and Meyer and the Féron - Puri and Ralescu. The
concepts of distribution functions related to these approaches, the expectation, the variance,
and the notion of estimators of the distribution parameters are also given. In this chapter we
show how one can use the signed distance and its generalized form in the calculations of
sample moments and some other statistical measures. Last but not least, Chapter 5 expands
the ideas of the first four chapters onto the fuzzy hypotheses testing procedures. Thus, we
first propose a practical methodology to compute fuzzy confidence intervals by the likelihood
method, followed by a hypotheses testing procedure based on the estimated intervals. The
idea is to consider that the data and the hypotheses can be assumed to be fuzzy at the same
time, and consequently to construct fuzzy decisions related to not rejecting a given hypothesis
of the model. In the same setups, i.e. both data and hypotheses are supposed to be fuzzy,
we provide a method of calculating a fuzzy p-value with its decision rule. In common cases,
the fuzzy decisions as well as the fuzzy p-value might need a defuzzification in order to get
an interpretable decision, a particular operator can be used in this intention. The mentioned
approaches are afterwards illustrated by detailed examples, in addition to various simulation
studies. The objective of these latter is to investigate the use of the generalized signed dis-
tance compared to all the other evoked distances and aggregation operators. The classical
and the fuzzy approaches are finally compared, and guidelines for their use are given.

The second part is devoted to some applications of the original and the generalized signed
distance in statistical methods. These latter are chosen in the purpose of understanding the
pertinence of such operators in various contexts. These approaches are the evaluations of
linguistic questionnaires by these distances, and the fuzzy multi-ways analysis of variance.
Therefore, we expose in Chapter 6 a procedure of evaluation of linguistic questionnaires made
on two distinct levels: the global and the individual ones. In these calculations, a distance is
needed. We note that the sampling weights can be considered. Our procedure takes into
account also the missingness that could occur in data sets. The indicators of information’s
rate are also shown. In Chapter 7, we show a Mult-FANOVA model in the fuzzy context,
where a preliminary heuristic decision rule as well as one based on a considered metric are
shown. Both chapters are illustrated by detailed applications with real data sets. For these
approaches, the application of the signed distance and its improved form are our areas of
interest.

The last part of this thesis consists on a detailed description of our R package called
FuzzySTs shown in Berkachy and Donzé (2020), constructed from scratch in compliance with
all the concepts presented in the first two parts. Numerous functions are exposed with a wide
range of calculation methods.





Part I

Theoretical part
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Once we assume that our data set is subject to uncertainty, and we decide to choose a
convenient "treatment" tool such as fuzzy theory, corresponding statistical analyses should be
well adapted to such situations. In the recent years, fuzzy methods seemed to be appealing
in terms of the development of several statistical methods.

Based on known theories, we are interested in developing procedures of testing hypothe-
ses in a fuzzy environment. These procedures require a clear definition of random variables.
In the fuzzy context, two main approaches are often highlighted: the Kwakernaak - Kruse and
Meyer, and the Féron - Puri and Ralescu. The difference between these approaches is mainly
conceptual. In the methodology by Féron - Puri and Ralescu, a distance between fuzzy num-
bers is needed. This distance is often used to overcome the difficulty induced by the difference
arithmetic seen as complicated in the fuzzy environment. In addition, a total ordering does not
exist yet in the space of fuzzy numbers. Therefore, proposing well adapted metrics to these
calculations in the space of fuzzy sets is welcome. Multiple distances have then been intro-
duced. A directional distance called the signed distance seems to have interesting properties.
This distance has also served as a defuzzification operator and as a ranking tool in different
contexts. However, it appears that it presents a drawback since its outcome coincides with a
measure of central location. Practically, the possible irregularities in the shape of the fuzzy
numbers are not taken into account. Consequently, it could be very useful to propose an
upgrade of this distance, in a way to preserve the same directional properties of the original
signed distance.

The contributions of this part are various: In terms of measuring the distance between
two fuzzy numbers, we propose two novel L2 metrics called the dθ

?

SGD and the generalized
signed distance dGSGD. Namely, these metrics are based on the original signed distance, but
where they could efficiently take into consideration the shape of the concerned fuzzy numbers.
Based on the concept of Féron - Puri and Ralescu’s random variables, these metrics will be
afterwards used in the calculation of the expectation, the variance, and some other statistical
fuzzy measures and estimators. For the Kwakernaak - Kruse and Meyer approach, these
distances can eventually be used as defuzzification operators since the outcome of such ap-
proaches is known to be fuzzy nature. All of the previously mentioned informations will lead us
to propose new methodologies of fuzzy hypotheses tests. It is known that the uncertainty can
have two sources: the data and the hypotheses. We then propose a testing method where we
assume that the fuzziness does not only comes from the data, but also from the hypotheses.
This approach relies on fuzzy confidence intervals, for which we introduce a new practical
procedure of calculation based on the known likelihood ratio method. The advantage of this
latter is that we are now on able to calculate a sophisticated fuzzy confidence interval where
the procedure is in some sense general and can be applied on any parameter. In addition,
we do not have the obligation of defining a priori a particular distribution. This hypotheses
test, mainly connected to an epistemic view, is in the same direction of the definition of fuzzy
random variables of Kwakernaak - Kruse and Meyer. By this method, fuzzy decisions given
by fuzzy numbers are obtained. These decisions are related to the null and the alternative hy-
potheses, and can accordingly be defuzzified in the purpose of getting interpretable decisions.
The defuzzified values are interpreted as the so-called degree of conviction, which means a
degree of acceptability of the hypotheses. This measure indicates then the degree of "not
rejecting" a given hypothesis. The decisions can accordingly be defuzzified in the purpose of
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getting interpretable decisions. From another side, for a given test statistic, the concept of the
p-value can also be used. As such, we propose a general method to compute fuzzy p-values
where we consider fuzzy data, as well as fuzzy hypotheses. Thereafter, we would compare
this fuzzy p-value to the pre-defined significance level. It is clear to see that these two entities
might often overlap. Thus, we propose to defuzzify them by a suitable operator, in the purpose
of obtaining a decision, easy to interpret.

To sum up, this theoretical part is composed by 5 chapters. We open this part in Chapter 1
by numerous fundamental concepts of fuzzy sets and fuzzy numbers, and the related logical
and arithmetic operations. The extension principle is also given. In Chapter 2, we expose a
résumé of the fuzzy rule-base systems comprising the three following steps: the fuzzification,
the IF-THEN rules and the defuzzification. The Chapter 3 is devoted to recall many well-known
distances between fuzzy numbers such as the ρ1, ρ2, etc, as well as the signed distance. In
this chapter, based on the signed distance measure, we propose two new metrics taking into
account the shapes of the fuzzy numbers. These metrics are denoted by dθ

?

SGD and dGSGD.
This latter is called the generalized signed distance, and preserves the directionality of the
signed distance. The aim of Chapter 4 is to describe two approaches related to defining a
random variable in the fuzzy environment, i.e. the approaches by the Kwakernaak - Kruse
and Meyer and the Féron - Puri and Ralescu. We also highlight the concepts of distribution
functions associated to these random variables, the expectation and the variance, in addition
to the empirical estimators of the distribution parameters. Finally, in Chapter 5 discussing of
fuzzy statistical inference, we first introduce a practical procedure to estimate fuzzy confidence
intervals based on the likelihood ratio method. We afterwards expose a fuzzy hypotheses test
where one could consider the data and/or the hypotheses as fuzzy. This test is based on the
constructed fuzzy confidence intervals. In addition, a fuzzy p-value generalizing both cases
with its decision rule is also introduced. All the proposed concepts are illustrated by detailed
examples of real data sets. One of our aims is to investigate the possible advantages and
drawbacks of the application of different metrics in such methodologies, in order to get a broad
idea about their use. A synthesis in which we interpret the different outputs of the estimations
is given at last. We close the part by a comparison between the classical and the fuzzy theory
in the context of statistical inference tests, and we give the pros and cons of both theories.



Chapter 1

Fundamental concepts on fuzzy sets

As a first step, it is important to postulate the fundamental concepts of fuzzy sets as proposed
in Zadeh (1965). This chapter is then devoted to basic notions of fuzzy sets, the logical and
arithmetic related-operations, and to the well-known extension principle.

We open this chapter by definitions of fuzzy sets and fuzzy numbers, followed by the defini-
tions of some particular shapes of fuzzy numbers: the triangular, the trapezoidal, the gaussian
and the two-sided gaussian fuzzy numbers. We discuss also the notions of vectors of fuzzy
numbers, and of fuzzy vector. The aim is to highlight the differences that exist between them.
Then, we recall the operations on fuzzy sets notably the logical and arithmetic operations.
These latter are the foundations of further fuzzy analyses. We will at last have the occasion to
display the so-called extension principle. Detailed examples illustrating the different sections
are given.

1.1 Fuzzy sets and fuzzy numbers

When Zadeh (1965) firstly discussed the notion of fuzzy sets, his idea was a bit more philo-
sophical than methodological. He intended to propose a new ontology to cases that often
occur in the analysis of data obtained from real life problems, by modelling them using the
so-called fuzzy sets.

In the initial phase, let us then expose the basic definitions and concepts of fuzziness.

Definition 1.1.1 (Fuzzy set).

If A is a collection of objects denoted generically by x , then a fuzzy set or class X̃ in A is a
set of ordered pairs:

X̃ =
{

(x ,µX̃ (x)) | x ∈ A
}

, (1.1)

11
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where the mapping µX̃ representing the "grade of membership" is a crisp real valued function
such that

µX̃ : R → [0; 1]
x 7→ µX̃ (x)

is called the membership function (or generalized characteristic function).

For conventional researchers, the concept of membership characterizing fuzzy sets might
often be confusing, since it coincides by far to some features of known notions of the classical
theory. The subsequent remarks intends to clarify this idea.

Remarks 1.1.1.

1. For sake of clarification, we mainly use the expression "membership function (MF)" in-
stead of "characteristic function".

2. Note that the MF µX̃ of a fuzzy set X̃ describing the uncertainty of a given observa-
tion, resembles to the probability function of a stochastic entity X . However, some main
conceptual differences exist between these two notions. As such, many references dis-
cussed of these differences. We note for example Laviolette et al. (1995) and Zadeh
(1995), and others.

To illustrate these concepts, we propose to consider the subsequent scenario:

We are interested in the variable age in a given population. If we ask a person about his
age, many types of possible answers can be given. He could, for example, answer by a num-
ber (20, 21, 22 ...), or a linguistic term (such as very young, young, old, very old), etc. In the
case of a number-valued answer, if we would like to assign for each number a class of aging,
the task is difficult since the interpretation of each number is subjective and can be different
between humans. As instance, for a 80 years old person, an individual having 20 years old is
very young. However, for a person of 10 years old age, the same person having 20 years is
seen to be old. From another side, in the case of a linguistic term, it is obvious that choosing
between different categories is vague. Thus, defining precisely the age regarding the category
is complicated.

Example 1.1.1 (The age example).

Consider the statement "Paul is very young". The term "very young" is uncertain since Paul
can be 5 or 20 years old and still be very young. In fact, depending on our perception, one
could be "very young" between 0 and 30, young between 25 and 50, "old" between 45 and 70
and "very old" from 65 and upper. We model the term very young by a fuzzy set denoted by
X̃ with its corresponding MF µX̃ shown in Figure 1.1. This latter shows that the 5 year-old Paul
is at 100% very young (µX̃ (5) = 1), and if he has 20 years old, then the grade of membership
is roughly around 0.67 i.e. µX̃ (20) = 0.67. He is then at 67% very young.
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Figure 1.1: Membership function of X̃ describing the term very young - Example 1.1.1

If the MF of a given fuzzy set attains the highest grade, i.e. 1, we define the so-called
normal fuzzy set as follows:

Definition 1.1.2 (Normal fuzzy set).

A fuzzy set X̃ is said to be normal iff

supµX̃ (x) = 1. (1.2)

In the same way, it is important to define the so-called convex and strongly convex fuzzy
sets as proposed by Zadeh (1965) and recalled by Drewniak (1987) and others. This concept
has been introduced in a way preserving the properties of convexity of the classical sets. The
definition can be written by:

Definitions 1.1.1 (Convex and strongly convex fuzzy sets).

• A fuzzy set X̃ is said to be convex iff its membership function µX̃ is given such that

µX̃

(
tx1 + (1− t)x2

)
≥ min

(
µX̃ (x1),µX̃ (x2)

)
, ∀ x1, x2 ∈ R and t ∈ [0; 1]. (1.3)

• A fuzzy set X̃ is said to be strongly convex iff its membership function µX̃ is given such
that

µX̃

(
tx1 + (1− t)x2

)
> min

(
µX̃ (x1),µX̃ (x2)

)
, ∀ x1, x2 ∈ R and t ∈ (0; 1). (1.4)

It is useful to expose the support and the kernel of a given fuzzy set. They are given in the
following manner:
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Definitions 1.1.2 (Support and kernel of a fuzzy set).

The support and the kernel of a fuzzy set X̃ denoted respectively by supp X̃ and core X̃ ,
are given by:

supp X̃ =
{

x ∈ R | µX̃ (x) > 0
}

, (1.5)

core X̃ =
{

x ∈ R | µX̃ (x) = 1
}

. (1.6)

In other terms, the support of a fuzzy set X̃ is a crisp set containing all the elements such that
their membership function is not zero. In the same manner, the kernel of the fuzzy set X̃ is a
crisp set containing all elements with degree of membership of one.

Example 1.1.2 (The age example).

The support and the kernel of the fuzzy set X̃ of Example 1.1.1 describing the uncertainty
in the term very young are as follows:

supp X̃ =
{

x ∈ R | µX̃ (x) > 0
}

=
]
0; 30

[
,

core X̃ =
{

x ∈ R | µX̃ (x) = 1
}

=
[
0; 15

]
.

We denote now by F(R) the class of all non-empty normal fuzzy sets on the real line R, and
by F?c(R) the class of the non-empty compact, convex and normal fuzzy sets on R. Thereafter,
a fuzzy number can be defined as follows:

Definition 1.1.3 (Fuzzy number).

A fuzzy number X̃ is a normal and convex fuzzy subset of A on F?c(R) which obeys the
following conditions:

1. ∃x0 in R for which µX̃ (x0) = 1;

2. µX̃ (x) is upper semi-continuous;

3. its support is bounded.

A given fuzzy set is afterwards characterized by a collection of crisp sets called the α-level
sets, as seen in the following definition:

Definition 1.1.4 (α-level set or α-cut).

An α-level set X̃α of the fuzzy set X̃ is the (crisp) set of elements such that:

X̃α =
{

x ∈ A | µX̃ (x) ≥ α
}

. (1.7)
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The α-level set is a closed bounded and non-empty interval denoted generally by
[
X̃ L
α; X̃ R

α

]
where for ∀α ∈ [0; 1], X̃ L

α and X̃ R
α are the left and right hand sides of X̃α called respectively the

left and right α-cuts such that:

X̃ L
α = inf

{
x ∈ R | µX̃ (x) ≥ α)

}
and X̃ R

α = sup
{

x ∈ R | µX̃ (x) ≥ α)
}

. (1.8)

We add that since the considered α-level sets are assumed to be bounded and not empty, for
the values α = 0 and α = 1, the required α-cuts exist. We highlight that for α = 0, the 0-level
set X̃α=0 is called the closure of the set

{
x ∈ R | µX̃ (x) > 0

}
.

One could express the α-level sets of a fuzzy number by means of an arbitrary function, so-
called the "representative of a class". The functions of α, denoted by X̃ L

α(α) and X̃ R
α (α), are

said to be the representatives of the left and right α-cuts of the class containing X̃ .

Furthermore, a fuzzy number X̃ , also called Left-Right (L-R) fuzzy number, can be repre-
sented by the family set of his α-cuts

{
X̃α | α ∈ [0; 1]

}
. This set is a union of finite compact

and bounded intervals
[
X̃ L
α(α); X̃ R

α (α)
]

such that, ∀α ∈ [0; 1],

X̃ =
⋃

0≤α≤1

[
X̃ L
α(α); X̃ R

α (α)
]
, (1.9)

where X̃ L
α(α) and X̃ R

α (α) are the functions of the left and right hand sides of X̃ .

The topic of α-level sets has gained lots of attention in the definition of fuzzy numbers. It
would then be also interesting to define the concepts of the strong α-level set, and the one of
its indicator function.

Definition 1.1.5 (Strong α-level set or strong α-cut).

An α-cut X̃ ′α of the fuzzy number X̃ is said to be strong if it verifies the following property:

X̃ ′α =
{

x ∈ A | µX̃ (x) > α
}

. (1.10)

Definition 1.1.6 (Indicator function of an α-cut).

The Indicator function IX̃α(x) of the α-cuts of the fuzzy number X̃ is defined in the following
manner:

IX̃α(x) =

{
1 if µX̃ (x) ≥ α,
0 otherwise.

(1.11)

Therefore, from the least-upper bound property generalized to ordered sets, the MF of X̃ can
be written as

µX̃ (x) = max
{
αIX̃α(x) : α ∈ [0, 1]

}
. (1.12)

Finally, if two fuzzy numbers are equal, the following condition is applied:

Definition 1.1.7. Two fuzzy numbers X̃ and Ỹ are equal if and only if their membership func-
tions are equal i.e. µX̃ (x) = µỸ (x), for ∀x ∈ R.
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1.2 Common fuzzy numbers

When uncertainty occurs in data set, useful modelling tools should be available. Historically,
different ways were proposed to overcome this problem. In the fuzzy environment, when
Zadeh (1965) introduced the fuzzy logic, his contribution was more into philosophy than into
detailed suggestions on how to model fuzziness contained into the information. In later years,
specific shapes of fuzzy numbers were suggested. However, some practitioners persisted
to model the vagueness by their own shapes. In other terms, they prefered to draw them
intentionally at their own sense. Nevertheless, the necessary and sufficient conditions for the
construction of a fuzzy number such as the continuity, the monotony — the convexity — should
be insured. We note as instance a study from a questionnaire called TIMSS-PIRLS presented
in Gil, Maria A. Lubiano, et al. (2015) where 9 years old children were asked to draw their own
fuzzy numbers preserving the previously mentioned conditions. The influence of the shapes
of fuzzy numbers were discussed. Thus, we can assert that the type of membership functions
is chosen according to the user experience. Conversely, the analyst should be aware that the
choice of a given MF could eventually influence the modelling process. Moreover, in literature,
particular shapes of fuzzy numbers were frequently used to model the uncertainty.

As an illustration, we define the trapezoidal, triangular, gaussian and two-sided gaussian
fuzzy numbers. The preference of researchers for each of these shapes is due to different
reasons: for example the trapezoidal, and evidently the triangular fuzzy numbers are easy
to handle, to draw and to interpret, while the gaussian and the two-sided gaussian ones are
more elaborated, and thus, more demanding from a computational point of view. These fuzzy
numbers with their respective membership functions and α-cuts are shown in the subsequent
definitions.

Definition 1.2.1 (Triangular fuzzy number).

A triangular fuzzy number X̃ is a fuzzy number often represented by the tuple of three
values p, q and r , i.e. X̃ = (p, q, r ), where p ≤ q ≤ r ∈ R. Its MF has a form of a triangle and
is given by:

µX̃ (x) =


x−p
q−p if p < x ≤ q,
x−r
q−r if q < x ≤ r ,
0 elsewhere.

(1.13)

From an horizontal view, the left and right α-cuts X̃ L
α and X̃ R

α are respectively expressed by{
X̃ L
α(α) = p + (q − p)α,

X̃ R
α (α) = r − (r − q)α,

, ∀α ∈ [0; 1]. (1.14)

Definition 1.2.2 (Trapezoidal fuzzy number).

A trapezoidal fuzzy number X̃ is written as the quadruple p, q, r and s, i.e. X̃ = (p, q, r , s),
where p ≤ q ≤ r ≤ s ∈ R. Its MF µX̃ is given by:

µX̃ (x) =


x−p
q−p if p < x ≤ q,
1 if q < x ≤ r ,
x−s
r−s if r < x ≤ s,
0 elsewhere,

(1.15)
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For all α in the interval [0; 1], the left and right α-cuts X̃ L
α and X̃ R

α are the following:{
X̃ L
α(α) = p + (q − p)α,

X̃ R
α (α) = s − (s − r )α.

(1.16)

For the subsequent gaussian and two-sided gaussian cases, we have to mention that the
support sets of the corresponding shapes are not bounded. Therefore, they do not obey the
bounded property of fuzzy numbers. However, these shapes are described in this context
since they are often used in fuzzy programming techniques.

Definition 1.2.3 (Gaussian fuzzy number).

We denote by X̃ a gaussian shaped fuzzy number represented by the couple of param-
eters (µ,σ). The MF of a gaussian fuzzy number is nothing but the function of the gaussian
distribution given as:

µX̃ (x) = exp
[
− (x − µ)2

2σ2

]
, ∀x ∈ R, µ ∈ R and σ > 0. (1.17)

This formula leads to the following left and right α-cuts X̃ L
α and X̃ R

α of X̃ :{
X̃ L
α(α) = µ−

√
−2σ2 lnα,

X̃ R
α (α) = µ +

√
−2σ2 lnα,

(1.18)

with −2σ2 ln(α) ≥ 0 under the condition 0 < α ≤ 1.

Definition 1.2.4 (Two-sided gaussian fuzzy number).

For a two-sided gaussian fuzzy number X̃ represented by the four parameters (µ1,σ1,µ2,σ2),
the couples of parameters (µ1,σ1) and (µ2,σ2) correspond to the gaussian curves defining re-
spectively the left and right sides of the fuzzy number X̃ . For µ1 ≤ µ2 ∈ R, and σ1 and σ2 both
strictly positive, the MF of such fuzzy numbers is written as:

µX̃ (x) =


exp

[
− (x−µ1)2

2σ2
1

]
if x ≤ µ1,

1 if µ1 < x ≤ µ2,

exp
[
− (x−µ2)2

2σ2
2

]
if x > µ2,

(1.19)

The left and right α-cuts can be expressed by:X̃ L
α(α) = µ1 −

√
−2σ2

1 lnα,

X̃ R
α (α) = µ2 +

√
−2σ2

2 lnα,
(1.20)

for which, for ∀α ∈ [0; 1], the values −2σ2
1 lnα and −2σ2

2 lnα are always positive.

Direct relations exist between the four types of the previously defined fuzzy numbers, as ex-
pressed in the following remark:
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Remark 1.2.1. A trapezoidal fuzzy number can be treated as a triangular one when q = r .
Analogously, a two-sided gaussian fuzzy number which has the particularity µ1 = µ2 and
σ1 = σ2, is nothing but a gaussian one.

Furthermore, although we know that the choice of a specific MF is according to the user
experience, the utility of different types should be known. In particular, the triangular and
trapezoidal fuzzy numbers have simple shapes. Thus, from an operational point of view, they
are convenient. Yet, the gaussian and two-sided gaussian ones, seen as more elaborated
shapes than the trapezoidal and the triangular ones as instance, are computationally heavier,
but more reliable. An example of these shapes is provided as follows:

Example 1.2.1. A person is asked to give an information about the approximate distance
between his work and his home. His answer was "almost 2 km". This assertion is uncertain.
One could use different shapes to model the uncertainty contained in this information. Some
possible fuzzy numbers are shown in Figure 1.2.

1.3 Vector of fuzzy numbers and fuzzy vector

For multivariate cases, one has to differentiate between a fuzzy vector and a vector of fuzzy
numbers. For instance, the terminology of a vector of fuzzy entities relates to the case where
a vector of multiple fuzzy elements is considered, while a fuzzy vector is seen to be a fuzzy
version of a crisp vector of elements. Both concepts are defined as follows:

Definition 1.3.1 (Vector of fuzzy numbers).

A n-dimensional vector of fuzzy numbers (X̃1, ... , X̃n) is a vector of n uncertain elements.
Thus, each element alone is fuzzy. The MF of the vector is consequently determined by each
of the n membership functions of X̃i , i = 1, ... , n, as follows:

µ(X̃1,...,X̃n) : Rn → [0; 1]n

(x1, ... , xn) 7→
(
µX̃1

(x1), ... ,µX̃n
(xn)

)
. (1.21)

Definition 1.3.2 (Fuzzy vector).

A fuzzy vector X̃ is the fuzzy version of a given vector X = (X1, ... , X2), such that

X̃ = ˜(X1, ... , X2). (1.22)

Its MF µX̃ is given by a function of n variables (x1, ... , xn) on R. This function is often called the
vector-characterizing function and is written as:

µX̃ : Rn → [0; 1]
x = (x1, ... , xn) 7→ µX̃ (x1, ... , xn). (1.23)

Similarly to Equation 1.7, its α-cut set is expressed by:

X̃α =
{

x ∈ Rn | µX̃ (x) ≥ α
}

. (1.24)

We note that the Equation 1.12 can be consequently deduced.
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Figure 1.2: Fuzzy numbers of different symmetrical shapes - Example 1.2.1
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1.4 Logical operations on fuzzy sets

Logical operations are from the most used operations in fuzzy processes. We show in this
section the intersection, the union and the complement of two fuzzy sets denoted by X̃ and Ỹ
with their respective membership functions µX̃ and µỸ .

Definition 1.4.1 (Intersection between two fuzzy sets).

The membership function of the intersection (logical and, i.e ∩) between two fuzzy sets X̃
and Ỹ is defined as:

µX̃∩Ỹ (x) = min
(
µX̃ (x),µỸ (x)

)
, ∀x ∈ R. (1.25)

Definition 1.4.2 (Union of two fuzzy sets).

The membership function of the union (logical or, i.e ∪) of X̃ and Ỹ is written by:

µX̃∪Ỹ (x) = max
(
µX̃ (x),µỸ (x)

)
, ∀x ∈ R. (1.26)

Definition 1.4.3 (Complement of a fuzzy set).

The membership function of the complement (negation ¬) of a the fuzzy set X̃ is expressed
by:

µX̃ c (x) = 1− µX̃ (x), ∀x ∈ R. (1.27)

We propose now an example illustrating the three described logical operations. It is given
by the following:

Example 1.4.1 (The age example).

Relating to Example 1.1.1, consider the trapezoidal and triangular fuzzy numbers denoted
respectively by X̃ = (25, 30, 40, 50) and Ỹ = (45, 60, 70), modelling the categories young and
old, with their respective membership functions µX̃ and µỸ as seen in Figure 1.3.

We would like to calculate the intersection and union of the two fuzzy sets when x = 47.
They are given as follows:

• Intersection between X̃ and Ỹ : µX̃∩Ỹ (47) = min
(
µX̃ (47),µỸ (47)

)
= min (0.3, 0.134) =

0.134.

• Union of X̃ and Ỹ : µX̃∪Ỹ (47) = max
(
µX̃ (47),µỸ (47)

)
= max (0.3, 0.134) = 0.3.

Note that the intersection and union shown in Figure 1.3 are not surfaces, but the segments
of the MF resulting from both operations.

For the complement of the fuzzy set X̃ at the value x = 47, we have that:

µX̃ c (47) = 1− µX̃ (47) = 1− 0.3 = 0.7.

For the interpretation of this complement, we can say that a given person having 47 years is
at 30% "young" and at 70% "not young".
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Figure 1.3: Example with logical operations - Example 1.4.1

For the properties of the logical operations of fuzzy sets, one could easily remark that these
properties are very similar to the ones of crisp sets. Thus, since the membership grades of a
fuzzy or a crisp set are both contained in the interval [0; 1], the classical sets might be regarded
as special cases of fuzzy sets. We denote by ∅ an empty fuzzy set such that its membership
function is always null. Some important properties of these operations are given as follows:

Properties 1.4.1 (Properties of the intersection and the union of fuzzy sets).

Let X̃ , Ỹ and Z̃ be fuzzy sets on F(R). The operations of intersection and union between
these fuzzy sets have the following respective properties:

• Commutativity, such that µX̃∪Ỹ = µỸ∪X̃ and µX̃∩Ỹ = µỸ∩X̃ ;

• Associativity, such that µX̃∪(Ỹ∪Z̃ ) = µ(X̃∪Ỹ )∪Z̃ and µX̃∩(Ỹ∩Z̃ ) = µ(X̃∩Ỹ )∩Z̃ ;

• Distributivity, such that µX̃∪(Ỹ∩Z̃ ) = µ(X̃∪Ỹ )∩(X̃∪Z̃ ) and µX̃∩(Ỹ∪Z̃ ) = µ(X̃∩Ỹ )∪(X̃∩Z̃ );

• Idempotency, such that µX̃∪X̃ = µX̃ and µX̃∩X̃ = µX̃ ;

• Identity, such that µX̃∪∅ = µX̃ and µX̃∩∅ = µ∅.

As aforementioned, many of the properties of the theory of classical sets are still valid in the
case of fuzzy sets. However, in this latter, the completion of sets can not be assured as seen
as follows:

µX̃∪¬X̃ 6= µX̃ and µX̃∩¬X̃ 6= µ∅.

Nevertheless, in the theory of fuzzy sets, if multiple elements belong to a given set with
different degrees, then it would not be possible to clearly specify whether these elements
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belong or not to a specific subset of this set, as in the classical case. Thus, an extension of
these logical operations has been reviewed as seen in Bouchon-Meunier and Marsala (2003).
It is based on a family of mathematical functions mainly related to the intersection and union,
so-called the t-norms for the intersection operation, and the t-conorms for the reunion. These
latter are mainly used in approximate reasoning, with the aim of transforming two sets to a
single one defined in the interval [0; 1] also. They are then seen as aggregation operators.
The definitions and the traditional t-norms and t-conorms are given in the following manner:

Definition 1.4.4 (T-norms and T-conorms).

• A t-norm is a function T : [0; 1]× [0; 1]→ [0; 1] such that T is commutative, associative,
monotone, and 1 is its neutral element;

• A t-conorm is a function S : [0; 1]×[0; 1]→ [0; 1] such that S is commutative, associative,
monotone, and 0 is its neutral element.

For all values x and y belonging to the interval [0; 1], three main used forms of t-norms and
t-conorms are summarized in Table 1.1. Additional forms and properties of t-norms can be
found in Erich Peter Klement, Mesiar, and Pap (2000).

Chosen approach T-norm T-conorm

The Zadeh’s approach min(x , y ) max(x , y )

The probabilistic approach xy x + y − xy

The Lukasiewicz approach max(0, x + y − 1) min(1, x + y )

Table 1.1: Some examples of known t-norms and t-conorms.

1.5 Extension principle

The so-called "extension principle" was introduced by Zadeh (1965). It is the basis of all the
studies treating of the transition between the "crisp" classical concepts to the fuzzy ones. Its
aim is to extend the traditional mathematical operations of the classical theory, i.e. the real
space theory — as instance a given arbitrary function f : A → B defined on the space of real
values — to the fuzzy set one. The idea is to calculate the membership grade of different
elements of fuzzy sets resulting from fuzzy operations (or functions on fuzzy sets). It is done
in the following manner:
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Extension principle

Consider a function f : A 7→ B, where A and B are two collections of objects. Let X̃ be a fuzzy
element of A with its MF µX̃ : A 7→ [0; 1]. The image Ỹ = f (X̃ ) of the fuzzy element X̃ by f is a
fuzzy subset of B. Its MF µỸ is given by:

µỸ (y ) =

{
sup

{
µX̃ (x) | x ∈ A, f (x) = y

}
if ∃x : f (x) = y ,

0 if @x : f (x) = y .
(1.28)

The MF by the extension principle can analogously be written as:

µỸ (y ) =

{
supµX̃ (x) if f−1(y ) 6= ∅,
0 if f−1(y ) = ∅,

(1.29)

where f−1(y ) = {x | f (x) = y} is the pre-image of y. Note that if f is bijective, f−1 will be the
inverse function of f .

We are now able to give the extension principle of functions of two variables. The purpose
is to propose the arithmetic operations between fuzzy numbers in the next section.

Definition 1.5.1.

Consider a function f : A × B 7→ C. Let X̃1 and X̃2 be fuzzy subsets of A and B with their
respective membership functions µX̃1

and µX̃2
. The membership function of Ỹ = f (X̃1, X̃2) can

be written by:

µỸ (y ) =

{
sup min(µX̃1

(x1),µX̃2
(x2)) if f−1(y ) 6= ∅,

0 if f−1(y ) = ∅,
(1.30)

where f−1(y ) = {(x1, x2) | f (x1, x2) = y}.

The application of this previous principle can be seen in the subsequent example:

Example 1.5.1. Consider f : R × R 7→ R such that f (x1, x2) = x1 + x2. We suppose that the
membership functions of the fuzzy subsets X̃1 and X̃2 are given in Figure 1.4. We would like
to find the MF µỸ of the image Ỹ by f of (X̃1,X̃2). This has to be done by considering every
value of the definition domain R, i.e. ∀y ∈ R. We will consider only the finite number of values
marked by circles in Figure 1.4, i.e. the values x1 = 1 or x1 = 2, and x2 = 5 or x2 = 6.

For this example, let us compute the membership grade of y = 7 only. It is given by the
following:

µỸ (7) = sup min
(
µX̃1

(x1),µX̃2
(x2)

)
= max

(
min

(
µX̃1

(1),µX̃2
(6)
)
, min

(
µX̃1

(2),µX̃2
(5)
))

= max
(

min(0, 1), min(1, 0)
)

= max
(
0, 0
)

= 0.
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Figure 1.4: Example of the extension principle - Example 1.5.1

1.6 Arithmetic operations on fuzzy sets

Now we introduce the arithmeric operations defined on the space of fuzzy sets F(R), inspired
by the Minkowski addition, i.e. the natural sum between intervals. The extension principle of
Section 1.5 is used in the definition of each of them. We have to mention that the properties of
these operations (commutativity, associativity, etc.) can be easily deduced by the ones related
to the logical operations given in Properties 1.4.1.

Let X̃ and Ỹ be two fuzzy numbers with their respective membership functions µX̃ and µỸ .
The different arithmetic operations are expressed by:

Definition 1.6.1 (Sum of fuzzy numbers).

The sum of two fuzzy numbers X̃ and Ỹ , denoted by X̃ ⊕ Ỹ is the fuzzy number Z̃ such
that its membership function µZ̃ is given by:

µ(X̃⊕Ỹ )(z) = sup
M={(x ,y )|x+y=z}

min
[
µX̃ (x),µỸ (y )

]
. (1.31)

In addition, the sum of two L-R fuzzy numbers can be expressed by the α-level sets as follows:

(X̃ ⊕ Ỹ )α =
[
X̃ L
α + Ỹ L

α ; X̃ R
α + Ỹ R

α

]
, ∀α. (1.32)

The sum of two trapezoidal fuzzy numbers can be expressed in terms of the quadruples of
both fuzzy numbers as given in the following proposition:
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Proposition 1.6.1. If X̃ and Ỹ are trapezoidal fuzzy numbers and are represented respectively
by (p1, q1, r1, s1) and (p2, q2, r2, s2), then the fuzzy addition X̃⊕Ỹ is a trapezoidal fuzzy number
represented by (p1 + p2, q1 + q2, r1 + r2, s1 + s2).

The extension principle of Zadeh (see Zadeh (1965) and Zimmermann (2001)) gave a
definition of the product of two fuzzy numbers.

Definition 1.6.2 (Product of fuzzy numbers).

The product of two fuzzy numbers X̃ and Ỹ with their respective membership functions µX̃
and µỸ denoted by X̃ ⊗ Ỹ , is the fuzzy number Z̃ , such that its membership function is written
by the extension principle as:

µ(X̃⊗Ỹ )(z) = sup
M={(x ,y )|x ·y=z}

min
[
µX̃ (x),µỸ (y )

]
. (1.33)

The product can also be expressed by its α-cuts in the following manner:(
X̃ ⊗ Ỹ

)
α

=
[

min
{

X̃ L
α · Ỹ L

α , X̃ L
α · Ỹ R

α , X̃ R
α · Ỹ L

α , X̃ R
α · Ỹ R

α

}
;

max
{

X̃ L
α · Ỹ L

α , X̃ L
α · Ỹ R

α , X̃ R
α · Ỹ L

α , X̃ R
α · Ỹ R

α

}]
, ∀α. (1.34)

This calculation is seen to be a complicated task from a computational point of view. An
efficient way to reduce this complexity is to use convenient estimations, as discussed in further
chapters.

Definition 1.6.3 (Product of a fuzzy number by a scalar).

The product of a fuzzy number X̃ by a scalar c ∈ R noted as c ⊗ X̃ is the fuzzy number Z̃
with its membership function of Z̃ given by:

µ(c⊗X̃ )(z) = sup
M={x |c·x=z}

µX̃ (x) =

{
µX̃ ( z

x ) if c 6= 0
1{0}(z) if c = 0

, ∀x ∈ R. (1.35)

∀x ∈ R. The product c ⊗ X̃ is equivalent to considering the product of an interval by a scalar,
level wise. In addition, the fuzzy number Z̃ can also be written in terms of its α-cuts as follows:

(
c ⊗ X̃

)
α

=

{[
c · X̃ L

α; c · X̃ R
α

]
if c ≥ 0[

c · X̃ R
α ; c · X̃ L

α

]
if c < 0

, ∀α. (1.36)

The quotient of two fuzzy numbers is also proposed in terms of the extension principle.
This operation is given by:
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Definition 1.6.4 (Quotient of fuzzy numbers).

The quotient of two fuzzy numbers X̃ and Ỹ , is the fuzzy number Z̃ = X̃ � Ỹ such that its
MF is given by:

µ(X̃�Ỹ )(z) = sup
M={(x ,y )|x/y=z}

min
[
µX̃ (x),µỸ (y )

]
, (1.37)

with the necessary condition that 0 /∈ supp (Ỹ ). The quotient of the fuzzy numbers X̃ and Ỹ
can then be given by its α-cuts as follows:(

X̃ � Ỹ
)
α

=
[

min
{

X̃ L
α/Ỹ

L
α , X̃ L

α/Ỹ
R
α , X̃ R

α /Ỹ
L
α , X̃ R

α /Ỹ
R
α

}
;

max
{

X̃ L
α/Ỹ

L
α , X̃ L

α/Ỹ
R
α , X̃ R

α /Ỹ
L
α , X̃ R

α /Ỹ
R
α

}]
, ∀α. (1.38)

Several researches have supposed that the product between two fuzzy numbers is nothing but
the respective product between the left and right hand sides of both fuzzy numbers. However,
this operation is not always relevant. In many cases, the obtained fuzzy number could then be
considered as an approximation of the true product of the fuzzy numbers. This idea is shown
in the following remark:

Remark 1.6.1. The product of two fuzzy numbers X̃ and Ỹ can not be always written as
follows:

(X̃ ⊗ Ỹ )α =
[
X̃ L
α · Ỹ L

α ; X̃ R
α · Ỹ R

α

]
.

It is the same for the quotient.

The sum, the product and the quotient operations of fuzzy numbers are calculated in the
following simple example:

Example 1.6.1 (Sum, product and quotient of fuzzy numbers).

Let X̃ = (1, 2, 3) be a triangular fuzzy number, and Ỹ = (4, 5, 6, 8) be a trapezoidal one.
Using Definitions 1.2.1 and 1.2.2, their α-cuts are given respectively by the following:

X̃α =

{
X̃ L
α(α) = 1 + α,

X̃ R
α (α) = 3− α,

and Ỹα =

{
Ỹ L
α(α) = 4 + α,

Ỹ R
α (α) = 8− 2α.

(1.39)

The sum and product of X̃ and Ỹ , seen in Figures 1.5 and 1.6, can be expressed by:

(X̃ ⊕ Ỹ )α =
[
(1 + α) + (4 + α) ; (3− α) + (8− 2α)

]
=
[
5 + 2α ; 11− 3α

]
.

(X̃ ⊗ Ỹ )α =
[

min
{(

(1 + α) · (4 + α)
)
,
(
(1 + α) · (8− 2α)

)
,
(
(3− α) · (4 + α)

)
,(

(3− α) · (8− 2α)
)}

; max
{(

(1 + α) · (4 + α)
)
,
(
(1 + α) · (8− 2α)

)
,(

(3− α) · (4 + α)
)
,
(
(3− α) · (8− 2α)

)}]
,

=
[
(1 + α) · (4 + α) ; (3− α) · (8− 2α)

]
.
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We note that in this case (X̃ ⊗ Ỹ )α =
[
(X̃ )L

α · (Ỹ )L
α ; (X̃ )R

α · (Ỹ )R
α

]
, but this expression can not be

generalized to all possibles cases.

We could also calculate the quotient between both fuzzy numbers. It can then be written
as follows:

(X̃ � Ỹ )α =
[

min
{(

(1 + α)/(4 + α)
)
,
(
(1 + α)/(8− 2α)

)
,
(
(3− α)/(4 + α)

)
,(

(3− α)/(8− 2α)
)}

; max
{(

(1 + α)/(4 + α)
)
,
(
(1 + α)/(8− 2α)

)
,(

(3− α)/(4 + α)
)
,
(
(3− α)/(8− 2α)

)}]
,

=
[
(1 + α)/(8− 2α); (3− α)/(4 + α)

]
.

The expressions of the α-cuts of the product and the quotient of the fuzzy numbers X̃ and Ỹ
are not trapezoidal, though we cannot clearly recognize them from the Figures 1.6 and 1.7.

A counter-example of the product between fuzzy numbers can be given by calculating the
product between the following two fuzzy numbers

X̃ = (3, 4, 5, 6) and Ỹ = (−2,−1, 6, 7),

with their respective α-cuts expressed by:

X̃α =

{
X̃ L
α(α) = 3 + α,

X̃ R
α (α) = 6− α,

and Ỹα =

{
Ỹ L
α(α) = −2 + α,

Ỹ R
α (α) = 7− α.

(1.40)

The product of these fuzzy numbers expressed by their α-cuts is then given by:

(X̃ ⊗ Ỹ )α =
[

min
{(

(3 + α) · (−2 + α)
)
,
(
(3 + α) · (7− α)

)
,
(
(6− α) · (7− α)

)
,(

(6− α) · (−2 + α)
)}

; max
{(

(3 + α) · (−2 + α)
)
,
(
(3 + α) · (7− α)

)
,(

(6− α) · (7− α)
)
,
(
(6− α) · (−2 + α)

)}]
,

=
[
(6− α) · (−2 + α); (6− α) · (7− α)

]
.

However, the product between the left and right hand sides of X̃ and Ỹ is written by
[
(3 + α) ·

(−2 + α); (6− α) · (7− α)
]
. Consequently, we can clearly see that

(X̃ ⊗ Ỹ )α 6=
[
(3 + α) · (−2 + α); (6− α) · (7− α)

]
.

Definition 1.6.5 (Difference between fuzzy numbers).

The difference between two fuzzy numbers X̃ and Ỹ , denoted by Z̃ , is the fuzzy number
Z̃ = X̃ 	 Ỹ with its following membership function:

µ(X̃	Ỹ )(z) = sup
M={(x ,y )|x−y=z}

min
[
µX̃ (x),µỸ (y )

]
. (1.41)
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Figure 1.5: Sum of the fuzzy numbers X̃ and Ỹ - Example 1.6.1.
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Figure 1.7: Quotient of the fuzzy numbers X̃ and Ỹ - Example 1.6.1.

The space of fuzzy sets has not a linear but semi-linear structure. This is due to the lack of
symmetrical elements. In other terms, the equation

X̃ 	 X̃ = 0̃

does not hold. Thus, a well defined difference between fuzzy numbers in F(R) such that

X̃ ⊕ (Ỹ 	 X̃ ) = Ỹ , ∀X̃ , Ỹ ∈ F(R),

can not be stated level-wise. One way to overcome this disadvantage is by using suitable
metrics on F(R). These metrics will be discussed in details in the subsequent chapters.

One could briefly define the minimum and maximum operations of two fuzzy numbers
using the extension principle seen in Definition 1.5.1. The definitions are written as follows:

Definition 1.6.6 (Minimum and maximum between fuzzy numbers).

The minimum and maximum between two fuzzy numbers X̃ and Ỹ , denoted respectively
by Z̃1 and Z̃2, are the fuzzy numbers Z̃1 = min(X̃ , Ỹ ) and Z̃2 = max(X̃ , Ỹ ) with their respective
membership functions:

µ(min(X̃ ,Ỹ ))(z1) = sup
M={(x ,y )|min(x ,y )=z1}

min
[
µX̃ (x),µỸ (y )

]
, (1.42)

µ(max(X̃ ,Ỹ ))(z2) = sup
M={(x ,y )|max(x ,y )=z2}

min
[
µX̃ (x),µỸ (y )

]
, (1.43)

and their corresponding α-cuts (Z̃1)α and (Z̃2)α given respectively by:

(Z̃1)α =
[

min(X̃ L
α, Ỹ L

α); min(X̃ R
α , Ỹ R

α )
]
, (1.44)

(Z̃2)α =
[

max(X̃ L
α, Ỹ L

α); max(X̃ R
α , Ỹ R

α )
]
. (1.45)
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To sum up, the fuzzy numbers are not only the basis of the theory of fuzzy sets, but also
essential for modelling uncertainty contained in the human perception. However, identifying a
fuzzy number is often considered as a complex task. For this reason, researchers defined two
ways for it: by the vertical (the x-axis) and the horizontal view (the y -axis). Characterizing the
fuzzy number by its MF is said to be the vertical view. Analogously, by the horizontal view, we
mean the association of the fuzzy number to its α-level sets.



Chapter 2

Fuzzy rule-based systems

Different methods of processing fuzzy information exist. We note, as instance, the Sugeno
method (Takagi and Sugeno (1985)) which allows to simplify the calculations based on an
aggregation of the informations, in the purpose of obtaining an interpretable solution. This
method is often used in real time applications where the problem of computational time arises.
Another regularly used one is the Mamdani approach shown in Mamdani and Assilian (1975).
This one will be developed in this chapter. The Mamdani fuzzy process, also called the Mam-
dani fuzzy inference system or the fuzzy logic system (FLS), consists on three main steps:
fuzzification, IF-THEN rules, and defuzzification. The architecture of a given FLS composed
by these three components is given in Figure 2.2, as well as, by the following algorithm pro-
vided for such system:

Algorithm:

1. Convert uncertain data to fuzzy values by defining the membership functions
of each linguistic. FUZZIFICATION

2. Evaluate the fuzzy rules for the proposed inputs, and combine them into a fuzzy
set. INFERENCE RULES

3. Convert the resulting fuzzy set to a crisp value, by a convenient operator. DE-
FUZZIFICATION

The traffic scenario. To illustrate this chapter, we will be interested in the following sim-
ple scenario: understanding the situation of the traffic on a chosen highway at a given time
of the day. For this purpose, the idea is to ask a number of drivers from different spots of
the highway about several aspects of the driving journey. Our aim is to have informations
about the expected delay on a meeting that can be caused by the traffic jam. We suppose
that this information can be explained by the two variables "approximate waiting time on a
traffic light" and "estimated number of surrounding vehicles at the traffic light

31
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Input variables

Modelling by convenient member-
ship functions Fuzzification

Combination of inference rules
IF-THEN

rules

Transformation of the inferred sets
by a chosen operator Defuzzification

Output data

Figure 2.1: The fuzzy process
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stop". For these variables, the drivers could answer by an approximate value, which can also
be given by a so-called linguistic. For example, the possible linguistics for the approximate
waiting time on a traffic light are: very low, low, moderate, high and very high. The
different linguistics of the input and output variables are given in Table 2.1. Regarding the
answers of the group of chosen drivers, the perception of each one of them about the traffic
conditions could be in many cases severly different. This could be due to many variants, such
as personal, cultural etc. Thus, waiting for approximately 5 min at a traffic light could eventu-
ally be long for a driver, and moderate for another one. Therefore, these variables are seen to
be uncertain, and will be processed by fuzzy rule-based systems through all the chapter.

Input variables Output variable

Waiting time on Estimated number Expected delay

a traffic light of vehicles for a meeting

Very low

Low Low traffic Low delay

Moderate Moderate traffic Moderate delay

High High traffic High delay

Very High

Table 2.1: Possible linguistics of the input and output variables for the traffic scenario.

2.1 Fuzzification

The fuzzification is the operation of transforming the input data into a fuzzy one using member-
ship functions, often called the fuzzifiers: uncertain informations are gathered and converted
to fuzzy sets by choosing a particular type of membership functions quantifying the linguistic
terms. This choice of functions is often context-dependent, and can differ from user to another.
We remind that the strength of this procedure is to get for every numerical real value, multiple
membership grades related to the linguistic, as such a given value belongs to multiple sets at
the same time.

Example 2.1.1 (Traffic situation - the fuzzification).

We will first fuzzify the variable approximate waiting time on a traffic light. For the
information about the time spent on a traffic light, we suppose that the possible linguistics are:
very low, low, moderate, high and very high. They are shown in Table 2.2. In this case, we
chose trapezoidal fuzzy numbers to model the uncertainty contained in the linguistics.

If the variable the waiting time on a traffic light has a range of 0 to 4.5 minutes,
the fuzzification step consists on associating a membership grade to each proposed linguistic,



34 Chapter 2. Fuzzy rule-based systems

Linguistic Corresponding fuzzy number

Very low (0,0,0.5,1)

Low (0.5,1,1.5,2)

Moderate (1.5,2,2.5,3)

High (2.5,3,3.5,4)

Very high (3.5,4,4,4)

Table 2.2: Linguistics of the variable the waiting time on each traffic light and their corre-
sponding membership functions - Example 2.1.1.

and consequently convert the uncertain initial data set to a fuzzy one with its characterizing
membership levels.

For instance, consider a person asserting that he waited approximately 2 minutes at each
traffic light. Then, according to Table 2.2 and Figure 2.2, we have that:

µVery low(2) = 0, µLow(2) = 0, µModerate(2) = 1, µHigh(2) = 0, µVery high(2) = 0.

In this case, one could say that by fuzzification of the uncertain data, i.e. getting the cor-
responding membership grades related to each linguistic term, the answer "approximately 2
minutes" is considered to be at 100% moderate since the membership grade at this linguistic
is the maximum, i.e 1, and 0% very low, low, high and very high.

2.2 Inference rules

This step of the process is also called "IF-THEN rules". It is named as such since it is based
on the so-called fuzzy rule. In order to make the inference reliable, this step aims to define
potential realistic rules according to the expert knowledge. The inference rules step is seen to
be the most difficult one, because it depends on a subjective set of rules based on fuzzy logi-
cal operations. Thus, the choice of rules is not innocent, and can vary between contexts and
users. From another side, once the membership functions and the rules are exposed, the next
move is to combine and evaluate these rules, specifically in the case of multiple input variables.

Definition 2.2.1 (Fuzzy rule).

A fuzzy rule is a statement of the form:

IF X is a THEN Y is b,

where X and Y are variables, and a and b are given linguistic terms determined by the vari-
ables X and Y .
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Figure 2.2: Membership functions of the variable waiting time at a traffic light.

This definition of the fuzzy rule can be illustrated by the following two simple examples about
the traffic situation:

Example 2.2.1 (Traffic situation).

We are interested in the expected delay for a meeting that can be caused by the traffic
jam at a given schedule. Consider the statement the waiting time on a traffic light
is "very high". The linguistic variable the expected delay for a meeting has the linguistic
"high". An example of a fuzzy rule is:

IF the waiting time on a traffic light is "very high", THEN the expected delay for a
meeting is "high".

Example 2.2.2 (Traffic situation - IF-THEN rules).

We consider now the variables waiting time on a traffic light and estimated number
of surrounding vehicles at the traffic light stop, previously introduced. Drivers are
then asked to give the time spent at a traffic light and the approximate number of vehicles
surrounding in the traffic jam. This latter is considered to be uncertain as well as the first one
and will be modelled by the membership functions shown in Table 2.3.

Many inference rules exist for every process. The construction of these rules is based on
two components: the logical operation chosen for the aggregation — OR or AND —, and on
considering every combination of possibilities between the studied variables and the related
output variable. For this example, the union denoted by the operator OR is used. For sake
of simplification of the example, the different possibilities of rules are reduced to the following
three inference rules:
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Linguistic Corresponding fuzzy number

Low (0,0,3,6)

Moderate (3,5,8,10)

High (8,10,15,15)

Table 2.3: Linguistics of the variable estimated number of surrounding vehicles at the traffic
light stop and their corresponding membership functions - Example 2.2.2.
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Figure 2.3: Membership functions of the variable estimated number of surrounding vehicles at
the traffic light stop.

• Rule 1: IF the waiting time on a traffic light is "very low" OR the estimated
number of surrounding vehicles at the traffic light stop is "low", THEN the ex-
pected delay on a meeting is "low".

• Rule 2: IF the waiting time on a traffic light is "moderate" OR the estimated
number of surrounding vehicles at the traffic light stop is "moderate", THEN
the expected delay on a meeting is "moderate".

• Rule 3: IF the waiting time on a traffic light is "very high" OR the estimated
number of surrounding vehicles at the traffic light stop is "high", THEN the
expected delay on a meeting is "high".

For every observation, the idea is to evaluate the aforementioned rules and find the cor-
responding membership grades for the associated linguistics. As instance, a given driver
answered that he waited approximately 2 minutes at a traffic light, and he saw 5 vehicles sur-
rounding his one at a traffic light stop. For the variable waiting time at a traffic light,
the grades of membership at the value approximately x = 2 are given in Example 2.1.1. In ad-
dition, for the variable estimated number of surrounding vehicles at the traffic light
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stop, the membership grades for approximately y = 5 are seen in Figure 2.3. They are given
as follows:

µLow(5) = 0.334, µModerate(5) = 1, µHigh(5) = 0.

The next step is to evaluate the proposed inference rules using these membership grades.
The logical operator used is the inclusive OR, defined as the maximum. Thus, we get that:

• For Rule 1, max(µX=very low(2),µY =low(5)) = max(0, 0.334) = 0.334.

• For Rule 2, max(µX=moderate(2),µY =moderate(5)) = max(1, 1) = 1.

• For Rule 3, max(µX=very high(2),µY =high(5)) = max(0, 0) = 0.

The resulting combined fuzzy set is shown in Figure 2.5. It is represented by the curve com-
posed by the three levels of membership due to the combination of the three pre-defined
inference rules.

2.3 Defuzzification

The defuzzification is the process of converting a fuzzy set to a crisp value. It is widely seen
as a way provoking a loss of information. For this reason, this method has attracted less re-
searchers than the first two stages of the fuzzy process. Indeed, fuzzy data contains much
more information than crisp data. However, fuzzy entities are not always interpretable. There-
fore, a defuzzification is suggested. This can be done by a convenient operator. Furthermore,
according to Leekwijck and Kerre (1999), different criteria should be respected, as such a
defuzzification should verify the following:

• it should contain the kernel of the considered fuzzy set;

• it should preserve the natural ordering in F(R);

• it should be coherent with affine transformations, etc.

From another side, two types of defuzzification exist: a defuzzification to a point and a
defuzzification to a set. We will only consider the defuzzification to a point. A corresponding
operator D is of the form:

D : F(R) 7→ R.

It maps fuzzy sets on F(R) into elements of the space R. Multiple operators were used in
literature (see Leekwijck and Kerre (1999), Runkler (1997) and Ronald R. Yager (1996)). We
give below a brief description of few of them:
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Expected delay for a meeting due to traffic conditions
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Figure 2.4: Membership functions of the output variable expected delay for a meeting caused by
traffic conditions.
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Figure 2.5: Membership functions of the resulting combined fuzzy set.
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• the centroid method: this method is based on the center of gravity of the fuzzy set. For
a continuous membership function, the defuzzified value Xcentroid by the centroid method
applied on a fuzzy set X̃ is given by:

Xcentroid =

∫
supp(X̃ ) x · µX̃ (x)dx∫

supp(X̃ ) µX̃ (x)dx
, (2.1)

where µX̃ (x) is the membership function of X̃ , and supp (X̃ ) is its support set.

Note that for a membership function, the integral is replaced by a sum. Thus, the Equa-
tion 2.1 can be expressed as:

Xcentroid =
∑j

i=1 X i
centroid · ASi∑j
i=1 ASi

, (2.2)

where the total surface under the membership function of X̃ is decomposed into j sub-
surfaces Si , i = 1, ... , j , with ASi the area of each sub-surface Si and X i

centroid the centroid
point of ASi .

• the bisector method: the bisector operator consists on finding the position under the
membership function of X̃ , such that the areas on the left and right hand sides at this po-
sition are equal. In other terms, the defuzzified value Xbisector should verify the following
equation: ∫ Xbisector

β1

µX̃ (x)dx =
∫ β2

Xbisector

µX̃ (x)dx , (2.3)

with β1 = min supp (X̃ ) and β2 = max supp (X̃ ). Similarly to Equation 2.2, one can re-
write the previous equation for the case of a discrete membership function.

• the maxima methods: they are composed by the smallest of maximum (SOM), the
largest of maximum (LOM), and the mean of maximum (MOM) methods. The op-
erations by the maxima methods are based on the maximum membership grades. For
instance, the smallest and largest of maximum are determined respectively by the small-
est and largest values of the definition domain associated to the maximum membership
grade.

When more than one element attain the maximum membership grade, we define the
so-called mean of maximum. It is expressed by the mean of the values associated to
the maximum membership, as follows:

XMOM =

∑
x∈ core (X̃ ) x

| core (X̃ ) |
, (2.4)

where core (X̃ ) is the kernel set of X̃ , and | core (X̃ ) | is its cardinality.

Defuzzifying a vector of fuzzified observations leads to a real-valued vector of crisp data,
ready to be dealing with similarly to any other vector of observations in the classical real space
theory. Therefore, the application of one or another of these operators can probably influence
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the obtained crisp distributions. Choosing carefully between the operators is recommended.
However and in this same perspective, some distances present promising properties specif-
ically when used in the process of defuzzification. Such metrics will be discussed in further
chapters.

Example 2.3.1 (Traffic situation - the defuzzification).

We would like now to defuzzify the fuzzy set obtained by the combination of the fuzzy rules
for the observation described in Example 2.2.2. For this purpose, we apply the operators
discussed above. For our case, the defuzzified values are as follows:

• By the centroid operator: we decompose the total surface into 5 sub-surfaces S1, S2,
S3, S4 and S5, as seen in Figure 2.6. According to Equation 2.2 and to the calculations
exposed in Table 2.4, we have that

Xcentroid =
∑5

i=1 X i
centroid · ASi∑5
i=1 ASi

=
75.0557
8.8334

= 8.4968.

• By the bisector operator: solving Equation 2.3 for our case gives

Xbisector = 9.5.

• By the SOM operator: the defuzzified value by the SOM can be defined as the minimum
of the core set of the combined fuzzy set, i.e.

XSOM = 8.

• By the LOM operator: the one by the LOM is seen as the maximum value of the core
set, i.e.

XLOM = 12.

• By the MOM operator: according to Equation 2.4, the defuzzified value by the MOM for
this case can be written as:

XMOM =
XSOM + XLOM

2
=

8 + 12
2

= 10.

The defuzzified values found are seen in Figure 2.6. A remark is that by the proposed
defuzzification operators, the obtained results are different. Therefore, a general conclusion
can be made: the choice of an operator is prominent, investigating the properties of each one
and/or proposing another efficient tool for defuzzifying could be of good use.



Surface (Si ) Area (ASi ) Centroid (X i
centroid ) Area × Centroid

S1 5× 1
3 = 1.6667 0+5

2 = 2.5 1.6667× 2.5 = 4.1668

S2
1
2 (1× 1

3 ) = 0.1667 5+5+6
3 = 5.334 0.1667× 5.334 = 0.8889

S3
1
2 (3× 1) = 1.5 5+8+8

3 = 7 1.5× 7 = 10.5

S4 4× 1 = 4 8+12
2 = 10 4× 10 = 40

S5
1
2 (3× 1) = 1.5 12+12+15

3 = 13 1.5× 13 = 19.5

Sum 8.8334 75.0557

Table 2.4: Calculations used in the defuzzification by the centroid - Example 2.2.2.
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Figure 2.6: Decomposition of the membership surface in the process of defuzzification by the centroid.





Chapter 3

Distances between fuzzy sets

Calculating the difference between fuzzy numbers is often seen as a complicated operation,
mainly because of the semi-linear nature of F(R). In addition, in the space of fuzzy numbers
a universally acceptable method of total ordering does not yet exist. An efficient solution for
these problems is to consider a suitable metric. The proposed metrics are distances defined
on the space of fuzzy sets. On the other hand, some of these distances have served as
defuzzification operators and/or ranking operators. Properties of such metrics are appealing
to investigate. In this chapter, we give a chronological review of some known distances (see
Figure 3.1) and some of their properties. We finally expose a new L2 metric based on the so-
called signed distance, paving the way to the construction of an updated version of it. This new
version called the "generalized signed distance", preserves the directionality of the original
signed distance. We finally highlight that we will consider the case of a one dimensional
setting only, in other words, a given fuzzy component X̃ is associated to a single dimension x
with the corresponding α-level set.
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Figure 3.1: Chronological review of distances of fuzzy quantities.
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From decades, the Hausdorff distance has been one of the most used distances as a
basis for the development of metrics in the fuzzy environment. We express this distance in an
informative perspective only.

Consider the space Kc(Rn) of non-empty compact and convex subsets of Rn. In the interval-
valued context, this distance defined over Rn was briefly described in Puri and Ralescu (1985)
as follows:

Definition 3.0.1 (Hausdorff distance).

The Hausdorff distance between X and Y ∈ Kc(Rn) denoted by δH (X , Y ) is given by:

δH (X , Y ) = max
[

sup
x∈X

{
inf

y∈Y
‖x − y‖

}
, sup

y∈Y

{
inf

x∈X
‖x − y‖

}]
. (3.1)

where ‖·‖ is the Euclidean norm.

Accordingly, the metric δH induces the metric space (Kc(Rn), δH ). One can say that by the
Hausdorff distance, two sets are close to each other if every element of either set is close to
an element of the other set.

In a fuzzy context, the Hausdorff metric has been extended by defining a distance between
two fuzzy sets X̃ and Ỹ ∈ F?c(Rn). This distance denoted by δ∞(X̃ , Ỹ ), is the supremum of all
the Hausdorff distances applied between corresponding level sets of both fuzzy numbers as
follows:

δ∞(X̃ , Ỹ ) = sup
α>0

δH (X̃α, Ỹα). (3.2)

The metric space (F?c(Rn), δ∞) of normal convex fuzzy sets over Rn is often involved in ap-
plications of fuzzy theory. We note for example, Kaleva (1987) who used it in fuzzy differential
equations, and Puri and Ralescu (1985) in fuzzy random variables, etc. However, the Haus-
dorff distance has said to be having handicaps when used in the fuzzy environment. Indeed,
it is seen as not very realistic because it disadvantages fuzzy sets compared to interval ones.
Another drawback of this distance is that the space (F?c(Rn), δ∞) fails to be separable (Erich P.
Klement et al. (1986)). Consequently, the topology related to the Hausdorff metric failed to be
extended in the fuzzy context. Introducing other suitable metrics defined on F?c(Rn) has been
a necessity. Researchers tended to develop this distance or to propose new ones in order to
better fit into the fuzzy context.

Many references have discussed of fuzzy metric spaces. For instance, Ivan Kramosil
(1975) introduced a fuzzy metric space. Years later, George and Veeramani (1994) updated
this concept and gave a Hausdorff topology of a fuzzy metric space. Remark that we will
consider the case of a metric of fuzzy quantities rather than of a fuzzy metric which is directly
related to the definition of a metric in the classical theory, but with a particular extension to the
fuzzy environment.

In this thesis, the proposed distances are mainly defined on the real space, in a one di-
mensional setting. For this purpose, we give a definition of a metric of fuzzy sets with its image
as a real crisp value.
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Definition 3.0.2 (Metric of fuzzy quantities).

Let X̃ , Ỹ and Z̃ be fuzzy sets of the class F?c(R) of normal bounded fuzzy sets. Consider a
mapping d on F?c(R)2 such that d : F?c(R)× F?c(R) 7→ R+. The function d is said to be a metric
of fuzzy quantities, and the space (F?c(R), d) a metric space, if the following holds:

• d(X̃ , X̃ ) = 0 (reflexive),

• d(X̃ , Ỹ ) ≥ 0 (non-negative),

• d(X̃ , Ỹ ) = 0⇔ X̃ = Ỹ (non-degenerate),

• d(X̃ , Ỹ ) = d(Ỹ , X̃ ) (symmetric),

• d(X̃ , Z̃ ) ≤ d(X̃ , Ỹ ) + d(Ỹ , Z̃ ) (triangular inequality).

3.1 The ρ1 and ρ2 distances

Diamond and Kloeden (1990) introduced two families of metrics defined on F?c(R)2, the first one
denoted by dp and the second one by ρp. The purpose of the metric dp is to propose a metric
based on the extension of the Hausdorff distance given in Equations 3.1 and 3.2. This class
includes the metrics corresponding to p = 1 and p = ∞, denoted by d1 and d∞. In the same
perspective, the second class of metrics designated by ρp is based on the family of Lp metrics
defined for the so-called support functions characterizing a convex compact set. Accordingly,
the spaces (F?c(R), dp) and (F?c(R), ρp) are metric spaces ∀p ≤ ∞. One of the main findings of
this article is that ∀p ≤ ∞, the metric spaces (F?c(R), dp) are separable, complete and locally
compact. In addition, for a given value of p, these spaces are topologically equivalent to
(F?c(R), ρp).

Moreover, Diamond and Kloeden (1990) emphasized the importance of the ρp class of
metrics for the reason that it includes the case for which p = 2, i.e. the distance ρ2, inspired
by the Euclidean metric. They asserted that this "L2 case induces additive variance". As a
consequence, in this section, we are mainly interested in ρp class of metrics, and specifically
in the cases p = 1 and p = 2, i.e. ρ1 and ρ2. The definition is given by:

Definition 3.1.1 (The ρ1 and ρ2 distances).

Consider two fuzzy numbers X̃ and Ỹ of the class of non-empty compact bounded fuzzy
sets, with their respective α-cuts X̃α = [X̃ L

α, X̃ R
α ] and Ỹα = [Ỹ L

α , Ỹ R
α ]. The distances ρ1 and ρ2

between X̃ and Ỹ can be written in terms of their left and right α-cuts by:

ρ1(X̃ , Ỹ ) =
1
2

∫ 1

0

∣∣X̃ L
α − Ỹ L

α

∣∣dα +
1
2

∫ 1

0

∣∣X̃ R
α − Ỹ R

α

∣∣dα, (3.3)

ρ2(X̃ , Ỹ ) =

√
1
2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)2dα +
1
2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)2dα. (3.4)
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3.2 The Bertoluzza distance

Bertoluzza, Corral, and Salas (1995) asserted that the Hausdorff-based metric and the ones
by Diamond and Kloeden (1990) present serious drawbacks. The authors saw that the dis-
tance between fuzzy numbers are "disadvantaged" compared to the distance between crisp
numbers. In fact, these metrics take into consideration the distance between the extreme
points of the support sets of the studied fuzzy numbers only. This calculation is not recom-
mendable in fuzzy set theory, distances between different intermediate levels is more con-
venient. Moreover, the authors assigned the problem of the Diamond and Kloeden (1990)
metrics to the fact that these latter are implicitely conceived in a way to have intervals cen-
tered on the same value. We could eventually face the case where the intervals would be left
or right shifted. A more realistic distance should then be considered.

The aim of Bertoluzza, Corral, and Salas (1995) is to introduce a metric based on the
distance between every convex combination of the infinum and the supremum values cor-
responding to every α-level. They proposed a versatile class of distances between fuzzy
numbers regarded as a weighted mean of the distances between their α-cuts. According
to the authors, following this procedure, they managed to remove the aforementioned disad-
vandages. Therefore, the strength of this L2 metric is that it considers every inner point of
the interval defining the α-cuts of a given fuzzy number, and obviously not only the extreme
points. In addition, it is nowadays well adapted in the development of statistical methods with
fuzzy numbers due to its operational flexibility.

In order to construct their generalized metric, the authors suggested a parametrization of
the studied intervals. This transformation was described later on by Dubois and Prade (2008)
as the so-called gradual numbers, defined by:

Definition 3.2.1 (Gradual number).

Consider a fuzzy number X̃ with its respective left and right α-cuts X̃ L
α and X̃ R

α . A gradual
number is of the form (α, X̃ [λ]

α ), where X̃ [λ]
α is a linear mapping, function of λ ∈ [0; 1] such that

X̃ [λ]
α = λX̃ R

α + (1− λ)X̃ L
α. (3.5)

Furthermore, the authors proposed to consider two normal weighting measures γ and φ
on the measurable space ([0; 1],B[0;1]). These weights are measuring entities. Thus, they will
be used for the integration process only. We note that they do not necessarily have distribution
laws in the pure probability sense. They are introduced for a weighting purpose only. These
weights are defined as follows:

• The weight γ(λ) is supposed to be a probability function related to a non-degenerate
distribution of λ. This weight intends to express a preference for a given hand side (left
or right) of a fuzzy number. For example, if our preference for both sides is the same,
the distribution given by γ is symmetric such that γ(λ) = γ(1− λ), ∀λ ∈ [0; 1].
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• The weight φ(α) is a probability density function which expresses the influence of each
level of a given fuzzy entity. This weight takes into account the degree of fuzziness. It
is associated to a stricly increasing and absolutely continuous distribution function. The
Lebesgue measurable function is often used for φ(α).

The Bertoluzza distance can now on be expressed. It is given by the following definition:

Definition 3.2.2 (The Bertoluzza distance).

Let X̃ and Ỹ be two fuzzy sets of F?c(R) with their corresponding left and right α-cuts. The
Bertoluzza L2-type distance between X̃ and Ỹ can be expressed by

dBertoluzza(X̃ , Ỹ ) =

√∫ 1

0

∫ 1

0

(
X̃ [λ]
α − Ỹ [λ]

α

)2dγ(λ)dφ(α), (3.6)

where (α, X̃ [λ]
α ) and (α, Ỹ [λ]

α ) are gradual numbers.

3.3 The δ?p,q and ρ?p distances

In the same way, Grzegorzewski (1998a) generalized the cases of L2 families of distances and
proposed two classes δ?p,q and ρ?p of distances of type Lp with the corresponding metric spaces
(F?c(R), δ?p,q) and (F?c(R), ρ?p). The author proposed a mean of ordering fuzzy numbers in deci-
sion making procedures based on these two metrics, and consequently used those metrics in
hypothesis testing.

These distances are parametrized basically by a parameter p. The distance δ?p,q has two
parameters p and q for which 1 ≤ p ≤ ∞ and 0 ≤ q ≤ 1. Philosophically, the interpretation of
the parameter q of δ?p,q corresponds to the sense of λ of the previous section. For instance, if
one gives higher weight for the left hand side of a given fuzzy number, the parameter q would
be between 0 and 1

2 . For the case of the preference of the right hand side, q would then be
between 1

2 and 1. Consequently, if no preferences are depicted, the parameter q is of value
1
2 , i.e. δ?

p, 1
2
. We add that whenever q = 1

2 , both classes δ?
p, 1

2
and ρ?p are equally recommended.

Definition 3.3.1 (The δ?p,q distance).

Let X̃ and Ỹ be two fuzzy numbers of F?c(R). Consider the two parameters p and q such
that 1 ≤ p ≤ ∞ and 0 ≤ q ≤ 1. The δ?p,q distance between X̃ and Ỹ is written by

δ?p,q(X̃ , Ỹ ) =


p
√

(1− q)
∫ 1

0

∣∣Ỹ L
α − X̃ L

α

∣∣pdα + q
∫ 1

0

∣∣Ỹ R
α − X̃ R

α

∣∣pdα, if 1 ≤ p <∞,(
1− q

)
sup

0<α≤1

(∣∣Ỹ L
α − X̃ L

α

∣∣) + q sup
0<α≤1

(∣∣Ỹ R
α − X̃ R

α

∣∣), for p =∞,
(3.7)

where X̃α = [X̃ L
α, X̃ R

α ] and Ỹα = [Ỹ L
α , Ỹ R

α ] are the α-cuts of X̃ and Ỹ .
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On the relation between δ?p,q from one side, and ρ1 and ρ2 from another one, the following
remark is interesting to mention.

Remark 3.3.1. If q = 1
2 , when p = 1 and p = 2, the distance δ?p,q is respectively equivalent to

the ρ1 and ρ2 metrics described in Section 3.1.

Definition 3.3.2 (The ρ?p distance).

Consider again the two fuzzy numbers X̃ and Ỹ of the class of all fuzzy numbers, with their
respective α-cuts and 1 ≤ p ≤ ∞. The distance ρp can be expressed by:

ρ?p(X̃ , Ỹ ) =


max

{
p
√∫ 1

0

∣∣Ỹ L
α − X̃ L

α

∣∣pdα, p
√∫ 1

0

∣∣Ỹ R
α − X̃ R

α

∣∣pdα
}

, if 1 ≤ p <∞,

max
{

sup
0<α≤1

(∣∣Ỹ L
α − X̃ L

α

∣∣), sup
0<α≤1

(∣∣Ỹ R
α − X̃ R

α

∣∣)}. for p =∞.
(3.8)

3.4 The "mid/spr" distance

Trutschnig, Gonzalez-Rodriguez, et al. (2009) recalled an extension of the Bertoluzza, Corral,
and Salas (1995) metric. Their distance is based on the center location or the middle position
of a fuzzy number denoted by "mid", and on its spread, also called the radius and denoted by
"spr". The authors asserted that their metric is a generalization of the previously mentioned
ones (δ∞, ρ2, dBertoluzza), but in terms of generalized mids and spreads. Thus, their metric is
defined in a multidimensional space. In addition, it possesses good mathematical and intuitive
properties, and can be easily calculated and interpreted. Their metric is of class L2, and could
be very promising in the statistical context. For our situation, we will be mainly interested in
the one dimensional setting, with a Lebesgue measured weight. We define first the mid and
spread of a given fuzzy number in order to be able to propose the "mid/spr" distance later on.

Definition 3.4.1 (Center and radius of a fuzzy number).

The center "mid" and radius "spr" of a fuzzy number X̃ ∈ F?c(R) are respectively given by:

midX̃ =
1
2

(X̃ L
α + X̃ R

α ), (3.9)

sprX̃ =
1
2

(X̃ R
α − X̃ L

α). (3.10)

Definition 3.4.2 (The "mid/spr" distance).

The "mid/spr" distance between two fuzzy numbers X̃ and Ỹ of F?c(R) is written by:

dmid/spr (X̃ , Ỹ ) =

√∫ 1

0

(
midX̃ −midỸ

)2dφ(α) + θt

∫ 1

0

(
sprX̃ − sprỸ

)2dφ(α), (3.11)

with the two weighting parameters φ and θt , where φ is a function of α, and θt is a function of
a weighting measure W (t), such that

θt =
∫ 1

0
(2t − 1)2dW (t). (3.12)
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Interesting remarks related to the connection of the mid/spr metric to the Bertoluzza one are
given in the following manner:

Remarks 3.4.1.

1. If θt is a Lebesgue measure, then we have that dW (t) = dt and θt will be of value 1
3 .

2. Note that the weights θt and φ(α) coincides respectively with the meanings of the Bertoluzza
weights γ(λ) and φ(α) of Section 3.2.

3. In a one dimensional setting, the mid/spr metric is equivalent to the Bertoluzza distance,
see Trutschnig, Gonzalez-Rodriguez, et al. (2009).

Consequently, since we are considering a one dimensional setting only, the calculation of
the Bertoluzza distance will be used for an informative perspective only. We will rather use the
mid/spr distance in further calculations.

3.5 The "φ-wabl/ldev/rdev" distance

Based on the Bertoluzza, Corral, and Salas (1995) and Trutschnig, Gonzalez-Rodriguez, et al.
(2009) metrics, Sinova, Gil, Lopez, et al. (2014) introduced a new family of L2 metrics denoted
by "φ-wabl/ldev/rdev". This name is due to the fact that it features the "deviations in the shape"
of the fuzzy numbers level-wise given by "ldev" and "rdev", and the measure of the central
location given by "wabl". By their family of metrics, Sinova, Gil, Lopez, et al. (2014) insured
the necessary and sufficient characterizing properties of the corresponding fuzzy numbers.

First of all, based on the Definition 3.4.1 of the mid, we define the different entities "wabl",
"ldev" and "rdev" related to a given fuzzy number. They are written as follows:

Definition 3.5.1. Let X̃ be a fuzzy number of the class of bounded fuzzy numbers F?c(R) with
its α-level set X̃α. Consider φ an absolutely continuous probability function on ([0; 1],B[0;1]).
The measure of central location "wabl" of X̃ can be written as:

wablφ(X̃ ) =
∫ 1

0
mid X̃αdφ(α). (3.13)

In the same way, the left and right deviations in the shape associated to the weight φ and
functions of the level α, are denoted by "ldevφ" and "rdevφ". They are given by:

ldevφX̃ (α) = wablφ(X̃ )− X̃ L
α(α), (3.14)

rdevφX̃ (α) = X̃ R
α (α)− wablφ(X̃ ). (3.15)
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One can remark that the α-cuts of a given fuzzy number X̃ can be written in terms of the
previous measures by:

X̃α =
[
wablφ(X̃ )− ldevφX̃ (α), wablφ(X̃ ) + rdevφX̃ (α)

]
.

We are now able to give the φ-wabl/ldev/rdev metric expressed in the following manner:

Definition 3.5.2 (The "φ-wabl/ldev/rdev" distance).

Consider two fuzzy numbers X̃ and Ỹ of F?c(R), a parameter θt such that 0 ≤ θt ≤ 1 as
given in Equation 3.12 and the weighting factor φ(α) on the measurable space ([0; 1],B[0;1]).
The φ-wabl/ldev/rdev distance is the following application

dφ−wabl/ldev/rdev : F?c(R)× F?c(R) → R+

X̃ × Ỹ 7→ dφ−wabl/ldev/rdev (X̃ , Ỹ ),

such that

dφ−wabl/ldev/rdev (X̃ , Ỹ ) =
[(

wablφ(X̃ )− wablφ(Ỹ )
)2

+ θt

∫ 1

0

(1
2
(
ldevφX̃ − ldevφỸ

)2 +
1
2
(
rdevφX̃ − rdevφỸ

)2
)

dφ(α)
] 1

2 . (3.16)

Note that the space (F?c(R), dφ−wabl/ldev/rdev ) is metric, and the L2 distance dφ−wabl/ldev/rdev
is translation and scale invariant. The proof of these properties can be found in Sinova, Gil,
Lopez, et al. (2014).

3.6 The signed distance

The signed distance in its current form was first described by Yao and K. Wu (2000) in the
context of ranking fuzzy numbers. It has been introduced few years before by Dubois and
Prade (1987) as an expected value of a particular fuzzy number. This distance has been used
extensively in different contexts, such as evaluations of linguistic questionnaires or hypotheses
testing and others. It has been known for its simplicity and most of all for its directional property.
Thus, one could expect to get a negative distance between two fuzzy numbers. This fact
made the SGD an appealing one to investigate. As instance, it is seen as an efficient tool in
fuzzy ranking approaches (see Abbasbandy and Asady (2006)). In addition, this distance is
affordable in terms of computations.

The SGD can be defined in the following way:

Definition 3.6.1 (Signed distance of a real value).

The signed distance measured from the origin d0(a, 0) for a ∈ R is a itself, i.e. d0(a, 0) = a.
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Definition 3.6.2 (Signed distance between two real values).

The signed distance between a and b ∈ R is d(a, b) = a− b.

Consider now X̃ and Ỹ two fuzzy sets of the class of fuzzy sets F(R), with their respective
α-cuts X̃α and Ỹα. We remind that the left and right α-cuts of X̃ and Ỹ , denoted respectively
by X̃ L

α, X̃ R
α , Ỹ L

α and Ỹ R
α are integrable for all α ∈ [0; 1]. The signed distance between the fuzzy

numbers X̃ and Ỹ is defined as:

Definition 3.6.3 (Signed distance between two fuzzy sets).

The signed distance between X̃ and Ỹ denoted by dSGD is the mapping

dSGD : F?c(R)× F?c(R) → R
X̃ × Ỹ 7→ dSGD(X̃ , Ỹ ),

such that

dSGD(X̃ , Ỹ ) =
1
2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)− Ỹ L
α(α)− Ỹ R

α (α)
]
dα. (3.17)

It is useful to mention some important properties of the SGD in order to be used in further
sections. They are given by:

Properties 3.6.1.

• The signed distance dSGD: F?c(R)× F?c(R)→ R is continuous and differentiable.

• The signed distance is reflexive, non-degenerate and the triangular inequality holds.

• The signed distance is commutative, associative, distributive and transitive.

• The signed distance is translation invariant and scale invariant.

The proofs of these properties are mostly direct. Further informations can be found in Yao and
K. Wu (2000).

We are now able to propose a simple example illustrating the calculation of the SGD of two
fuzzy numbers. It is given by:
Example 3.6.1. Let X̃ and Ỹ be two fuzzy numbers given by their respective left and right
α-cuts as follows:

X̃α =
[
2 + α; 5− α

]
,

Ỹα =
[
1 + α; 4− α

]
.

We would like to calculate the SGD between X̃ and Ỹ as described in Definition 3.6.3. It is
expressed by:

dSGD(X̃ , Ỹ ) =
1
2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)− Ỹ L
α(α)− Ỹ R

α (α)
]
dα

=
1
2

∫ 1

0

[
(2 + α) + (5− α)− (1 + α)− (4− α)

]
dα =

1
2

∫ 1

0
2 = 1.
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The so-called fuzzy origin 0̃ is defined as the fuzzy number for which the support and the
core sets are reduced to the singleton {0}. The SGD of a fuzzy set measured from the fuzzy
origin 0̃ seems to be an interesting tool in terms of ranking fuzzy numbers. In our context,
this distance will be useful in further calculations. We highlight that this measure has been
introduced as the expected value of a fuzzy number as proposed in Dubois and Prade (1987)
and Heilpern (1992). The signed distance measured from the fuzzy origin is then written as:

Definition 3.6.4 (Signed distance of a fuzzy set).

The signed distance of the fuzzy set X̃ measured from the fuzzy origin 0̃ is

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)
]
dα. (3.18)

The SGD between two fuzzy numbers can then be expressed in terms of the distance of each
one of them to the fuzzy origin 0̃. This relation is given as follows:

Proposition 3.6.1. For X̃ and Ỹ ∈ F?c(R), we have that

dSGD(X̃ , Ỹ ) = dSGD(X̃ , 0̃)− dSGD(Ỹ , 0̃). (3.19)

Proof. The proof is direct from Definitions 3.6.3 and 3.6.4.

The SGD could be related to other presented distances, notably the "φ-wabl/ldev/rdev" one
as seen in the following remark:

Remark 3.6.1. For a fuzzy number X̃ ∈ F?c(R), the wablφ(X̃ ) metric described in Definition
3.5.1 coincides with the signed distance of X̃ measured from the fuzzy origin 0̃, i.e.

wablφ(X̃ ) = dSGD(X̃ , 0̃),

where the weight φ is Lebesgue measured.

While most known distances are defined on R+ (said to be non-directional), a particularity
of the signed distance is that it is actually defined on R. Some references call it as a di-
rectional distance since its signed characteristic indicates the direction. As a consequence,
the separability and the symmetry properties given by ∀X̃ , Ỹ ∈ F?c(R), dSGD(Ỹ , X̃ ) ≥ 0 and
dSGD(X̃ , Ỹ ) = dSGD(Ỹ , X̃ ) respectively, are not present. However, the symmetry property is not
fully lost. A "partial" symmetry property can be proposed.

Proposition 3.6.2 (Partial symmetry of the signed distance).

The signed distance dSGD is partially symmetric such that

dSGD(X̃ , Ỹ ) = −dSGD(Ỹ , X̃ ). (3.20)
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In the same perspective, one can define a directional separability property of the signed
distance relative to the sign of the distance, this latter according to the position of X̃ and Ỹ on
the x-axis in a one dimensional setting. This particularity makes this distance recommendable
for ranking methods. Practically, by adopting a signed procedure in the process of calculat-
ing a distance, one can quickly understand the direction between X̃ and Ỹ . For instance, if
we consider the example of rating the imprecise performance of two machines A and B, the
information obtained from calculating a non-directional distance between both performances
could not be enough since we can not know which one of machines A and B is better per-
forming. One has to look closely to the modelling fuzzy sets, which becomes a tedious task.
Introducing a directional distance on such cases in order to easily know which machine per-
forms better is desirable. As such, using distances having the directional particularity could
be eventually influencing from a statistical point of view. In the subsequent chapters, we will
then be interested in investigating the effect of using such directional distances in statistical
methods.

The defended distance can also be expressed in terms of the ρ1 metric. The relation is
given by:

Corollary 3.6.1. We have that

−ρ1(X̃ , Ỹ ) ≤ dSGD(X̃ , Ỹ ) ≤ ρ1(X̃ , Ỹ ). (3.21)

The proof can be found in Appendix A.2.

Following up the Section 1.2 treating of particular types of fuzzy numbers, it is often prac-
tical to expose their signed distances.

Proposition 3.6.3 (Signed distance of common fuzzy sets).

The signed distance dSGD(X̃ , 0̃) of a particular fuzzy set X̃ measured from the fuzzy origin
0̃ is:

• for a triangular fuzzy number X̃ = (p, q, r ) given in Definition 1.2.1,

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
p + (q − p)α + r − (r − q)α

]
dα =

1
4
(
p + 2q + r

)
; (3.22)

• for a trapezoidal fuzzy number X̃ = (p, q, r , s) seen in Definition 1.2.2,

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
p + (q − p)α + s − (s − r )α

]
dα =

1
4
(
p + q + r + s

)
; (3.23)

• for a gaussian fuzzy number X̃ given by the parameters µ and σ as described in Defini-
tion 1.2.3,

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)
]
dα =

1
2

∫ 1

0
2µdα = µ; (3.24)
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• for a two-sided gaussian fuzzy number X̃ given by the parameters µ1, σ1, µ2 and σ2 as
shown in Definition 1.2.4,

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)
]
dα

=
1
2

∫ 1

0

[
µ1 −

√
−2σ2

1 lnα + µ2 +
√
−2σ2

2 lnα
]
dα

=
1
2
(
µ1 + µ2

)
− 1

2
σ1

∫ 1

0

√
−2 lnαdα +

1
2
σ2

∫ 1

0

√
−2 lnαdα

and since
∫ 1

0

√
−2 lnαdα =

√
π
2 , we have that

dSGD(X̃ , 0̃) =
1
2
(
µ1 + µ2

)
+

1
2

√
π

2
(
σ2 − σ1

)
. (3.25)

Besides the directional property of the signed distance, this latter presents a drawback
since it coincides with a central location measure. When we adopt this approach to measure
the distance between two fuzzy numbers, only the extreme values are mainly considered.
Thus, we are conducted to a middle tendency between both numbers, without taking into
consideration the weight that could be given to inner points between the extremes, i.e. the
variability between the minima and the maxima in a given fuzzy set, or to the weight given to
the shape of the studied fuzzy numbers.

3.7 The generalized signed distance

The signed distance given in Section 3.6 seems to have nice properties, and is eventually
interesting to investigate in further statistical procedures. However, this distance presents
several drawbacks. First, since it is seen as a measure of central tendency, by calculating the
SGD we tend to neglect the influence of the shape of the fuzzy numbers and their possible
irregularities. Second, this distance lacks in total separability and symmetry. Thus, it cannot be
defined as a full metric, and by that induce a metric space. To solve these problems (separately
or not), multiple steps further are required. We propose in this section a generalisation of the
SGD inspired by the well-known distances previously described. We will first introduce a L2
metric denoted by dθ

?

SGD, depending on a weight parameter θ?. The strength of this new metric
is the ability to take into account not only a central location measure, but the deviation in the
shapes of the studied numbers. In addition, it has all the necessary and sufficient conditions
to define a metric of fuzzy quantities. However, since the original signed distance has an
advantage of its efficiency in ranking methods, we would be interested in revisiting it. We
propose a ranking distance based on the signed distance and so-called generalized signed
distance denoted by dGSGD. The GSGD is a version of the L2 metric dθ

?

SGD which preserves
the directionality of the signed distance.

Let us first give the functions corresponding to the deviations of the shape. They can be
written in terms of the signed distance as follows:
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Definition 3.7.1. Consider a fuzzy number X̃ ∈ F?c(R) with its α-level set X̃α = [X̃ L
α, X̃ R

α ]. The
left and right deviations of the shape of X̃ denoted by devLX̃ and devRX̃ are such that:

devLX̃ (α) = dSGD(X̃ , 0̃)− X̃ L
α, (3.26)

devRX̃ (α) = X̃ R
α − dSGD(X̃ , 0̃). (3.27)

These deviations in the shape could be connected to the deviations "ldev" and "rdev" in-
troduced in the "φ-wabl/ldev/rdev" distance. A relation is given in the following sense:

Remark 3.7.1. When the weighting parameter φ is Lebesgue measured, since wablφ(X̃ ) =
dSGD(X̃ , 0̃) as seen in Remark 3.6.1, one can easily see that the previous deviations are
equivalent to the ones given in Definition 3.5.1, such that

ldevφX̃ = devLX̃ ,
rdevφX̃ = devRX̃ .

We are now able to define the new class of distances as follows:

Definition 3.7.2 (The dθ
?

SGD distance).

Consider two fuzzy numbers X̃ and Ỹ of the class of non-empty compact and bounded
fuzzy numbers, and θ? the weight on the shape of the fuzzy numbers such that 0 ≤ θ? ≤ 1.
Based on the signed distance between X̃ and Ỹ , the L2 metric dθ

?

SGD is the mapping

dθ
?

SGD : F?c(R)× F?c(R) → R+

X̃ × Ỹ 7→ dθ
?

SGD(X̃ , Ỹ ),

such that

dθ
?

SGD(X̃ , Ỹ ) =
((

dSGD(X̃ , Ỹ )
)2

+ θ?
(∫ 1

0
max

(
devRỸ (α)− devLX̃ (α), devRX̃ (α)− devLỸ (α)

)
dα
)2) 1

2 . (3.28)

We highlight that for the construction of this distance, our idea is to fully cover the surface
between X̃ and Ỹ . Furthermore, we intentionally proposed to use the maxima between the
differences in the deviations of the fuzzy numbers X̃ and Ỹ . The main reason is that we do
not have any exact information about the ordering between these fuzzy numbers. Therefore,
the maximum between the two differences in deviations is crucial. In addition, we exposed a
parameter θ? interpreted as the weight given to the shape of the fuzzy numbers, compared to
their signed distance. If θ? = 1, it means that we would like to equally weight the shape and the
central location measure. As such, if θ? = 0, we get back to the absolute value of the signed
distance.

It is important to show that the proposed distance is a metric of fuzzy quantities as defined
in Definition 3.0.2. Note that for the subsequent Propositions 3.7.1 to 3.7.7, the proofs can be
found in Appendix A.2.
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Proposition 3.7.1. (F?c(R), dθ
?

SGD) is a metric space, with dθ
?

SGD of type L2, such that:

1. dθ
?

SGD is reflexive: dθ
?

SGD(X̃ , X̃ ) = 0.

2. dθ
?

SGD is non-negative (separability): dθ
?

SGD(X̃ , Ỹ ) ≥ 0, ∀X̃ , Ỹ ∈ F?c(R).

3. dθ
?

SGD is non-degenerate: dθ
?

SGD(X̃ , Ỹ ) = 0⇔ X̃ = Ỹ .

4. dθ
?

SGD is symmetric: dθ
?

SGD(X̃ , Ỹ ) = dθ
?

SGD(Ỹ , X̃ ).

5. The triangular inequality holds: dθ
?

SGD(X̃ , Ỹ ) ≤ dθ
?

SGD(X̃ , Z̃ ) + dθ
?

SGD(Z̃ , Ỹ ).

Proposition 3.7.2. dθ
?

SGD is translation invariant and scale invariant, i.e. dθ
?

SGD

(
(X̃ +k ), (Ỹ +k )

)
=

dθ
?

SGD

(
X̃ , Ỹ

)
, and dθ

?

SGD

(
(k · X̃ ), (k · Ỹ )

)
= |k | · dθ?SGD

(
X̃ , Ỹ

)
, ∀k ∈ R.

As discussed before and despite the case where θ? = 0, one could clearly see that the
dθ

?

SGD metric can give back the original signed distance in specific conditions, as seen in the
following proposition:

Proposition 3.7.3.

For θ? 6= 0,
dθ

?

SGD(X̃ , Ỹ ) = |dSGD(X̃ , Ỹ )| iff spr (X̃ ) = spr (Ỹ ), (3.29)

where |dSGD(X̃ , 0̃)| ≤ |dSGD(Ỹ , 0̃)|.

Furthermore, we would like now to position the L2 metric dθ
?

SGD metric between the other
known metrics. First, let us compare it to the ρ1 and ρ2 ones:

Proposition 3.7.4.
ρ1(X̃ , Ỹ ) ≤ dθ

?

SGD(X̃ , Ỹ ) ≤ ρ2(X̃ , Ỹ ). (3.30)

Similarly, when the weight measure φ is a measure of Lebesgue, dθ
?

SGD is connected as
well to the metrics dmid/spr , dbertoluzza and dφ−wabl/ldev/rdev by the following inequalities:

Proposition 3.7.5.

1. For the mid/spr metric, we have that:

dθ
?

SGD(X̃ , Ỹ ) ≤ dmid/spr (X̃ , Ỹ ), (3.31)

and since the Bertoluzza metric is equivalent to the mid/spr one in the considered con-
ditions, then it is evident to write that:

dθ
?

SGD(X̃ , Ỹ ) ≤ dBertoluzza(X̃ , Ỹ ), (3.32)
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2. For the dφ−wabl/ldev/rdev metric, the following inequality holds:

dθ
?

SGD(X̃ , Ỹ ) ≤ dφ−wabl/ldev/rdev (X̃ , Ỹ ). (3.33)

Finally, we find interesting to mention the subsequent propositions discussing of the near-
est trapezoidal symmetrical fuzzy numbers. The aim of presenting them is to show that with
respect to the dθ

?

SGD, one would revert to the original signed distance seen as an optimum of
dθ

?

SGD in particular circumstances. By using the concept of the nearest fuzzy number, we have
to note that these propositions could be eventually useful in fuzzy approximations. We add
that these latter are needed in the implementation process of multiple statistical measures
presented in Chapter 8.

Proposition 3.7.6 (Nearest trapezoidal fuzzy number).

The nearest symmetrical trapezoidal fuzzy number S̃ given by the quadruple S̃ = [s0 −
2ε, s0− ε, s0 + ε, s0 + 2ε] to a fuzzy number X̃ with respect to the metric dθ

?

SGD is given such that

s0 = dSGD
(
X̃ , 0̃

)
, (3.34)

ε =
9

14
dSGD

(
X̃ , 0̃

)
− 3

7

∫ 1

0
X̃ L
α

(
2− α

)
dα. (3.35)

Proposition 3.7.7 (Nearest mid-way trapezoidal fuzzy number).

The nearest symmetrical mid-way trapezoidal fuzzy number S̃ given by the quadruple S̃ =
[s0 − 2ε, s0 − ε, s0 + ε, s0 + 2ε] between two fuzzy numbers X̃ and Ỹ with the same weight θ?

with respect to the metric dθ
?

SGD can be written as such

s0 =
1
2

dSGD
(
X̃ , 0̃

)
+

1
2

dSGD
(
Ỹ , 0̃

)
(3.36)

ε =
9

28
dSGD

(
X̃ , 0̃

)
− 9

28
dSGD

(
Ỹ , 0̃

)
− 3

14

[ ∫ 1

0
X̃ L
α

(
2− α

)
dα−

∫ 1

0
Ỹ R
α

(
2− α

)
dα
]
. (3.37)

The signed distance is seen to be a performant tool in ranking fuzzy numbers. In the
process of improving this operator to better fit the ranking procedures, we would like to define
a generalized version of it. The point is then to be able to preserve its directional property.
Accordingly and based on the metric dθ

?

SGD, we introduce the direction of travel between X̃ and
Ỹ (or the sign) given by the following function:

Definition 3.7.3 (The sign function).

Let X̃ and Ỹ be two fuzzy numbers in F?c(R). The sign function denoted by δSGD is given
by:

δSGD(X̃ , Ỹ ) =

{
1 if dSGD(X̃ , Ỹ ) ≥ 0,
−1 if dSGD(X̃ , Ỹ ) < 0.

(3.38)
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We update now the metric dθ
?

SGD using the sign function and we get the GSGD written as:

Definition 3.7.4 (The generalized signed distance).

Consider two fuzzy numbers X̃ and Ỹ in F?c(R). The generalized signed distance is the
mapping

dGSGD : F?c(R)× F?c(R) → R
X̃ × Ỹ 7→ dGSGD(X̃ , Ỹ ),

such that
dGSGD(X̃ , Ỹ ) = δSGD(X̃ , Ỹ ) · dθ?SGD(X̃ , Ỹ ). (3.39)

By effect of the metric dθ
?

SGD, the GSGD is reflexive, non-degenerate, for which the trian-
gular inequality holds. The proofs are direct. This construction of the distance is intentional
in order to keep the link between the signed distance and its generalized form. As a conse-
quence, the same properties of the original distance such as the direction are preserved, but
with a better consideration regarding the shape of the involved fuzzy numbers. We add that
the partial symmetry and partial separability properties hold in this case. We remind that the
definitions of such properties can be found in McCulloch (2016), p. 63.

Proposition 3.7.8. The generalized signed distance dGSGD is partially separable.

Proof. The proof is directy deduced from the following:{
dGSGD(X̃ , Ỹ ) ≥ 0 if dSGD(X̃ , Ỹ ) ≥ 0,
dGSGD(X̃ , Ỹ ) ≤ 0 if dSGD(X̃ , Ỹ ) < 0.

(3.40)

Proposition 3.7.9. The generalized signed distance dGSGD is partially symmetric.

Proof. It is obvious that δSGD(X̃ , Ỹ ) = −δSGD(Ỹ , X̃ ), and since dθ
?

SGD(X̃ , Ỹ ) = dθ
?

SGD(Ỹ , X̃ ), we
can easily deduce that

dGSGD(X̃ , Ỹ ) = −dGSGD(Ỹ , X̃ ).

In addition, some other properties of the GSGD are required. As such, one could see that
this distance is directly related to the dθ

?

SGD metric given in the subsequent remark:

Remark 3.7.2. The Propositions 3.7.6 and 3.7.7 related to the dθ
?

SGD metric can be extended to
the generalized signed distance. The proof is direct since dGSGD could practically take either
the value −dθ

?

SGD, or the value dθ
?

SGD.
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In order to illustrate the calculations of the previously mentioned distances, let us consider
the following detailed example showing the use of each of these distances.

Example 3.7.1. Consider a trapezoidal fuzzy number X̃ given by the quadruple (1, 2, 2.3, 8)
and a triangular one Ỹ given by the tuple (9, 9.8, 16). We would like to calculate the distance
between the fuzzy numbers X̃ and Ỹ . We will use the previously described distances.

First, we give the α-cuts of the involved fuzzy numbers. They are given as follows:{
X̃ L
α(α) = 1 + α,

X̃ R
α (α) = 8− 5.7α,

and

{
Ỹ L
α(α) = 9 + 0.8α,

Ỹ R
α (α) = 16− 6.2α.

The distance between X̃ and Ỹ using the different approaches is calculated as follows:

• The signed distance of the fuzzy numbers X̃ and Ỹ can be computed as seen in Defini-
tion 3.6.3 as follows:

dSGD(X̃ , Ỹ ) =
1
2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)− Ỹ L
α(α)− Ỹ R

α (α)
]
dα

=
1
2

∫ 1

0

[
(1 + α) + (8− 5.7α)− (9 + 0.8α)− (16− 6.2α)

]
dα

= −7.825.

We add that the signed distances of X̃ and Ỹ measured from the fuzzy origin 0̃ are given
respectively by:

dSGD(X̃ , 0̃) =
1
2

∫ 1

0

[
(1 + α) + (8− 5.7α)

]
dα = 3.325,

dSGD(Ỹ , 0̃) =
1
2

∫ 1

0

[
(9 + 0.8α) + (16− 6.2α)

]
dα = 11.15.

• For the metric dθ
?

SGD(X̃ , Ỹ ) shown in Definition 3.7.2, the deviations of their shapes are
given by:{

devLX̃ (α) = dSGD(X̃ , 0̃)− X̃ L
α = 3.325− 1− α = 2.325− α,

devRX̃ (α) = X̃ R
α − dSGD(X̃ , 0̃) = 8− 5.7α− 3.325 = 4.675− 5.7α,

and

{
devLỸ (α) = dSGD(Ỹ , 0̃)− Ỹ L

α = 11.15− 9− 0.8α = 2.15− 0.8α,
devRỸ (α) = Ỹ R

α − dSGD(Ỹ , 0̃) = 16− 6.2α− 11.15 = 4.85− 6.2α.

Then, the differences of the deviations are as follows:

devRỸ (α)− devLX̃ (α) = 4.85− 6.2α− 2.325 + α = 2.525− 5.2α,
devRX̃ (α)− devLỸ (α) = 4.675− 5.7α− 2.15 + 0.8α = 2.525− 4.9α.
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For 0 ≤ α ≤ 1, we can see that 2.525− 4.9α > 2.525− 5.2α, then we get that

max
(
devRX̃ (α)− devLỸ (α), devRỸ (α)− devLX̃ (α)

)
= devRX̃ (α)− devLỸ (α).

We sum up these informations in order to get the distance dθ
?

SGD(X̃ , Ỹ ). Suppose θ? = 1,
i.e. the central tendency and the shapes of the fuzzy numbers are equally weighted.
This distance can be expressed by:

dθ
?

SGD(X̃ , Ỹ ) =

√(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

=

√(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0

(
devRX̃ − devLỸ

)
dα
)2

=

√(
− 7.825

)2 +
(∫ 1

0

(
2.525− 4.9α

)
dα
)2

= 7.825359.

• For the GSGD given in Definition 3.7.4, we have to use the previously calculated distance
dθ

?

SGD(X̃ , Ỹ ) and the sign function. Therefore, since dSGD(X̃ , Ỹ ) ≤ 0, then δSGD(X̃ , Ỹ ) =
−1. We are now able to calculate the GSGD between both fuzzy numbers. It is written
by:

dGSGD(X̃ , Ỹ ) = δSGD(X̃ , Ỹ ) · dθ?SGD(X̃ , Ỹ ) = −1 · 7.825359 = −7.825359. (3.41)

• For the φ-wabl/ldev/rdev distance seen in Definition 3.5.2, we suppose that the param-
eter φ is a measure of Lebesgue. Thus, by Remarks 3.6.1 and 3.7.1, we know that the
wabl measure is equivalent to the signed distance measured from the fuzzy origin such
that (

wablφ(X̃ )− wablφ(Ỹ )
)2 =

(
dSGD(X̃ , 0̃)− dSGD(Ỹ , 0̃)

)2.

In addition, the following expressions can be written

∫ 1

0

1
2
(
ldevφX̃ − ldevφỸ

)2 =
∫ 1

0

1
2
(
devLX̃ − devLỸ

)2

=
∫ 1

0

1
2
(
2.325− α− 2.15 + 0.8α

)2

=
∫ 1

0

1
2
(
0.175− 0.2α

)2 = 0.004479167,∫ 1

0

1
2
(
rdevφX̃ − rdevφỸ

)2 =
∫ 1

0

1
2
(
devRX̃ − devRỸ

)2

=
∫ 1

0

1
2
(
4.675− 5.7α− 4.85 + 6.2α

)2

=
∫ 1

0

1
2
(
− 0.175 + 0.5α

)2 = 0.01322917.
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Accordingly, the φ-wabl/ldev/rdev distance between X̃ and Ỹ is

dφ−wabl/ldev/rdev (X̃ , Ỹ ) =
[(

wablφ(X̃ )− wablφ(Ỹ )
)2

+ θt

∫ 1

0

(1
2
(
ldevφX̃ − ldevφỸ

)2 +
1
2
(
rdevφX̃ − rdevφỸ

)2
)

dφ(α)
] 1

2

=
[(
− 7.825

)2 + θt × (0.004479167 + 0.01322917)
] 1

2

= 7.825377,

with θt = 1
3 as seen in Remark 3.4.1.1.

• The mid/spr distance shown in Definition 3.4.2 can be computed in the following man-
ner. First, we give the mid measure of the fuzzy numbers X̃ and Ỹ , and the difference
between them. They are given by:

midX̃ =
1
2

(X̃ L
α + X̃ R

α ) =
1
2
(
(1 + α) + (8− 5.7α)

)
= 4.5− 2.35α, (3.42)

midỸ =
1
2

(Ỹ L
α + Ỹ R

α ) =
1
2
(
(9 + 0.8α) + (16− 6.2α)

)
= 12.5− 2.7α, (3.43)

while

midX̃ −midỸ = 4.5− 2.35α− 12.5 + 2.7α = −8 + 0.35α.

Similarly, the spread of both fuzzy numbers and their difference can be calculated as
follows:

sprX̃ =
1
2

(X̃ R
α − X̃ L

α) =
1
2
(
(8− 5.7α)− (1 + α)

)
= 3.5− 3.35α, (3.44)

sprỸ =
1
2

(Ỹ R
α − Ỹ L

α) =
1
2
(
(16− 6.2α)− (9 + 0.8α)

)
= 3.5− 3.5α. (3.45)

with

sprX̃ − sprỸ = 3.5− 3.35α− 3.5 + 3.5α = 0.15α.

By considering a Lebesgue measure, we have that θt = 1
3 , then the mid/spr distance

between X̃ and Ỹ is given by:

dmid/spr (X̃ , Ỹ ) =

√∫ 1

0

(
midX̃ −midỸ

)2dφ(α) + θt

∫ 1

0

(
sprX̃ − sprỸ

)2dφ(α)

=

√∫ 1

0

(
− 8 + 0.35α

)2dα +
1
3

∫ 1

0

(
0.15α

)2dα

= 7.825812.
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• For the ρ1 and ρ2 distances defined in Definition 3.1.1, the application is direct. It is given
by:

ρ1(X̃ , Ỹ ) =
1
2

∫ 1

0

∣∣X̃ L
α − Ỹ L

α

∣∣dα +
1
2

∫ 1

0

∣∣X̃ R
α − Ỹ R

α

∣∣dα
=

1
2

∫ 1

0

∣∣1 + α− 9− 0.8α
∣∣dα +

1
2

∫ 1

0

∣∣8− 5.7α− 16 + 6.2α
∣∣dα

=
1
2

∫ 1

0

∣∣− 8 + 0.2α
∣∣dα +

1
2

∫ 1

0

∣∣− 8 + 0.5α
∣∣dα

= 7.825,

ρ2(X̃ , Ỹ ) =

√
1
2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)2dα +
1
2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)2dα,

=

√
1
2

∫ 1

0

(
1 + α− 9− 0.8α

)2dα +
1
2

∫ 1

0

(
8− 5.7α− 16 + 6.2α

)2dα,

=

√
1
2

∫ 1

0

(
− 8 + 0.2α

)2dα +
1
2

∫ 1

0

(
− 8 + 0.5α

)2dα,

= 7.826131.

• For the δ?p,q and ρ?p distances shown in Section 3.3, we consider the cases of p = 1 and
p = 2 only. For instance, from Remark 3.3.1, we know that δ?

1, 1
2
(X̃ , Ỹ ) = ρ1(X̃ , Ỹ ) and

δ?
2, 1

2
(X̃ , Ỹ ) = ρ2(X̃ , Ỹ ), for q = 1

2 and p = 1 and p = 2 respectively. We obtain that:

δ?1, 1
2
(X̃ , Ỹ ) = 7.825 and δ?2, 1

2
(X̃ , Ỹ ) = 7.826131.

On the other hand, by replacing conveniently the α-cuts of the fuzzy numbers, the dis-
tances ρ?1(X̃ , Ỹ ) and ρ?2(X̃ , Ỹ ) can be given as expressed in Definition 3.3.2 by:

ρ?1(X̃ , Ỹ ) = max
{∫ 1

0

∣∣Ỹ L
α − X̃ L

α

∣∣dα,
∫ 1

0

∣∣Ỹ R
α − X̃ R

α

∣∣dα}
= max

{∫ 1

0

∣∣8− 0.2α
∣∣dα,

∫ 1

0

∣∣8− 0.5α
∣∣dα}

= max
{

7.9, 7.75
}

= 7.9,

ρ?2(X̃ , Ỹ ) = max
{

2

√∫ 1

0

(
Ỹ L
α − X̃ L

α

)2dα, 2

√∫ 1

0

(
Ỹ R
α − X̃ R

α

)2dα
}

= max
{

2

√∫ 1

0

(
8− 0.2α

)2dα, 2

√∫ 1

0

(
8− 0.5α

)2dα
}

= max
{

7.900211, 7.751344
}

= 7.900211.
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• Finally, the Bertoluzza distance described in Definition 3.2.2 is given by

dBertoluzza(X̃ , Ỹ ) =

√∫ 1

0

∫ 1

0

(
X̃ [λ]
α − Ỹ [λ]

α

)2dγ(λ)dφ(α),

where X̃ [λ]
α = λX̃ R

α + (1 − λ)X̃ L
α and Ỹ [λ]

α = λỸ R
α + (1 − λ)Ỹ L

α . In the same settings, this
equation can be written as:

dBertoluzza(X̃ , Ỹ ) =

√∫ 1

0

∫ 1

0

[
(λX̃ R

α + (1− λ)X̃ L
α)− (λỸ R

α + (1− λ)Ỹ L
α)
]2dλdα,

by replacing the α-cuts of X̃ and Ỹ using the right expressions, and by additional inte-
gration step, we get that:

dBertoluzza(X̃ , Ỹ ) = 7.825812.

Chosen approach Type of distance Distance between X̃ and Ỹ

Diamond and Kloeden (1990) (Section 3.1)
ρ1

ρ2

7.825

7.826131

Bertoluzza, Corral, and Salas (1995) (Section 3.2) dBertoluzza 7.825812

Grzegorzewski (1998a) (Section 3.3)

δ?
1, 1

2

δ?
2, 1

2

ρ?1

ρ?2

7.825

7.826131

7.9

7.900211

Trutschnig, Gonzalez-Rodriguez, et al. (2009) (Section 3.4) dmid/spr 7.825812

Sinova, Gil, Lopez, et al. (2014) (Section 3.5) dφ−wabl/ldev/rdev 7.825377

Yao and K. Wu (2000) (Section 3.6) dSGD -7.825

Berkachy (Section 3.7)
dθ

?

SGD

dGSGD

7.825359

-7.825359

Table 3.1: Summary of the distances between X̃ and Ỹ by different approaches - Example 3.7.1.

A summary of the obtained results can be found in Table 3.1. First, we can clearly see that
the Propositions 3.7.4 and 3.7.5 regarding mainly the metric dθ

?

SGD are verified. Each of the
proposed distances can be adopted for different motivations. Therefore, one can suspect that
in the statistical environment, the choice between them is not innocent since their application
could probably be influencing on the results of statistical analyses.

An example illustrating the concepts of the nearest trapezoidal fuzzy numbers is given as
follows:

Example 3.7.2. For this example, we will first find the nearest symmetrical trapezoidal fuzzy
number for Ỹ of Example 3.7.1, denoted by S̃ = [s0 − 2ε, s0 − ε, s0 + ε, s0 + 2ε] as given in
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Proposition 3.7.6. We have then to calculate the parameters s0 and ε. This calculation can be
given by:

s0 = dSGD(Ỹ , 0̃) = 11.15,

ε =
9

14
dSGD(Ỹ , 0̃)− 3

7

∫ 1

0
Ỹ L
α

(
2− α

)
dα

=
9

14
· 11.15− 3

7
· 14.03333 = 7.167857− 6.014286 = 1.153571.

Consequently, with respect to the metric dθ
?

SGD, the dotted trapezoidal fuzzy number S̃ shown
in Figure 3.2, is written by the following quadruple

S̃ = [s0 − 2ε, s0 − ε, s0 + ε, s0 + 2ε] = [8.842858, 9.996429, 12.30357, 13.45714].

From another side, we would be interested as well in calculating the nearest mid-way one
between the fuzzy numbers X̃ and Ỹ of Example 3.7.1, as shown in Proposition 3.7.7. This
fuzzy number is denoted by S̃? = [s?0 − 2ε?, s?0 − ε?, s?0 + ε?, s?0 + 2ε?] such that the parameters
s?0 and ε? can be written as follows:

s?0 =
1
2

dSGD
(
X̃ , 0̃

)
+

1
2

dSGD
(
Ỹ , 0̃

)
=

1
2

3.325 +
1
2

11.15 = 7.2375,

ε? =
9

28
dSGD

(
X̃ , 0̃

)
− 9

28
dSGD

(
Ỹ , 0̃

)
− 3

14

[ ∫ 1

0
X̃ L
α

(
2− α

)
dα−

∫ 1

0
Ỹ R
α

(
2− α

)
dα
]

=
9

28
3.325− 9

28
11.15− 3

14

[ ∫ 1

0

(
1 + α

)
·
(
2− α

)
dα−

∫ 1

0

(
16− 6.2α

)
·
(
2− α

)
dα
]

= 1.06875− 3.583929− 0.4642857 + 4.257143 = 1.277678.

Then, the dotted mid-way trapezoidal fuzzy number S̃? seen in Figure 3.3, is given by:

S̃? = [4.682144, 5.959822, 8.515178, 9.792856].

Remark 3.7.3 (The nearest symmetrical trapezoidal fuzzy number).

By respect to the previously described distances (ρ1, ρ2, dBertoluzza, dmid/spr , dφ−wabl/ldev/rdev
and some cases of δ?p,q) and following the same derivation procedure, the parameter s0 is al-
ways given by the same equation seen in Equation 3.34. As such, the parameter s0 of the
nearest trapezoidal fuzzy number of X̃ is its signed distance measured from the fuzzy origin
given by

s0 = dSGD(X̃ , 0̃) =
1
2

∫ 1

0

(
X̃ L
α + X̃ R

α

)
dα.

The proofs are analog to the one of Proposition 3.7.6. However, the parameter ε differs slightly
between distances. A study on such differences could eventually be interesting in order to sort
out the distances with the smallest value of ε, thus paving the way of a better approximation of
the fuzzy number.
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Figure 3.2: Membership functions of Ỹ and its nearest symmetrical trapezoidal fuzzy number S̃ -
Example 3.7.2.
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Figure 3.3: Membership functions of X̃ , Ỹ and the nearest mid-way symmetrical trapezoidal fuzzy
number S̃? between X̃ and Ỹ - Example 3.7.2.





Chapter 4

Fuzzy Random Variables and Fuzzy
Distributions

Data sets collected from real experiments are often affected by the randomness, while these
informations could have an imprecise nature. Therefore, in such random data sets, the prob-
ability theory could not always be sufficient for modelling this uncertainty. This latter requires
complementary tools. Thus, a combination between probability and fuzzy theories should be
considered. It is important to introduce the concept of a random variable in the fuzzy context.
This concept will be extensively used later on in developping statistical methods based on
fuzzy data.

Two out of many approaches defining fuzzy random variables are widely used in literature:
the Kwakernaak - Kruse and Meyer and the Féron - Puri and Ralescu. Namely, Kwakernaak
(1978) and Kwakernaak (1979) gave a definition of the fuzzy random variable (FRV). It is
defined as the fuzzy perception of an unobservable real-valued random variable. It is actually a
description of the fuzziness contained in a traditional random variable often called the "original
". The Kwakernaak ideas were after elaborated by Kruse and Meyer (1987) in a mathematical
framework.

From another perspective, in a series of papers Féron (1976a), Féron (1976b) and Féron
(1979), etc. the author proposed the concept of the random fuzzy variable (RFV) in the context
of modelling a given random experiment which produces fuzzy sets of a metric space. This
random fuzzy set is defined as the "levelwise extension" of the notion of random sets in real-
based spaces, or as random elements defined in the spaces of fuzzy sets. These spaces
are usually provided with a given Borel σ-algebra. Puri and Ralescu (1986) asserted that
some metrics are missing in the Féron (1976a)’s contribution. Given that, they revisited Féron
(1976a)’s concepts and gave an expanded version of them. They added for instance the notion
of expectation. The Féron - Puri and Ralescu definition corresponds to the ontic case since
it models uncertain random variates, often associated to the human perception of things. In
the Féron - Puri and Ralescu sense, the produced data are fuzzy. The theory of random fuzzy
sets is considered as the extension of the theory of random sets and random variables. It

67
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is seen as a way to preserve the settings of the real space and extend them conveniently to
statistical procedures with fuzzy entities.

However, Puri and Ralescu renounced to the use of the terminology RFV and often kept
using the FRV one. Consequently, confusion has been probably induced between both ap-
poaches, but stronger conceptual differences exist between both. Several references have
deeply discussed about the differences between these approaches. We note for example, Gil,
Colubi, and Teran (2014) and Gil (2018), etc. In addition, in compliance with the notions of
epistemic and ontic fuzzy values as we explained, one could easily see that the Kwakernaak
- Kruse and Meyer approach is rather used in the case of epistemic fuzzy entities, while the
ontic could be referred to the Féron - Puri and Ralescu one. Therefore, the proposed definition
of a FRV is well confirmed as a fuzzy perception of these entities. In the next sections, we
will ourselves briefly review these two approaches in order to propose related fuzzy statistical
approaches in the upcoming chapters.

We will first open the chapter in Section 4.1 with the concept of fuzzy events and their
probabilities, as defended by Zadeh (1968). The purpose is then to be able to propose the
approaches defining the FRV (eventually the RFV) in Section 4.2. Moreover, we will not only
define a random variable in the fuzzy context, but also, we will show in Section 4.3 the distri-
bution function associated to it. We give after in Section 4.4 the expectation and the variance
related to both of the considered approaches. Finally, Section 4.5 aims to propose the con-
cepts of empirical estimators of the distribution parameters.

4.1 Fuzzy events and their probabilities

Zadeh (1968) proposed a definition of the concept of a fuzzy event over Rn, and the probability
of this event. Note that the subsequent notions will be defined on Rn in coherence with the
Zadeh (1968) ideas, but one could easily deduce the case where n = 1. These notions are
the combination of the probability theory based on measuring the occurence of a given event
from one side, and the fuzziness mainly due to its nature. The concepts related to the fuzzy
events are given by the following:

Definition 4.1.1 (Fuzzy event).

Let (Rn,A,P) be a probability space. A fuzzy subset X̃ of Rn is said to be a fuzzy event of
Rn such that it is associated to a MF µX̃ measurable in the Borel space. The fuzzy event is
defined such that each α-level set belongs to the σ-field A.

Zadeh (1968) asserted that his notion of the probability of a fuzzy event is considered to
be a crisp value, defined in terms of the measure P as follows:
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Definition 4.1.2 (Probability of a fuzzy event).

Consider a fuzzy event X̃ of the probability space (Rn,A,P). The probability of a fuzzy
event X̃ is the expectation E(µX̃ ) of its MF µX̃ with respect to the probability measure P. It is
given by:

P(X̃ ) =
∫
Rn
µX̃ (x)dP(x) = E(µX̃ ). (4.1)

Accordingly, we define the conditional probability of two fuzzy events X̃1 and X̃2, as follows:

Definition 4.1.3 (Conditional Probability of fuzzy events).

Let X̃1 and X̃2 be two fuzzy events on the probability space (Rn,A,P). Their membership
functions are respectively denoted by µX̃1

and µX̃2
. Consider a fuzzy subset of Rn denoted by

Ỹ , which expresses the product of X̃1 and X̃2, and its MF µỸ . The conditional probability of X̃1

given X̃2 is written as

P(X̃1 | X̃2) =
P(Ỹ )
P(X̃2)

=
E(µỸ )
E(µX̃2

)
, (4.2)

such that P(X̃2) is strictly positive.

We remind that in the classical approach, the conditional probability of two given events X1
and X2 can be given by calculating the probability of the intersection between both events
divided by the probability of X2, as given in the following equation:

P(X1 | X2) =
P(X1 ∩ X2)

P(X2)
. (4.3)

It is natural to propose the definition of independent fuzzy events. It is given by:

Definition 4.1.4 (Independent fuzzy events).

Consider two fuzzy events X̃1 and X̃2 defined on the probability space (Rn,A,P). Let
Ỹ = X̃1X̃2 be a fuzzy subset of Rn with its MF µX̃1X̃2

(y ) given by µX̃1
(y ) · µX̃2

(y ), ∀y ∈ Rn. The
fuzzy events X̃1 and X̃2 are said to be independent if and only if the following is verified:

P(X̃1X̃2) = P(X̃1)P(X̃2). (4.4)

The conditional probability of X̃1 given X̃2 can then be written as

P(X̃1 | X̃2) = P(X̃1). (4.5)

Consequently, the definition of the joint membership function of n independent fuzzy events is
expressed by:
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Definition 4.1.5. Consider a collection X̃ of n mutually independent fuzzy events X̃i , i =
1, ... , n, the joint membership function µX̃ can be written as:

µX̃ (x) = µX̃1
(x1)× ...× µX̃n

(xn). (4.6)

Note that in our case, we used the product t-norm in the purpose of facilitating the calculation
of further integrations.

Finally, an interesting definition is provided by Ronald R. Yager (1979) who introduced the
concept of the fuzzy probability of fuzzy events. The main difference in his approach is the
fuzzy nature of this probability rather a scalar one as proposed in Zadeh (1968). The fuzzy
probability of a fuzzy event is then defined as follows:

Definition 4.1.6 (Fuzzy probability of fuzzy event).

Consider a fuzzy event X̃ of the probability space (Rn,A,P). The fuzzy probability of a
fuzzy event X̃ is defined as the fuzzy set P̃(X̃ ) written as:

P̃(X̃ ) =
⋃

0≤α≤1

αP[X̃α]. (4.7)

In other terms, Ronald R. Yager (1979) defined his concept of probability of a fuzzy event as a
fuzzy set defined on the interval [0; 1] for which the fuzzy probability is found using the proba-
bilities of the α-cuts of the concerned fuzzy event. Additional properties on this probability can
be found in Ronald R. Yager (1979).

4.2 Fuzzy random variables

As previously mentioned, we expose mainly two approaches defining a random variable in
the fuzzy context: the Kwakernaak - Kruse and Meyer, and the Féron - Puri and Ralescu
approach. We highlight that in particular situations, a coincidence between both of them is
expected.

We note that all the proposed approaches of fuzzy random variables of this chapter are
stated as usual in a probability space denoted by (Ω,A,P), and intended to model a given
random experiment, such that Ω is the universe of all possible results of the experiment, A is
a σ-algebra of the subsets of the universe Ω and P is a probability measure defined on A. We
open the section by the Kwakernaak - Kruse and Meyer definition.
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4.2.1 The Kwakernaak - Kruse and Meyer approach

In his first paper of the serie, Kwakernaak (1978) stated that "Fuzzy random variables are ran-
dom variables whose values are not real, but fuzzy numbers" (pp.1 - l.2-3). In other terms, the
approach by Kwakernaak (1978) and Kwakernaak (1979) and revisited by Kruse and Meyer
(1987), both asserted that a FRV X̃ is not only based on a real "crisp" random variable but
also given by an uncertain cognition of the unobservable random variable X : Ω → R. They
assumed that this FRV is obtained from the composition of the fuzzy perception written as a
mapping from R to F(R) and the so-called original X . Mention that the original X is contained
in the set of originals denoted by X , and constituting a proper universe.

Let us first define the FRV à la Kwakernaak - Kruse and Meyer, as follows:

Definition 4.2.1 (Fuzzy random variable).

Consider the probability space (Ω,A,P), and the set of all fuzzy numbers F(R). A fuzzy
random variable (FRV) X̃ is the mapping

X̃ : Ω → F(R),

such that for all ω ∈ Ω and α ∈ [0; 1], the system
{

X̃α(ω) | ω ∈ Ω, α ∈ [0; 1]
}

is a measurable
representation set of X̃ where the real-valued applications X̃ L

α and X̃ R
α given by

X̃ L
α : Ω → R and X̃ R

α : Ω → R

are, for each α ∈ [0; 1], measurable random variables. Thus, we have that X̃α is an interval-
valued application levelwise with

X̃α(ω) =
(
X̃ (ω)

)
α

=
[(

X̃ (ω)
)L
α
;
(
X̃ (ω)

)R
α

]
, ∀ω ∈ Ω.

An example illustrating the approach of Kwakernaak (1978) is given by the following:

Example 4.2.1 (The weather example).

We would like to ask a given population about the weather in their city. Thus, they are
required to give a linguistic term between: very bad, bad, moderate, good and very good. Each
person has to choose one linguistic only. Choosing precisely one linguistic only is theoretically
possible. However, since human feelings often wave between two or both linguistics, the
choice of one answer is perceived as fuzzy. For instance, the perception of the weather in
a given city could be between very bad and bad, according to the circumstances and most
probably according to the vision and preference of every citizen. Consider then the random
variable

W =
{

the perception of the weather in a given city ω
}

.
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We could model the situation by the Kwakernaak - Kruse and Meyer approach, and we define
the FRV W̃ , for which, the universe Ω will be the set of considered cities and A its power set.
The FRV can then take on the following values:

W̃1 = ˜very bad, W̃2 = b̃ad, W̃3 = ˜moderate, W̃4 = g̃ood, W̃5 = ˜very good,

such that they could be modelled by common fuzzy numbers as given in Section 1.2. In
addition, we associate to this FRV an original W0 : Ω → R given as:

W̃0(ω) =
{

the true weather in the city ω
}

.

The FRV W̃0 is then seen as the fuzzy perception of the weather described by the original W0.

4.2.2 The Féron - Puri and Ralescu approach

From their side and contrary to the Kwakernaak - Kruse and Meyer’s approach, Féron - Puri
and Ralescu supposed that a RFV is rather a tool to model random imprecised-valued compo-
nents, and obviously not a fuzzy perception of real-valued ones. The definition given by Puri
and Ralescu (1986) is then the following:

Definition 4.2.2 (Random fuzzy variable).

Consider the probability space (Ω,A,P) and F(R) the family of fuzzy numbers on the real
space. Let B be the set of the Borel-subsets of R. A random fuzzy variable RFV on the space
A is a measurable function in a Borel sense given by

X̃ : Ω → F(R)

such that for every α ∈ [0; 1], we have that{
(ω, x) | ω ∈ Ω, x ∈ X̃α(ω)

}
∈ A× B. (4.8)

Furthermore, one can say that for every α ∈ [0; 1], the α-level set represented by X̃α such that
X̃α(ω) =

(
X̃ (ω)

)
α

is a random compact set.

By that, we could say that in the sense of Puri and Ralescu, the RFV X̃ is the direct evalua-
tion of fuzziness contained in a given experimental output. We illustrate this approach by the
following example:

Example 4.2.2 (The work-home distance).

We are interested again in the work-home distance of a company population given in
Example 1.2.1. For this purpose, we asked a number of persons about the approximative
distance between their home and their work place. Consider then the random variable

H =
{

the work-home distance of a given employee of a company
}

.
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Many of the respondents asserted that they are giving uncertain answers since they do not
have a precise value for the distance. Then, this evaluation is seen to be naturally fuzzy. In
addition, the distance and the variability in the answer varies from a person to another. If we
suggest to a person to express his feeling by drawing a closed convex fuzzy number for which
he has to decide where to place his α-level sets, and the shape of the curve interpolating the
different levels chosen, these informations can be viewed as a RFV by the Puri and Ralescu
(1986) approach. This RFV will then be denoted by H̃ and describing the approximative work-
home distance of the employee. In this case, Ω is the universe of all the employees of the
company.

4.2.3 Synthesis

To sum up, despite that both approaches mentioned in this chapter are interesting tools for
modelling fuzzy samples, their motivations are quite different. The difference is mainly in the
modelling situations themselves. As instance, the random fuzzy variables RFV by the Féron -
Puri and Ralescu approach are appropriate to model random variables taking on fuzzy values
— the ontic perspective —, uncertain human response for example. However, the FRV of
Kwakernaak - Kruse and Meyer is used to model a different mechanism, where in a given
random experiment, the response is obtained from the real unobservable original random
variable. Instead, this random variable will be fuzzily assessed — the epistemic perspective.
Thereupon, in a one-dimensional setting, it is easy to see that from a theoretical point of view,
both approaches match. The idea of the following proposition seen in Gil, Lopez-Diaz, and
Ralescu (2006) and Blanco-Fernandez, Maria R. Casals, Colubi, Corral, Garcia-Barzana, et
al. (2014) and relating both approaches is interesting to display.

Proposition 4.2.1. Let (Ω,A,P) be the probability space of a given random experiment, then
X̃ is a FRV by the Kwakernaak - Kruse and Meyer approach if and only if it is a RFV by the
Féron - Puri and Ralescu one.

By consequence, if we intend to consider the notion of randomness contained in the variables
of a given fuzzy analysis, we should be aware of the choice of the approach. As instance, the
concept of Kwakernaak - Kruse and Meyer is related to the distribution of the originals of the
considered random experiment and to the fuzzy perception of them, while the concept of the
Féron - Puri and Ralescu is based of the randomness of the fuzzy numbers themselves. How-
ever, because of this "equivalence" of both approaches, Blanco-Fernandez, Maria R. Casals,
Colubi, Corral, Garcia-Barzana, et al. (2014) stated that the Féron - Puri and Ralescu rea-
soning can be even used in scenarios where fuzzy perceptions are considered. The authors
highlighed that "conclusions could be ’technically’ drawn" (pp. 1493 - l.39) for such situations.

In our case, the presented methods are mainly defined in a one-dimensional setting, i.e.
n = 1, where fuzzy convex cases are only adopted. Thus, both described approaches can be
simultaneously used. It is then interesting and useful to investigate both approaches in several
setups. For this purpose, we will subsequently propose different statistical contexts where we
juggle with both approaches in order to better understand their use and fit.



74 Chapter 4. Fuzzy Random Variables and Fuzzy Distributions

4.3 Fuzzy Probability Distributions of Fuzzy Random Variables

It is natural to associate the fuzzy random variables to their corresponding probability density
and distribution functions. These latter are often seen as fuzzy, since they model fuzzy entities.
However, the definitions of distribution functions differ theoretically between approaches. As
such, Viertl (2011) stated in Definition 8.1 of Chapter 8 the following general concept of a fuzzy
probability density.

Definition 4.3.1 (Fuzzy probability density).

Consider a probability space (Ω,A,P). A fuzzy probability density denoted by f̃ , is a fuzzy
valued function f̃ : Ω → F?c(R), represented by its α-cuts

[
f̃ L
α(x); f̃ R

α (x)
]
, verifying the following

conditions:

• The integrals
∫
Ω f̃ L

α(x)dP(x) and
∫
Ω f̃ R

α (x)dP(x) exist.

• The value 1 belongs to the kernel of the fuzzy interval given by its left and right α-level
sets [ ∫

Ω
f̃ L
α(x)dP(x);

∫
Ω

f̃ R
α (x)dP(x)

]
, ∀α ∈ [0; 1],

and its support is included in R+.

• A crisp probability density f : Ω → R+ exists such that for the highest grade of α, i.e.
α = 1, we have that

f̃ L
α(x) ≤ f (x) ≤ f̃ R

α (x), ∀x ∈ Ω.

4.3.1 The Kwakernaak - Kruse and Meyer approach

For the Kwakernaak (1978) - FRV, the associated distribution function is considered to be
derived from the distribution of the original since it is seen as its fuzzy perception. The author
asserted that this derivation relies basically on the extension principle of Zadeh. We can then
clearly see that the intended distribution is naturally fuzzy. We express the distribution function
of a FRV denoted by X̃ in the following way:

Definition 4.3.2 (Fuzzy distribution function of a fuzzy random variable).

Consider the probability space (Ω,A,P) of a given random experiment. Let X̃ be a FRV
in the Kwakernaak (1978) sense, with its corresponding set of originals denoted by X . The
fuzzy distribution function of the FRV X̃ is the mapping F̃X̃ : R → F(R), such that

(
F̃X̃ (x)

)
(u) =

{
supX∈X :FX (x)=u infω∈Ω X̃

(
X (ω)

)
if u ∈ [0; 1],

0 otherwise,
(4.9)

where FX (x) is the distribution function of the original X ∈ X on the considered probability
space, for a given level u and ∀x ∈ R.
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The concept of identically and independently distributed FRV are important to show. They
are defined by:

Definition 4.3.3 (Identically distributed fuzzy random variables).

Two fuzzy random variables X̃ and Ỹ are identically distributed on the probability space
(Ω,A,P) if and only if for ∀α ∈ [0; 1],

• the random variables X̃ L
α and Ỹ L

α are identically distributed,

• the random variables X̃ R
α and Ỹ R

α are identically distributed.

As a consequence, one could eventually deduce the following proposition, proved in Kruse
and Meyer (1987).

Proposition 4.3.1 (Identically distributed fuzzy random variables).

Two fuzzy random variables X̃ and Ỹ are identically distributed on the probability space
(Ω,A,P) if for ∀x ∈ R, the fuzzy distribution functions induced by X̃ and Ỹ denoted respectively
by F̃X̃ and F̃Ỹ , coincide.

For the independence of the FRV, we have the following definition.

Definition 4.3.4 (Independent fuzzy random variables).

The fuzzy random variables X̃1, ... , X̃n are said to be mutually or completely independent
fuzzy random variables if and only if for each α ∈ [0; 1],

• the random variables X̃1
L
α, ... , X̃n

L
α are respectively mutually or completely independent

random variables,

• the random variables X̃1
R
α , ... , X̃n

R
α are respectively mutually or completely independent

random variables.

4.3.2 The Féron - Puri and Ralescu approach

For the Puri and Ralescu (1986) - RFV, since the space of fuzzy numbers fails in having an
acceptable total ordering procedure, inducing the distribution function of a RFV is less direct.
Another method has to be proposed. Indeed, we know that a RFV is measurable in the Borel
sense. This latter leads to the following definition of the distribution function as described by
Viertl (2011):
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Definition 4.3.5 (Fuzzy probability distribution of a random fuzzy variable).

Consider a random fuzzy variable X̃ defined on the probability space (Ω,A,P). Let B be a
Borel σ-algebra. For B ∈ B, a fuzzy probability distribution F̃X̃ on the system of the Borel-sets
B, is associated to a MF µF̃X̃

such that ∀x ∈ R

µF̃X̃
(x) =

{
0 if ∀α ∈ [0; 1], x /∈

[
π̃L
α(B); π̃R

α (B)
]
,

sup
{
α ∈ [0; 1] | x ∈

[
π̃L
α(B); π̃R

α (B)
]}

otherwise.
(4.10)

where the sets π̃L
α(B) and π̃R

α (B) defined on the Borel σ-field B are given by:

π̃L
α(B) = P

({
ω ∈ Ω | X̃α ∩ B 6= 0

})
, (4.11)

π̃R
α (B) = P

({
ω ∈ Ω | X̃α ⊆ B

})
. (4.12)

Furthermore, by the Borel assumption on the measurability of the RFV, the definitions of
identically distributed and independent random fuzzy variables, can anologously be deduced.

Definition 4.3.6 (Identically distributed random fuzzy variables).

The two random fuzzy variables X̃ and Ỹ are identically distributed on the probability space
(Ω,A,P) if and only if for any Borel set B of the Borel σ-field denoted by B, the following equality
is verified:

P
(
ω ∈ Ω | X̃α(ω) ⊆ B

)
= P

(
ω ∈ Ω | Ỹα(ω) ⊆ B

)
, ∀α ∈ [0; 1]. (4.13)

Definition 4.3.7 (Independent random fuzzy variables).

The random fuzzy variables X̃1, ... , X̃n are said to be mutually or completely independent
random fuzzy variables, if ∀α ∈ [0; 1], they satisfy the following equality:

P
(
X̃1α(ω) ⊆ B1 , ... , X̃nα(ω) ⊆ Bn

)
= P

(
X̃1α(ω) ⊆ B1

)
· ... · P

(
X̃nα(ω) ⊆ Bn

)
, (4.14)

where B1, ... , Bn are Borel-sets of the Borel σ-algebra B.

From another side, it is expected to be able to write the fuzzy probability distribution func-
tion by the fuzzy probability density function, similarly to the classical approach. This transition
can be shown in the following proposition, as implicitely seen in Viertl (2011).

Proposition 4.3.2. On the probability space (Ω,A,P), the fuzzy probability distribution func-
tion F̃X̃ of the FRV X̃ can also be expressed in terms of the fuzzy probability density function
f̃ as follows: (

F̃X̃

)
α

=
[ ∫

Ω
f̃ L
α(x)dP(x);

∫
Ω

f̃ R
α (x)dP(x)

]
. (4.15)
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4.3.3 Synthesis

To extend the concepts of random variables in the fuzzy environment, it is essential to define
a fuzzy random vector. Despite the fact that the described approaches are conceptually differ-
ent, this definition of the random vector is the same as seen in the subsequent definitions. We
have to remark that in these definitions, the term fuzzy random variable is used to generalize
both the FRV and the RFV.

Definition 4.3.8 (Fuzzy random vector).

Consider a probability space (Ωn,A,P). A fuzzy random vector is a n-dimensional fuzzy
random variable denoted by X̃ such that X̃ : Ωn → F(Rn).

We can easily see that the properties on the independence of two fuzzy random vectors are
exactly the same as the properties related to the random variables following both fuzzy ap-
proaches. In addition, the definition of the identical and independently distributed fuzzy ran-
dom variables induces the definition of a fuzzy random sample.

Definition 4.3.9 (Fuzzy random sample).

The vector of fuzzy random variables X̃ = (X̃1, ... , X̃n) is said to be a fuzzy random sample if
and only if the fuzzy random variables X̃i , i = 1, ... , n are mutually independent and identically
distributed.

4.4 Expectation and variance

Calculating the measures of a given distribution are a prominent step towards analyzing a ran-
dom variable and describing the associated distributions. The common ones are the location,
the dispersion and the asymmetry measures. We are particularly interested in the expecta-
tion and the variance. According to the fuzzy theory, one could suspect that these measures
would analogously be of type fuzzy. However, this idea is not always suitable. The proce-
dure depends on the approach chosen for defining the concept of fuzzy random variable. For
Kwakernaak (1978) and Kruse and Meyer (1987), since the extension of the measures to the
fuzzy environment is based on the extension principle, then these parameters are supposed
to be fuzzy, viewed as fuzzy perceptions of the original parameter. From another side, for Puri
and Ralescu (1986), the extension is based of the ideas of Fréchet (1948) in the context of
random sets as described by Aumann (1965). The parameters are then defined over chosen
metric spaces. Therefore, the expectation is conceived to be fuzzy while the variance is a
scalar. Therefore, we could easily see that the nature of the parameters changes between
both approaches. These are summarized in Table 4.1.

In this section, we give the definitions of the expectation and variance of the fuzzy random
variables of both approaches. The first part of this section is devoted to the fuzzy param-
eters by the Kwakernaak - Kruse and Meyer approach, while the second one treats of the
parameters by the Féron - Puri and Ralescu one.
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Approach Expectation Variance

Kwakernaak - Kruse and Meyer FRV fuzzy fuzzy

Féron - Puri and Ralescu RFV fuzzy scalar

Table 4.1: Nature of the parameters of the considered distributions by approach.

4.4.1 The Kwakernaak - Kruse and Meyer approach

Since the definition of a FRV à la Kwakernaak - Kruse and Meyer approach relies on fuzzy
perceptions of the set of originals, it would then be interesting to define the fuzzy perception
of a parameter of a FRV. We have to mention that practically calculating this fuzzy entity is
perceived as a complicated task. The corresponding definition is given as follows:

Definition 4.4.1 (Fuzzy perception of a parameter of a fuzzy random variable).

Consider a fuzzy random variable X̃ defined on the probability space (Ω,A,P), and seen
as a fuzzy perception of the original random variable X of the set of originals X , such that
X ∈ X . We denote by θ a parameter of a given original of X . The fuzzy perception of θ is the
fuzzy number θ̃ such that

θ̃(t) = sup
X∈X|θ(X )=t

inf
ω∈Ω

X̃
(

X (ω)
)

, t ∈ R. (4.16)

Using this definition, one could define the fuzzy perception of the expectation of a FRV as
seen in the following definition.

Definition 4.4.2 (Fuzzy perception of the expectation of a fuzzy random variable).

Consider now the expectation of a fuzzy random variable to be a fuzzy parameter as de-
scribed in Definition 4.4.1. Thus, it is seen as a fuzzy perception of the traditional expectation.
The fuzzy expectation is then defined by:

Ẽ(X̃ )(t) = sup
X∈X|E(X )=t

inf
ω∈Ω

X̃
(

X (ω)
)

, (4.17)

such that its MF can be written as follows:

µẼ(X̃ )(t) = sup
{
µX̃ (ω) | X ∈ X ,E(X ) = t

}
, ∀ω ∈ Ω and t ∈ R. (4.18)

The fuzzy perception of the expectation can also be written using the α-level sets such that for
∀α ∈ [0; 1], (

Ẽ(X̃ )
)
α

=
[
E(X̃ L

α);E(X̃ R
α )
]
. (4.19)
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Analogously to the fuzzy expectation, Kwakernaak - Kruse and Meyer defended their vision
of a fuzzy-valued variance as the perception of the variance of its original. This latter can be
expressed in the following manner:

Definition 4.4.3 (Fuzzy perception of the variance of a fuzzy random variable).

Consider a fuzzy random variable X̃ defined on the probability space (Ω,A,P). The fuzzy
variance of X̃ denoted by Ṽar(X̃ ) is a fuzzy perception of the variance of the original X which
belongs to the set of originals X , such that

Ṽar(X̃ )(σ2) = sup
X∈X|Var(X )=σ2

inf
ω∈Ω

X̃
(

X (ω)
)

, (4.20)

such that its MF can be given by:

µṼar(X̃ )(σ
2) = sup

{
µX̃ (ω) | X ∈ X , Var(X ) = σ2

}
, ∀ω ∈ Ω and σ ∈ R+. (4.21)

This membership could be also written using the Equation 1.12 as follows:

µṼar(X̃ )(x) = sup
{
αI[(

ṼarX̃ )
)L

α
;
(

Ṽar(X̃ )
)R

α

](x) : α ∈ [0, 1]
}

, (4.22)

where
(
Ṽar(X̃ )

)L
α

= infX∈[X̃ L
α;X̃ R

α ]

(
Var(X )

)
and

(
Ṽar(X̃ )

)R
α

= supX∈[X̃ L
α;X̃ R

α ]

(
Var(X )

)
.

Two important properties of the fuzzy variance can be seen in the following propositions.
The detailed proofs can be found in Kruse and Meyer (1987).

Proposition 4.4.1. Consider a fuzzy random variable X̃ , a fuzzy number Ã of the set F?c(R)
and a real number b ∈ R. If Ṽar(X̃ ) exists, we have that

Ṽar(b · X̃ + Ã) = b2 · Ṽar(X̃ ). (4.23)

Proposition 4.4.2. Consider two fuzzy random variables X̃ and Ỹ associated to the same
probability space (Ω,A,P). If Ṽar(X̃ ) and Ṽar(Ỹ ) exist, we have that

Ṽar(X̃ + Ỹ ) = Ṽar(X̃ ) + Ṽar(Ỹ ). (4.24)

4.4.2 The Féron - Puri and Ralescu approach

For the Puri and Ralescu (1986) approach, the expectation of a random fuzzy variable, so-
called the fuzzy expected value, is based on Fréchet (1948)’s ideas and Aumann’s integral
defined in a Hausdorff topology seen in Aumann (1965).
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Definition 4.4.4 (Expectation of a random fuzzy variable).

Let X̃ be an integrable and bounded random fuzzy variable defined on the probability
space (Ω,A,P). The fuzzy expectation, or fuzzy expected value, also called the Aumann-type
expectation Ẽ(X̃ ) of X̃ is a closed fuzzy set of F(Rn) given by the following family set of α-cuts:(

Ẽ(X̃ )
)
α

= {E(X ) | X : Ω → Rn, X ∈ L1(Ω,A,P), X (ω) = X̃α(ω)}, (4.25)

where
(
Ẽ(X̃ )

)
α

is called the Aumann integral of the random set X̃α, for which
(
Ẽ(X̃ )

)L
α

and(
Ẽ(X̃ )

)R
α

are its respective left and right continuous α-cuts for ∀α ∈ [0; 1]. Note that if the
values of X̃ are defined in F?c(R), then the expectation in the Aumann sense coincides with the
expectation expressed in Equation 4.19, i.e.

(
Ẽ(X̃ )

)
α

=
[
E(X̃ L

α),E(X̃ R
α )
]

=
[ ∫

Ω
X̃ L
α(ω)dP(ω);

∫
Ω

X̃ R
α (ω)dP(ω)

]
, ∀α ∈ [0; 1]. (4.26)

Fréchet (1948) gave another definition of the fuzzy expectation. His version, also called
the Fréchet expectation can be written in terms of an L2 metric ρ such as the ρ2 distance of
Diamond and Kloeden (1990) given in Definition 3.1.1, etc. as follows:(

Ẽ(X̃ )
)

= arg min
Ỹ∈F(Rn)

E
([
ρ(X̃ , Ỹ )

]2), (4.27)

for each α ∈ [0; 1].

In other words, Puri and Ralescu gave a definition of the expectation of a RFV as a general-
ization of the expectation of a random variable on the real space, as mentioned in Diaz and
Gil (1999).

On the other hand, by the definition given for the Fréchet expectation of a random fuzzy
variable, one could similarly construct its variance. In a one dimensional setting, the Fréchet
variance can then be expressed by:

Definition 4.4.5 (Fréchet variance of a random fuzzy variable).

Consider a probability space (Ω,A,P), and a RFV X̃ . Let (Fc(R), d) be a metric space in
the Fréchet sense. If it exists, the variance of X̃ is the real number Var(X̃ ) given by:

Var(X̃ ) = E
([

d(X̃ , Ẽ(X̃ ))
]2), (4.28)

where Ẽ(X̃ ) is the Fréchet expectation given in Definition 4.4.4.

Using this variance expressed in Equation 4.28, it is easy to show that the following properties
are fulfilled.
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Proposition 4.4.3. Consider a random fuzzy variable X̃ , a fuzzy number Ã of the set F?c(R)
and a real number b ∈ R. If Var(X̃ ) exists, then

Var(b · X̃ + Ã) = b2 · Var(X̃ ). (4.29)

Proposition 4.4.4. For two random fuzzy variables X̃ and Ỹ defined on the same probability
space (Ω,A,P). If Var(X̃ ) and Var(Ỹ ) exist, then

Var(X̃ + Ỹ ) = Var(X̃ ) + Var(Ỹ ). (4.30)

Related to the Puri and Ralescu (1986) approach, several authors have exposed differently
the variance of random variables in such environment. Note for instance, Nather (2006) who
gave a scalar multiplication giving a clear expression of the covariance of a random fuzzy
variable, and deduced its variance. In a simpler way, Feng, Hu, and Shu (2001) showed other
ways of expressing the variance and covariance of random fuzzy variables made in terms of
the α-cuts of the FRV.

4.4.3 Synthesis

To sum up, even though the nature of the different variance measures related to both ap-
proaches are different, an essential coincidence exists. Thus, both approaches have exactly
their expectations seen as a fuzzy parameter. The expectations of both the Kwakernaak -
Kruse and Meyer and the Féron - Puri and Ralescu approaches satisfy the same usual prop-
erties such that:

Proposition 4.4.5. For a fuzzy random variable X̃ such that its fuzzy expectation exists, a
fuzzy number Ã in F?c(R) and a real value a ∈ R, we have that

Ẽ(a · X̃ + Ã) = a · Ẽ(X̃ )⊕ Ã. (4.31)

Proposition 4.4.6. For two fuzzy random variables X̃ and Ỹ associated to the same proba-
bility space (Ω,A,P), if their fuzzy expectations exist, we have that

Ẽ(X̃ + Ỹ ) = Ẽ(X̃ )⊕ Ẽ(Ỹ ). (4.32)

The proofs of these latter can be found in Kruse and Meyer (1987). However, for the variance
measure the case is different. As instance, following the Kwakernaak - Kruse and Meyer, the
variance is considered to be of fuzzy nature, while for the Féron - Puri and Ralescu, it is mainly
a scalar. Thus, their properties are evidently expected to be different.
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4.5 Estimators of the fuzzy distributions parameters

We often use a variety of measures to describe and summarize a given data set. A location
measure is a value that best represents a certain location characteristic of the group of obser-
vations, while a dispersion measure quantifies the variability between these observations. A
further description of the data includes the asymmetry and kurtosis measures known respec-
tively as the skewness and the kurtosis. These measures reflect the symmetry and obviously
the asymmetry of the distribution, often compared to the standard normal one. In the case of
a fuzzy analysis, particular definitions of these measures should be considered.

A fundamental task is to use estimators of the theoretical parameters which best charac-
terizes a given fuzzy distribution. A condition is then to propose unbiased ones. Several refer-
ences have discussed this subject. We note for example, Kwakernaak (1978) who expressed
an unbiased estimator of the fuzzy expectation. For the median of vague data, Grzegorzewski
(1998b) gave the definition of the concept of the median in the fuzzy context. In addition, the
notion of an estimator of the fuzzy variance has been very appealing to investigate through
decades since its nature is directly related to the chosen approach of defining random vari-
ables. Based on this fact, different researches have been constructed. As instance, Akbari
and Rezaei (2007) and Akbari and Khanjari Sadegh (2012) gave a uniformly minimum vari-
ance unbiased fuzzy estimator.

We expose below few measures only. We are mainly interested in the sample mean of a
fuzzy distribution. This estimator of the expectation is known to be fuzzy in both approaches.
Furthermore, since the variance is at the end a central moment, we will discuss about the
scalar central moments of a fuzzy distribution based on Fréchet’s ideas. These moments will
directly lead us to the definition of the skewness and the kurtosis of a fuzzy distribution in
the Fréchet sense. Finally, for the approach of Kwakernaak (1978) where the variance — and
evidently the moments — are fuzzy-valued, fuzzy approximations can eventually be proposed.
This case will not be treated explicitely in the theoretical part of this thesis.

4.5.1 The mean

Kwakernaak (1978) proved that the so-called fuzzy sample mean is an unbiased estimator
of the fuzzy expectation of a fuzzy random variable. First, let us define an unbiased fuzzy
estimator of a fuzzy parameter:

Definition 4.5.1 (Unbiased fuzzy estimator).

Consider a fuzzy point estimator ˆ̃θ of a given fuzzy parameter θ̃. The fuzzy estimator ˆ̃θ is
said to be unbiased if and only if for a given θp ∈ [ ˆ̃θL

α; ˆ̃θR
α ] and for all α ∈ [0; 1], there exists a

value θ0 ∈ θ̃α such that
E(θp) = θ0.
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We could also define the fuzzy sample mean written by:

Definition 4.5.2 (Fuzzy sample mean).

Consider a fuzzy variable X̃i , i = 1, ... , n. The fuzzy sample mean of the fuzzy sample
{X̃i}ni=1 denoted by X̃ is given by

X̃ =
1
n

n∑
i=1

X̃i , (4.33)

such that its α-cuts are as follows:

X̃α =
[1

n

n∑
i=1

X̃i
L
α,

1
n

n∑
i=1

X̃i
R
α

]
. (4.34)

Similarly to the classical statistical theory, the sample mean in the fuzzy environment is
known to be an important parameter since it can be used in many analyses. An interesting
lemma related to the SGD shown in Section 3.6 is expressed by:

Lemma 4.5.1. Consider a fuzzy sample {X̃i}ni=1 with its fuzzy sample mean denoted by X̃ .
The following expression is true:

dSGD(X̃ , 0̃) = dSGD(X̃ , 0̃), (4.35)

where dSGD(X̃ , 0̃) is the mean of the SGD measures of the fuzzy sample measured from the
fuzzy origin.

Proof. Since the SGD is an additive and distributive measure, the proof of this lemma be-
comes direct such that

dSGD(X̃ , 0̃) = dSGD

(1
n

n∑
i=1

X̃i , 0̃
)

=
1
n

dSGD

( n∑
i=1

X̃i , 0̃
)

=
1
n

n∑
i=1

dSGD

(
X̃i , 0̃

)
= dSGD(X̃ , 0̃).

The fuzzy sample mean is seen as an estimator of the expectation Ẽ(X̃ ) of the fuzzy
variable X̃ , thanks to the following convergence law seen in Kruse (1982) and Colubi, López-
Diaz, et al. (1999):

Proposition 4.5.1 (Law of large numbers).

Consider a probability space (Ω,A,P). Let {X̃i}ni=1 be a random fuzzy sample, composed
by n integrable, bounded, and identically distributed and mutually independent random fuzzy
variables. The almost surely convergence in probability of the fuzzy sample mean towards the
expectation of the fuzzy sample with respect to the Hausdorff metric is verified since

lim
n→∞

P
(
δ∞
(
X̃ ,E(X̃ )

)
< ε
)

= 1, almost surely, (4.36)

where δ∞ is the Hausdorff metric given in Equation 3.2, E(X̃ ) is the fuzzy expectation of the
distribution of the random sample with a finite variance, and X̃ is the fuzzy sample mean. Note
that the Hausdorff metric applied to compute the distance of a RFV to the fuzzy origin, is also
a random fuzzy variable.
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Inversely, the subsequent lemma can be easily verified.

Lemma 4.5.2. If for a sequence of mutually independent and identically distributed random
fuzzy variables X̃i , i = 1, ... , n defined on the probability space (Ω,A,P), it exists a fuzzy set
Ã ∈ Fc(Rp) such that limn→∞ δ∞

(
X̃ , Ã

)
= 0, almost surely in probability, then Ã is nothing but

the expectation of X̃ while this latter is integrable and bounded.

4.5.2 The sample moments

Similarly to the Fréchet variance of a random fuzzy variable, one could eventually propose the
following definition of central sample moments in the Fréchet sense.

Definition 4.5.3 (Central sample moments of a random fuzzy variable).

Consider a probability space (Ω,A,P). Let X̃ be a random fuzzy variable, and (F?c(R), d) a
metric space. The k -th Fréchet-type central sample moment of X̃ denoted by νk (X̃ ) are the
real values given by:

νk (X̃ ) = E
([

d(X̃ , Ẽ(X̃ ))
]k). (4.37)

Furthermore, νk can be almost surely in probability expressed by:

νk (X̃ ) =
1
n

n∑
i=1

[
d
(
X̃i , X̃

)]k
, (4.38)

where n is the number of observations, X̃ is the fuzzy sample mean and d is a chosen dis-
tance. In particular, the first central moment is known to be null, while the second one denoted
by ν2 is nothing but the Fréchet-variance as described in Definition 4.4.5. It is given by:

ν2(X̃ ) =
1
n

n∑
i=1

[
d
(
X̃i , X̃

)]2
. (4.39)

Therefore, the definition of the concept of a variance of a RFV à la Puri-Ralescu differs in
terms of the chosen metric d . It is the same for the definition of the expectation.

In a similar way, one could propose the moments denoted by ν ′k of a random fuzzy vari-
able. They can be written by:

ν ′k (X̃ ) =
1
n

n∑
i=1

[
d(X̃i , 0̃)

]k
. (4.40)

A direct consequence of the previous definition is to see that, for a given metric d , we are now
able to construct simultaneously the asymmetry and kurtosis measures using specific central
moments, notably the second, third and fourth one.
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Furthermore, calculating a dispersion measure such as the variance is seen as an essen-
tial task. Contrariwise, this latter could eventually face multiple problems in the computation
process. A prominent way to calculate a variance is thus by computing its estimator. We usu-
ally prefer an unbiased one. Using chosen distances, researchers tended to give more often
unbiased estimators of the variance of a RFV à la Féron - Puri and Ralescu. As for us, we
proposed in Berkachy and Donzé (2019a) an unbiased scalar estimator of the variance with
respect to the SGD. It is written in the following manner:

Proposition 4.5.2 (Unbiased estimator of the variance with respect to the SGD).

Consider a random fuzzy sample X̃ = (X̃1, ... , X̃n) with X̃i , i = 1, ... , n independent and
identically distributed, and associated to the probability space (Ω,A,P). An unbiased estimator
S2

SGD of the variance Var(X̃ ) of the distribution of X̃i with respect to the SGD can be expressed
by:

S2
SGD =

1
n − 1

n∑
i=1

[
dSGD(X̃i , X̃ )

]2
, (4.41)

where X̃ is the fuzzy sample mean shown in Definition 4.5.2.

Proof. Consider X̃ ∈ Fn(R) to be the fuzzy random sample. We know that if X̃i is a random
fuzzy variable, then dSGD(X̃i , 0̃) is a random variable on R, and S2

dSGD
is also a random variable

such that

S2
dSGD

=
1

n − 1

n∑
i=1

(
dSGD(X̃i , 0̃)− dSGD(X̃ , 0̃)

)2
. (4.42)

Moreover, an estimator is said to be unbiased if its expectation is nothing but the parameter to
estimate itself. The entity S2

dSGD
can then be regarded as an unbiased estimator of the classical

variance of the crisp random variable dSGD(X̃i , 0̃). Thus, we could write the following equality:

E[S2
dSGD

] = Var(dSGD(X̃i , 0̃)). (4.43)

In the same spirit, let us consider now that the variance of a fuzzy random variable is
defined in the Fréchet sense using the SGD. Then, for our case, we have to prove that

E[S2
SGD] = Var(X̃ ).

Then, from Proposition 3.6.1 and Lemma 4.5.1, we have the following:

E[S2
SGD] = E

[ 1
n − 1

n∑
i=1

d2
SGD(X̃i , X̃ )

]
= E
[ 1

n − 1

n∑
i=1

(
dSGD(X̃i , 0̃)− dSGD(X̃ , 0̃)

)2
]
,

= E
[ 1

n − 1

n∑
i=1

(
dSGD(X̃i , 0̃)− dSGD(X̃ , 0̃)

)2
]
,

= E[S2
dSGD

] = Var
(
dSGD(X̃ , 0̃)

)
= dSGD

(
Var(X̃ ), 0̃

)
= Var(X̃ ).

We remind that the variance denoted by Var(X̃ ) in this context is a scalar, then by Definition
3.6.1 we have that dSGD

(
Var(X̃ ), 0̃

)
= Var(X̃ ).
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We note that the abovementioned proposition can eventually be seen as a definition of the
sample variance based on the expected value of a fuzzy number.

It is often useful to express the variance of a fuzzy random sample for which we use
particular geometric symmetrical shapes as given in the following proposition.

Proposition 4.5.3 (Unbiased estimators of the variance with respect to the SGD — Triangular
and trapezoidal symmetrical case).

Let X̃ = (X̃1, ... , X̃n) be a fuzzy random sample such that X̃i , i = 1, ... , n are independent
and identically distributed. Suppose that these latter are modelled by triangular or trapezoidal
symmetrical fuzzy numbers. According to the chosen modelling shapes, the unbiased estima-
tor of the fuzzy variance denoted by S2

SGD is a real number expressed by:

• If the fuzzy random sample X̃ composed by X̃i , i = 1, ... , n is modelled by triangular
symmetrical fuzzy numbers, X̃i = (pi , qi , ri ), with the corresponding fuzzy sample mean
X̃ given by the tuple X̃ = (pm, qm, rm), then the unbiased estimator of the variance is as
follows:

S2
SGD =

1
n − 1

n∑
i=1

(
qi − qm

)2
. (4.44)

• In the case of modelling with trapezoidal symmetrical fuzzy numbers given by X̃i =
(pi , qi , ri , si ), the fuzzy sample mean is written by X̃ = (pm, qm, rm, sm). Then, the un-
biased estimator of the variance is given by:

S2
SGD =

1
n − 1

n∑
i=1

(qi + ri

2
− qm + rm

2

)2
. (4.45)

Proof. From Definition 3.6.4, we have that the SGD of a triangular fuzzy number X̃i given by
the tuple (pi , qi , ri ) is

dSGD(X̃i , 0̃) =
1
4

(pi + 2qi + ri ).

A triangular symmetrical fuzzy number verifies the following property:

pi + ri = 2qi .

Consequently, the fuzzy sample mean verifies the property pm + rm = 2qm, since it is also
modelled by a triangular symmetrical fuzzy number. The unbiased estimator S2

dSGD
of the

variance will then be written by:

S2
SGD =

1
n − 1

n∑
i=1

d2
SGD(X̃i , X̃ ) =

1
n − 1

n∑
i=1

(
dSGD(X̃i , 0̃)− dSGD(X̃ , 0̃)

)2,

=
1

n − 1

n∑
i=1

(1
4

(pi + 2qi + ri )−
1
4

(pm + 2qm + rm)
)2

,

=
1

n − 1

n∑
i=1

1
16

(
(4qi )2 + (4qm)2 − 2(4qi )(4qm)

)
=

1
n − 1

n∑
i=1

(
qi − qm

)2
.
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Similarly, if the fuzzy random sample is modelled by trapezoidal symmetrical fuzzy numbers,
i.e. X̃i = (pi , qi , ri , si ), i = 1, ... , n, the following property holds:

pi + si = qi + ri .

Then, we have that

S2
SGD =

1
n − 1

n∑
i=1

d2
SGD(X̃i , X̃ ) =

1
n − 1

n∑
i=1

(
dSGD(X̃i , 0̃)− dSGD(X̃ , 0̃)

)2,

=
1

n − 1

n∑
i=1

(1
4

(pi + qi + ri + si )−
1
4

(pm + qm + rm + sm)
)2

,

=
1

n − 1

n∑
i=1

(qi + ri

2
− qm + rm

2

)2
.

Analogously to the second central sample moment, i.e. the variance, one could express the
unbiased estimators of all other k − 1 central sample moments (eventually the sample mo-
ments) with respect to the SGD or other convenient metrics.

For the approach by Kwakernaak - Kruse and Meyer, even if we consider the fuzzy k-th
central moment of a FRV X̃ as the direct extension of the classical real-based moment to the
fuzzy environment, written by:

ν̃k (X̃ ) =
1
n

n∑
i=1

(X̃i 	 X̃ )k , (4.46)

we can clearly observe two main problems for calculating this fuzzy parameter:

• the fuzzy difference between the occurence X̃i and the fuzzy expectation, eventually the
fuzzy sample mean;

• the fuzzy product.

These problems are due to the complexity faced in the arithmetic fuzzy operations. There-
fore, an approximation is often needed. One could use different types of operators to approx-
imate these fuzzy arithmetics in a way preserving the fuzzy nature of the parameter. One
could eventually use the propositions 3.7.6 and 3.7.7 to accomplish this task. Many of the
properties of such operators can be found in Grzegorzewski and Mrowka (2005). On the other
hand, unbiased estimators are usually required. These estimators will intuitively be fuzzy in
this case. References have already discussed about finding estimators of fuzzy moments. We
noted for instance in Berkachy and Donzé (2018a) the different ways of finding a near fuzzy
number in the purpose of facilitating the estimation of the fuzzy variance. However, Akbari and
Khanjari Sadegh (2012) gave a method for calculating a Fuzzy Uniformly Minimum Variance
Unbiased estimators but based on the SGD and on another L2 metric. In this script, we limit
ourselves to the real-valued case of estimators for the moments and evidently the variance.
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4.6 Simulation

We are interested now in showing the use of the Fréchet type variance and its estimator,
and in the skewness and excess of kurtosis measures. We remind that these measures can
respectively be written in terms of the central sample moments by

ν3

ν
3/2
2

and
ν4

ν2
2
− 3.

For this purpose, we develop a simulation based on the following scenario:

At a museum, a particular painting is getting a lot of attention. For this purpose and in
order to understand the actual point of view of the visitors about this painting, we would like to
collect the rating of each person. The idea is to ask each visitor to rate the painting on a scale
between 1 and 10 (seen as a Likert scale between very bad to very good).

However, the points of view of people for this task are mitigated since a given person can find
the painting "good" and "bad" at the same time and from different perspectives. In addition,
the rating "good" of a given visitor could eventually be different from a rating "good" of another
one regarding their tastes of art. Consequently, in this case the fuzziness is present in the
perception of the people. We intend to model the situation by a FRV denoted by R̃. As
discussed in Section 4.2, two approaches defining a fuzzy random variable exist, depending
on our motivation for each of them. For sake of illustration of these approaches, we would like
to use them both for our simulation. Thus, we propose a first set of simulation setups where
we consider the case as epistemic, i.e. where we model the fuzzy perception of the random
rating of the people, and a second case set where we suppose that our randomly chosen data
are fuzzy by nature, i.e. the ontic case. Therefore, for a sample size N going from 1000 to
10000 by step of 100, the two cases of rating are exposed in the following setups:

• Case 1: We ask each person to rate the painting by giving a number between 1 and
10, and we will model their perception of the rating by corresponding triangular fuzzy
numbers given by the following arbitrary tuples:

R̃1 = (1, 1, 1.5), R̃2 = (1, 2, 3.5), R̃3 = (1, 3, 4), R̃4 = (3, 4, 6), R̃5 = (4, 5, 6),
R̃6 = (5, 6, 7), R̃7 = (5, 7, 8), R̃8 = (7, 8, 8.5), R̃9 = (7.5, 9, 10), R̃10 = (9.5, 10, 10).

For this simulation and considering the sample of size N, we randomly generate a data
set of real integers from 1 to 10 representing the rating of a given individual. Note that
no requirements are fixed on the distribution of this data set.

• Case 2: We ask each visitor to draw himself a triangular fuzzy number and place it on
the x-y axis, for which some restrictions were required such that the triangle should be
strictly positive where it belongs to the interval [1; 10] on the x-axis.

In practice, we randomly generated a vector of real data (not necessarily integers) from 1
to 10 constituting the core set of the triangular fuzzy numbers which represent the fuzzy
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ratings. Correspondingly to each value of the generated vector, we chose two real num-
bers: one smaller and one bigger. In addition, multiple conditions have been fixed. As
instance, each chosen value should not exceed the value 3 on each of both sides of the
core set, such that the amplitude (spread of the fuzzy number) of the support set should
not exceed the value 6. A last crucial condition is that on the y-axis, the triangle should
attain the value 1. For example, the following fuzzy numbers could not be accepted for
such data set: (0, 4.2, 4.5), (−1.5, 1.3, 2), while the fuzzy numbers (1.2, 2.65, 4.05) and
(4.37, 5.25, 7.19) might represent ratings with respect to the pre-defined conditions.

We mention that we used triangular fuzzy numbers in these cases because of their simplicity.
By this choice of the shape, we intended to avoid any influence of the complexity of the shapes
modelling the fuzziness contained in the data set.

Suppose that we construct synthetic data sets, generated randomly following the previous
requirements. The purpose is to calculate the variance, the skewness and the kurtosis mea-
sures for the different constructed distributions. By these calculations, the idea is to investigate
two main objectives:

• the influence of the size of the chosen sample on the statistical measures;

• the main differences between using the distances and metrics described in Chapter 3,
in terms of these measures.

From the results of our iterative simulations, a first finding related to the first objective is that
in our current case, the variance, the skewness and the kurtosis measures are independent of
the size of the sample. This result can be seen as a less time-consuming property. As such,
we expose in this example the data sets of size 1000 and 10000 observations only.

According to the second objective, we will use all of the distances proposed in Chapter 3 in
order to calculate the considered measures. The idea is to investigate the difference between
the use of each one of them, and to highlight clear tendencies. We mention that for the first
case, the use of these distances is seen as a crisp approximation of the fuzzy operations,
while in the second case it is based on the Fréchet proposition. The results are exposed in
Table 4.2.

We can clearly see that the variance and the kurtosis are slightly different between all
distances. However, for the skewness measure, an interesting conclusion arised from these
computations: not all the skewness measures of all metrics are the same. Indeed, the skew-
ness by the non-directional distances are close, while the ones by the directional distances are
very close as well. In addition, the directional distances induce a skewness measure close to
the value 0, while the others are not. This result is only applicable for the skewness, obviously
not for the variance and the kurtosis for a simple calculation reason: the skewness is calcu-
lated by an odd rank of central moments, paving the way to the importance of the directionality
of the distances, while the kurtosis and the variance are computed by means of even rank
central moments. From another side, since our proposed distances dθ

?

SGD and dGSGD coincide
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with the others, then we can clearly validate their use and see their relevance compared to the
ones already existing. In addition, if we would like to compare between the Case 1 and the
Case 2, one could say that no clear interpretations can be done on the differences between
both of them. The obtained results based on these cases are quite similar. Finally, note that
the calculated skewness for the data sets of both cases are highlighted in Figure 4.1.

precise ρ1 ρ2 dBertoluzza dMid/Spr ρ3
∗ δ3,1

2

∗
dl−wabl/rdev/ldev dSGD dSGD

θ∗

dGSGD

Case 1
Case 2

Skewness of Cases 1 and 2

Chosen distance

0.
0

0.
5

1.
0

1.
5

Figure 4.1: The skewness - Case 1 and Case 2 with a 10000 sized-sample - Section 4.6
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Type of distance
Variance

Case 1 Case 2

Skewness

Case 1 Case 2

Kurtosis

Case 1 Case 2

ρ1
1000

10000

7.7667 6.4153

7.7901 6.6266

1.3122 1.2653

1.2992 1.2464

-1.1733 -1.3042

-1.2127 -1.3597

ρ2
1000

10000

7.8456 6.5652

7.8670 6.7702

1.3101 1.2548

1.2973 1.2371

-1.1780 -1.3292

-1.2166 -1.3814

dBertoluzza
1000

10000

7.7987 6.4769

7.8214 6.6876

1.3109 1.2620

1.2980 1.2434

-1.1765 -1.3128

-1.2154 -1.3674

dmid/spr
1000

10000

7.7987 6.4769

7.8214 6.6876

1.3109 1.2620

1.2980 1.2434

-1.1765 -1.3128

-1.2154 -1.3674

ρ?3
1000

10000

9.0055 7.7765

9.0076 7.9578

1.3102 1.2392

1.2982 1.2224

-1.1686 -1.3583

-1.2038 -1.4084

δ?
3, 1

2

1000

10000

7.9190 6.7047

7.9385 6.9046

1.3086 1.2468

1.2959 1.2299

-1.1811 -1.3485

-1.2191 -1.3986

dl−wabl/ldev/rdev
1000

10000

7.7930 6.4563

7.8157 6.6668

1.3115 1.2638

1.2985 1.2450

-1.1749 -1.3083

-1.2140 -1.3634

dSGD
1000

10000

7.7667 6.4019

7.7901 6.6150

0.1003 -0.0620

0.0095 -0.0154

-1.1733 -1.2973

-1.2127 -1.3540

dθ
?

SGD
1000

10000

7.7842 6.4350

7.8072 6.6460

1.3119 1.2657

1.2989 1.2466

-1.1740 -1.3038

-1.2132 -1.3596

dGSGD
1000

10000

7.7842 6.4350

7.8072 6.6460

0.0998 -0.0610

0.0093 -0.0153

-1.1740 -1.3038

-1.2132 -1.3596

Table 4.2: Simulation results of the Cases 1 and 2 - Section 4.6





Chapter 5

Fuzzy Statistical Inference

The objective of exposing the previous chapters is to apply fuzzy statistical inference methods.
We know that in a given scientific experiment, common tasks of a researcher are often divided
into two steps: the first one is to postulate a hypothesis based on a preliminary view of the
practitioner, and the second one is to reject or falsify this hypothesis. This procedure is called
a statistic test, where in a classical context, a null hypothesis and an alternative one are
mandatory. If such hypothesis is doubtly false, then it will be rejected. Otherwise, it will not be
rejected, at a certain significance level.

When fuzziness is taken into account, the traditional methods of testing hypotheses might
be in many cases inadequate. These methods are only valid in case of precise data. If this
latter is not present, the complexity of such situations increases. Many researches have been
interested to study the extension between different classical methods and their homologues
in the fuzzy theory. Researchers in the field considered that this uncertainty can mainly have
two sources: the data and the hypotheses. Right after the introduction of the concept of fuzzy
sets and fuzzy probabilities by Zadeh (1965) and Zadeh (1968), corresponding fuzzy statistical
tests for given parameters were proposed for one or both of these sources.

It is known that to accomplish this task of testing hypotheses, one could eventually con-
struct confidence intervals for the required parameter, and use it in a hypothesis testing proce-
dure. Statistical methods based on the confidence intervals are widely used for such problems.
In compliance with the fuzzy theory, statistical tests based on fuzzy confidence intervals were
displayed. We note for example Grzegorzewski (2000) and Grzegorzewski (2001) who pro-
posed an approach of testing hypotheses by fuzzy confidence intervals where he considered
the data as fuzzy. This hypotheses test leads to getting fuzzy decisions. These latter are inter-
preted by the so-called degree of conviction, i.e. a degree of acceptability of the hypotheses.
We highlight that this degree is exclusively related to the statement of "not rejecting" a given
hypothesis. We proposed in Berkachy and Donzé (2019d) a hypotheses testing procedure
where we considered that the fuzziness not only comes from the data, but also from the hy-
potheses. The fuzzy decisions were finally defuzzified in order to get interpretable decisions.

93
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Nevertheless, the construction of the confidence intervals themselves presents multiple
difficulties. The traditional way of this calculation is easy to use, but very limited in terms
of parameters and distributions. In the same way, there exists many cases which are not
elaborated enough to deal with fuzzy contexts. When uncertainty increases, the "classical"
interval has to be determined by means of considering every single value of the support set of
the involved fuzzy numbers. Different researchers have already proposed methods estimating
confidence intervals in the fuzzy environment: Kruse and Meyer (1987) gave a theoretical
definition of fuzzy confidence intervals; Viertl (2011) and Viertl and Yeganeh (2016) proposed
a definition of the concept of confidence regions. They were mainly interested in applying them
in a Bayesian context; Kahraman, Otay, and Öztayşi (2016) presented different approaches
of the construction of fuzzy confidence intervals developed between 1980 and 2015, and they
proposed the notion of the so-called hesitant fuzzy confidence intervals; Couso and Sanchez
(2011) exposed a method based on inner and outer approximations of confidence intervals
for fuzzy data. However, even with the wide spectrum of available approaches, the main
limitation of the expressions reflected by a dependence to specific parameters with defined
distributions, persists. It is then interesting to develop a practical unified approach which
generalizes all possible cases of fuzzy confidence intervals. As such, in Berkachy and Donzé
(2019c), we proposed a practical procedure of constructing fuzzy confidence intervals by the
likelihood ratio method. This is seen as an efficient tool in the construction of confidence
intervals. As instance, in the fuzzy environment, Gil and Maria Rosa Casals (1988) showed
the extension of the likelihood ratio test to the case where the imprecision is contained in the
data. In some other contexts, Denoeux (2011) gave a maximum likelihood estimation using
the Expectation-Maximization algorithm from fuzzy data. Note that the contribution shown in
Berkachy and Donzé (2019c) enabled us to introduce the obtained confidence interval in the
process of fuzzy hypotheses testing.

A decision for a given test can also be made using the concept of the p-value. The idea
is to compare it to the significance level of the test. The p-value is defined as the probability
of observing a specific sample given that the defended null hypothesis is actually true. Re-
searchers have treated the notion of the p-value in the fuzzy context. As such, Filzmoser
and Viertl (2004) proposed a definition of the fuzzy p-value based on the assumption that the
fuzziness of the tests is contained in the data. They asserted as well that similarly to the
process of decision of Neyman-Pearson, a three-levels decision rule can be defined. Thus,
they supposed the existence of a region of no rejection of both hypotheses. Afterwards, Par-
chami, Taheri, and Mashinchi (2010) considered a similar context but they asserted that the
uncertainty is a matter of hypotheses rather than data. Therefore, in Berkachy and Donzé
(2019b), we gave a generalization of both definitions where we provided a method based on
the treatment of the fuzziness that might be contained in the data and/or in the hypotheses.
The outcome of this method is a fuzzy p-value, which might be in many cases difficult to in-
terpret. Even though the defuzzification operation is considered to be a loss of information, a
transformation in the nature of the p-value can be useful. We proposed then to defuzzify the
obtained fuzzy p-value in order to get an interpretable crisp decision. In addition, Berkachy
and Donzé (2017a) and Berkachy and Donzé (2017c) showed a method for this operation
based on the signed distance operator.

In this chapter, we first show the definition of a given fuzzy hypothesis. We after display
the construction of a given fuzzy confidence interval. Then, the process of construction of a
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fuzzy confidence interval (FCI) by the likelihood ratio is exposed. Moreover, we show in details
the hypotheses testing approaches, based on these intervals, followed by the fuzzy p-values.
Both the fuzzy decisions and the fuzzy p-values are afterwards defuzzified. We propose to
defuzzify them by the SGD operator defined in 3.6 from one side, and from the GSGD given
in 3.7 from another one. The purpose is to sort out the main differences and drawbacks that
might occur when using both distances in such contexts. All these procedures are illustrated
by multiple detailed examples. Applications on a financial data set are also provided. In
addition, a discussion on the comparison between the classical and the fuzzy approaches are
given. The chapter is closed by some guidelines on the use of each one of both approaches.
The choice between the classical and the fuzzy hypotheses testing approaches should be
well-argued.

Let us first briefly recall the idea behind the classical hypothesis testing approach.

5.1 Testing hypotheses by the classical approach

Consider a population described by a probability distribution Pθ depending on the parameter θ,
and belonging to a family of distributions D = {Pθ : θ ∈ Θ}. Let X1, ... , Xn be a random sample.
By a classical hypothesis testing approach, and for a given parameter θ defined on the space
Θ, we would like to test a null hypothesis denoted by H0, H0: θ ∈ ΘH0 , against an alternative
one denoted by H1, H1: θ ∈ ΘH1 , on the so-called significance level δ. We remind that this
latter is defined as the probability of rejecting the null hypothesis H0 given it is true (error type
I). Note that ΘH0 and ΘH1 are subsets of the parameter space Θ such that ΘH0 ∩ΘH1 = ∅.

A testing problem is nothing but a decision one. A natural decision of such tests made on
both hypotheses mainly relies on one of the two following possibilities:

”reject the null hypothesis H0” or ”not reject the null hypothesis H0”.

We note that contrariwise, Neyman and E. S. Pearson (1933) highlighted a three decision
procedure where they considered the possibility of emitting one out of three decisions. Their
third decision is then:

"the null and the alternative hypotheses are neither not rejected nor rejected".

From another side, it is known that issuing a decision relies on the so-called test statistic
defined as a function of the considered sample. Let us denote by T a test statistic such that
T : Rn → R. Since the natural decisions of the test are mainly divided into two decisions, i.e.
rejecting or not the null hypothesis, the space of possible values of the test statistic T is also
divided into two regions: a rejection region called R and its complement Rc . However, it is
often usual for us to consider a specific form of the rejection region R based on the defined
alternative hypothesis H1. We recall the following three typical forms of the hypotheses test
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dilemma. They are named as the "left one-sided", the "right one-sided" and the "two-sided".
The three test forms are given respectively by:

1. H0 : θ ≥ θ0 vs. H1 : θ < θ0; (5.1)
2. H0 : θ ≤ θ0 vs. H1 : θ > θ0; (5.2)
3. H0 : θ = θ0 vs. H1 : θ 6= θ0; (5.3)

where θ is the parameter to test and θ0 a particular value of this parameter. The purpose
is then to decide whether to reject or not the null hypothesis H0. Decision rules based on
the statistic T are displayed in order to make a decision. Thus, respectively to the test forms
previously given, we reject H0 if:

1. T ≤ tl (left one-sided test); (5.4)
2. T ≥ tr (right one-sided test); (5.5)
3. T /∈ (ta, tb) (two-sided test); (5.6)

where tl , tr , ta and tb are appropriately chosen quantiles of the distribution of T .

In other words, this testing problem is finally seen as a decision problem based on the
statistic T . Equivalently to Equations 5.4, 5.5 and 5.6, DeGroot and Schervish (2012) asserted
that at a significance level δ, the conditions on the statistic T of rejecting the null hypothesis
are given in terms of the probability P under the null hypothesis, by the following:

1. PH0(T ≤ tl ) = δ, (5.7)
2. PH0(T ≥ tr ) = δ, (5.8)

3. PH0(T ≤ ta) = PH0(T ≥ tb) =
δ

2
, (5.9)

where for the third case, a symmetrical probability density function is considered.

It is then clear to see that if the value of the test statistic given by t = T (X1, ... , Xn) falls into the
rejection region R, then we tend to reject the null hypothesis H0.

Another idea of having a decision regarding our hypotheses is to construct confidence
intervals around the parameter θ. Suppose we are interested by the mean, we will then con-
struct a confidence interval around it in a way to get for a particular test, the probability 1 − δ
that the mean would be contained in this interval. We call 1− δ the coverage probability or the
confidence level.

Let us now give an example to illustrate the construction of such intervals. Consider the
random sample X1, ... , Xn where Xi and Xj , i 6= j , are independent identically distributed and
taken from the well-known normal distribution N(µ,σ) where σ is known. Using the confidence
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intervals around the mean µ and for a specific value µ0, we would not reject the null hypothesis
"H0: µ = µ0" if:

1. µ0 ≥ X − u1−δ
σ√
n

(left one-sided test); (5.10)

2. µ0 ≤ X + u1−δ
σ√
n

(right one-sided test); (5.11)

3. X − u1− δ2

σ√
n
≤ µ0 ≤ X + u1− δ2

σ√
n

(two-sided test), (5.12)

where X is the sample mean, u1−δ (respectively u1− δ2
) is the 1− δ (respectively 1− δ

2 ) quantile
of the normal distribution at the significance level δ, n is the sample size and σ the standard
deviation.

One could calculate the so-called p-value, indicating whether to reject or not the hypoth-
esis H0. This concept denoted by p is defined by Everitt (2006) as "The probability of the
observed data (or data showing a more extreme departure from the null hypothesis) when the
null hypothesis is true". One can express the respective p-values p of the tests 5.4, 5.5 and
5.6 by means of the probability distribution P depending on the null hypothesis H0 as follows:

1. p = PH0(T ≤ t0); (5.13)
2. p = PH0(T ≥ t0); (5.14)
3. p = 2 min[PH0(T ≤ t0), PH0(T ≥ t0)], (5.15)

where t0 is the observed value of the test statistic T .

Once we calculate the p-value related to a given null hypothesis, we would be able to
decide correspondingly to the following decision rule.

Decision rule. The decision is based on comparing the p-value to the pre-defined significance
level δ in the following sense:

• We reject the null hypothesis H0, if the p-value is smaller than δ;

• We do not reject it, otherwise.

5.2 Fuzzy hypotheses

Despite the fact that the previous procedures are powerful in testing hypotheses, they could
be in many cases limited. Thus, if uncertainty is taken into account in the data sets or in the
hypotheses we define, the classical methods become less convenient. Methods taking into
account the fuzziness in both components should be shown. We displayed in the previous
chapters the definitions and properties of modelling vague data by fuzzy methods. Let us now
define a hypothesis modelled by such methods.



98 Chapter 5. Fuzzy Statistical Inference

Definition 5.2.1 (Fuzzy Hypothesis).

Consider a parameter θ defined on the space Θ. A fuzzy hypothesis denoted by H̃ on
the parameter θ, also written as "H̃ : θ is H", is a fuzzy subset of Θ and associated to the
membership function µH̃ .

We note that a fuzzy hypothesis can be seen as a generalization of the precise hypothesis
simply denoted by H, for which µH̃ = I{θ∈Θ}. For the fuzzy context, the hypotheses are often
modelled by common fuzzy numbers similarly to the ones given in Section 1.3. For example, if
we would like to model them by simple triangles, consider three real values p < q < r ∈ R. By
respect to the tests 5.1, 5.2 and 5.3, the fuzzy hypotheses seen in Figure 5.1 can be written
by:

1. H̃OL = (p, q, q) (fuzzy left one-sided hypothesis); (5.16)

2. H̃OR = (p, p, q) (fuzzy right one-sided hypothesis); (5.17)

3. H̃T = (p, q, r ) (fuzzy two-sided hypothesis). (5.18)

left one−sided hypothesis (p,q,q)

x

α

0

0
1

p q

right one−sided hypothesis (p,p,q)

x

α

0

0
1

p q

two−sided hypothesis (p,q,r)

x

α

0

0
1

p q r

Figure 5.1: The fuzzy hypotheses - Section 5.2

Furthermore, it is interesting to define the so-called fuzzy boundary of a given fuzzy hy-
potheses as shown in Parchami, Taheri, and Mashinchi (2010). It is given by:

Definition 5.2.2 (Boundary of a fuzzy hypothesis).

Consider a fuzzy hypothesis H̃ for a parameter θ defined on the space Θ such that H̃ : θ
is H. The boundary H̃∗ of H̃ is a fuzzy subset of Θ, with its membership function denoted by
µH̃∗ . The fuzzy boundaries related to the tests 5.1, 5.2 and 5.3 are respectively expressed by:

1. H̃∗ = H if θ ≤ θ0, 0 otherwise, (H̃ is left one-sided); (5.19)

2. H̃∗ = H if θ ≥ θ0, 0 otherwise, (H̃ is right one-sided); (5.20)

3. H̃∗ = H, (H̃ is two-sided). (5.21)
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We propose the following example to illustrate this definition.

Example 5.2.1. Let the hypothesis H̃ : θ is H(θ) to be a fuzzy one-sided hypothesis such that
H̃ is given by H̃ = (2, 3, 3). Then, by Equation 5.19 of Definition 5.2.2, the fuzzy hypothesis H̃
and its boundary can be seen in Figure 5.2.

left one−sided hypothesis and its boundary

θ

α
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1

1 2 3 4

 

 

 

 

 

 

H
~

H
~∗

Figure 5.2: Fuzzy hypothesis H̃ and its boundary H̃∗ - Example 5.2.1.

For further purposes, it is also important to show the definition of the median of the distri-
bution of a test statistic in the fuzzy context.

Definition 5.2.3 (Median of the distribution of the test statistic).

A fuzzy set M̃ is said to be the median of the distribution of the test statistic T under the
boundary of the fuzzy null hypothesis H̃0, such that its membership function is nothing but the
boundary of the null hypothesis itself µM̃ = H̃∗0 and its α-cuts are given by:

M̃L
α = inf{m | m ∈ supp M̃}, (5.22)

M̃R
α = sup{m | m ∈ supp M̃}, (5.23)

where m is the median of the distribution of T related to the parameter to test θ.

An example of a fuzzy hypothesis clarifying the concept of fuzziness in the hypotheses and
how to model it can be seen in the following example:

Example 5.2.2. We are interested in collecting the approximative real feel of the weather’s
temperature of a number of persons in a given city. Suppose we get different answers like:
"near 5 degrees", "approximatively 2", "between 0 and 2", "maybe 0", etc. These answers are
seen to be uncertain since these persons are not expressing their opinion precisely.
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We would like to test the null hypothesis for the mean of the temperature denoted by µ.
Regarding the alternative hypothesis, suppose that the test is left one-sided and given by the
following triangular fuzzy numbers as given in Equations 5.16, 5.17 and 5.18:

H̃T
0 = (1.8, 2, 2.3) against H̃OL

1 = (2, 3, 3).

These latter are shown in Figure 5.3.

The null and alternative hypotheses
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Figure 5.3: The fuzzy null and alternative hypotheses - Example 5.2.2

5.3 Fuzzy confidence intervals

It is natural to express a confidence interval for a specific parameter θ in the fuzzy environment.
Indeed, we know that the parameter in this case is fuzzy-type as defined in Definition 4.4.1.
Therefore, getting a FCI is a direct consequence of the fuzziness of the parameter. Fuzzy
confidence intervals can be defined by different approaches. Since it is obviously an epistemic
situation, Kruse and Meyer (1987) gave a definition of this interval when fuzziness occur. Many
computation procedures can then be derived from the Kruse and Meyer (1987) definition. A
known one is the approach based on a pre-defined distribution around a specific parameter.
Thus, by this method, one has to always fix the parameter and the distribution to be used.
This leads to the fact that this method appears to be somehow limited in some contexts. We
propose a method of constructing a FCI by the so-called "likelihood ratio". Our proposition
presents a generalization of the previous construction, and gives a practical tool to estimate a
FCI for any type of parameter with any type of distribution.

Let us first define the known fuzzy confidence interval, given as follows:
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5.3.1 Fuzzy confidence intervals for pre-defined parameter

Consider a random sample X1, ... , Xn of size n with the probability distribution Pθ. Its fuzzy
perception is denoted by X̃1, ... , X̃n. We would like to test the following hypotheses for a given
parameter θ:

H0 : θ = θ0, against H1 : θ 6= θ0.

This task can be accomplished by constructing a FCI for θ. At a given significance level δ and
according to the considered fuzzy sample, a two-sided fuzzy confidence interval denoted by
Π̃ can be defined as seen in Kruse and Meyer (1987) by:

Definition 5.3.1 (Fuzzy confidence interval).

At the significance level δ, consider a parameter θ and a symmetrical confidence interval
for it denoted by [π1,π2]. A fuzzy confidence interval denoted by Π̃ is a convex and normal
fuzzy set, for which its respective left and right α-cuts designated by Π̃α = [Π̃L

α, Π̃R
α ] are defined

as:

Π̃L
α = inf

{
a ∈ R : ∃xi ∈ (X̃i )α,∀i = 1, ... , n, such that π1(x1, ... , xn) ≤ a

}
, (5.24)

Π̃R
α = sup

{
a ∈ R : ∃xi ∈ (X̃i )α,∀i = 1, ... , n, such that π2(x1, ... , xn) ≥ a

}
. (5.25)

By Equation 1.1.6, its membership function µΠ̃ (x) can be written as

µΠ̃ (x) = sup
{
αI[Π̃L

α,Π̃R
α ] : α ∈ [0, 1]

}
. (5.26)

This fuzzy confidence interval is said to belong to 1 − δ confidence region such that for all
parameter θ, we have that

P
(
Π̃L
α ≤ θ ≤ Π̃R

α

)
≥ 1− δ, ∀α ∈ [0; 1]. (5.27)

From the previous definition, one could directly derive the definitions of the one-sided fuzzy
confidence intervals, expressed in the following remark:

Remark 5.3.1. At a significance level δ, the left one-sided fuzzy confidence interval Π̃α is given
by:

Π̃α = [Π̃L
α,∞],

and the right one-sided one, is written as:

Π̃α = [−∞, Π̃R
α ].

We often draw a fuzzy sample from a known theoretical distribution. It is therefore always
convenient to expose the confidence interval for a particular parameter related to this known
distribution. To illustrate, we show the two-sided fuzzy confidence interval for the mean in the
context of a normal distribution. It is given in the following remark:



102 Chapter 5. Fuzzy Statistical Inference

Remark 5.3.2. Consider a fuzzy sample X̃1, ... , X̃n of size n and drawn from the normal dis-
tribution with known variance. We denote by X̃ its fuzzy sample mean, for which the left and
right α-cuts are respectively written as (X̃ )L

α and (X̃ )R
α . The two-sided FCI for the mean of the

considered fuzzy sample is given by its α-cuts as follows:

Π̃α =
[
Π̃L
α, Π̃R

α

]
=
[
(X̃ )L

α − u1− δ2

σ√
n

, (X̃ )R
α + u1− δ2

σ√
n

]
, (5.28)

where σ is the standard deviation and u1− δ2
is the 1 − δ

2 ordered quantile from the standard

normal distribution.1

Accordingly, it is interesting to show in Example 5.3.1, an example of computation based
on such methods where we treat data as fuzzy and hypotheses as well. Despite the fact that
the hypotheses of the normal distribution might not be fully fulfilled, this very known distribution
will be used to only simplify the understanding of the different steps.

Example 5.3.1. We are interested in the scenario of the Example 5.2.2. Consider a random
sample composed by 10 observations X1, ... , X10 describing the real feel of weather temper-
ature expressed by people in a given city. Suppose this sample to be taken from a normal
distribution with its mean µ and a known variance σ2 = 1.29, i.e. N(µ,σ2 = 1.29). The esti-
mation of the FCI for the mean µ at the confidence level 1 − δ can be done by the following
steps:

• Model the data: The considered sample is supposed to be uncertain. We would like to
model the fuzzy perception of it by fuzzy numbers. The simplest shape that we could use
is the triangles. Thus, if a given answer is "approximately 2", then we could model it by
the triangular fuzzy number written by the arbitrary tuple (1, 2, 3). Suppose that we want
to model the value "1" by the triangular fuzzy number given by the tuple L̃1 = (0, 1, 2),
the value "2" by L̃2 = (1, 2, 3), "3" by L̃3 = (2, 3, 4), "4" by L̃4 = (3, 4, 5) and "5" by
L̃5 = (4, 5, 6). This description leads to modelling our sample observations by fuzzy
numbers. The original data and the fuzzified ones are provided in Table 5.1.

• Define the required test: At the significance level δ, suppose we want to test the fol-
lowing hypotheses for the mean µ where we consider a particular value µ0 = 2 such
that

H̃T
0 = (1.8, 2, 2.3) against H̃T

1 = (1.25, 2, 5).

The purpose is then to test on a δ = 0.05 significance level the fuzzy null hypothesis H̃0
against the fuzzy alternative one H̃1 associated respectively to the following α-cuts:

(H̃T
0 )α =

{
(H̃T

0 )L
α = 1.8 + 0.2α;

(H̃T
0 )R
α = 2.3− 0.3α.

and (H̃T
1 )α =

{
(H̃T

1 )L
α = 1.25 + 0.75α;

(H̃T
1 )R
α = 5− 3α.

(5.29)

1By extending the classical statistical theory to the fuzzy one, the use of such expressions for calculating the
fuzzy confidence interval is actually a convention as seen in Kruse and Meyer (1987).
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• Calculate the fuzzy sample average: We now have to calculate the fuzzy sample
average X̃ as seen in Definition 4.4.1, where n is the number of observations n = 10
and X̃i , i = 1, ... , n are the fuzzy perceptions of the observations. The α-cuts of the fuzzy
sample average X̃ = (1.8, 2.8, 3.8) are given by:

(X̃ )α =

{
(X̃ )L

α = 1.8 + α;

(X̃ )R
α = 3.8− α.

(5.30)

• Calculate the confidence intervals for the mean: We finally have to calculate the
fuzzy confidence intervals described in Definition 5.3.1. Using the calculated α-cuts of
the fuzzy sample average X̃ given in Equation 5.30, we get the following lower FCI on
the confidence level 1− 0.05:

Π̃α =
[
Π̃L
α; Π̃R

α

]
=
[
(X̃ )L

α − u1− δ2

σ√
n

; (X̃ )R
α + u1− δ2

σ√
n

]
=
[
1.0965 + α; 4.5035− α

]
, (5.31)

where n = 10 is the number of observations, σ = 1.135 is the standard deviation and
u1− δ2

= u0.975 = 1.96 is the 0.975-quantile of the normal distribution. This interval is
shown in Figure 5.4.

Index Xi Triangular Fuzzy Number

1 4 (3, 4, 5)

2 1 (0, 1, 2)

3 3 (2, 3, 4)

4 2 (1, 2, 3)

5 3 (2, 3, 4)

6 2 (1, 2, 3)

7 5 (4, 5, 6)

8 2 (1, 2, 3)

9 3 (2, 3, 4)

10 3 (2, 3, 4)

X = 2.8 X̃ = (1.8, 2.8, 3.8)

Table 5.1: The data set and the corresponding fuzzy number of each observation - Example 5.3.1

Similarly to the FCI for the mean of a normal distribution, it is then always necessary to
consider the parameter from one side and the distribution from another one. In the fuzzy
context, it is an asset to have a clear methodology which can be adopted to any type of
parameter and any distribution. A practical method generalizing the construction of fuzzy
confidence intervals for any parameter could be advantageous.
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Figure 5.4: Fuzzy confidence interval for the mean Π̃ - Example 5.3.1.

5.3.2 Fuzzy confidence intervals with the likelihood function

Fuzzy confidence intervals have been seen as a powerful tool in testing the null hypothesis
against the alternative one for a given parameter. In the fuzzy context, following the Definition
5.3.1, constructing a FCI for a particular parameter depends on a specific distribution. How-
ever, constructing a fuzzy confidence interval by a practical method where all possible cases
of parameters can be applied, could be welcome. In classical statistical theory, this task can
be done using the so-called "likelihood ratio" method. For our fuzzy context, we proposed
in Berkachy and Donzé (2019c) a new approach of constructing fuzzy confidence intervals
based on the concept of likelihood ratio, but with considering conveniently the fuzziness con-
tained in the variables. We mention that the likelihood ratio has been used several times in
the fuzzy environment. As such, we note Gil and Maria Rosa Casals (1988) which discussed
on extending the tests by this ratio to the fuzzy context. From another side, Denoeux (2011)
proposed a maximum likelihood estimation using the Expectation-Maximization method when
imprecision intervenes.

First of all, let us recall the likelihood function in the classical theory, given by:

Definition 5.3.2 (Likelihood function).

Let Xi , i = 1, ... , n be a sequence of random variables, independent identically distributed
(i.i.d) and xi , i = 1, ... , n are the corresponding realizations. The variable Xi is drawn from a
pre-defined distribution with its probability density function (pdf) denoted by f (xi ; θ). Consider
θ to be a vector of unknown parameters in the parameter space Θ. The likelihood function
L(θ; xi ) is defined by:

L(θ; xi ) = f (xi ; θ). (5.32)
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We mention that f (xi ; θ) is called the likelihood function in this case since it is actually a function
of the vector of parameters θ rather than xi .

When fuzziness in the variable Xi occur, we consider its fuzzy perception i.e. the FRV
X̃i with its corresponding fuzzy realization x̃i . This latter is associated to a measurable MF
denoted by µx̃i in the sense of Borel, such that

µx̃i : x → [0; 1].

Based on the probability concepts defined by Zadeh (1968) and seen in Section 4.1, we
are now able to propose the likelihood function extended to the fuzzy environment. It is defined
as follows:

Definition 5.3.3 (Likelihood function of a fuzzy observation).

Let θ̃ be a vector of fuzzy parameters in the parameter space Θ. For a single fuzzy obser-
vation x̃i , the likelihood function can be written by:

L(θ̃; x̃i ) = P(x̃i ; θ̃) =
∫
R
µx̃i (x)f (x ; θ̃)dx . (5.33)

Note that one can analogously express this previous probability by means of the α-cuts of the
involved fuzzy numbers.

Consider now the fuzzy sample x̃ of all fuzzy realizations x̃i of the FRV X̃i . Using the
definition of the joint membership function of independent and identically distributed fuzzy
numbers given in Definition 4.1.5, the likelihood function denoted by L(θ̃; x̃) can be expressed
by:

L(θ̃; x̃) = P(x̃ ; θ̃) =
∫
R
µx̃1(x)f (x ; θ̃)dx · ... ·

∫
R
µx̃n (x)f (x ; θ̃)dx =

n∏
i=1

∫
R
µx̃i (x)f (x ; θ̃)dx . (5.34)

We can then deduce the log-likelihood function denoted by l(θ̃; x̃) defined as:

l(θ̃; x̃) = log L(θ̃; x̃) (5.35)

= log
∫
R
µx̃1(x)f (x ; θ̃)dx + ... + log

∫
R
µx̃n (x)f (x ; θ̃)dx . (5.36)

Let ˆ̃θ be a maximum likelihood estimator of the fuzzy parameter θ̃. The likelihood ratio is the
ratio

L(θ̃; x̃)

L( ˆ̃θ; x̃)
,

where L(θ̃; x̃) is the likelihood function depending on the fuzzy parameter θ̃, and L( ˆ̃θ; x̃) is the
likelihood function evaluated at the estimator ˆ̃θ such that L( ˆ̃θ; x̃) 6= 0 and finite.
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We express after the logarithm of the likelihood ratio. In this context, it is defined as the
difference between the log-likelihood functions evaluated respectively at ˆ̃θ and θ̃, also called
the deviance. The LR can be defined by

LR = −2 log
L(θ̃; x̃)

L( ˆ̃θ; x̃)
= 2

[
l( ˆ̃θ; x̃)− l(θ̃; x̃)

]
, (5.37)

where L( ˆ̃θ; x̃) 6= 0, L(θ̃; x̃) 6= 0 and are both finite.

In fact, in the classical statistical approach this ratio is proved to be asymptotically Chi-squared
distributed with k degrees of freedom. Note that the parameter k is chosen in accordance with
the number of constraints expressed by the null hypothesis. However, in a fuzzy context, it is
not clear if this asymptotical property holds. If this question has to be elaborated, multiple
methods can be used to solve such problems and can be used to consistently estimate the
distribution of a given statistic, such as asymptotic or bootstrap techniques. This latter will be
further investigated in the next subsection (Section 5.3.3).

Constructing a 100(1−δ)% fuzzy confidence interval by the likelihood ratio consists on find-
ing every value θ̃ at which the null hypothesis is at the point of not being rejected (accepted).
Let us consider η to be the 1 − δ-quantile of the distribution of LR. Once η is estimated, we
could express the confidence interval in terms of the following:

2
[
l( ˆ̃θ; x̃)− l(θ̃; x̃)

]
≤ η. (5.38)

This latter can also be written as

l(θ̃; x̃) ≥ l( ˆ̃θ; x̃)− η

2
, (5.39)

which means practically that the constructed confidence interval includes all possible values
of θ̃ where the variation of the log-likelihood maximum is about η2 no more.

Consequently, one could clearly see the importance of the principle of the likelihood ratio
in the field of hypothesis testing, namely in the likelihood-ratio test statistic. Based on the
likelihood ratio, our main purpose is then to construct a fuzzy confidence interval Π̃LR given by
its left and right α-cuts [(Π̃LR)L

α; (Π̃LR)R
α ] such that for all parameters θ the following equation

P
(

(Π̃LR)L
α ≤ θ ≤ (Π̃LR)R

α

)
≥ 1− δ, ∀α ∈ [0; 1], (5.40)

holds. Accordingly, we propose the following procedure of construction of fuzzy confidence
intervals:
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Procedure

Since the data set is assumed to be imprecise, it is a clear consequence to see that the log-
likelihood is a function of fuzzy entities. Indeed, the maximum likelihood estimator is modelled
by a fuzzy number as well. Thus, this estimator is no more reduced to a single element only,
as in the classical approach. One should rather consider every element of the support set of
the fuzzy parameter. Our idea is then to revisit the likelihood procedure of constructing fuzzy
confidence intervals by introducing the fact of modelling the fuzziness contained in the distri-
bution. However, this task is seen as a tedious one, since the computational burden induced
in the calculation of the log-likelihood function by considering every value of the set defining
the support of the fuzzy parameter, is serious. To solve this problem, we will choose particular
values for which we will calculate the so-called threshold points. We will be interested in the
intersection points between these latter and the log-likelihood function. By combining all these
informations, we will be able to propose fuzzy confidence intervals for any parameter with any
type of distribution.

To detail, let us first introduce the so-called standardizing function:

Definition 5.3.4 (Standardizing function).

Consider a fuzzy number θ̃ with its MF µθ̃. Let θ ∈ supp (θ̃). The standardizing function
denoted by Istand is given by:

Istand : R → R

l(θ, x̃) 7→ Istand
(
l(θ, x̃)

)
=

l(θ, x̃)− Ia
Ib − Ia

,

where Ia, Ib are arbitrary real values such that Ia < Ib, Ia ≤ l(θ, x̃) ≤ Ib and Istand
(
l(θ, x̃)

)
is

bounded. We mention that 0 ≤ Istand (l(θ, x̃)) ≤ 1. Thus, this function is intentionally introduced
to preserve the [0; 1]-interval property of the α-cuts of a given fuzzy number.

The calculation procedure can now on be given by the subsequent steps.

For a given fuzzy parameter θ̃, the very first task is to calculate the log-likelihood function
l(θ̃; x̃) given in Equation 5.36.

Second, we have to carefully choose the needed values for the calculations. The support
set of any fuzzy parameter is composed of an infinity of elements. From the set of values, we
propose to take into account the lower and upper bounds of the support and the core sets only.
Thus, the number of considered elements is reduced to four values. Let supp( ˆ̃θ) and core( ˆ̃θ)
be respectively the support and the core sets of ˆ̃θ. The four values denoted by p ≤ q ≤ r ≤ s
are written by:

p = min(supp( ˆ̃θ)); (5.41)

q = min(core( ˆ̃θ)); (5.42)

r = max(core( ˆ̃θ)); (5.43)

s = max(supp( ˆ̃θ)). (5.44)
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Since the fuzzy parameter is bounded and the sets supp( ˆ̃θ) and core( ˆ̃θ) are not empty, then
the four values p, q, r and s always exist.

We highlight that in our situation we consider the case of a symmetrical probability function
where each part of the log-likelihood function (left or right hand sides) is monotonic and con-
tinuous. As such, the left hand side is always increasing and the right one is decreasing.

We afterwards estimate η. This is done by the bootstrap technique as detailed in the
next subsection. For the considered values p, q, r and s, we after have to calculate their
corresponding threshold values denoted by I1, I2, I3 and I4. It is done by affecting the value θ
by each of the four values in the right hand side of the Equation 5.39 as follows:

I1 = l(p; x̃)− η

2
; (5.45)

I2 = l(q; x̃)− η

2
; (5.46)

I3 = l(r ; x̃)− η

2
; (5.47)

I4 = l(s; x̃)− η

2
. (5.48)

In addition, it is important to find the minimum and maximum thresholds denoted respectively
by Imin and Imax. They are given by:

Imin = min(I1, I2, I3, I4), (5.49)
and Imax = max(I1, I2, I3, I4). (5.50)

We actually consider Imin and Imax in the purpose of covering the interval of all the possible
values that could verify the Equation 5.39.

Next, an intersection exists between the log-likelihood function and the threshold values I1,
I2, I3 and I4. We denote by θ?L

1 , θ?L
2 , θ?L

3 , θ?L
4 and θ?R

1 , θ?R
2 , θ?R

3 , θ?R
4 the obtained intersection

abscisses. These values can be found by solving the equations written by:

lL(θ?L
1 ; x̃) = I1 and lR(θ?R

1 ; x̃) = I1, (5.51)
lL(θ?L

2 ; x̃) = I2 and lR(θ?R
2 ; x̃) = I2, (5.52)

lL(θ?L
3 ; x̃) = I3 and lR(θ?R

3 ; x̃) = I3, (5.53)
lL(θ?L

4 ; x̃) = I4 and lR(θ?R
4 ; x̃) = I4. (5.54)

Note that the symbols "L" and "R" refer to the left and right sides of a given entity. We have to
introduce also the minimum and maximum left intersection abscisses given by

θ?L
inf = inf(θ?L

1 , θ?L
2 , θ?L

3 , θ?L
4 ), (5.55)

and θ?L
sup = sup(θ?L

1 , θ?L
2 , θ?L

3 , θ?L
4 ). (5.56)
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For the right side, the minimum and maximum intersection abscisses are written as:

θ?R
inf = inf(θ?R

1 , θ?R
2 , θ?R

3 , θ?R
4 ), (5.57)

and θ?R
sup = sup(θ?R

1 , θ?R
2 , θ?R

3 , θ?R
4 ). (5.58)

Additionally, let us mention that the calculated abscisses are single real values. They are used
in the construction of the α-cuts of the FCI denoted by Π̃LR. Combining all the afore calculated
components, this fuzzy confidence interval using the likelihood ratio can now on be expressed.
It is given by its left and right α-cuts (Π̃LR)α =

[
(Π̃LR)L

α; (Π̃LR)R
α

]
defined respectively as follows:

(Π̃LR)L
α =

{
θ ∈ R | θ?L

inf ≤ θ ≤ θ
?L
sup andα = Istand

(
l(θ, x̃)

)
=

l(θ, x̃)− Imin

Imax − Imin

}
, (5.59)

(Π̃LR)R
α =

{
θ ∈ R | θ?R

inf ≤ θ ≤ θ
?R
sup andα = Istand

(
l(θ, x̃)

)
=

l(θ, x̃)− Imin

Imax − Imin

}
. (5.60)

It is important now to prove that the fuzzy confidence interval Π̃LR verifies the Definition 5.3.1.

Proof. First of all, it is important to see that the Equations 5.59 and 5.60 correspond respec-
tively to the Equations 5.24 and 5.25.

Consider the interval [πLR
1 ;πLR

2 ] to be a crisp confidence interval calculated using the classical
likelihood ratio method. The values πLR

1 and πLR
2 correspond to the values of any interval

given for instance by the respective values θ?L
1 and θ?R

1 . Therefore, it is evident to see that the
couples of values taken two by two respectively from the vectors (θ?L

1 , ... , θ?L
4 ) and (θ?R

1 , ... , θ?R
4 )

— in addition to any other couple of crisp real values constructed in the same way — constitute
a family of crisp confidence intervals for every particular value of θ.

In addition, we could write the FCI given in Equations 5.59 and 5.60 by the fundamental
expressions of its α-cuts (Π̃LR)L

α and (Π̃LR)R
α as shown in Equation 1.8. They are given by:

(Π̃LR)L
α = inf

{
x ∈ R | µΠ̃LR

(x) ≥ α)
}

and (Π̃LR)R
α = sup

{
x ∈ R | µΠ̃LR

(x) ≥ α)
}

.

Following the construction of θ?L
inf , θ

?R
inf , θ?L

sup and θ?R
sup given in Equations 5.55 to 5.58 and by

consequence of generating the family of crisp confidence intervals, one could directly deduce
that the Equations 5.59 and 5.60 can equivalently be written by:

(Π̃LR)L
α = inf

{
b ∈ R : ∃xi ∈ (X̃i )α,∀i = 1, ... , n, such that πLR

1 (x1, ... , xn) ≤ b
}

, (5.61)

(Π̃LR)R
α = sup

{
b ∈ R : ∃xi ∈ (X̃i )α,∀i = 1, ... , n, such that πLR

2 (x1, ... , xn) ≥ b
}

. (5.62)
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We have now to prove that Π̃LR is nothing but a convex and normal fuzzy set. Thus, by effect
of the introduction of the standardizing function Istand and the upper semi-continuity of the
log-likelihood function on its corresponding definition domain, it is clear to assert that Π̃LR is
a normal fuzzy set. In other terms, by Definition 5.3.4, the following equalities are verified
∀θ ∈ R,

sup(µΠ̃LR
(θ)) = sup

(
Istand (l(θ, x̃))

)
= 1, (5.63)

inf(µΠ̃LR
(θ)) = inf

(
Istand (l(θ, x̃))

)
= 0. (5.64)

For the convexity of Π̃LR as proposed in Definition 1.1.1, we have to prove that

µΠ̃LR

(
tθ1 + (1− t)θ2

)
≥ min

(
µΠ̃LR

(θ1),µΠ̃LR
(θ2)

)
, ∀ θ1, θ2 ∈ R and t ∈ [0; 1]. (5.65)

This equation can be proved as follows:

Consider two values θ1 and θ2 in R. By the Definition 5.3.4, we know that the membership
function of Π̃LR can be written by:

µΠ̃LR

(
tθ1 + (1− t)θ2

)
= Istand

(
l(tθ1 + (1− t)θ2, x̃)

)
.

We know that the likelihood function is concave, i.e.

l(tθ1 + (1− t)θ2, x̃) ≥ t l(θ1, x̃) + (1− t) l(θ2, x̃).

Then, using Definition 5.3.4 and since the application Istand is monotone, we get that

µΠ̃LR

(
tθ1 + (1− t)θ2

)
≥ Istand

(
t l(θ1, x̃) + (1− t) l(θ2, x̃)

)
≥ t l(θ1, x̃) + (1− t) l(θ2, x̃)− Imin

Imax − Imin

≥ t l(θ1, x̃)− t Imin

Imax − Imin
+

(1− t) l(θ2, x̃)− (1− t) Imin

Imax − Imin
≥ t Istand (l(θ1, x̃)) + (1− t) Istand (l(θ2, x̃))
≥ t µΠ̃LR

(θ1) + (1− t)µΠ̃LR
(θ2)

≥ min(µΠ̃LR
(θ1),µΠ̃LR

(θ2)),

with µΠ̃LR
(θ1) and µΠ̃LR

(θ2) ∈ [0; 1], µΠ̃LR

(
θ1
)

= Istand
(
l(θ1, x̃)

)
and µΠ̃LR

(θ2) = Istand (l(θ2, x̃)).

The previous procedure of construction of the fuzzy confidence interval by the likelihood ratio
method is summarized in the following algorithm:
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Algorithm:

1. Calculate the log-likelihood function l(θ̃; x̃) - Equation 5.36.

2. Find the needed values for computations p, q, r and s - Equations 5.41, 5.42,
5.43 and 5.44.

3. Estimate the quantile η by the bootstrap technique - Equation 5.37.

4. Calculate the threshold points I1, I2, I3 and I4 - Equations 5.45, 5.46, 5.47 and
5.48.

5. Calculate the minimum and maximum thresholds Imin and Imax - Equations 5.49
and 5.50.

6. Find the intersection points θ?L
1 , θ?L

2 , θ?L
3 , θ?L

4 and θ?R
1 , θ?R

2 , θ?R
3 , θ?R

4 obtained
from Equations 5.51, 5.52, 5.53 and 5.54.

7. Find the minimum and maximum intersection abscisses θ?L
inf , θ

?L
sup, θ?R

inf and θ?R
sup

- Equations 5.55, 5.56, 5.57 and 5.58.

8. Define the fuzzy confidence interval by writing its left and right α-cuts - Equa-
tions 5.59 and 5.60.

Concerning the coverage level of our fuzzy confidence interval, from a theoretical point of
view, we would like to prove that the Equation 5.40 is verified. It can be done in the following
manner:

Proof. Suppose that Π̃LR is a two-sided FCI. By definition, this FCI is bounded. We would like
to prove that for every value θ

PH
(
(Π̃LR)L

α ≤ θ ≤ (Π̃LR)R
α

)
≥ 1− δ, ∀δ ∈ [0; 1]. (5.66)

We know that

PH
(
θ ∈ (Π̃LR)α

)
= 1− PH

(
θ /∈ (Π̃LR)α

)
.

If every value of θ does not belong to the α-level set of Π̃LR, it is equivalent to saying that this
parameter does not belong to its support set nor to its closure denoted by (Π̃LR)α=0. Therefore,
we could write this equivalence as follows:

PH
(
θ ∈ (Π̃LR)α

)
= 1− PH

(
θ /∈ (supp(Π̃LR)) ∪ θ /∈ (Π̃LR)α=0

)
.

Then, let πmin and πmax be respectively the lower and upper bounds of the support set of the
fuzzy confidence interval Π̃LR written by [πmin;πmax ]. We denote also by [π0

min;π0
max ] the lower
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and upper bounds of the closure set, i.e. (Π̃LR)α=0. It is natural to see that [πmin;πmax ] ⊂
[π0

min;π0
max ]. Since our construction is generated as a family of classical confidence intervals

by the likelihood ratio method, it is evident to see that the interval [π0
min;π0

max ] is nothing but the
largest crisp confidence interval related to a particular value θ ∈ supp(θ̃) at the significance
level 1 − δ. Therefore, we have that PH

(
θ /∈ (Π̃LR)α

)
≤ δ, which is equivalent to PH

(
θ /∈

[π0
min;π0

max ]
)
≤ δ, for every value of θ. Accordingly, verifying the Equation 5.66 is given by:

PH
(
θ ∈ (Π̃LR)α

)
= PH

(
θ ∈ [π0

min;π0
max ]

)
≥ 1− δ, ∀δ ∈ [0; 1].

For the cases of one-sided FCI, the proofs can be similarly conceived.

5.3.3 Bootstrap technique for the approximation of the likelihood ratio

The bootstrap technique has been mainly proposed by Efron (1979). Considering a random
sample taken from an unknown distribution, Efron (1979) described a complete procedure of
estimation of a particular sampling distribution based on some observed data. This method
consists on drawing a large number of samples based on a particular primary data set. Ac-
cordingly, a bootstrap distribution is constructed and further studied. The aim of such tech-
niques is then to be grant the approximation of a sampling distribution using random sampling
tools. Such methods have been considered as satisfactory in various situations. The bootstrap
has been afterwards re-considered in the fuzzy environment. As such, Gonzalez-Rodriguez,
Montenegro, et al. (2006) studied the hypotheses testing procedure related to the mean of
fuzzy random variables using bootstrap. The fuzzy bootstrap is also seen as easier and com-
putationally lighter than other techniques, i.e. the asymptotic one, as stated in Montenegro,
Colubi, et al. (2004).

We propose to use the bootstrap technique defined in the fuzzy environment in order
to empirically estimate the distribution of the required deviance of the log-likelihood function
evaluated at ˆ̃θ and the one evaluated at θ̃ denoted by LR and given in Equation 5.37.

In a general manner, let us consider η to be an appropriate quantile of the distribution of LR.
Two bootstrap approaches for imprecisely valued samples are exposed:

• The first one is to simply generate with replacement a large number D of bootstrap
samples and consequently calculate the needed deviance.

• The second one is to generate D bootstrap samples by preserving the characteristics
of location and dispersion s0 and ε of the nearest symmetrical trapezoidal fuzzy num-
bers related to the initial data set. These characteristics have been closely described in
Proposition 3.7.6.
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For such approaches, two algorithms can be proposed. The first one, i.e Algorithm 1, con-
sists on simply generating with replacement D random bootstrap samples as follows:

Algorithm 1:

1. Considering a particular estimator ˆ̃θ, compute the value of the deviance
2
[
l( ˆ̃θ; x̃)− l(θ̃; x̃)

]
related to the considered original fuzzy sample.

2. From the primary data set, draw randomly with replacement a set of fuzzy
observations to construct the bootstrap data set.

3. Calculate the bootstrap deviance 2
[
l( ˆ̃θ; x̃)− l(θ̃; x̃)

]boot.

4. Recursively repeat the Steps 2 and 3 a large number D of times to get a set of
D values constructing the distribution of bootstrap deviance.

5. Find η the 1− δ-quantile of the bootstrap distribution of LR.

The algorithm using the couple of characteristics (s0, ε) can also be given as follows:

Algorithm 2:

1. Consider a fuzzy sample. Calculate for each observation the couple of charac-
teristics (s0, ε).

2. From the calculated set of couples (s0, ε), draw randomly with replacement and
with equal probabilities a sample of couples (s0, ε). Construct the bootstrap
sample.

3. Calculate the bootstrap deviance 2
[
l( ˆ̃θ; x̃)−l(θ̃; x̃)

]boot for each generated sam-
ple.

4. Recursively repeat the Steps 2 and 3 a large number D of times to get a set of
D values constructing the distribution of bootstrap deviance.

5. Find η the 1− δ-quantile of the bootstrap distribution of LR.

It is clear that a maximum likelihood estimator have to be calculated. As such, we propose
to use the EM-algorithm applied in the fuzzy environment as proposed by Denoeux (2011).
We highlight that this estimation procedure gives a crisp estimator. It is interesting to model
the fuzzy perception of such estimators. For this purpose, we propose to model the obtained
crisp estimator by a triangular fuzzy number for which this estimator constitutes the core of
the chosen fuzzy number. In order to reduce the complexification of the procedure related to



114 Chapter 5. Fuzzy Statistical Inference

a possible effect caused by the shape of the fuzzy number, we consider symmetrical shapes
only. We then get a triangular symmetrical fuzzy number modelling the maximum likelihood
estimator (MLE) estimator. For such calculations, the R package EM.Fuzzy described in Par-
chami (2018b) can be used.

5.3.4 Simulation study

To illustrate our calculation procedures, we present a simulation study where we consider
several randomly generated data sets from different sample sizes. To simplify the case, we
generated data sets taken from a normal distribution N(5, 1), and composed by 100 to 1000
observations. The corresponding observations are modelled by triangular symmetrical fuzzy
numbers with a support set of spread 2.

We are interested in estimating the bootstrap distribution of the likelihood ratio for the
theoretical mean of the considered data set. The corresponding bootstrap quantiles η have
been calculated for each data set by both Algorithms 1 and 2, and using different numbers of
iterations going from 100 to 1000. For our specific case, we reduce ourselves to the case of
D = 1000 iterations only. In addition, we propose two cases of modelling the MLE estimator
under the normality assumption:

• the first case is by a triangular symmetrical fuzzy number of spread 2;

• the second one is by a triangular symmetrical fuzzy number of spread 1.

We would be interested to investigate the influence of the degree of fuzziness in the modelling
procedure of the estimator. As a matter of vulgarization, we use also the fuzzy sample mean
as a fuzzy estimator in the process of calculation.

At the significance level 0.05, the quantiles of the distribution of the likelihood ratio LR
estimated by the bootstrap technique can be found in Table 5.2. From this latter, it is clear
to see that the distributions calculated using both bootstrap algorithms give close quantiles.
From another side, the quantiles related to each size of the generated samples are somehow
close. A remark could arise also is that less fuzziness (i.e. fuzzy number modelling the MLE
estimator with spread 1) yields to a smaller quantile compared to the case where the fuzziness
is higher (i.e. fuzzy number modelling the MLE estimator with spread 2). We remark also that
in the conventional approach, the deviance in the same setups is majorated by the quantile
3.84 taken from the χ2 distribution at the significance level 0.05 with 1 constraint.

Using the Table 5.2 giving the estimated bootstrap quantiles, we propose now to calculate
the fuzzy confidence intervals by the likelihood ratio as shown in the procedure of Section
5.3.2. Note that for sake of simplification, we will only discuss the case with 500 observations.
The obtained fuzzy confidence intervals are exposed in Table 5.3. This latter gives the lower
and upper bounds of the support and the core sets of the calculated FCI.
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Algorithm 1

Sample size N=50 N=100 N=500

Bootstrap quantile using the sample mean 1.990 2.038 2.342

Bootstrap quantile using the MLE estimator (Spread 2) 1.809 1.927 2.181

Bootstrap quantile using the MLE estimator (Spread 1) 1.523 1.626 1.825

Algorithm 2

Sample size N=50 N=100 N=500

Bootstrap quantile using the sample mean 1.802 1.845 2.118

Bootstrap quantile using the MLE estimator (Spread 2) 1.854 1.971 2.201

Bootstrap quantile using the MLE estimator (Spread 1) 1.563 1.671 1.864

Table 5.2: The 95%-quantiles of the bootstrap distribution of LR - Case of a data set taken from a
normal distribution N(5, 1) modelled by triangular symmetrical fuzzy numbers at 1000 iterations.

From Table 5.3, we could easily remark that the Algorithms 1 and 2 give somehow the
same support and core sets of the FCI. In other terms, we could say that no effect of choosing
any of the two defended bootstrap algorithms clearly arose. Consequently, adopting the Algo-
rithm 2 where the location and dispersion characteristics are preserved gives similar results
using the Algorithm 1. Therefore, we highlight that the fluctuations in the estimated bootstrap
quantiles between both algorithms has no big differences on the obtained FCI.

In addition, we could evidently see that the fuzziness of the estimator has a direct influence
on the calculated FCI. Thus, the FCI related to the MLE estimator with lower fuzziness (Spread
1) has the smallest support set between all. Accordingly, we could conclude that the degree
of fuzziness of the calculated FCI is directly affected by the degree of fuzziness present in
the modelling process of the estimator using fuzzy numbers. Conveniently modelling the MLE
estimator plays then an important role.

Furthermore, let us consider Π̃ the traditional fuzzy confidence interval as described in
Section 5.3.1. We obtain the following FCI:

Π̃ = (3.907, 4.907, 5.080, 6.080).

If we would be interested to compare the bootstrap fuzzy confidence intervals given in Table
5.3 to Π̃, we remark that the FCI using the MLE estimators have slightly larger core sets. This
could be due to the method of calculation of the MLE-estimators. However, the support sets
vary between the cases using the lowest spread and the highest spread of the fuzzy estimator.

Considering the fuzzy sample mean as an estimator used in the calculations of the LR-FCI,
we observe that the core and the support sets of this latter are smaller than the ones of Π̃. It is
then clear that having a broad idea about FCI calculated in different modelling scenarios with
some other setups, estimators and distributions is important to elaborate in further studies.
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Algorithm 1

Support set Core set

Lower Upper Lower Upper

FCI using the sample mean 3.991 5.996 4.940 5.047

FCI using the MLE estimator (Spread 2) 3.804 6.184 4.795 5.193

FCI using the MLE estimator (Spread 1) 4.303 5.685 4.797 5.191

Algorithm 2

Lower Upper Lower Upper

FCI using the sample mean 3.991 5.996 4.945 5.042

FCI using the MLE estimator (Spread 2) 3.803 6.184 4.795 5.193

FCI using the MLE estimator (Spread 1) 4.303 5.685 4.797 5.191

Table 5.3: The fuzzy confidence interval by the likelihood ratio at the 95% significance level - Case of
a 500 observations taken from a normal distribution N(5, 1) modelled by triangular symmetrical fuzzy
numbers.

Concerning the coverage rates in the context previously described, we performed a simula-
tion study by generating data sets composed by 100 to 1000 observations. The main purpose
was to estimate a fuzzy confidence interval for the mean of such distributions at the signifi-
cance level 0.05 and consequently to investigate the corresponding coverage rates.

Since the distribution of the likelihood ratio is unknown, we have performed the bootstrap tech-
niques using the Algorithms 1 and 2. In addition, similarly to the cases already provided, we
have considered calculations using the fuzzy sample mean as an estimator, as well as the
MLE-estimator with spread 2, and the one with spread 1. We add that we calculated the fuzzy
confidence intervals by the traditional fuzzy method as shown in Equation 5.28 in the purpose
of comparison between all.

Briefly, the obtained coverage rate of all types of confidence intervals seemed to be very
interesting to explore. The coverage rates of the fuzzy confidence intervals by the Algorithms
1 and 2 are almost the same for all chosen setups. For this purpose, we will only interpret the
intervals based on the Algorithm 1.

We found that the coverage levels of our confidence intervals are very close to the ones
calculated by the traditional method. In comparing the traditional FCI to ours, we got an overall
difference in coverage rates not exceeding 1.4%. We expose here the case using the same
characteristics described in the above mentioned analysis.
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The data sets are composed of 100 to 1000 observations. These data sets are supposed
to be imprecise and modelled by triangular symmetrical fuzzy numbers such that the spread
of each fuzzy number is equal to 2. For instance, for the data set composed by 500 fuzzy
observations, the coverage rate of the traditional fuzzy confidence interval is about 94.4% in
the core set and about 100% in the support set, while the one by the likelihood ratio method
for the fuzzy sample mean is exactly the same. However, for the fuzzy confidence intervals
using the small and large spreads of the MLE-estimator, i.e. spread 1 and spread 2 respec-
tively, we obtained a coverage rate of 95.6% in the core for both intervals and about 100% in
the support set. It is clear that such rates are approximatively acceptable since a 95% confi-
dence level has to be insured. A direct interpretation of this latter is that the fuzziness of the
MLE-estimator does not affect the coverage rate of the expected fuzzy confidence interval, but
affects strongly its spread.

From our simulation studies, a general conclusion could be that using the fuzzy sample mean
as an estimator, our interval seems to be slightly more restrictive than the traditional fuzzy
one. Contrariwise, once the MLE-estimator is considered, the LR-intervals appeared to be
moderatly less restrictive. However, additional studies have to be performed to confirm or not
our coverage rates in various setups with some other calculations of the MLE-estimators.

5.3.5 Numerical example

Let us now illustrate our methodology. We reconsider the same data set used for the Example
5.3.1, and calculate in Example 5.3.2 the FCI by the likelihood ratio.

Example 5.3.2. Consider again the fuzzified sample of 10 observations given in Table 5.1 such
that its fuzzy sample mean is given by X̃ = (1.8, 2.8, 3.8). We remind that this primary sample
is derived from a normal distribution with a standard deviation of 1.135.

Similarly to the Example 5.3.1, we would like to calculate the FCI for the mean by the like-
lihood ratio method. By the aforementioned procedure, the fuzzy confidence interval Π̃LR at
the confidence level 1− δ = 1− 0.05 can be found as follows.

First of all, we have to calculate the log-likelihood function. For the fuzzy sample X̃i , i =
1, ... , 10, this function is given by:

l(θ̃; x̃) = log
∫
R
µX̃1

(x)f (x ; θ̃)dx + ... + log
∫
R
µX̃10

(x)f (x ; θ̃)dx

= log
∫ 4

3
(3 + x)f (x ; θ̃)dx + log

∫ 5

4
(5− x)f (x ; θ̃)dx + ...

+ log
∫ 3

2
(2 + x)f (x ; θ̃)dx + log

∫ 4

3
(4− x)f (x ; θ̃)dx .
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Mention that the function denoted by f (x ; θ̃) is the probability density function of the standard
normal distribution where σ = 1.135.

Since the sample is assumed to be fuzzy, we can deduce that the considered parameter
is fuzzy as well. We calculate the crisp maximum likelihood estimator for the mean by the
EM-algorithm applied in the fuzzy environment and we get ˆ̃θ = 3.6568. Assume now that this
crisp estimator contains vagueness and is modelled by the triangular symmetrical fuzzy num-
ber (3.1568, 3.6568, 4.1568). Therefore, its support set is the interval [p; s] where p = 3.1568
and s = 4.1568. In addition, its core set is composed of the value q = 3.6568 only.

Next, by the Algorithm 1 of the bootstrap technique, we estimate the quantile η of the
bootstrap distribution of the deviance LR at the significance level δ = 0.05. We get that η =
1.4778, and η

2 = 1.4778
2 = 0.7389. We have to calculate after the threshold points I1, I2, I3 and

I4 as given in Equations 5.45, 5.46, 5.47 and 5.48. Then, we get the following points:

I1 = l(3.1568; x̃)− 0.7389 = −16.2258,
I2 = l(3.6568; x̃)− 0.7389 = −18.3079,
I3 = l(3.6568; x̃)− 0.7389 = −18.3079,
I4 = l(4.1568; x̃)− 0.7389 = −22.1101,

where the minimum and maximum thresholds seen in Figure 5.5 are given by

Imin = min(I1, I2, I3, I4) = −22.1101, and Imax = max(I1, I2, I3, I4) = −16.2258.

We have to find now the intersection points θ?L
1 , θ?L

2 , θ?L
3 , θ?L

4 and θ?R
1 , θ?R

2 , θ?R
3 , θ?R

4 as
shown in Equations 5.51, 5.52, 5.53 and 5.54. They are given by:

θ?L
1 = 2.2175, θ?R

1 = 3.3838,
θ?L

2 = θ?L
3 = 1.8276, θ?R

2 = θ?R
3 = 3.7736,

θ?L
4 = 1.3674, θ?R

4 = 4.2332,

with the minimum and maximum intersection abscisses θ?L
inf , θ

?L
sup, θ?R

inf and θ?R
sup expressed by:

θ?L
inf = inf(θ?L

1 , θ?L
2 , θ?L

3 , θ?L
4 ) = 1.3674, θ?R

inf = inf(θ?R
1 , θ?R

2 , θ?R
3 , θ?R

4 ) = 3.3838,
θ?L

sup = sup(θ?L
1 , θ?L

2 , θ?L
3 , θ?L

4 ) = 2.2175, θ?R
sup = sup(θ?R

1 , θ?R
2 , θ?R

3 , θ?R
4 ) = 4.2332.

Finally, by standardizing the obtained function to the y-interval [0; 1], we are able to write
the FCI Π̃LR given by its left and right α-cuts (Π̃LR)α =

[
(Π̃LR)L

α, (Π̃LR)R
α

]
as seen in Equations

5.59 and 5.60. The obtained FCI shown in Figure 5.6 is written by the following:

(Π̃LR)L
α =

{
θ ∈ R | 1.3674 ≤ θ ≤ 2.2175 andα =

l(θ, x̃) + 22.1101
5.8843

}
,

(Π̃LR)R
α =

{
θ ∈ R | 3.3838 ≤ θ ≤ 4.2332 andα =

l(θ, x̃) + 22.1101
5.8843

}
.
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Figure 5.5: Fuzzy log-likelihood function for the mean and the intersection with the upper and lower
bounds of the fuzzy parameter X̃ - Example 5.3.2.

It is important to briefly compare the two approaches of computation of the fuzzy confi-
dence interval (the traditional one versus the one using the likelihood method). In terms of the
shape of the "traditional" fuzzy confidence interval (its membership function), we would easily
see that it depends firmly on the shape of the fuzzy numbers modelling the data set. It is the
same for the shape of the fuzzy sample mean since this fact is a direct consequence. How-
ever, the FCI by LR is directly related to the chosen probability density function. In addition,
it is clear to see that regarding the shapes of both intervals, the LR one is more elaborated,
this latter taking into account multiple knots. This fact is seen as an increase of the accuracy
of such methods. Furthermore, in the particular proposed setups, if we superpose the Fig-
ures 5.4 and 5.6, we can directly notice that Π̃ has a larger support set than Π̃LR, such that
Π̃LR ⊆ Π̃. In our case, our approach is said to be more restrictive since a given hypothesis
tends to be more often rejected. However, once we assume that the fuzzy number modelling
the maximum likelihood estimator is fuzzier, we could expect to get a FCI with a larger support
set.

Finally, for such elaborated methods, the computations are known to be tedious. Yet, by
the defended approach, we proposed an affordable tool to reduce this complexity. Another
advantage is that this approach can be applied to a widespread of estimators and for any pre-
defined distribution. No restrictions on the choice of the parameter exist. One can construct a
confidence interval by adapting only the type of estimator with the chosen distribution. Thus,
our procedure of calculation of the FCI by the likelihood ratio is seen in some sense general.
Hence, the influence of the choice of the fuzzy number modelling the crisp maximum likelihood
estimator would be interesting to investigate, in addition to the method and adequacy of the
calculation of the crisp estimator.
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Figure 5.6: Fuzzy confidence interval by likelihood ratio method Π̃LR - Example 5.3.2.

5.4 Fuzzy hypotheses testing

As asserted before, we used to perform the statistical inference by considering fuzzy data.
Using a test statistic, we test the null hypothesis H0 against the alternative one H1, based
on the data sets containing fuzziness and given an unknown parameter θ. We remind that
the classical outcome of such tests is a binary decision reflecting whether H0 is rejected or
not against H1. We note for example Grzegorzewski (2000) who gave in a serie of papers a
general method for constructing hypotheses tests with vague data, based on fuzzy confidence
intervals. Accordingly, the decision made are vague as well. In other terms, the fuzzy test
leads to a non-binary fuzzy decision giving a level of conviction of rejecting each of the two hy-
potheses. However, since human thoughts are imprecise, one could often face the case where
the hypotheses are fuzzy as well as the data. For this reason, we proposed in Berkachy and
Donzé (2019d) and Berkachy and Donzé (2017a) an extension of the Grzegorzewski (2000)
approach to the case considering fuzzy hypotheses instead of precise ones. Thus, we sup-
posed that the fuzziness is not only contained in the data set, but also in the hypotheses. In
addition, since the fuzzy decision is not always interpretable, we showed a defuzzification pro-
cedure of this decision based on the SGD operator described in Section 3.6. In this section,
we recall the studies described above, and we illustrate them by empirical examples. More-
over, we will not only use the SGD, but also the GSGD for the defuzzification step in order to
help in decision making.

5.4.1 Fuzzy hypotheses testing using fuzzy confidence intervals

The aim is to extend the classical approach of hypotheses testing to the fuzzy approach when
fuzziness occurs also in the hypotheses. The purpose is then to test the parameter θ and get a
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fuzzy decision. An appropriate method consists on constructing a two-sided confidence inter-
val Π̃ built on the considered fuzzy sample with the confidence level 1−δ. Both approaches of
estimating a FCI given in Definition 5.3.1 and in Section 5.3.2 can be efficiently used. Indeed,
we have to stress that the FCI by the likelihood ratio method was intentionally proposed in
order to be able to integrate it in the present procedure. From another side, note that we will
describe theoretically a two-sided test, but a one-sided one can be easily written.

Let X1, ... , Xn be a random sample from a population described by a probability distribution
Pθ depending on the parameter θ and belonging to a family of distributions D = {Pθ : θ ∈ Θ}.
We consider X1, ..., Xn to be mutually independent and identically distributed. We assume that
this sample is fuzzy, which will be modelled by fuzzy numbers. Therefore, we define the fuzzy
random sample denoted by X̃ = (X̃1, ... , X̃n), as the fuzzy perception of the involved random
sample. The fuzzy random sample is characterized by its membership function µX̃ such that
µX̃ : Rn → [0, 1]n. The objective is to test the two-sided hypothesis "θ is near θ0", against the
alternative hypothesis "θ is away from θ0".

In this case, we consider that the null and alternative hypotheses are fuzzy. This setup
permits to treat not only the data as fuzzy but also the hypotheses. We could model the fuzzy
null hypothesis by a triangular fuzzy number for example denoted by H̃0 = (p, θ0, r ). In this
case, its left and right α-cuts (H̃0)L

α and (H̃0)R
α are as follows:{

(H̃0)L
α = p + (θ0 − p)α,

(H̃0)R
α = r − (r − θ0)α.

(5.67)

Analogously to the classical approach and after considering the hypotheses, the next step
is to define the test statistic. Indeed, when the sample is assumed to be fuzzy, then we could
evidently expect the test statistic to be fuzzy as well. Viertl (2011) provided a definition of a
fuzzy test statistic denoted by Z̃ given in the following sense.

Consider φ to be a real valued function, φ : Rn → R. The fuzzy test statistic Z̃ is a function
of the fuzzy random sample X̃1, ... , X̃n and given by Z̃ = φ(X̃1, ... , X̃n). Its membership function
µZ̃ is written by

µZ̃ (z) =

{
sup {µX̃ (x) : φ(x) = z} if ∃x : φ(x) = z,
0 if @x : φ(x) = z,

(5.68)

where x is, if it exists, a n-dimensional vector such that it exists a fuzzy element of this vector
for which its MF attains the value 1 and its α-cuts are compact, convex and bounded subsets
of Rn, ∀z ∈ R. For all α ∈ (0; 1], the fuzzy number Z̃ can also be written using its α-cuts as:

Z̃α =
[

min
X̃∈X̃α

φ(X̃ ), max
X̃∈X̃α

φ(X̃ )
]
. (5.69)
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From another side, inspired by Kruse and Meyer (1987) a fuzzy test can be defined in the
following way.

Definition 5.4.1 (Fuzzy Test).

Consider a fuzzy random vector X̃1, ... , X̃n related to the original X1, ... , Xn in the space Ω.
Let δ be a particular value of the interval [0; 1]. A function φ̃ is called a fuzzy test for the null
and the alternative hypotheses at the significance level δ if

sup
α∈[0;1]

PH
{
ω ∈ Ω : φ̃α(X̃1(ω), ... , X̃n(ω)) ⊆ {1}

}
≤ δ, (5.70)

where φ̃α is the α-cut of φ̃.

For a given parameter θ and at the significance level δ, let Π̃ be a FCI as described in
Definition 5.3.1. The null and alternative hypotheses related to the test are assumed to be
fuzzy. They are written respectively by H̃0 and H̃1. We define the geometric intersection points
between Π̃ and these fuzzy hypotheses designated by aL, aR, rL and rR such that

aL = inf(H̃0 ∩ Π̃α), (5.71)
aR = sup(H̃0 ∩ Π̃α), (5.72)
rL = inf(H̃0 ∩ ¬Π̃α), (5.73)

rR = sup(H̃0 ∩ ¬Π̃α), (5.74)

where the operator "¬" refers to the negation. In addition, we denote by α1,α2,α3 and α4 ∈
[0; 1], the α-levels corresponding to the values aL, aR, rL and rR, with α1 ≤ α2 and α3 ≤ α4.

We are now able to propose the fuzzy test statistic φ̃ defined on the n-dimensional space
of fuzzy numbers by:

φ̃ :
(
F?c(R)

)n 7→ F
(
[0; 1]

)
,

such that its α-cuts are given by:

φ̃α(X̃1, ... , X̃n) =



{0} if
(
Π̃α \ (¬Π̃)α

)
∩ H̃0 = θ0;

{1} if
(

(¬Π̃)α \ Π̃α
)
∩ H̃0 = θ0;

([α1;α2]) ∪ ([α3;α4]) if
(
Π̃α ∩ (¬Π̃)α

)
∩ H̃0 = [aL; aR] ∪ [rL; rR];

∅ if
(
Π̃α ∪ (¬Π̃)α

)
∩ H̃0 = ∅;

(5.75)

where Π̃α \ (¬Π̃)α is the relative complement of (¬Π̃)α with respect to the set Π̃α.
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Proposition 5.4.1. φ̃ is a fuzzy test.

Proof. In order to prove that φ̃ given in Equation 5.75 is a fuzzy test, it should verify the
Definition 5.4.1 of a fuzzy test. It can be done in the following manner:

Consider the two-sided symmetrical confidence interval Π̃ given by its α-cuts [Π̃L
α, Π̃R

α ] on
the significance level δ. For this FCI, the Equation 5.27 holds for every value of θ, and can be
expressed by:

PH
(
Π̃L
α ≤ θ ≤ Π̃R

α

)
≥ 1− δ, ∀α ∈ [0; 1]. (5.76)

From another side, we could write based on the conditions expressed in Equation 5.75 the
following:

PH
{
ω ∈ Ω : φ̃α(X̃1(ω), ... , X̃n(ω)) ⊆ {1}

}
= 1− PH

{
ω ∈ Ω : φ̃α(X̃1(ω), ... , X̃n(ω))

∈
{
{0}, {([α1;α2]) ∪ ([α3;α4])}

}}
. (5.77)

Then, by construction of φ̃ as shown in Equation 5.75, we could easily see that the following
expression is true:

PH

{
ω ∈ Ω : φ̃α(X̃1(ω), ... , X̃n(ω)) ∈

{
{0}, {([α1;α2]) ∪ ([α3;α4])}

}}
(5.78)

= PH

{
ω ∈ Ω : θ0 ∈ Π̃α(ω)

}
= PH

{
ω ∈ Ω : Π̃L

α(ω) ≤ θ0 ≤ Π̃R
α (ω)

}
,

where the interpretation of such cases is that the parameter θ0 belongs to the α-level set of
the fuzzy confidence interval Π̃ at the significance level 1− δ.

Therefore, we could write that:

PH
{
ω ∈ Ω : φ̃α(X̃1(ω), ... , X̃n(ω)) ⊆ {1}

}
= 1− PH

{
ω ∈ Ω : Π̃L

α(ω) ≤ θ0 ≤ Π̃R
α (ω)

}
≤ 1− (1− δ) = δ. (5.79)

Hence, by Equation 5.76, we could directly deduce that

sup
α∈[0;1]

PH
{
ω ∈ Ω : φ̃α(X1(ω), ... , Xn(ω)) ⊆ {1}

}
≤ δ. (5.80)
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Our idea for the fuzzy test is to construct new fuzzy decisions based on the intersection
between the fuzzy null hypothesis and the fuzzy confidence interval, and eventually the nega-
tion of it. Therefore, we denote by D̃0 the triangular fuzzy number derived from the intersection
of H̃0 and Π̃α written as D̃0 = (p0, q0, r0), such that

p0 = min
(
µΠ̃ (aL),µΠ̃ (aR)

)
, (5.81)

q0 = µΠ̃ (θ0), (5.82)
r0 = max

(
µΠ̃ (aL),µΠ̃ (aR)

)
. (5.83)

Similarly, the triangular fuzzy number D̃1 = (p1, q1, r1) is derived from the intersection of H̃0
and ¬Π̃α such that

p1 = min
(
µ¬Π̃ (rL),µ¬Π̃ (rR)

)
, (5.84)

q1 = µ¬Π̃ (θ0), (5.85)
r1 = max

(
µ¬Π̃ (rL),µ¬Π̃ (rR)

)
. (5.86)

It is important to see that D̃0 and D̃1 are convex fuzzy numbers on R with µD̃0
: R→ [0; 1] and

µD̃1
: R→ [0; 1]. The proof can be written as follows:

Proof. By construction, it is easy to prove that

∀x ∈ R,µD̃0
(x) ∈ [0; 1],

where p0 ≤ q0 ≤ r0.

For the convexity property of D̃0, by choosing x1 = aL and x2 = aR, the proof of Definition 1.1.1
becomes straightforward. It is the same for D̃1.

These fuzzy numbers are constructed with the intention of assuring that their membership
functions are continuous and their supports are bounded. In addition, we mention that the
letter "D" is used to refer to the term "decision", the number "0" to the "null" hypothesis and the
number "1" to the "alternative" one. A complete list of figures illustrating different situations of
intersection between fuzzy confidence intervals and the fuzzy null hypothesis can be found in
Tables A.8, A.9 and A.10.

Consequently, the membership function of the fuzzy test statistic φ̃ is seen as a union of
the membership functions µD̃0

and µD̃1
, characterizing respectively the fuzzy decisions of the

null and alternative hypotheses. The membership function of φ̃ can then be written as:

µφ̃(t) = µD̃0
I{do not reject H0}(t) + µD̃1

I{do not reject H1}(t), t ∈ {0, 1}. (5.87)

It is clear to see that this latter does not lead to a binary decision. In other terms, we would not
necessarily strictly reject or not a given null hypothesis. Contrariwise, the obtained decision will
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be also fuzzy. Thus, we may get a decision interpreted as a degree of conviction of accepting
the null hypothesis given by µD̃0

, or rejecting it by a degree of µD̃1
.

The proposed fuzzy test is seen as a generalization of the case where the hypotheses
are not supposed fuzzy. Thus, the subsequent remark shows that our fuzzy test, in specific
conditions, could return the test given in Grzegorzewski (2000) and Berkachy and Donzé
(2017a).

Remark 5.4.1. If the null hypothesis is crisp, the intersections is reduced to θ0 and we get that
µD̃1

(θ0) = 1− µD̃0
(θ0) as seen in Berkachy and Donzé (2017a). Then, µφ̃(t) is written by:

µφ̃(t) = µD̃0
(θ0) I{do not reject H0}(t) + (1− µD̃0

(θ0)) I{do not reject H1}(t), t ∈ {0, 1}. (5.88)

Finally, and most importantly, by combining all the abovementioned informations, we dis-
play the decision rule, seen to be fuzzy as well. Based on the support and the kernel of the
fuzzy confidence interval Π̃, denoted respectively by supp Π̃ and core Π̃, the fuzzy decision
rule φ̃ on the parameter θ is written by:

φ̃(X̃1, ... , X̃n) =


{1|H0, 0|H1} if θ0 ∈ core Π̃;
{0|H0, 1|H1} if θ0 /∈ supp Π̃;
{µD̃0

(t)|H0, µD̃1
(t)|H1} if else;

(5.89)

where "|H0" and "|H1" mean respectively "decision related to the null hypothesis" and "deci-
sion related to the alternative hypothesis". We add that in the first two cases of Equation 5.89,
the left side of each term, i.e. 0 or 1, has a specific significance as well. Thus, the value 0
indicates the rejection, and the value 1 indicates the acceptance of a given hypothesis. For
the last case, the decision rule is seen as a degree of conviction of accepting H0 with µD̃0

(t)
or rejecting it with µD̃1

(t).

We display the subsequent simple numerical example to clarify the proposed methodology:

Example 5.4.1. Consider the data set given in Table 5.1 and the modelling procedure pre-
sented for calculating the fuzzy confidence interval for the mean given in Section 5.3.1. Sup-
pose now that for a particular value µ0 = 2 and a significance δ = 0.05, we want to test the
following hypotheses

H̃T
0 = (1.8, 2, 2.3) against H̃OR

1 = (2, 2, 5),

with their respective α-cuts:

(H̃T
0 )α =

{
(H̃T

0 )L
α = 1.8 + 0.2α;

(H̃T
0 )R
α = 2.3− 0.3α.

and (H̃OR
1 )α =

{
(H̃OR

1 )L
α = 2;

(H̃OR
1 )R

α = 5− 3α.
(5.90)
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By adopting the same procedure of computing the FCI for the mean given in Section 5.3.1,
we get that the FCI for the mean µ is

Π̃α = [1.5022 + 0.71α; +∞).

In order to obtain the fuzzy decisions related to this test, we have to construct the inter-
section fuzzy numbers denoted by D̃0 and D̃1. First, we can see that the fuzzy confidence
interval and its complement overlap with the fuzzy null hypothesis. Therefore, we have to find
the values AL, AR, RL and RR, i.e. the abscissas of the intersection points between Π̃ and ¬Π̃
from one side, and H̃0 from another side as seen in Figure 5.7. We after have to calculate
their α-levels, µΠ̃ (AL), µΠ̃ (µ0), µΠ̃ (AR), µ¬Π̃ (RL), µ¬Π̃ (µ0) and µ¬Π̃ (RR), where ¬Π̃ is the com-
plement of the fuzzy confidence interval. To clarify the steps followed for this purpose, we will
express in details the calculations related to the membership functions of the fuzzy confidence
intervals affected to the values aL, µ0 and aR:

• For the intersection between Π̃L
α and (H̃T

0 )L
α, we have to solve the equation Π̃L

α = (H̃T
0 )L
α.

We then get the following

Π̃L
α = (H̃0)L

α ⇔ 1.5022 + 0.71α = 1.8 + 0.2α ⇔ α = 0.584 = µΠ̃ (AL).

• The intersection between Π̃L
α and the line x = µ0 can be found by solving the equation

Π̃L
α = 2 as follows:

Π̃L
α = 2 ⇔ 1.5022 + 0.71α = 2 ⇔ α = 0.701 = µΠ̃ (AT ),

where AT = µ0.

• Finally, for the intersection between Π̃L
α and (H̃T

0 )R
α , we solve Π̃L

α = (H̃T
0 )R
α in the following

manner:

Π̃L
α = (H̃0)R

α ⇔ 1.5022 + 0.71α = 2.3− 0.3α ⇔ α = 0.789 = µΠ̃ (AR).

In the same way, the membership functions of the fuzzy confidence intervals at the abscissas
RL, RT and RR are:

µ¬Π̃ (RL) = 0.453 ;µ¬Π̃ (RT ) = 0.299 ;µ¬Π̃ (RR) = 0.

Consequently, the fuzzy intersection numbers D̃0 and D̃1 are given by the following tuples:

D̃0 =
(
µΠ̃ (AL),µΠ̃ (µ0),µΠ̃ (AR)

)
= (0.584, 0.701, 0.789); (5.91)

D̃1 =
(
µ¬Π̃ (RR),µ¬Π̃ (µ0),µ¬Π̃ (RL)

)
= (0, 0.299, 0.453). (5.92)

Thus, we can say that the fuzzy number D̃0 reflects the decision of not rejecting the fuzzy null
hypothesis H̃0. We would not reject H̃0 at a degree given by the fuzzy number (0.584, 0.701, 0.789).
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Membership functions of the fuzzy null hypothesis and the fuzzy confidence intervals
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Figure 5.7: The membership functions of the fuzzy null hypothesis and the fuzzy confidence intervals
- Example 5.4.1.

The fuzzy number D̃1 is related to the alternative hypothesis. In other terms, we would not re-
ject the alternative hypothesis at a degree given by the fuzzy number (0, 0.299, 0.453).

One last step is then to write the fuzzy test stastistic using the membership functions of
these fuzzy numbers. We get the following fuzzy test statistic:

φ̃(X̃1, ... , X̃10) =
{
µD̃0

(t)|H0, µD̃1
(t)|H1

}
, t ∈ {0, 1}.

Accordingly, even if fuzzy decisions are seen as more flexible and contains more informa-
tion than precise ones, one can clearly see that these fuzzy decisions might in many cases be
difficult to be interpreted. For this reason, a defuzzification operation can be proposed.

5.4.2 Defuzzification of the fuzzy decisions

If a fuzzy decision does not satisfy a given practitioner because of his intention to precisely
reject or not a null hypotheses, he should proceed to a defuzzification by an adequate operator
as described in Section 2.3. For such tasks, Grzegorzewski (2001) has used two operators
called the maximum value operator and the randomized operator. Since the SGD and the
GSGD presented in Sections 3.6 and 3.7 are directional, we believe that these operators might
be interesting in this process. In like manner, we showed in Berkachy and Donzé (2017a) and
Berkachy and Donzé (2019d) that defuzzifying the fuzzy decisions by the original SGD could
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eventually be interesting to investigate. We will thus recall the previous studies described as
follows.

The idea is to treat the testing problem as a linguistic variable. Thus, we first decompose
the fuzzy test statistic into 2 linguistic terms, i.e. rejection or acceptance of a given hypothesis.
These terms can be modelled by fuzzy numbers. It is obvious to see that for the fuzzy hypoth-
esis test φ̃, the required fuzzy numbers are nothing but the fuzzy decisions D̃0 and D̃1 obtained
previously. Now consider a distance operator d given by either the SGD, or the GSGD, since
their properties are quite similar. The distances of the fuzzy terms D̃0 and D̃1 to the fuzzy
origin are then d(D̃0, 0̃) and d(D̃1, 0̃). We denote by δ0 and δ1 respectively the indicators of
rejection and acceptance of a given hypothesis as follows:

δ0 =

{
1 if the null hypothesis is accepted;
0 otherwise.

and δ1 =

{
1 if the null hypothesis is rejected;
0 otherwise.

(5.93)

The distance defuzzification operator O of D̃ is then defined by:

O(D̃) = δ0 · d(D̃0, 0̃) + δ1 · d(D̃1, 0̃), (5.94)

where the distance d is either the SGD or its GSGD.

If we consider the operator d to be the original SGD given in Definition 3.6.3, the expres-
sions of the signed distances of D̃0 and D̃1 are given in the following remark:

Remark 5.4.2. Consider d to be the signed distance presented in Definition 3.6.3, the signed
distances of D̃0 and D̃1 are written as d(D̃0, 0̃) = dSGD(D̃0, 0̃) and d(D̃1, 0̃) = dSGD(D̃1, 0̃). The
fuzzy decisions D̃0 and D̃1 are defined as triangular fuzzy number such that their elements are
given in Equations 5.81 to 5.86. From Equation 3.22, we get:

d(D̃0, 0̃) = dSGD(D̃0, 0̃) =
1
4
(
µΠ̃ (AL) + 2µΠ̃ (θ0) + µΠ̃ (AR)

)
, (5.95)

d(D̃1, 0̃) = dSGD(D̃1, 0̃) =
1
4
(
µ¬Π̃ (RL) + 2µ¬Π̃ (θ0) + µ¬Π̃ (RR)

)
. (5.96)

Consequently, by the Equations 5.89, 5.95 and 5.96 to decompose the fuzzy test statistic
φ̃, we denote by O ◦ φ̃ the precise decision of the considered fuzzy test. This decision is
defined by:

(
O ◦ φ̃

)
(D̃) =


1 if µΠ̃ (θ0) = 1 (No rejection of H0, rejection of H1);
0 if µΠ̃ (θ0) = 0 (Rejection of H0, no rejection of H1);
δ0 · d(D̃0, 0̃) + δ1 · d(D̃1, 0̃) if else.

(5.97)

This decision can be interpreted as follows: If µΠ̃ (θ0) = 1, then we strictly do not reject the null
hypothesis. If µΠ̃ (θ0) = 0, the decision will be to reject strictly H0. Finally, if 0 < µΠ̃ (θ0) < 1,
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based on the defuzzification of the fuzzy decisions, the null hypothesis will not be rejected at
a degree of conviction of d(D̃0, 0̃) and rejected at a degree of conviction d(D̃1, 0̃).

Remark that our method can be perfectly adopted in the case of precise hypotheses. Then,
we will get µΠ̃ (aL) = µΠ̃ (aR) = µΠ̃ (θ0) and µ¬Π̃ (rL) = µ¬Π̃ (rR) = µ¬Π̃ (θ0), all taking values on R.
Thus, in this case, we can write:

d
(
µΠ̃ (θ0), 0

)
= µΠ̃ (θ0) and d

(
(1− µΠ̃ (θ0), 0

)
= 1− µΠ̃ (θ0). (5.98)

Moreover, by substituting the Equation 5.98 in the Equation 5.97, we get the crisp hypotheses-
related decision of the fuzzy test expressed as follows:

(
O ◦ φ̃

)
(D) =


1 if µΠ̃ (θ0) = 1(No rejection of H0, rejection of H1);
δ0 · µΠ̃ (θ0) + δ1 · (1− µΠ̃ (θ0)) if µΠ̃ (θ0) > 0 and µΠ̃ (θ0) 6= 1;
0 otherwise (Rejection of H0, no rejection of H1).

(5.99)

The case of crisp hypotheses gives back a similar result of Grzegorzewski (2001). Further-
more, one can conclude that when fuzziness occurs, the case of inference tests with fuzzy
hypotheses is seen as a generalization of the case using precise ones. Our proposed proce-
dure is then considered to be advantageous because of its flexibility and capacity of treatment
of the problem of uncertainty in data and/or hypotheses.

The very last step of a hypotheses testing procedure is to emit a decision based on a
specific rule, regarding rejecting or not a given null hypothesis.

Decision rule. At the significance level δ, we propose the following decision rule:

• we reject the null hypothesis if d(D̃0, 0̃) < d(D̃1, 0̃);

• we do not reject the null hypothesis if d(D̃0, 0̃) > d(D̃1, 0̃);

• both null and alternative hypotheses are neither rejected nor not rejected if d(D̃0, 0̃) =
d(D̃1, 0̃). In this case, we are not able to decide whether to reject or not the null hypoth-
esis. Note that this case is seen to be rare.

Finally, the hypothesis testing procedure by the fuzzy confidence interval is summed up in
the following algorithm:
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Algorithm:

1. Consider the null and the alternative hypotheses for a given parameter θ and
model them by fuzzy numbers.

2. Estimate the fuzzy confidence interval for the concerned parameter. Two ap-
proaches are shown - Equation 5.24 and Procedure of Section 5.3.2.

3. Find the intersection values aL, aR, rL and rR given in Equations 5.71, 5.72, 5.73
and 5.74 respectively and their corresponding α-levels α1, α2, α3 and α4.

4. Write the fuzzy test statistic φ̃α - Equation 5.75.

5. Construct the triangular fuzzy numbers D̃0 = (p0, q0, r0) and D̃1 = (p1, q1, r1) -
Equations 5.81 to 5.86.

6. Write the fuzzy decision rule φ̃ - Equation 5.89.

7. Issue fuzzy decisions related to the null and the alternative hypotheses. Con-
clude.

8. Defuzzify the fuzzy decisions by an adequate defuzzification operator.

9. Issue a crisp decision - Equation 5.97. Conclude.

Example 5.4.2. Since the decisions obtained in Example 5.4.1 are fuzzy, they are difficult to
read. We propose to defuzzify them by the SGD and the GSGD.

Consider again the fuzzy decisions D̃0 and D̃1 related respectively to not rejecting H̃0 or
not rejecting H̃1. They are written by:

D̃0 = (0.584, 0.701, 0.789) and D̃1 = (0, 0.299, 0.453).

We can draw the membership functions of D̃0 and D̃1 as shown in Figure 5.8. Note that
these fuzzy numbers are triangular by construction. Then, from Equation 3.19, their signed
distances are as follows:

dSGD(D̃0, 0̃) =
1
4

(0.587 + 2× 0.701 + 0.789) = 0.694;

dSGD(D̃1, 0̃) =
1
4

(0 + 2× 0.29 + 0.453) = 0.258,

and for θ? = 1, their generalized signed distances as seen in Equation 3.28 are given by:

dGSGD(D̃0, 0̃) = 0.696 and dGSGD(D̃1, 0̃) = 0.282.
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Therefore, we write the fuzzy test statistic using Equation 5.89 for the SGD by:

φ̃SGD(X̃1, ... , X̃10) = {0.694|H0, 0.258|H1},

and for the GSGD by:

φ̃GSGD(X̃1, ... , X̃10) = {0.696|H0, 0.282|H1}.

A crisp decision can be obtained by defuzzifying the fuzzy test statistic as given in Equation
5.104, and we get the following crisp decision:(

OSGD ◦ φ̃SGD

)
(X̃1, ... , X̃10) = δ0 · d(D̃0, 0) + δ1 · d(D̃1, 0) = δ0 · 0.694 + δ1 · 0.258, (5.100)

and for the GSGD, it is:(
OSGD ◦ φ̃GSGD

)
(X̃1, ... , X̃10) = δ0 · 0.696 + δ1 · 0.282. (5.101)

The last step is to decide according to the rule given above. The decision is interpreted
as follows: since µΠ̃ (µ0) > 0 and µΠ̃ (µ0) 6= 1, then we can not reject H̃0 with a degree of
δ0 ·d(D̃0, 0̃) + δ1 ·d(D̃1, 0̃) = 1 ·d(D̃0, 0̃) + 0 ·d(D̃1, 0̃) = 0.694 (respectively 0.696 for the dGSGD).
We could add that we can not reject H̃1 with a degree of 0 · d(D̃0, 0̃) + 1 · d(D̃1, 0̃) = 0.258
(respectively 0.282 for the dGSGD).

Decision. By the SGD, the degree 0.694 of not rejecting H̃0 is bigger than the degree 0.258
of rejecting it. Then, we will tend to not reject the null hypothesis for this example.

We observe that the decision is the same with the generalized signed distance. It is because
of the slight difference in the obtained defuzzified values. One could interpret this fact as a
similarity in the use of both distances. However, it would be interesting to treat a case where
this difference could eventually change the decision.

5.4.3 Fuzzy p-values

Once we assume that the fuzziness occurs in a hypothesis test, one has to expect that the
p-value associated to the test to be fuzzy also. Furthermore, we could suspect that the un-
certainty could not only be contained in the data set, but also in the defined hypotheses.
Hryniewicz (2018) gave an overview of several known approaches of calculating a p-value in
the fuzzy context. For instance, Filzmoser and Viertl (2004) and Viertl (2011) built a fuzzy
p-value by considering the fuzziness of the data. In addition, their procedure is based on a
three cases decision rule where the third possibility of Neyman and E. S. Pearson (1933) was
considered. From another side, Parchami, Nourbakhsh, and Mashinchi (2017) asserted that
the fuzziness of their version of the p-value is a matter of hypotheses, rather than of data.
In Berkachy and Donzé (2017c), Berkachy and Donzé (2019b) and Berkachy and Donzé
(2019d), we reconsidered both approaches and proposed a procedure based simultaneously
on fuzzy data and fuzzy hypotheses. Related to the tests 5.1, 5.2, and 5.3, and to their rejec-
tion regions 5.4, 5.5 and 5.6, we recall the developed approach, and we give the corresponding
fuzzy p-values with their α-cuts, these latter being mandatory in the process of assessment
of the test statistics results. The p-values written in terms of their α-cuts are given in the
subsequent proposition proposed by Berkachy and Donzé (2019d).
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Figure 5.8: The membership functions of the fuzzy decisions - Example 5.4.2.

Proposition 5.4.2 (Fuzzy p-value).

Consider a test procedure where the fuzziness is a matter of data and of hypotheses. The
null hypothesis H0 is then supposed to be fuzzy and modelled by the fuzzy number H̃0. We
define by θL and θR the α-cuts of the boundary of H̃0. Let t̃ = φ(X̃1, ... , X̃n) be a fuzzy test
statistic which is a function of the fuzzy random sample X̃1, ... , X̃n associated with a member-
ship function µt̃ . We denote by t̃L

α and t̃R
α its left and right borders. According to the three

rejection regions 5.4, 5.5 and 5.6, we denote by p̃α the α-cuts of the fuzzy p-value p̃. They are
written as follows:

1. p̃α =
[
PθR (T ≤ t̃L

α), PθL(T ≤ t̃R
α )
]
; (5.102)

2. p̃α =
[
PθL(T ≥ t̃R

α ), PθR (T ≥ t̃L
α)
]
; (5.103)

3. p̃α =

{[
2PθR (T ≤ t̃L

α), 2PθL(T ≤ t̃R
α )
]

if Al > Ar ,[
2PθL(T ≥ t̃R

α ), 2PθR (T ≥ t̃L
α)
]

if Al ≤ Ar ;
(5.104)

for all α ∈ (0, 1], where Al and Ar are the areas under the MF µt̃ of the fuzzy number t̃ on the
left and respectively the right side of the median of the distribution of φ. Note that the exact
location of the median (left or right side) depends on the biggest amount of fuzziness.

Proof. We suppose that the fuzziness is coming from the data and the hypotheses. We would
like to find the α-cuts of the fuzzy p-value p̃, denoted by p̃α. The proof will be composed of
three main points:
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1. Consider a fuzzy test statistic t̃ = φ(X̃1, ... , X̃n), where t̃ is the fuzzy value obtained from
applying the test statistic φ on the fuzzy random sample X̃1, ... , X̃n. The fuzzy test t̃ is
associated to a MF µt̃ such that its support supp(µt̃ ) is given by

supp(µt̃ ) =
{

x ∈ R : µt̃ (x) > 0
}

.

Filzmoser and Viertl (2004) asserted that when the fuzziness comes only from the data,
the problem can be solved using the definition of the classical precise p-value p. This
latter can be extended to the fuzzy context by using the extension principle. For a one-
sided test, the first step is to define the uncertain p-values corresponding to the tests 5.1
and 5.2 as a precise value written as follows:

1. p = P
(
T ≤ t = max supp(µt̃ )

)
; (5.105)

2. p = P
(
T ≥ t = min supp(µt̃ )

)
. (5.106)

Since fuzziness is assumed to be in the data, as defended by Filzmoser and Viertl
(2004), then it would be logical to see the p-value as a fuzzy entity and not a precise
one. Denote by p̃FV the fuzzy p-value based on the approach of Filzmoser and Viertl
(2004). It is as well important to write the α-cuts p̃α. We know that for all α ∈ [0; 1], the
α-cuts of t̃ , i.e. t̃α = [t̃L

α; t̃R
α ], are compact and closed on the space R. These α-cuts will

be used to define the respective α-cuts of the fuzzy p-value p̃FV . By respect to Equations
5.105 and 5.106, the α-cuts p̃FVα are expressed by:

1. p̃FVα=
[
P(T ≤ t̃L

α), P(T ≤ t̃R
α )
]
; (5.107)

2. p̃FVα=
[
P(T ≥ t̃R

α ), P(T ≥ t̃L
α)
]
. (5.108)

The procedure for the two-sided case can be similarly conceivable.

2. The second step is dedicated to the approach of Parchami, Taheri, and Mashinchi (2010)
which related the fuzziness to the hypothesis, and accordingly gave their fuzzy p-value
denoted by p̃PA. Its α-cuts p̃PAα are given by

1. p̃PAα =
[
PθR (T ≤ t), PθL(T ≤ t)

]
; (5.109)

2. p̃PAα =
[
PθL(T ≥ t), PθR (T ≥ t)

]
; (5.110)

3. p̃PAα =

{[
2PθR (T ≤ t), 2PθL(T ≤ t)

]
if Al > Ar ,[

2PθL(T ≥ t), 2PθR (T ≥ t)
]

if Al ≤ Ar ,
(5.111)

where θL and θR are the boundaries of the fuzzy null hypothesis, and t is an observed
crisp test statistic.

3. By combining the approaches by Filzmoser and Viertl (2004) and the one by Parchami,
Taheri, and Mashinchi (2010) with the classical definition of the p-value — Equations
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(5.107, 5.108), (5.109, 5.110) and (5.13, 5.14) — we get the left and right α-cuts of p̃ as
seen in Proposition 5.4.2.

The last step is then to verify that the properties of the membership function are fulfilled.
We know that µt̃ and µH̃0

are the respective membership functions of t̃ and H̃0. In
addition, the used probabilities are defined on [0; 1]. Then, we can deduce that the
membership function of p̃ is defined on [0; 1] as well, such that for a particular value, it
attains the value 1. Furthermore, we can clearly see that the α-cuts of each of the cases
are closed and finite intervals. Thus, for all α ∈ (0; 1], they are convex and compact
subsets of the space R.

This fuzzy p-value is then interpreted as the fuzzy number written by its corresponding α-cuts
such that each side is calculated by considering a particular α-cut of the fuzzy test statistic, on
a given α-cut of the boundary of the null hypothesis. We remind that this fuzzy p-value refers
to the case where the test statistic is assumed to be fuzzy and given by its α-level sets [t̃L

α; t̃R
α ],

corresponding to a particular fuzzy null hypothesis represented by the α-cuts of its boundary
[θ̃L
α; θ̃R

α ].

For the ordering of the evoked areas Al and Ar under the MF of t̃ on the left and right sides
of the median M̃ of the distribution of the test statistic as given in Definition 5.2.3, two cases
are possible: Al > Ar and Al ≤ Ar . As such, one could depict five main possible positions of
the fuzzy numbers t̃ and M̃. The possible positions are given as follows:

• For the cases of Figures A.1a and A.1b, we have that Al > Ar .

• For the cases of Figures A.2a and A.2b, we have that Al ≤ Ar .

• For cases similar to the Figure A.2c, note that the fuzzy numbers can vary regarding
the preference (obviously the need), and the required amount of fuzziness in the fuzzy
modelling procedure. For the situation of Figure A.2c, we have that Al ≤ Ar .

We are now able to define a decision rule based on the developed fuzzy p-value. We
mention that similarly to the Neyman and E. S. Pearson (1933) approach, Filzmoser and Viertl
(2004) adopted a three-decisions rule with respect to the left and the right α-cuts of the fuzzy
p-value. As for us, we consider the same principle of the three-decisions problem, and we get
the following decision rule:

Decision rule. At a significance level δ, the decision rule for a given test where the data and
the hypotheses contain fuzziness, is given by:

• if p̃R
α < δ, the null hypothesis is rejected;

• if p̃L
α > δ, the null hypothesis is not rejected;
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• if δ ∈
[
p̃L
α; p̃R

α

]
, both null and alternative hypothesis are neither rejected or not.

As an illustration of this procedure, we display an example based on a random fuzzy set,
taken from a normal distribution to simplify the understanding of the proposed ideas. We
mention that in our setups, we consider the case of known variance only. The case of an
unknown variance is not treated.

Example 5.4.3. Consider a sample of 10 observations X̃i , i = 1, ... , 10, of the population
derived from a normal distribution N(µ, 2.2848), with known variance. The sample is simulated
in the same way as described in Example 4.6. The population is then a group of people
expressing their rating for a given painting in a museum. The fuzzy observations are randomly
chosen. The data set is given in Table 5.4.

A given expert in arts asserted that a painting having a rate of around 8 is considered to
be overall impressive. At a significance level δ = 0.05, the idea is then to know whether the
statement "the rating of the chosen painting is approximately 8" would be rejected or not in
order to be able to classify it as impressive (or not). Therefore, we assume the hypotheses
and the data set to be fuzzy. A fuzzy testing procedure should then be used. We would like
in this case to calculate the fuzzy p-value of this test. Let us first consider the following fuzzy
hypotheses given by fuzzy numbers — triangular ones to simplify the case — as follows:

H̃T
0 = (7, 8, 9) against H̃T

1 = (8, 9, 10).

The α-cuts of H̃T
0 are given by:

(H̃T
0 )α =

{
(H̃T

0 )L
α = 7 + α;

(H̃T
0 )R
α = 9− α.

(5.112)

We have to calculate now the fuzzy sample mean X̃ . As shown in Defintion 4.4.1, we get
X̃ = (3.65, 5.159, 6.391), with its α-cuts written as:

X̃α =

X̃
L
α = 3.65 + 1.509α;

X̃
R
α = 6.391− 1.232α.

(5.113)

Furthermore, the rejection region for this test is defined by Equation 5.3. Using the propo-
sition 5.4.2, since max(supp X̃ ) ≤ min(supp H̃0), we can easily deduce that the areas Al and
Ar given in Equation 5.104 are such that Al ≤ Ar . The fuzzy p-value p̃ is then given by its
α-cuts p̃α as follows:

p̃α =
[
2PθL(T ≥ t̃R

α ), 2PθR (T ≥ t̃L
α)
]
. (5.114)

In addition, since the sample is assumed to be normally distributed and T ∼ N(0, 1), the α-cuts
p̃α of the corresponding fuzzy p-value p̃ are then written as:

p̃α =
[
2
∫ ∞
θL(α)

(2π)−
1
2 exp(

−u2

2
)du, 2

∫ ∞
θR (α)

(2π)−
1
2 exp(

−u2

2
)du
]
, (5.115)
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where the α-cuts of the boundary of the fuzzy null hypothesis are given by
[
θL(α); θR(α)

]
for

which the functions θL(α) et θR(α) depend on α. Therefore, using the Equations 5.112 and
5.113, we get the following expressions:

θL(α) =
X̃

L
α − (H̃T

0 )R
α

σ /
√

n
= −7.4079 + 3.4741α and θR(α) =

X̃
R
α − (H̃T

0 )L
α

σ /
√

n
= −0.8432−3.0905α.

By replacing θL(α) et θR(α) in the Equation 5.115, we get the fuzzy p-value p̃ shown in
Figure 5.9. The decision rule of such p-values is given by comparing the threshold δ with the
α-cuts of p̃.

Decision: In the present situation, the line p = δ overlaps with the fuzzy p-value such that
δ ∈

[
p̃L
α; p̃R

α

]
, thus no decision can be made. Both null and alternative hypotheses are neither

rejected nor not rejected.

Index Triangular Fuzzy Number X̃

1 (1.82,4.23,5.97)

2 (3.38,5.88,6.03)

3 (1.00,2.47,3.74)

4 (5.06,5.88,7.43)

5 (1.00,1.81,2.77)

6 (9.54,9.91,10.00)

7 (4.91,6.14,8.51)

8 (2.98,5.01,6.37)

9 (1.00,3.89,4.53)

10 (5.81,6.37,8.56)

X̃ = (3.65, 5.159, 6.391)

Table 5.4: The fuzzy data set - Example 5.4.3

In this case, no information on the required decision is made. This decision is difficult to
interpret in terms of rejecting or not the statement related to the rating of the painting. One
could proceed by defuzzifying the fuzzy p-value.

5.4.4 Defuzzification of the fuzzy p-value

A crisp p-value resulting from any hypotheses test (classical or fuzzy) could eventually be
useful for practitioners. Analogously to the defuzzification of the fuzzy decisions given in
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Figure 5.9: Fuzzy p-value p̃ for the mean - Example 5.4.3.

Section 5.4.2, we propose to defuzzify the fuzzy p-value by a distance d , notably the SGD
or the GSGD, as seen for example in Berkachy and Donzé (2017c) for the original SGD. An
important fact to identify is the possible similarities in the interpretations of both the fuzzy and
defuzzified p-values. For this task, we will then consider the Equations 5.102, 5.103 and 5.104
and defuzzify them by the operator d by writing the distance of p̃ to the fuzzy origin 0̃, denoted
by d(p̃, 0̃).

If d is the original SGD given in Equation 3.19, the defuzzified p-values are as follows:

1. dSGD(p̃, 0̃) =
1
2

∫ 1

0

(
PθR (T ≤ t̃L

α) + PθL(T ≤ t̃R
α )
)
dα; (5.116)

2. dSGD(p̃, 0̃) =
1
2

∫ 1

0

(
PθL(T ≥ t̃R

α ) + PθR (T ≥ t̃L
α)
)
dα; (5.117)

3. dSGD(p̃, 0̃) =

{
1
2

∫ 1
0

(
2PθR (T ≤ t̃L

α) + 2PθL(T ≤ t̃R
α )
)
dα, if Al > Ar ,

1
2

∫ 1
0

(
2PθL(T ≥ t̃R

α ) + 2PθR (T ≥ t̃L
α)
)
dα, if Al ≤ Ar .

(5.118)

Correspondingly, the decision rule associated to the defuzzified p-values is needed. If d is
the SGD or the GSGD, one can expect to get a decision rule similar to the one by the classical
p-value.

Decision rule. The decision rule related to the defuzzified p-values is written by:

• if d(p̃, 0̃) < δ, the null hypothesis is rejected;

• if d(p̃, 0̃) > δ, the null hypothesis is not rejected;
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• if d(p̃, 0̃) = δ (a rare case), the null hypothesis is not rejected nor accepted. One should
decide whether or not to reject it.

Although the third case is present in the previous decision rule, it is evident to see that this
situation is extremely rare when dealing with crisp p-values. Thus, a main difference between
the decision rule of the fuzzy p-value and the one of the defuzzified p-value is that a no-
decision region can only be detected in the case of fuzzy p-values. Whenever the fuzzy
p-value is defuzzified, this case will no longer be possible. Therefore, since by defuzzifying we
get back to the crisp environment for which a no-rejection region can no longer be detected,
this operation is seen as disadvantageous.

From another perspective, one could say that with the defuzzified p-value, the overlapping
possibility is avoided. The closest decision regarding the distance of the fuzzy p-value to the
origin is made. Therefore, even though the no-rejection region is lost, by the crisp p-value, we
are almost surely getting a decision.

For the Example 5.4.3, since no decision have been made, a defuzzification is needed.
The sequel of this example is then given in the following example:

Example 5.4.4. Consider the fuzzy p-value calculated in Example 5.4.3 at the level δ = 0.05
and shown in Figure 5.9. We would like to defuzzify it in order to make a decision regarding
whether to reject or not the null hypothesis. By the SGD, the defuzzified p-value given in
Equation 5.118 is calculated as:

dSGD(p̃, 0̃) =
1
2

∫ 1

0
(2PθL(T ≥ t̃R

α ) + 2PθR (T ≥ t̃L
α))dα

=
1
2

∫ 1

0

(∫ ∞
−7.4079+3.4741α

(2π)−
1
2 exp(

−u2

2
)du +

∫ ∞
−0.8432−3.0905α

(2π)−
1
2 exp(

−u2

2
)du
)

dα

= 0.0360,

and by the GSGD given in Equation 3.28, if we suppose that the weight θ? is equal to 1
3 for

example, the defuzzified p-value is

dGSGD(p̃, 0̃) = 0.0416.

Finally, the following decision rule is applied:

Decision: Since the defuzzified p-value by the SGD 0.0360 is smaller than the significance
level 0.05, then the decision is to reject the fuzzy null hypothesis.
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For the defuzzified p-value by the GSGD, the decision is obviously the same. However, this
latter is closer to the significance level. Thus, one could expect that the particular case where
the null hypothesis is rejected by the SGD and not rejected by the generalized one exists. A
further investigation is needed in this purpose.

The computation of the fuzzy p-value can then be summarized in the following algorithm:

Algorithm:

1. Consider a fuzzy sample. Introduce a test by defining the null and the alter-
native hypotheses for a given parameter θ. Model them by fuzzy numbers -
Section 5.2.

2. Calculate an estimate of the parameter to be tested.

3. Define the rejection region related to the test - Equations 5.7, 5.8 and 5.9.

4. Calculate the α-cuts of the boundary of the fuzzy null hypothesis H̃0 denoted
by
[
θL(α); θR(α)

]
.

5. Write the fuzzy p-value by calculating its α-cuts - Equations 5.102, 5.103 and
5.104.

6. Decide, conclude and eventually go to 7.

7. Defuzzify the fuzzy p-value by an appropriate defuzzification operator:

• For the signed distance, use Equations 5.116, 5.117 and 5.118.

• For the generalized signed distance, defuzzify using the expression of the
distance given in Equation 3.28.

8. Decide. Conclude.

5.5 Applications - Finanzplatz

The aim now is to show how practically one can use the previously discussed theories. It is
obvious that real life data should be used. For this purpose, we apply our inference methods on
a data set coming from the "Finanzplatz: Umfrage 2010" survey described in Appendix A.1.1,
and composed of n = 234 observations, i.e. firms. We are interested in having informations
regarding the state of the businesses in Zurich. The existing variables in this data set are
supposed to be uncertain. Fuzziness is then induced in such variables, and our procedures
of fuzzy hypothesis testing can be of good use.

We expose in this section two main applications where we model the data set differently.
For each modelled data set, we choose a different method of testing. By that, we would like to
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show that our procedures are applicable in all modelling contexts. We will mainly use triangular
fuzzy numbers for the sake of simplicity, but we have to mention that other shapes modelling
the fuzzy numbers can analogously be used.

5.5.1 Application 1

For the first application, we are interested in the present state of business of the considered
firms. In order to simplify the situation, let us suppose that this data set is normally distributed
with a mean µ and a standard deviation σ = 0.972. The involved variable is categorical, having
5 possible answers going from bad to good. Thus, we assume that fuzziness occurs in the
collected data set.

Suppose we want to model the fuzzy perception of the data set. This latter is then fuzzified
using the corresponding fuzzy numbers given in Table 5.5, and we get the fuzzy random
sample written as X̃1, ... , X̃n=234. We would like to test the hypotheses that "the average of the
present state of business" is near the value µ0 = 4 at the significance level δ = 0.05. These
hypotheses are supposed to be imprecise and can be modelled by the following triangular
fuzzy numbers:

H̃T
0 = (3.8, 4, 4.2) vs. H̃T

1 = (4, 4.5, 5),

with the α-cuts of H̃T
0 given by:

(H̃T
0 )α =

{
(H̃T

0 )L
α = 3.8 + 0.2α;

(H̃T
0 )R
α = 4.2− 0.2α.

(5.119)

The fuzzy sample mean X̃ is written by the tuple X̃ = (3.24, 3.765, 4.22) for which the
α-cuts are expressed by:

(X̃ )α =

{
(X̃ )L

α = 3.24 + 0.525α;

(X̃ )R
α = 4.22− 0.455α.

(5.120)

Linguistic Modality Triangular Fuzzy Number

X1 bad X̃1 = (1, 1, 1.7)

X2 fairly bad X̃2 = (1.5, 2, 2.6)

X3 fair X̃3 = (2.5, 3, 3.5)

X4 fairly good X̃4 = (3.4, 4, 4.8)

X5 good X̃5 = (4.5, 5, 5)

Table 5.5: Modelling fuzzy numbers - Section 5.5.1.
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The idea is to construct the fuzzy confidence interval for the mean µ. Two methods can be
used: a construction of the FCI using the traditional expression for the mean, and another one
based on the likelihood ratio method. By the traditional expression for the mean, the α-cuts of
a fuzzy two-sided confidence interval Π̃ can be written by:

Π̃α =
[
Π̃L
α, Π̃R

α

]
=
[
(X̃ )L

α − u1− δ2

σ√
n

, (X̃ )R
α + u1− δ2

σ√
n

]
=
[
3.24 + 0.525α− 1.96

0.972√
234

, 4.22− 0.455α + 1.96
0.972√

234

]
=
[
3.115 + 0.525α, 4.344− 0.455α

]
, (5.121)

where n = 234, σ = 0.972, u1− δ2
= u0.975 = 1.96 is the 1 − δ

2 ordered quantile derived from

the standard normal distribution, (X̃ )L
α and (X̃ )R

α are respectively the left and right α-cuts of the
fuzzy sample mean X̃ .

Note that the FCI Π̃LR by the likelihood ratio method can analogously be computed. For sake
of comparison between both intervals, we assumed that the fuzzy sample mean is used as
a fuzzy estimator. The case using the fuzzy-modelled MLE-estimator is similarly conceivable
and gives very close results in terms of interpretations. In addition, we have estimated by the
bootstrap technique the quantile η using the Algorithm 2 and we got a value 2.1225 for the
95% ordered quantile η.

The Figure 5.10 shows the intersection between the "traditional" FCI and the fuzzy null
hypothesis. In the same way, Figure 5.11 shows the intersection between the LR FCI from
one side, and the fuzzy null hypothesis from another one.

We now have to find, if it exists, the intersection between the fuzzy null hypothesis and the
FCI (and eventually its complement) in order to construct the fuzzy decisions D̃0 and D̃1. We
get the following:

• For Π̃ (see Figure 5.10), the fuzzy decisions are D̃0 = (0.567, 0.757, 0.831) and D̃1 =
(0, 0.243, 0.474), with their respective distances dSGD(D̃0, 0̃) = 0.7281 and dSGD(D̃1, 0̃) =
0.2399 by the SGD. For the GSGD with θ? = 1, the distances are as follows:

dGSGD(D̃0, 0̃) = 0.7311 and dGSGD(D̃1, 0̃) = 0.2676.

According to this latter, the fuzzy test statistic can be written by

φ̃GSGD(X̃1, ... , X̃234) = {0.7311|H0, 0.2676|H1}.



142 Chapter 5. Fuzzy Statistical Inference

• For Π̃LR (see Figure 5.11), the fuzzy decisions related to the null and alternative hy-
potheses are given by D̃0 = (0.5040, 0.7654, 0.8464) and D̃1 = (0, 0.2346, 0.4988), for
which their signed distances are dSGD(D̃0, 0̃) = 0.7203 and dSGD(D̃1, 0̃) = 0.2420. Their
generalized signed distances are

dGSGD(D̃0, 0̃) = 0.7254 and dGSGD(D̃1, 0̃) = 0.2722.

Its corresponding fuzzy test statistic is consequently expressed by

φ̃GSGD(X̃1, ... , X̃234) = {0.7254|H0, 0.2722|H1}.

We would like now to defuzzify both fuzzy test statistics. The SGD can be used in this
purpose, as seen in Equation 5.99. Thus, we can write the following:

• For Π̃, since µΠ̃ (µ0) > 0 and µΠ̃ (µ0) 6= 1, we have that(
OSGD ◦ φ̃GSGD

)
(X̃1, ... , X̃234) = δ0 · d(D̃0, 0̃) + δ1 · d(D̃1, 0̃) = δ0 · 0.7311 + δ1 · 0.2676.

• For Π̃LR, since µΠ̃LR
(µ0) > 0 and µΠ̃LR

(µ0) 6= 1, then we can get that:(
OSGD ◦ φ̃GSGD

)
(X̃1, ... , X̃234) = δ0 · d(D̃0, 0̃) + δ1 · d(D̃1, 0̃) = δ0 · 0.7254 + δ1 · 0.2722.

Therefore, by this operation, one could deduce the following decision for the test:

Decision: At the 0.05 significance level, since d(D̃0, 0̃) > d(D̃1, 0̃), we do not reject the null
hypothesis H0.

Interpretation: We do not reject the null hypothesis that the average of the present state of
businesses is fairly good or near the value 4, implicitely mentioned in the triangular represen-
tations of H̃T

0 and H̃T
1 . In the same way, we tend to reject the alternative hypothesis that this

average is away from 4.

From the calculations of both FCI, one could remark that the support and the core sets
of the LR-FCI are slightly smaller than the ones of the traditional FCI. This fact confirms the
output obtained from the simulation study of Section 5.3.2. Regarding the decisions based on
these FCI, it is clear to see that both procedures of estimation of FCI give the same decisions
with very close degrees of rejection or acceptance of a particular hypothesis. This result is
consequently considered as appeasing.
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Figure 5.10: Membership functions of the fuzzy null hypothesis and the fuzzy confidence intervals -
Subsection 5.5.1.

5.5.2 Application 2

For the second application, we consider another modelling context with the same data set.
We will fuzzify the variable "gross profit compared to the last 12 months" by triangular fuzzy
numbers. The support set of the fuzzy observations are generated randomly, while their core
sets are fixed. In this case, the core sets are reduced to one element only. They are nothing
but the real variable itself. We proceed by fixing the difference between the core from one
side, and the minimum and maximum values of the support set to 0.5. Thus, the support set
of a given fuzzy number could be of width 1. For instance, if a given firm answered by 2, we
could model this response by the tuple (1.82, 2, 2.031) for example.

We would like to test whether we reject the following fuzzy hypotheses related to "the
average of the gross profit compared to the last 12 months":

H̃T
0 = (2, 3, 4) vs. H̃OR

1 = (3, 3, 5),

where the α-cuts of the fuzzy null hypothesis are given by:

(H̃T
0 )α =

{
(H̃T

0 )L
α = 2 + α;

(H̃T
0 )R
α = 4− α.

(5.122)

We would like to calculate the fuzzy p-value related to this test. In our situation, the rejec-
tion region is defined related to the test statistic seen in Equation 5.8.
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Figure 5.11: Membership functions of the fuzzy null hypothesis and the fuzzy confidence intervals by
LR - Subsection 5.5.1.

First of all, let us calculate the fuzzy sample mean X̃ . It is given by the tuple X̃ =

(3, 3.265, 3.5) with its corresponding left and right α-cuts X̃
L
α and X̃

R
α . Furthermore, since

the distribution of the variable is supposed to be normal with a standard deviation σ = 0.796,
we could calculate the α-cuts of the fuzzy p-value where the functions θL(α) and θR(α) are the
bounds of the integrals for which the integrands are the probability density function related to
the normal distribution. The functions θL(α) and θR(α) are expressed by

θL(α) =
X̃

R
α − (H̃T

0 )L
α

σ /
√

n
=

(3.5− 0.235α)− (2 + α)
0.796 /

√
234

= 28.826− 23.734α,

and θR(α) =
X̃

L
α − (H̃T

0 )R
α

σ /
√

n
=

(3 + 0.265α)− (4− α)
0.796 /

√
234

= −19.217 + 24.310α.

Consequently, the α-cuts of the fuzzy p-value p̃ associated to the density function of the
normal distribution are written by:

p̃α =
[ ∫ +∞

θL(α)
(2π)−

1
2 exp(

−u2

2
)du,

∫ +∞

θR (α)
(2π)−

1
2 exp(

−u2

2
)du
]
. (5.123)

The obtained fuzzy p-value is shown in Figure 5.12. It is clear that a decision can not be made
since p̃ is very fuzzy and it overlaps with the significance level. Therefore, we would like to
defuzzify the fuzzy p-value to get a clearer decision. We could use the SGD as instance, and
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we get the following defuzzified p-value:

d(p̃, 0̃) =
1
2

∫ 1

0

(
PθL(T ≥ t̃R

α ) + PθR (T ≥ t̃L
α)
)
dα

=
1
2

∫ 1

0

(∫ +∞

28.826−23.734α
(2π)−

1
2 exp(

−u2

2
)du +

∫ +∞

−19.217+24.310α
(2π)−

1
2 exp(

−u2

2
)du
)

dα

= 0.395.

For the GSGD with θ? = 1, the defuzzified p-value is 0.559. Thus, for both tests, the decision
related to the defuzzified p-values is written in the following manner:

Decision: The defuzzified p-value 0.395 (respectively 0.559 for the dGSGD distance) is higher
than the significance level δ = 0.05. Thus, we tend to not reject the null hypothesis with the
degree of 0.395 (0.559 with dGSGD).
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Figure 5.12: Fuzzy p-value of the test - Subsection 5.5.2.

From another side, we would like to explore the influence of the shape of the fuzzy hy-
potheses on the decisions made by the fuzzy p-value approach. In other words, we would be
interested to know whether the obtained decision depends on the amount of fuzziness con-
tained in the fuzzy hypotheses, and if it is true, to know in which direction regarding rejecting
or not the null hypothesis. In Berkachy and Donzé (2017a), we treated a similar case. One
of our main findings was that the shape and spread of the alternative hypothesis do not influ-
ence the final decision. This hypothesis is only responsible of determining which form of the
rejection region R has to be considered. Thus, considering a less or more imprecise alterna-
tive hypothesis have no influence. However, the variation of the fuzzy null hypothesis could
change drastically the decision taken. To validate and expand this result, we re-consider the
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previous test and we vary the support set of the fuzzy null hypothesis. Table 5.6 gives a review
of different considered tests where the null hypothesis changes, and where we consider H̃1 to
be the same such that H̃OR

1 = (3, 3, 5).

It is clear to see that intersections between the obtained fuzzy p-values and the signifi-
cance level exist. We deduce that no decision can be made. For this purpose, we express the
defuzzified p-values by the SGD and the GSGD. The decisions are accordingly made. The
obtained fuzzy p-values are shown in Figure 5.13.

Test Fuzzy null hypothesis dSGD(p̃, 0̃) and decision dGSGD(p̃, 0̃) and decision (θ? = 1
3 ) dGSGD(p̃, 0̃) and decision (θ? = 1)

1 H̃T
0 = (2, 3, 4) 0.395 Not reject H̃0 0.456 Not reject H̃0 0.559 Not reject H̃0

2 H̃T
0 = (2.5, 3, 3.5) 0.326 Not reject H̃0 0.376 Not reject H̃0 0.461 Not reject H̃0

3 H̃T
0 = (2.8, 3, 3.2) 0.213 Not reject H̃0 0.246 Not reject H̃0 0.301 Not reject H̃0

4 H̃T
0 = (2.9, 3, 3.1) 0.134 Not reject H̃0 0.155 Not reject H̃0 0.190 Not reject H̃0

5 H̃T
0 = (2.9, 3, 3.05) 0.083 Not reject H̃0 0.096 Not reject H̃0 0.118 Not reject H̃0

6 H̃T
0 = (2.9, 3, 3.0162) 0.05 Not reject nor reject H̃0 0.058 Slightly not reject H̃0 0.07 Not reject H̃0

7 H̃T
0 = (2.9, 3, 3.0085) 0.0433 Reject H̃0 0.05 Not reject nor reject H̃0 0.06 Not reject H̃0

8 H̃T
0 = (3, 3, 3) 0.0365 Reject H̃0 0.0421 Reject H̃0 0.052 Not reject nor reject H̃0

Table 5.6: Testing different fuzzy hypotheses on the significance level δ = 0.05 - Subsection 5.5.2.
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Figure 5.13: Fuzzy p-values of the different tests given - Table 5.6.

From Table 5.6 and Figure 5.13, we can directly see that the defuzzified p-value is sen-
sitive to the variation of the support set of the fuzzy null hypothesis. In addition, it is clear
that with respect to both distances, the highest defuzzified p-value corresponds to the fuzzy
p-value for which the support set is the largest. It is the opposite for the ones having the lowest
spreaded fuzzy p-value. Moreover, in terms of the differences between the signed distance
and the generalized signed distance, we could say that by the generalized one we tend more
strongly to not reject the null hypothesis, since the defuzzified p-value is higher. Contrariwise,
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since the defuzzified p-value by the GSGD distance is higher as well, we tend less strongly to
reject the null hypothesis.

For these right one-sided tests, if we look closely to the tests 4 to 7, we can remark that
the left hand side of the null hypothesis is fixed. Thus, the left hand side has no influence on
the defuzzified p-value. The variation depends rather on the right hand side of the fuzzy null
hypothesis. Note that for a left one-sided test, the left hand side of the null hypothesis has
the influence instead of the right one. In addition, we mention that we intentionally ordered
the tests in the following order: the fuzziest null hypothesis to the most precise one. We can
clearly see that the defuzzified p-values have a decreasing order as well, such that the most
we get closer to a precise hypothesis, the more we tend to reject the null hypothesis.

Furthermore, we can find the significance level δ = 0.05 as the defuzzified p-value for the test 6
with respect to dSGD, and for the test 7 with respect to dGSGD when θ? = 1

3 . One could deduce
that the right hand sides of the fuzzy null hypothesis related to these tests are considered to
be thresholds of rejection. Note that the fuzzy null hypotheses of both tests are slightly differ-
ent. We add that for the case where θ? = 1, we could not find any null hypothesis inducing
by the calculations to get exactly the threshold of significance. Moreover, if we compare the
two cases where θ? = 1

3 and θ? = 1, even though the calculations are overall the same, we
can expect to get different decisions. It is the effect of the weight θ? one puts on the shape
of the involved fuzzy numbers through the calculation of the distance which matters in such
situations.

We could conclude that the defuzzified p-value seems to be a pertinent indicator of the
fuzziness contained in the null hypothesis. Therefore, in order to make the most suitable deci-
sion, one has to model prudently the required fuzzy null hypothesis.

As a final remark about the above described applications, we have almost everytime as-
sumed that the distributions are normally distributed to simplify the cases. In a more realistic
situation where we do not actually know in advance the theoretical distribution of the set, we
would recommend to use the empirical density function instead. Thus, the outcome of the
integration over this function on the boundaries of the fuzzy null hypothesis would also be
empirical.

5.5.3 Classical versus Fuzzy hypotheses testing

For the final section, it is interesting to compare the classical and the fuzzy approaches of
testing hypotheses in terms of the decisions made. For this purpose, we perform exactly the
same tests described in the previous two subsections, with the data set, but in the classical
traditional context. Thus, we consider the data and the hypotheses as precise. For the Sub-
sections 5.5.1 and 5.5.2, we obtained respectively the results shown in Tables 5.7 and 5.8. We



148 Chapter 5. Fuzzy Statistical Inference

remind that similarly to the aforementioned approaches, it exists two means of deciding in the
classical theory: we could compare the test statistic T to the quantiles of the corresponding
distribution, or to compare the p-value with the significance level.

Both approaches summarized in the Tables 5.7 and 5.8 showed that for the treated cases,
the classical and fuzzy approaches gave different decisions, where by the classical we tend to
reject more strongly the null hypothesis at the significance level δ = 0.05, while with the fuzzy
one, we have a different margin of acceptability of the null hypothesis.

For instance, for the first case (Table 5.7), we expressed the fuzzy decisions with their
respective defuzzification by the generalized signed distance. Following, we tend to not reject
the null hypothesis with a degree of conviction of 0.7311 in the fuzzy approach. However, by
the classical test, we totally reject it. In addition, we have to remark that the obtained fuzzy
decisions have a relatively high amount of fuzziness. Moreover, the decision D̃0 has a support
set close to the value 0.5, i.e. an evident threshold of comparison between the two possible
decisions. It is then more difficult to truly assume whether to reject or not the null hypothesis.
Therefore, even though the defuzzification operation is seen as a loss of information, by this
tool, we get a better view of the possible decisions to make. They are reflected in the pro-
duced degrees of conviction. We remind that the idea behind these degrees has effectively
been introduced to better interpret the fuzzy decisions. Note that these degrees are mainly
related to the no-rejection of a given hypothesis.

The present state of the business The test results The decision

Crisp two-sided test

H0: µ = 4 vs. H1: µ 6= 4
|T | = |12.0404| /∈ (ta; tb) = (−1.9702; 1.9702) H0 is totally rejected

Fuzzy two-sided test

H̃0: µ is close to 4

vs.

H̃1: µ is away from 4

D̃0 = (0.567, 0.757, 0.831),

with dGSGD(D̃0, 0̃) = 0.7311

D̃1 = (0, 0.243, 0.474),

with dGSGD(D̃1, 0̃) = 0.2676

H̃0 is not rejected with a

degree of conviction

0.7311.

Table 5.7: The results of the crisp and fuzzy tests corresponding to the variable "The present state of
business" - Subsection 5.5.1.

For the second case (Table 5.8 and Figure 5.12), it is easy to see that the significance
level and the fuzzy p-value overlap. No clear decision can be made. A defuzzification is then
needed. The Table 5.8 shows that at the significance level δ = 0.05, since 0.395 (0.559 with
dGSGD) > δ, then we could not reject the null hypothesis H̃0. However, the fuzzy p-value
clearly contains a big amount of fuzziness, and the decision made could be judged as not
very realistic because of the loss of information provoked by the defuzzification. Then, since
the overlapping is a typical case in similar contexts, one could imagine the following supple-
mentary decision rule for such cases.
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We propose to compare the defuzzified p-value related to the rejection of the null hypothesis
H0 written by d(p̃, 0̃) with a given distance d , to the threshold 0.5. This value has been chosen
because of the implicit idea of equally weighting the two possible decisions: rejection of H0 or
no rejection of H0. In this case, the supplementary decision rule will be expressed by:

• if d(p̃, 0̃) < 0.5, we tend to reject the null hypothesis with a degree of conviction 1 −
d(p̃, 0̃);

• if d(p̃, 0̃) > 0.5, we tend to not reject the null hypothesis with a degree of conviction
d(p̃, 0̃);

• if d(p̃, 0̃) = 0.5, one should decide whether or not to reject the null hypothesis.

Thus, by this new decision rule, the last decision made will be partially revoked, and since by
the signed distance 0.395 < 0.5, we will consequently tend to slightly reject the null hypothesis
with the degree of conviction 1−0.395 = 0.605. However, by the generalized signed distance,
we have a defuzzified p-value of 0.559, which means that we slightly tend to not reject the null
hypothesis with the degree 0.559.

The gross profit compared to the last 12 months The p-values The decision

Crisp right-sided test

H0: µ = 3 vs. H1: µ ≥ 3
3.64e−07 H0 is strongly rejected

Fuzzy right-sided test

H̃0: µ is approximately 3 vs.

H̃1: µ is approximately bigger than 3

dSGD = 0.395

dGSGD = 0.559

H̃0 is rejected with the degree 0.605

H̃0 is not rejected with the degree 0.559

Table 5.8: The results of the crisp and fuzzy tests corresponding to the variable "The gross profit
compared to the last 12 months" - Subsection 5.5.2.

Following this added decision rule, Berkachy and Donzé (2019d) asserted that when the
considered parameter is positioned in the no-rejection region, the fuzzy approach is seen as
more pessimistic than the classical one. In other words, the classical p-value tends to stronger
not reject the null hypothesis compared to the fuzzy one. However, for the rejection region in
the present case (Table 5.8), we can see that by the classical approach, we strongly reject the
null hypothesis. This conjunction is less strong in the fuzzy approach. One could say that in
the rejection region, the fuzzy approach gives a less pessimistic decision than the classical
one, showing a given amount of flexibility.

Although generally the interpretations of the fuzzy decisions by the confidence intervals
of a given test are somehow different between both approaches, one can deduce that the
classical tests are seen as the extremes of the fuzzy ones. Thus, this latter is in some sense
a sort of generalization of the classical cases: the more the fuzziness tends to be absent,
the more we are closer to the results and decisions of the classical theory. For the concept
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of the p-value, the interpretations of the decisions are different since for the fuzzy context, if
we adopt the supplementary decision rule, the p-value is said to be a degree of acceptability
related to the null hypotheses. These definitions gave us a general idea on how to choose the
better hypotheses testing approach fitting the data.

To sum up and following the discussion on the comparison between the classical and fuzzy
approaches, it is important to provide some pros and cons of the use of each one of them.
Giving some corresponding guidelines is absolutely an asset. Berkachy and Donzé (2019d)
displayed a brief list of their advantages and disadvantages.

Even though the decisions of both approaches can be in many cases the same, a first
main difference is in the nature and the interpretation of the obtained decisions. Thus, in the
classical theory, the decision is reduced to one of both possible decisions: reject the null hy-
pothesis or not reject it. Yet, by the fuzzy approach, the decision is precisely interpreted by a
degree of conviction or a degree of acceptability. This fact is clearly seen in the Applications
of Subsections 5.5.1 and 5.5.2. In other words, the decision by the fuzzy approach is not re-
strictive to one decision only. Instead, we would be able to reject or not the null hypothesis at a
given degree of conviction. At the same time, we would reject or not the alternative hypothesis
at a "complementary" degree of conviction.

Furthermore, we can say that the classical approach is seen as the extreme case regard-
ing the fuzzy one, since the classical approach tends more strongly to reject or not a given null
hypothesis. This fact can be seen as an absolute advantage in the cases where the involved
hypothesis is actually true. When it is the opposite, this particularity of the classical approach
is considered to be a disadvantage. Thus, the decision made will be far from the reality. Simi-
larly, when the hypothesis is actually true, the fuzzy approach is disadvantaging.

On a more global level, an utter difference is that by the fuzzy approach, the uncertainty
and subjectivity of the hypotheses and the data sets can now on be taken into account. In
addition, despite the fact that the defuzzification induces a loss of information, we managed
to produce a crisp interpretable decision, similarly to the classical approach. Therefore, being
able to provide a decision — fuzzy or defuzzified — associated to a vague context is an
asset. Moreover, since the shape and spread of the fuzzy hypotheses and the fuzzy data
influence the decisions made by the tests or the p-values, we saw that the defuzzified p-value
can be seen as a pertinent indicator of fuzziness of the hypothesis. A convenient decision
can consequently be made. To conclude, it is clear that the question about which of both
procedures modelling the uncertainty to choose, arises strongly in such contexts.
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This part composed by 5 chapters intended to propose novel methods of hypotheses testing
procedures in the fuzzy context. To do so, we expressed in the first chapter the foundations
of the fuzzy set theory, such as the concepts and definitions of fuzzy sets, fuzzy numbers, the
extension principle and the different logical and arithmetic fuzzy operations.

We briefly exposed in Chapter 2 fundamental notions of the fuzzy rule-based systems,
where we clearly stated our interest to the defuzzification step. In Chapter 3, we listed several
known metrics between fuzzy numbers with their properties, including the signed distance
operator. Following, we introduced two novel L2 metrics, i.e. the dθ

?

SGD and the generalized
signed distance dGSGD. Their construction is centered on the definition of the signed distance,
but where we add a newer component taking into consideration the shape of the fuzzy num-
bers. We highlight that the generalized signed distance preserves the directional property of
the signed distance. Thereafter, the Chapter 4 aims to recall two main approaches of defin-
ing random variables in the fuzzy environment, i.e. the Kwakernaak - Kruse and Meyer and
the Féron - Puri and Ralescu approaches. By the Kwakernaak - Kruse and Meyer method, a
fuzzy random variable is defined as the fuzzy perception of a traditional random variable. The
outcome of such methods is then fuzzy. The Féron - Puri and Ralescu approach relies of the
levelwise extension of the random sets in real spaces to the spaces of fuzzy sets. It models
then uncertain random variables for which this uncertainty is by nature. It is clear that concep-
tual differences exist between both approaches. However, in a one dimensional setting, both
approaches coincide. We add that for the Féron - Puri and Ralescu methodology, a metric
is needed to solve the problem induced by the fuzzy difference operation. The generalized
signed distance, or other metrics can consequently be used. We exposed in this chapter also
some interesting statistical measures based on both approaches, such as the expectation and
the variance, and the notion of point estimators. We closed this chapter by several simula-
tions where we randomly constructed uncertain data sets with various sizes. The aim was
to explore the influence of the sample size, and the main differences between the use of the
previously listed distances in terms of statistical measures. We were particularly interested
in the sample moments, and consequently by the variance, the skewness and the excess of
kurtosis. From these computations, we found that the sample size does not affect the value of
the different measures. According to the use of all the distances in such contexts, we saw that
no particular interpretation can be done on the variance and the excess of kurtosis. However,
for the skewness, we remarked that by the directional distances, we tend to get a null skew-
ness. The skewness measures of the data sets using the non-directional distances are very
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close, and farther from 0 than the directional ones. This finding can be an indication that by a
directional distance, we might be close to a normal distribution.

For the last and most important chapter of this part, we introduced a fuzzy hypotheses test
by fuzzy confidence intervals, where we suppose that the fuzziness is a matter of data and/or
hypotheses. For the calculation of the fuzzy confidence intervals, we proposed a practical
procedure of construction based on the likelihood ratio method. The great advantage of this
method is that all types of parameters can be used, without the need of a priori defining a
corresponding theoretical distribution. We remind that our test statistic gives fuzzy decisions
related to the null and the alternative hypotheses. Since these decisions might overlap, a
defuzzification could be advantageous in order to obtain an interpretable decision. The de-
fuzzified values are said to be the degrees of conviction of not rejecting a given hypothesis. An
inference test can also be done by calculating a p-value and comparing it to the significance
level. We expressed a fuzzy p-value where the data and/or the hypotheses are considered as
uncertain, as well as its decision rule. A defuzzification of this fuzzy p-value could be useful
since a crisp decision might be needed. This operation could eventually be done by a suitable
operator, such as the original signed distance or the generalized one. We showed after two
detailed applications using the Finanzplatz data set, where we computed the abovementioned
approaches. By these examples, we wanted to investigate the influence of the shape of the
fuzzy hypotheses on the decisions made by the fuzzy p-value approach. We found that the
alternative hypothesis has no influence of the decision made. This hypothesis is only respon-
sible of defining the rejection region. However, variating the shape and the spread of the fuzzy
null hypothesis could influence drastically the decision. We finally performed the same tests
but in the classical theory. The aim is to compare the fuzzy and the classical cases. We
consequently saw that the classical approach seems to be a particular case of the fuzzy one.
Thus, the more the fuzziness tends to be absent, the more we get closer to the results and
obviously to the decisions of the classical analysis.

To sum up, we could state that by the proposed procedures, new ways of "treating" the
uncertainty and subjectivity contained in the hypotheses or the data sets are introduced. We
add that even though the defuzzification operation provokes a loss of information, obtaining a
crisp decision is in many situations an asset, specifically in terms of interpretations.
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Applications





Chapter 6

Evaluation of Linguistic
Questionnaire

Linguistic questionnaires have gained lots of attention in the last decades. They are a promi-
nent tool used in many fields to convey the opinion of people on different subjects. For in-
stance, they are often used in satisfaction surveys, in politics and surveys related to voting, in
media and ratings, etc. They are then seen as a way of expressing the feelings of individu-
als based on their answers to the different questions. These latter are usually coded using a
Likert scale. While these feelings are expected to be precise, this fact is not actually realistic
since human perception often waves between different ideas at the same time. In the spirit
of precisely measure the perception of people, one could suggest to increase the number of
categories by question in order to give a wider panoply of possibilities. This increase could
eventually induce an increase of the variability in the considered variable. An ideal situation
would then be to increase endlessly this number of categories to achieve a certain continu-
ity. However, this outcome cannot be described in natural langage. Fuzzy tools are efficient
to solve such drawbacks. By these tools, one could take into consideration the uncertainty
expressed in the answers.

In many cases, an overall assessment of the questionnaire can be of good use. This
evaluation encompasses the general point of view of a given respondant, or the set of all the
respondants. In this context, Rosa de Saa et al. (2015) proposed a fuzzy rating method. They
asserted that their method gives a precise idea of the subjectivity and uncertainty of the human
perception. Gil, Maria A. Lubiano, et al. (2015) introduced a fuzzy rating scale-based approach
applied in psychology to analyze the answers of nine year old children. Wang and Chen (2008)
proposed an assessment for the performance of high school teachers using fuzzy arithmetics.
Bourquin (2016) constructed fuzzy poverty measures to analyze the poverty in Switzerland
based on the linguistic answers of members of Swiss households. Lin and Lee (2009) and Lin
and Lee (2010) proposed a method based on the evaluation of the questionnaire, so-called
aggregative assessment, where the fuzziness in the answers is taken into account. This latter
is particularly introduced to assess the questionnaire at a global level. As for us, we are not
only interested in the assessment of the whole questionnaire, but also in the assessment at an
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individual level. In a list of papers Berkachy and Donzé (2015), Berkachy and Donzé (2016b),
Berkachy and Donzé (2016a), we presented a model based on the individual and the global
evaluations of a linguistic questionnaire, where we considered sampling weights under the
assumption of complete cases. The obtained evaluations give another way of interpreting the
answers for a given questionnaire. Nevertheless, we showed that the aggregative assessment
is nothing but the weighted mean of the individual ones. We highlight that contrariwise to the
traditional fuzzy systems based on the three-steps process composed by the fuzzification, the
IF-THEN rules and the defuzzification as described in Chapter 2, our approach consists on
aggregating the records of an observation intermediatly using a convenient distance. Then, a
sort of score is constructed based of these partial aggregations. As instance, we illustrated
our approach in Donzé and Berkachy (2019) by an empirical study applied in the context of
measuring the poverty in Swiss households.

Moreover, we know that real life linguistic questionnaires are often exposed to missingness.
This latter is seen as a drawback for the above presented approaches. Note that the missing-
ness can be intentional, or not intentional due to any inconvenience in the collection of opinion
for an example. For this purpose, we proposed in Berkachy and Donzé (2016c) an update of
our model in order to be able to consider the missing values in the calculations. Thereafter,
we suggested to proceed by readjustment of weights. In survey statistics defined in the clas-
sical environment, researchers introduced indicators related to non-response, such as Rubin
(1987) who proposed the "fraction of information about missing due to nonresponse". Inspired
by this idea, we provided in Berkachy and Donzé (2016c) the so-called indicators of informa-
tion’s rates at the individual and the global levels. These indicators give us informations about
the influence of the amount of missingness contained in the answers of a given observation
regarding the weights chosen for the model. For such evaluation models, fuzzy arithmetics
are needed in the calculations. Thus, we propose to use a chosen distance between fuzzy
numbers. As such, in further researches, we proposed to use the signed distance, known to
be an efficient ranking tool.

The outcome of the defended model is a distribution of the individual evaluations defined
in the crisp environment. Therefore, one could treat this distribution exactly the same as any
traditional distribution in the classical statistical approach. In addition, since we are mainly
interested in the statistical characteristics of such distributions, we showed in Berkachy and
Donzé (2016a) a study on some of them. We saw that by the signed distance, we get close
enough to a normal distribution. From another perspective, in Berkachy and Donzé (2017b),
we performed, using simulations, the calculations by fuzzy rule-based systems as described
in Chapter 2. For this purpose, we used different defuzzification operators. The aim was to
analyse the robustness of our method, and the sensitivity of the distributions using the signed
distance. In addition, we wanted to compare the statistical characteristics of distributions ob-
tained by these systems, with the ones obtained from the individual evaluations. Interesting
remarks arised from this comparison: although both approaches offer the opportunity of char-
acterizing the units by their overall assessments while taking into account the uncertainty, they
give different interpretations in terms of statistical measures.

Inspired by Lin and Lee (2009), we will then recall in Section 6.1 the settings of the pro-
posed model describing the global and individual evaluations where we suppose that the sam-
ple weights and the missingness are both allowed. For the problem of missingness, we show
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in Section 6.2 a method based of the readjustment of weights. We should clarify that the
proposed approach is not a correction for the missingness in the sample as widely known
in survey statistics. In Section 6.3, we give the expressions of the individual and global as-
sessments, followed by the description of the indicators of information’s rate related to missing
answers in Section 6.4. The model is after illustrated by a numerical application related to
the Finanzplatz data set, given in Section 6.5. The objective of this empirical application is
to clearly see that the obtained individual evaluations can be treated similarly to any data set
in the classical theory. In addition, we will empirically remark that the obtained distributions
tend to be normally distributed. Afterwards, in Section 6.6, we perform different analyses by
simulations on the statistical measures of these distributions. The aim of this section is to
compare the individual evaluations with respect to all the distances of Chapter 3, and to see
the influence of the symmetry of the modelling fuzzy numbers and the sample sizes on dif-
ferent statistical measures. We close the section by a comparison between the evaluations
by the defended model, and the ones obtained through a usual fuzzy system using different
defuzzification operators. Interesting findings of these analyses are that corresponding statis-
tical measures are independent from the sample sizes, and that the use of the traditional fuzzy
rule-based systems is not always the most convenient tool when non-symmetrical modelling
shapes are used, contrariwise to the defended approach. Our approach by the individual
evaluations is in such situations suggested.

6.1 Questionnaire in fuzzy terms

Lin and Lee (2009) and Lin and Lee (2010) stated that the linguistic questionnaires similar to
the one given in Table 6.1, can be evaluated at a global level. Thus, they exposed an approach
for the complete questionnaire. In Berkachy and Donzé (2015), Berkachy and Donzé (2016b)
and Berkachy and Donzé (2016a), we asserted that a method based on the two levels "global"
and "individual" could be eventually compelling to explore and develop. For our model, we
propose to use the same reasoning of Lin and Lee (2009) and Lin and Lee (2010) expressed
in the following manner.

Consider the linguistic questionnaire proposed in Table 6.1. We define a so-called main-
item denoted by Bj , j = 1, ... , r as a collection of sub-items, i.e. questions in our case. Each
main-item has a weight given by bj , such that 0 ≤ bj ≤ 1 and

∑r
j=1 bj = 1. Indeed, a given

questionnaire is said to have r main-items. We mention that in this case, the weight bj related
to a given main-item j is a priori equal for all the observations of a sample. In the same way, a
sub-item Bjk , k = 1, ... , mj , is a given "question" of the main-item Bj composed by qjk linguistic
terms. Under the main-item Bj , each sub-item Bjk has a weight bjk with 0 ≤ bjk ≤ 1 and∑mj

k=1 bjk = 1, for which j = 1, ... , r , k = 1, ... , mj . Similarly to the weight of the main-items, we
suppose that the weights of a sub-item k at a main-item j is the same for all the observations.
In addition, let Lqjk , qjk = 1, 2, ... , Qjk be the linguistic terms of a sub-item Bjk . These terms
are assumed to be fuzzy, and are modelled by their corresponding fuzzy homologues L̃qjk ,
qjk = 1, 2, ... , Qjk . We give as well their respective distances to the fuzzy origin written by
d(L̃qjk , 0̃).
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Please select your answer:

1. General overview of the thesis

1.1 Do you find this thesis boring? � Yes, extremely

� Yes, a little

� No, not really

� No, not at all

1.2 How interested are you in this topic? � Very interested

� Somewhat interested

� Not interested nor interested

� Not very interested

� Not interested at all
...

1.m1 � Yes, extremely L1
... Lq1m1

� No, not at all LQ1m1

2. About the structure of the thesis

2.1 . . .

2.2 . . .
...

... . . .

j.

j.1 . . .
...

j.k . . .
...

j.mj . . .
... . . .

r. . . .

Table 6.1: Example of a linguistic questionnaire.
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For the setups of our model, consider a sample of N units. Several assumptions must be
taken into consideration. Suppose the following ones:

• the distances (the signed distances for example) between the fuzzy numbers L̃1, ... , L̃qjk ,
... , L̃Qjk from one side, and the fuzzy origin from another one are linearly ordered, i.e.
d(L̃1, 0̃) < d(L̃2, 0̃) < ... < d(L̃Qjk , 0̃);

• the interviewees are allowed to choose one linguistic term only per sub-item;

• missing values are allowed;

• if a given sample unit i is weighted by a sampling weight denoted by wi , i = 1, ... , N, we
consider a weighting parameter ξi such that 0 ≤ ξi ≤ 1 and

∑N
i=1 ξi = 1. By default, this

parameter is defined by the following expression:

ξi =
wi∑N
i=1 wi

.

• if no sampling weights are envisaged in the concerned data set, we suppose that the
weighting parameter ξi is equal to the value 1 for every unit of the sample, i.e. ξi = 1, ∀i .

We denote by δjkqi the indicator of an answer at the term Lqjk , for the unit i , i = 1, ... , N. It is
written by:

δjkqi =

{
1 if the observation i has an answer for the linguistic Lqjk ;
0 otherwise.

(6.1)

Under the sub-item Bjk , consider the total weighted number of answers at a given linguistic
Lqjk , denoted by njkq•, and written as

njkq• =
N∑

i=1

ξiδjkqi . (6.2)

Analogously, we define njk•• to be the total weighted number of answers at a given sub-item
Bjk , such that

njk•• =
N∑

i=1

Qjk∑
q=1

ξiδjkqi , (6.3)

with j = 1, ..., r and k = 1, ..., mj . Note that the fuzzy entity njkq•
njk••

L̃qjk is a weighted fuzzy number.

For a particular case, Suppose that no sampling weights are envisaged, i.e. the sample units
are not weighted and ξi = 1 for every unit i . Additionally, if we consider that no missing values
exist in the data set, i.e. δjkqi = 1, ∀j , k , i , one could easily remark that

njk•i =
Qjk∑
q=1

ξiδjkqi = 1.



160 Chapter 6. Evaluation of Linguistic Questionnaire

A direct consequence of these conditions is to get the following expression:

njk•• =
N∑

i=1

Qjk∑
q=1

ξiδjkqi = N. (6.4)

Similarly, if the condition on the non-existence of the missingness is only applied, i.e. δjkqi = 1,
if the sample units are weighted, i.e. ξi 6= 1, ∀i , we could write that njk•• =

∑N
i=1 ξi , since one

answer only is allowed per sub-item.

All the abovementioned informations are explicited in the annotated questionnaire given in
Table 6.2. Note that this Table 6.2 corresponds exactly to the Table 6.1.

Please select your answer:

1. General overview of the thesis Main-item B1 with weight b1

1.1 Do you find this thesis boring? � Yes, extremely L̃1 n111•

Sub-item B11 with weight b11 � Yes, a little L̃2 n112•

� No, not really L̃3 n113•

� No, not at all L̃4 n114•

1.2 How interested are you in this topic? � Very interested L̃1 n121•

Sub-item B12 with weight b12 � Somewhat interested L̃2 n122•

� Not interested nor interested L̃3 n123•

� Not very interested L̃4 n124•

� Not interested at all L̃5 n125•
...

. . . Sub-item B1mj with weight b1mj

...

j. . . . Main-item Bj with weight bj

. . . Sub-item Bjk with weight bjk
...

r. . . . Main-item Br with weight br

Table 6.2: The annotated questionnaire corresponding to Table 6.1.

However, for the proposed setups, a main problem of assessment arises: the missingness
in the data. A method solving this problem should be displayed.
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6.2 Readjustement of weights

When missingness in a given observation of the data set intervenes, researchers often tended
to suppress the record related to this observation. In the opposite side, if one would like to
keep these observations in the data, methods "treating" this missingness should be known.
For our context, if for a given sub-item an answer is missing, we propose to re-adjust the
weights attributed to each component of the questionnaire. Indeed, we proceed by revisiting
iteratively the weights of each main-item and sub-item.

As such, let us first introduce the indicator of no-missingness, i.e. the existence of an
answer:

For a sub-item Bjk under the main-item Bj , we denote by ∆jki , an indicator of no-missingness
of the answer related to the individual i , written by:

∆jki =

{
0 if the observation i is missing;
1 otherwise.

(6.5)

The idea is then to correct the weights given to each sub-item and main-item by the cor-
responding weights based on the presence of missingness at a given level. For instance,
consider the individual i . We correct the weight of the sub-item Bjk , written as bjk ≡ bjki , by
the weight b∗jki depending of i , such that

b∗jki =
∆jkibjk∑mj

k=1 ∆jkibjk
. (6.6)

In the same way, we could correct the weight of the main-item Bj , written as the weight bj ≡ bji ,
by b∗ji indexed additionally by the unit i , using the Equation 6.6. This weight can be given in
the following manner:

b∗ji =

(∑mj
k=1 b∗jki

)
bj∑r

j=1 bj
(∑mj

k=1 b∗jki

) . (6.7)

Furthermore, we remind that a necessary condition on such weights is to have their total sum
equal to one. In fact, we know by hypotheses that

∑r
j=1 bj = 1 and

∑mj
k=1 bjk = 1. Since the total

sums of weights in each main-item and sub-item are conserved, then we get that
∑r

j=1 b∗ji = 1

and
∑mj

k=1 b∗jki = 1.

We underline that our method is only designed to "treat" the missingness partially existing
in the data. Thus, if all the answers of a given observation are missing, we suggest to suppress
the record of this observation.

To sum up, by the described method based on readjusting the weights, we tended to
re-distribute the weights on the "complete" main-items or sub-items without penalizing the
concerned main or sub-item for not being fully "complete". Accordingly, we are now able to
propose the assessments related to the individual and the global levels.
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6.3 Global and individual evaluations

Consider a distance d on a given metric space. We define djkq to be the distance of the fuzzy
number (njkq•/njk••)L̃qjk to the fuzzy origin. This entity could be written using Equations 6.2
and 6.3, as:

djkq = d
(njkq•

njk••
L̃qjk , 0̃

)
=

njkq•
njk••

d(L̃qjk , 0̃) =
∑N

i=1 ξiδjkqi∑N
i=1
∑Qjk

q=1 ξiδjkqi

d(L̃qjk , 0̃). (6.8)

By combining the informations of Equations 6.6, 6.7 and 6.8, we expose the global assess-
ment of a whole linguistic questionnaire denoted by P, by the following expression:

P =
N∑

i=1

r∑
j=1

b∗ji

mj∑
k=1

b∗jki

Qjk∑
q=1

δjkqi djkq

=
N∑

i=1

r∑
j=1

b∗ji

mj∑
k=1

b∗jki

Qjk∑
q=1

njkq•
njk••

δjkqi d(L̃qjk , 0̃). (6.9)

On an individual level, it is as well important to display the assessment of the questionnaire
related to a single individual i . The outcome of such evaluations is in some sense a score
resuming all the informations contained in the answers of the individual i . Let us first define
the individual evaluation of the main item Bj for the observation i . It is given by P (j)

i such that

P (j)
i =

mj∑
k=1

b∗jki

Qjk∑
q=1

δjkqid(L̃qjk , 0̃). (6.10)

This expression leads to the individual assessment of the questionnaire for the individual i
denoted by Pi . This assessment is then expressed by:

Pi =
r∑

j=1

b∗jiP
(j)
i =

r∑
j=1

b∗ji

mj∑
k=1

b∗jki

Qjk∑
q=1

δjkqid(L̃qjk , 0̃). (6.11)

When missingness is not depicted in a collection of answers, the global evaluation of a
questionnaire is often seen as the weighted arithmetic mean of the individual evaluations of
the involved sample. This idea is exposed in the following proposition:

Proposition 6.3.1. Under the assumption of no missing values in the data, the global eval-
uation of a questionnaire denoted by P is nothing but the weighted arithmetic mean of the
individual evaluations Pi , i = 1, ... , N.
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Proof. The weighted arithmetic mean denoted by P• of the individual evaluations can be writ-
ten by:

P• =
∑N

i=1 ξiPi∑N
i=1 ξi

,

where ξi is the weight assigned to the observation i , with 0 ≤ ξi ≤ 1.

From the expression of the individual evaluation given in Equation 6.11, and under the as-
sumption of no-missingness in the data, i.e. b∗ji ≡ bj and b∗jki ≡ bjk , ∀i , we write P• as follows:

1∑N
i=1 ξi

N∑
i=1

ξi

r∑
j=1

b∗ji

mj∑
k=1

b∗jki

Qjk∑
q=1

δjkqid(L̃qjk , 0̃) =
r∑

j=1

bj

mj∑
k=1

bjk

Qjk∑
q=1

∑N
i=1 ξiδjkqi∑N

i=1 ξi
d(L̃qjk , 0̃).

The idea is to show that
njkq•
njk••

=
∑N

i=1 ξiδjkqi∑N
i=1 ξi

.

Yet, we know from Equations 6.2 and 6.3, that

njkq•
njk••

=
∑N

i=1 ξiδjkqi∑N
i=1
∑m

q=1 ξiδjkqi
.

Then, we only have to prove that

N∑
i=1

Qjk∑
q=1

ξiδjkqi =
N∑

i=1

ξi . (6.12)

Since δjkqi is the indicator function of an answer, we know that for every positive answer for a
particular linguistic Lq, we have δjkqi = 1. It is equal to 0 otherwise. Therefore, by definition of
the function δjkqi given in Equation 6.1, the Equation 6.12 is true.

Analogously, one could also prove that if no sampling weights are applied in the data set,
i.e. all the sample units have exactly the same weight, then the global evaluation is equal to
the arithmetic mean of the individual evaluations.

The distance d exposed in the calculations of these evaluations are supposed to be
generic. In other words, we could propose to use any of the described distances of Chap-
ter 3. Furthermore, some distances might be equivalent in terms of the distributions of the
individual evaluations, such as the Bertoluzza and the mid/spr metrics, as seen in the follow-
ing proposition:

Proposition 6.3.2. In a one dimensional setting, the individual evaluations with respect to
the Bertoluzza distance dBertoluzza are equivalent to the ones with respect to the mid/spr one
dMid/Spr .
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Proof. We know from Remarks 3.4.1 that in a one dimensional setting, the Bertoluzza distance
is equivalent to the mid/spr metric. This latter induces directly that the distributions of the
individual evaluations related to both distances are equivalent as well.

Moreover, our previous research showed that the SGD could be advantageous in such method-
ologies. At this level, we are not only interested in using it, but also in using its generalized
form in the purpose of comparing them. One could easily see that the individual evaluations by
the dθ

?

SGD and the dGSGD distances are equivalent. As such, we have the following proposition:

Proposition 6.3.3. The individual evaluations with respect to the dθ
?

SGD distance are equivalent
to the ones with respect to the generalized signed distance dGSGD.

Proof. The proof of this proposition is direct, by construction of dGSGD.

6.4 Indicators of information’s rate of a data base

For cases where missing values are present, it could be very disadvantageous for a prac-
titioner to naively exclude the record of the observations containing missingness. For this
reason, we propose to calculate the so-called indicator of information’s rate of the whole ques-
tionnaire at a global level. We could also introduce an indicator based on an individual level.
The purpose is then to get an idea of the "quantity" of the information obtained despite the
presence of missing values.

We construct an indicator of information’s rate of the full questionnaire denoted by R,
0 ≤ R ≤ 1 and based on the weighted number of missing values in all the answers, such that

R = 1 − 1∑N
i=1
∑r

j=1
∑mj

k=1 ξibjk

N∑
i=1

ξi

r∑
j=1

mj∑
k=1

(bjk − b∗jki )∆jki ·
Mji

mj
, (6.13)

where ξi is the sampling weight of the individual i , bjk is the unadjusted weight of the sub-item
Bjk , b∗jki is the adjusted one, ∆jki is the indicator of no-missingness of a given answer, Mji is the

total number of missing values occuring in a main-item j for i such that Mji =
∑mj

k=1 ∆jki , and mj
is the total number of sub-items per main-item j . In addition, a value 1 of R means that there
is no missing values in the data set. If R = 0, it is the opposite. The indicator R can then be
interpreted as a measure of the presence of missing values in the data base.

In the same way, we denote by Ri the indicator of information’s rate of the answers of the
individual i with 0 ≤ Ri ≤ 1. The indicator Ri can then be written by:

Ri = 1 − 1∑r
j=1
∑mj

k=1 bjk

r∑
j=1

mj∑
k=1

(bjk − b∗jki )∆ijk ·
Mji

mj
. (6.14)
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It is clear, by analogy to the global and individual evaluations, that the indicator R is seen
as a sort of weighted mean of the indicator Ri . By these indicators, two main conclusions on
both levels can be deduced. The first one is related to the relevance of the data set when
missingness in the answers intervenes. Thus, an indicator of the whole questionnaire as R
could be useful to draw the attention of the practitioner on whether to consider the missing
values or not. Analogously, the indicator Ri could be an ideal indication of stating whether to
exclude or not the answers of a given observation of the data set depending on the amount of
contained missingness.

The computation of the global and individual evaluations can be summarized in the follow-
ing algorithm:

Algorithm:

1. Consider a linguistic questionnaire with its collection of questions.

2. Define the main-items Bj , j = 1, ... , r with their weights bj , 0 ≤ bj ≤ 1 and∑r
j=1 bj = 1.

3. For each main-item Bj , define the sub-items Bjk with their weights bjk , j =
1, ... , r and k = 1, ... , mj , such that 0 ≤ bjk ≤ 1 and

∑mj
k=1 bjk = 1.

4. Fuzzify the data set using the fuzzy numbers modelling the linguistic terms
L1, ... , Lqjk corresponding to each sub-item Bjk .

5. Calculate the distance of each fuzzy linguistic to the fuzzy origin d(L̃qjk , 0̃).

6. Calculate njkq• and njk•• - Equations 6.2 and 6.3.

7. If missing values are present in the data set, calculate for each individual i , the
readjusted weights b∗jki and b∗ji - Equations 6.6 and 6.7. Otherwise, go to 9.

8. Eventually calculate the global and individual indicators of information’s rate R
and Ri - Equations 6.13 and 6.14.

9. Calculate the global and individual evaluations P and Pi - Equations 6.9 and
6.11.

In order to clarify the computations needed for such procedures, the aforementioned algo-
rithm is illustrated by the following application on the Finanzplatz questionnaire.

6.5 Application - Finanzplatz

For the application of the global and individual evaluations, we use the Finanzplatz data set
described in Appendix A.1.1. This data set is composed of 234 firms, for which we chose to
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analyse their answers to 15 linguistic questions divided into three main groups. These ques-
tions are coded by 5 linguistics each, going from 1 (bad) to 5 (good). Every unit should choose
exclusively one linguistic only. Suppose that the fuzziness in such answers intervenes. There-
fore, we propose to model the involved linguistics by fuzzy numbers. For sake of simplicity,
we propose to use triangular and trapezoidal fuzzy numbers only. Note that the considered
data base includes the informations about the company sizes (small, medium or big) and the
company branches (banks or insurances, etc.). In addition, a sampling weight is exposed.

We would like to assess our questionnaire at the two levels: individual and global. The
objective is to adopt the aforementioned methodology of modelling the uncertainty and pro-
duce these evaluations. However, our data set of 234 observations includes missing values.
Therefore, we proceed by readjustment of weights as given in Section 6.3.

Let us first fuzzify the data set. We suppose that we model the linguistics 1 to 5 denoted
by L1, L2, L3, L4 and L5, by their corresponding fuzzy numbers L̃1, L̃2, L̃3, L̃4 and L̃5, written
as:

L̃1 = (1, 1, 1.2);
L̃2 = (1, 1.5, 2.4, 3.1);
L̃3 = (2.2, 2.6, 3.4, 4.2);
L̃4 = (3.2, 3.7, 4.2, 4.5);
L̃5 = (4.8, 5, 5, 5).

We mention that for this case, we chose arbitrarily to model the same linguistics by the same
fuzzy numbers. In contrary, in some other contexts, one could expect that the considered firm
would eventually choose by itself the corresponding fuzzy number modelling its perception.

According to the procedure presented in Section 6.1, we consider three main-items B1, B2
and B3, such that their weights are respectively b1, b2 and b3 with b1 + b2 + b3 = 1. In addition,
each main-item is composed of sub-items defined by the 5 linguistics L̃1 to L̃5.

Since missingness exists in the data set, then for each observation i , we have to consider
the readjusted weights of sub and main-items given in Section 6.2. A detailed example of
calculation for the observation 17 is given in Table 6.3. This latter shows the three main-items
where we supposed that they are equally weighted b1 = b2 = b3 = 1

3 . The sub-items are also
at the first stage equally weighted. For this example, we used the SGD given in Section 3.6.

Once we perform the same procedure on the answers of the 234 observations, we get a
new sample of evaluations where each of them refers to the overall overview of the answers
of a given observation. In addition, one could calculate the global evaluation of the complete
data set, where the sampling weights are taken into account. For our present case, the global
evaluation is

P = 3.5339.

Furthermore, we are interested in calculating the indicator of information’s rate as given
in Equations 6.13 and 6.14. For the entire data set containing missing values, the indicator
denoted by R is

R = 0.9781.
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This latter of around 97.81% indicates that even though missingness exists, we can relie on
our data set since the amount of missingness is apparently limited regarding the number of
existing answers and their weights. In the same way, one could compute the indicator of infor-
mation’s rate related to a particular observation. Consider for example the observation 17 for
which the answers were described in Table 6.3. The corresponding indicator of information’s
rate is

R17 = 0.9948.

This indicator is very close to the value 1, which means that the effect of the missingness on
the evaluation of the answers of the observation 17 is slight. Thus, this observation should not
be excluded from the data set.

The produced vector of individual evaluations can be treated similarly to any other data set
in the classical statistical theory. In Berkachy and Donzé (2016d), we presented a study on the
different statistical measures obtained by such procedures. The aim of this contribution was to
compare the individual evaluations to distributions obtained by a traditional fuzzy rule-based
system. By that, we mean that they were calculated by the three-steps process (fuzzification,
IF-THEN rules, defuzzification), as given in Chapter 2. Our purpose is then to investigate the
characteristics of the underlying distributions seen as traditional vectors of data, in order to
be able to use them in the modelling process using appropriate classical statistical methods.
In addition, it is important to know if this distribution is as instance symmetric, or a fortiori
tends to be normal. The Figures 6.1 and 6.2 show the distributions of the evaluated data set.
A clear graphical remark of these figures is that the obtained data set tends to be normally
distributed. Another empirical way to verify the assumption of normality is to calculate the
asymmetry measures. Thus, for this case, we have a skewness of −0.0601 and an excess
of kurtosis of 0.7192. These results show a symmetric distribution and a possible normal
distribution induced from the evaluations of our questionnaire. Last for now, different normality
tests exist in statistics. If we use the Chi-squared, the Shapiro-Wilk, the Anderson-Darling,
and the Lilliefors tests1, we could not reject the null hypothesis that the calculated distribution
may represent a normal distribution, or is close enough.

We saw that the distributions of the individual evaluations tended empirically to be nor-
mal. Yet, theoretically, to prove that the produced distribution is potentially normal, one could
imagine to reason by postulating a multinomial distribution related to the set of variables of the
questionnaire, and therefore, to deduce a tendency of the individual evaluations to be asymp-
totically drawn from a univariate normal distribution. A further research should be done on this
purpose to validate (or negate) this point of view.

From another side, to illustrate the usability of the individual evaluations as a usual data
set, we propose to analyse another facet of it. Since our original data set contains additional
information such as the company size and branch, based on the obtained evaluations, we
could analyse the difference between these groups by means of statistical measures. The
Tables A.3 and A.4 give a summary of the different statistical measures calculated with the

1These tests are described further respectively in K. Pearson (1900), Ronald. A. Fisher (1922) and Ronald A.
Fisher (1924) for the Chi-squared test, S. S. Shapiro and Wilk (1965) for the Shapiro-Wilk test, Anderson and
Darling (1952) for the Anderson-Darling test, and Lilliefors (1967) for the Lilliefors test.
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Figure 6.1: The histogram of the distribution of the weighted individual evaluations of the Finanzplatz
linguistic questionnaire - Section 6.5

corresponding sampling weights. If we look closely to the mean of the individual assessments,
we can see that the evaluations of the small sized companies are higher than the medium and
the big ones. By that, one could conclude that small businesses expect more improvement
than the medium and big ones. This result can be seen in the boxplot given in Figure 6.3.
Analogously, by classifying the set with respect to the branches of the firms, the Financial
services companies have the highest scores among others. The Figure 6.4 gives a clear view
of such conclusions.

It is an advantage to be able to use the observations where missingness occur. We would
like to compare the processed case with a complete one. If we decide to exclude every block of
records related to a given unit, containing at least one missing value, we should expect to have
a big loss of observations. However, since the missing values are concentrated in 6 variables
only, we propose to take into account the variables with no missingness only. Thus, 9 variables
left will be studied. Similarly to the last case, we expose in Table A.5 the statistical measures
of the evaluations with and without "NA". By this table, we can say that the measures of both
data sets are comparable. We additionally draw a QQ-plot between these distributions in order
to see if a given potential relation exists between them. This is seen in the Figure 6.5. It is
consequently interesting to see that a linear relation exists between both distributions. By this
conclusion, we could say that the presence of the missing values as in our data set does not
penalize the results of the evaluations. Thus, we can clearly see the relevance of our proposed
model with "NA" compared to the complete case. This latter is seen as a less realistic case in
terms of collecting data. To sum up, in real life situations, when such evaluations are needed,
with respect to our methodology, we are a fortiori now on able confidently to treat the missing
values in order to avoid the high loss of informations due to the exclusion of observations.
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Figure 6.2: The qqplot of the distribution of the weighted individual evaluations of the Finanzplatz
linguistic questionnaire - Section 6.5
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Figure 6.5: QQ-plot of the distributions of the weighted individual evaluations with and without NA -
Section 6.5



170 Chapter 6. Evaluation of Linguistic Questionnaire

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Big Small Medium

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Boxplot of the output distributions obtained for different company sizes

C
ris

p 
ou

tp
ut

Figure 6.3: Boxplot of the weighted individual evaluations classified by company size - Section 6.5

6.6 Analyses by simulations on the individual evaluations

The idea now is to investigate different statistical characteristics of the distribution of individual
evaluations induced from our methodology of assessment. Similar work has been done in
Berkachy and Donzé (2017b) and Berkachy and Donzé (2016b). In this section, we elaborate
the results obtained in our previous papers in order to go further in the generalization of our
interpretation of such characteristics.

From Berkachy and Donzé (2017b), we found that for small data sets of around 20 obser-
vations, the statistical measures corresponding to the distribution of the individual evaluations
are seen as non-stable. The reason is obviously the inadequate number of observations. We
found as well that from a threshold of 1000 observations, the measures become much more
stable. This result confirms the known assumption of the stability of such measures based on
increasing the size of the studied sample drawn from the same distribution. However, from our
previous researches, we saw that all the statistical measures are independent from sample
sizes. We note that when sizes increased, almost all presented an asymptotic stability with
slight fluctuations.

In our present case, we perform by simulations several tests which allow us to understand
the influence of different components on the produced distribution of individual evaluations.
The objectives of our tests are then given by the following ideas:
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Figure 6.4: Boxplot of the weighted individual evaluations classified by company branch - Section 6.5

• To understand the influence of the sample size;

• To understand the influence of the asymmetry in the shapes of the modelling member-
ship functions;

• To understand the influence of the choice of defuzzification method, and if a distance is
required, to test the influence of the chosen distances.

As such, the setups of the simulations are as follows:

We consider a questionnaire of 4 equally weighted main-items. Each main-item have respec-
tively 2 sub-items. The sub-items in each main-item are equally weighted as well. All the
sub-items are composed of 5 linguistics L1, ... , L5. We would like to take into consideration the
fuzziness existing in the answers of a given observation. We model then each linguistic by its
corresponding fuzzy number L̃1, ... , L̃5. We chose arbitrarily these linguistics. We add that for
the same data set, we considered the two cases of symmetrical and non-symmetrical trian-
gles and trapezoids in order to understand the difference between them. For the symmetrical
triangular shapes, we used the following fuzzy numbers:

L̃1 = (1, 1, 2);
L̃2 = (1, 2, 3);
L̃3 = (2, 3, 4);
L̃4 = (3, 4, 5);
L̃5 = (4, 5, 5);
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and for the non-symmetrical shapes, we used the fuzzy linguistics shown in Section 6.5 and
given by:

L̃1 = (1, 1, 1.2);
L̃2 = (1, 1.5, 2.4, 3.1);
L̃3 = (2.2, 2.6, 3.4, 4.2);
L̃4 = (3.2, 3.7, 4.2, 4.5);
L̃5 = (4.8, 5, 5, 5).

Note that for the present case, we chose to model the same linguistics by the same fuzzy
number. However, in further studies, one could suggest to ask each unit to answer by its proper
fuzzy number for example. In addition, no sampling weights or missing values are allowed in
our situation, the reason is obviously to avoid the possible bias that might be induced.

Our first attempt is to investigate the influence of the sample size of the data set on the
statistical measures of the distribution of the produced individual evaluations. For this purpose,
we generated random data sets of different sizes starting from the threshold found in Berkachy
and Donzé (2017b), i.e. 1000 observations, to 10000 observations with a step of 100. A
first finding is that the measures of central tendency, location, dispersion and asymmetry are
independent of sample sizes. This result confirms the statement showed in Berkachy and
Donzé (2017b). Thus, to use a data set of 1000 observations is enough to get stable statistical
measures. It can also be seen in Table A.6. For the rest of these analyses, we show the cases
of 1000 and 10000 observations only.

It is interesting now to interpret the results given in Table A.6. For instance, if we would
like to compare the distances in terms of the obtained measures. We can clearly see that the
variances and consequently the standard deviations of all the distributions are very similar.
It is the same for the excess of kurtosis. Thus, no particular conclusion can be done on
this purpose. All the distributions have very close means except the one with respect to the
distance ρ?3. It is the same for the quantiles of the distribution. One could deduce that the
observations in all the distributions except the ρ?3 ones are quite closely located.

However, for the skewness, the case is different. It appears that an order for the skew-
ness of the different distributions exists, as seen in Figure 6.6. We have to mention that the
skewness of the distributions of the defended distances dGSGD and dθ

?

SGD are between all, from
the closest to 0. A possible interpretation of this order is that the distributions are grouped by
their Lp spaces. In other terms, we can directly recognize that the L3 metrics are the closest
to 0, followed by the group of L2 metrics, and finally by the L1 ones. The closeness to the 0
level skewness is maybe due to the higher exponent of the expressions of the different dis-
tances. We highlight that in the group of L2 metrics, the generalized signed distance presents
measures which are very close to the ones of the ρ2 metric. This statement confirms the
topological equivalence that we intended to expose in Proposition 3.7.4 of Chapter 3. Never-
theless, if we look carefully to both asymmetry measures, we can remark that they are close
to the ones of the normal distribution. This remark signalizes thus an eventual relation with
the standard normal distribution.
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Figure 6.6: Order of the skewness of the distributions of the individual evaluations with respect to the
different distances (the red ones are the L3 group, the blue ones are the L2 group and the gray one is
the L1 group).

For the comparison between the cases related to the symmetry of the modelling fuzzy
numbers, we found that almost all the measures are very close, except the skewness, the
minimum and the maximum. The relatively big difference in the minimum and the maximum
measures is maybe due to the weight that the adopted method puts on the edges of the
distributions. Contrariwise, it is interesting to see that the quantiles 1, 2 and 3 are very close
between both shapes. By choosing non-symmetric shapes for the modelling numbers, we
tend to stretch the range of the distributions, more than with symmetric shapes, signalizing a
larger dispersion of observations.

For the skewness and concerning the size of the sample, one could expect to get a closest
skewness to 0 with a higher sample size. On the other hand, modelling with non-symmetric
fuzzy numbers gave closer values to 0 than the symmetric ones. It is the case of all the dis-
tances except the ρ?3 and the δ?

3, 1
2

ones. For these latter, choosing symmetric shapes provides

closer skewness to 0. Finally, we have to mention that the ρ2 metric gave a 0 skewness. For
our elaborated version of the signed distance, we get a skewness of 0.002 for non-symmetrical
fuzzy numbers. From these findings, one could clearly deduce that the defended model can
be well adapted to non-symmetrical cases. The distributions obtained from such calculations
are not penalized by the irregularities of the modelling shapes.

The distances displayed in these calculations are used in some sense as a defuzzification
operator. We propose now to perform the procedure described in Chapter 2 on the same
data sets with the same setups and compare them with the individual evaluations using the
different distances. The aim is to be able to recognize the possible drawbacks of each of both
approaches. Since we are particularly interested in the defuzzification step, we apply all the
defuzzification operators presented in Section 2.3. The statistical measures obtained from
the produced data sets are given in Table A.7. We mention that for the inference rules of the
involved systems, we used the t-norm and t-conorm min and max.

The idea now is to interpret the results of Table A.7, and compare them with the results
of the individual evaluations. From this table, we overall found that the distributions of the
centroid, the bisector and the MOM are relatively similar in terms of statistical measures,
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notably the mean, the median, the skewness and the quantiles. However, the distributions
using the SOM and LOM present extreme measures, which is due to their definitions.

On another level, for the dispersion measures, the distributions induced from the fuzzy
inference systems give lower variances and standard deviations than the ones by the different
distances. Thus, the evaluations through the fuzzy system are more concentrated than the
evaluations by the defended model. The variances resulting from the distributions of the SOM
and LOM are the highest between all defuzzification operators. This fact shows a disadvan-
tage of these operators regarding the others.

According to the calculated asymmetry measures, the distributions by these systems are
not close enough to suspect their relation with the normal distribution. Thus, the excess of
kurtosis is relatively higher, and the skewness is farther from 0 than the distributions of the
individual evaluations. We add that the distributions by the SOM and LOM display respectively
extreme positive and negative skewness. Therefore, one could conclude that the use of the
SOM and LOM are not efficient to preserve the symmetry of distributions.

For the comparison between the shapes of the modelling fuzzy numbers, we can mainly
say that the interpretations of the differences between both cases are similar to the ones
of the individual evaluations of Table A.6. Moreover, the skewness of the distributions by
the centroid, the bisector and the MOM methods are very sensible to the irregularities in
the modelling membership functions. Thus, by adopting a non-symmetric fuzzy model, we
lost in the symmetry of the output distributions. This result could be due to the inference
rules adopted for the computations. Therefore, if a questionnaire consists on many questions
composed by multiple answers, refining these rules can be seen as a complicated task. It is
evident thus to conclude that in terms of symmetry, if non-symmetric membership functions
are required in the modelling procedure, then the use of our procedure of evaluation with
a distance as a defuzzification operator is more convenient. Our approach of calculations
produces distributions close to be drawn from a normal distribution, and this fact is seen as an
important advantage in terms of hypothesis of many statistical analysis.

6.7 Conclusion

To conclude, we proposed an approach of aggregating a linguistic questionnaire at an individ-
ual and global levels where we supposed that uncertainty is embedded in the answers. This
imprecision is not only taken into account, but treated in situations where sampling weights
and missing values are considered. In the situation where the missingness occurs in data
sets, we introduced two indicators of information’s rate related respectively to the individual
and the global levels. Their aim is to indicate whether a given record is relevant in terms of
the presence of missing values, or not. We illustrated our methodology by multiple empirical
applications, having each particular objectives to investigate.

In a general manner, we found empirically that the calculated individual evaluations tend to
be drawn from a standard normal distribution. We also saw that a linear relation exists between
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the evaluations with missing values from one side, and the evaluations without missing values
from another side. A conclusion is that the presence of missing values and the way we treated
them, did not affect the results of the assessment.

To sum up, if we would like to perform a similar operation in the classical statistical theory,
one could rather proceed by calculating the mean of means or constructing a given score,
which works as well as an aggregation of the answers. This measure is advantageous in
case we want to broadly describe the informations of the questionnaire. However, if missing-
ness occurs, the mean of means could be strongly affected by the non-response bias. The
estimates will consequently be biased. If imprecision arises in a linguistic questionnaire, our
approach of assessment is suggested specifically since the missing values can be taken into
account.



Bj bj Bjk bjk Lq δjkqi b∗jki d(L̃q, 0̃) Pi

1 1
3 1.1 • The present state of business is 0.5 bad 0 0.5 3.9 3.930238

L2 0

fair 0

L4 1

excellent 0

1.2 • The expected state of business in 12 months is 0.5 worst 0 0.5 4.95

L2 0

same 0

L4 0

better 1

2 1
3 2.1 • The demand for our services / products 0.125 L4 1 0.143 3.9

compared to the last 12 months is

2.2 • The demand of domestic private costumers for 0.125 L4 1 0.143 3.9

our products compared to the last 12 months is

2.3 • The demand from foreign private clients for 0.125 L4 1 0.143 3.9

services / products compared to the last 12 months is

2.4 • The demand of corporate / institutional clients for our 0.125 L3 1 0.143 3.1

services / products compared to the last 12 months is

2.5 • The expected demand for our services / 0.125 L4 1 0.143 3.9

products in the next 12 months is

2.6 • The expected demand of domestic private costumers 0.125 L4 1 0.143 3.9

for our products in the next 12 months is

2.7 • The expected demand from foreign private clients for 0.125 NA NA 0 0

services / products in the next 12 months is

2.8 • The expected demand of corporate / institutional clients 0.125 L4 1 0.143 3.9

for our services / products in the next 12 months is

3 1
3 3.1 • The gross profit compared business in 12 months is 0.2 L4 1 0.2 3.9

3.2 • The employment compared to the last 12 months is 0.2 L3 1 0.2 3.1

3.3 • The expected gross profit in the next 12 months is 0.2 L4 1 0.2 3.9

3.4 • The expected employment in the next 12 months is 0.2 L3 1 0.2 3.1

3.5 • The expected use of technical and personal 0.2 L4 1 0.2 3.9

capacities in the next 12 months is

Table 6.3: Application of the individual evaluation using the signed distance on Finanzplatz: Answers
of the observation 17 - Section 6.5.



Chapter 7

Fuzzy analysis of variance

The multi-ways analysis of variance is a well-known statistical tool. It is based on inference
tests having the aim of comparing sample means of different populations clustered by groups.
This procedure is directly related to a regression model, particularly where the independent
variables are categorical, so-called factors. The terminology "multi-ways" is due to the fact
that such models may be composed of multiple factors. If a model consists on one factor only,
it will be denoted by the one-way analysis of variance (ANOVA). The multi-ways analysis of
variance extends the one-way ANOVA by taking into account multiple independent variables
to be combined in a regression model, the purpose being to explain the difference of means of
the dependent variable related to the different factor levels. We remind that the computational
process of such approaches relies on calculating the sums of squares related to the decom-
position of the variance on the different components of the model, and constructing test-based
statistics and thereafter corresponding decision rules.

In an ANOVA model, we often assume that the considered data are precise. When we
decide to treat the fuzziness contained in the data set, we realize that using the conventional
multi-factors ANOVA approach, the situation becomes complicated. This approach presents
somehow a lack in the flexibility since it could not model the dependence between the differ-
ence of means of the different populations in a way taking into account at most the uncertain
situation. One has to find a way to overcome this problem. This latter can eventually be solved
by fuzzy tools. We propose a fuzzy version of the Mult-ANOVA that we consequently denote
by Mult-FANOVA. One relates the obtained fuzzy model to a fuzzy regression one, similarly to
the classical theory. Following this reasoning, two main approaches of regression models in
fuzzy contexts have been particularly introduced. The different concepts of fuzzy regression
models are due to the beliefs of the researchers about the sources of fuzziness of their mod-
els. We recall two of them. It is clear that one could distinguish much more approaches to
fuzzy regression. For example, Tanaka, Uejima, and Asai (1982) who proposed a procedure
of fuzzy linear regression models, believed that the fuzziness is a matter of model structure.
However, Celmins (1987) introduced an approach based on the least squares method, where
they asserted that the fuzziness in their case is a matter of data. In our Mult-FANOVA model,
our independent variables are factors. Thereafter, we suppose that the fuzziness in our case
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is a matter of the parameters related to the considered Mult-FANOVA model (resulting from a
fuzzy regression model), and of the dependent variable.

In the context of ANOVA in a univariate or a multivariate environment, various researchers
have already worked on similar topics, such as Kang and Han (2004) who introduced very
briefly a multivariate analysis of variance for fuzzy data. Analogously but in a univariate con-
text, H.-C. Wu (2007) proposed an ANOVA in the fuzzy environment. The author also gave
the notions of rejection of the null and the alternative hypotheses of the statistical test by the
so-called pessimistic and optimistic degrees. Parchami, Nourbakhsh, and Mashinchi (2017)
exposed an approach of analysis of variance in uncertain environments. For their approach,
they proposed different computational ways to proceed, using different types of fuzzy numbers.
In the same way, Jiryaei, Parchami, and Mashinchi (2013) discussed a one-way analysis of
variance in similar contexts where triangular and exponential fuzzy numbers were used to
model the required parameters.

In order to encounter the computational difficulty due to the difference and the product
between fuzzy numbers, multiple metrics have been previously used in literature in the ap-
proaches of fuzzy analysis of variance. We note for instance Gonzalez-Rodriguez, Colubi, Gil,
and D’Urso (2006) who developed independent and paired tests of equality of means based
on extending the Student t-tests to the fuzzy environment. Gil, Montenegro, et al. (2006) pro-
posed similar tests but in a multi-sample context, where they used the Bertoluzza distance. For
the univariate case, Montenegro, Gonzalez-Rodriguez, et al. (2004) and Gonzalez-Rodriguez,
Colubi, and Gil (2012), and others, proposed a univariate one-way ANOVA with random fuzzy
variables, using different metrics. In the same way, we showed in Berkachy and Donzé (2018b)
a one-way ANOVA model using the signed distance. However, these simple ANOVA models
are seen as limited since we cannot include more than one factor only. A generalization to the
multi-factors case is then needed.

The aim of this chapter is to expose a Mult-FANOVA approach when the fuzziness is taken
into consideration, based on a fuzzy regression model. As such, we expose two exploratory
approaches: the first one by preserving the fuzzy nature of the calculated sums of squares
using fuzzy approximations and afterwards by defining a related heuristic decision rule to be
able to decide, and the second one using a particular metric all along the calculations, namely
the signed distance and the generalized one. We highlight that the purpose of this chapter is
to show the usefulness of the signed distance measure as a ranking tool in the context of the
fuzzy analysis of variance.

Applying a distance in the process of calculating the sums of squares, leads to a set of
crisp sums. An interesting finding of our approaches is that using the SGD, if the data set is
modelled by symmetrical fuzzy numbers, we reproduce the analysis by the classical approach.
Thus, we can say that the classical approach can be seen as a particular case of the fuzzy ap-
proach in the described context. Consequently, the Mult-FANOVA seems to be a reproduction
of the classical case, but with more flexibility in the process of modelling the uncertainty con-
tained in the data. These results are clearly confirmed by the study Berkachy (2018) done on
a data set from Nestlé beverages, where we performed using the SGD multiple Mult-FANOVA
tests on several sets of membership functions, and different variants of estimated models.
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For sake of illustration, we give two detailed empirical applications of our approach, one
on the data set from Nestlé beverages, and the other one on the Finanzplatz data set. Both
models are composed by multiple factors. By these applications, the objective is to present
the Mult-FANOVA model where the GSGD is used, and to compare it with the analysis using
the same setups but in the classical environment. One of our main findings is that in both
cases we get the same decision of rejecting or not the hypothesis of equality of the population
mean vectors, but the decomposition of the sums is different. For the analysis on the residu-
als of the constructed model, the normality of their distributions is rejected, but stronger in the
classical approach. Berkachy and Donzé (2018b) reported that a possible cause is the pres-
ence of a greater lack of adjustment of the fitting model by the Mult-ANOVA approach, than
the Mult-FANOVA one. This result can be seen as a disadvantage of the classical approach,
and by consequence strengthen our support to the fuzzy one. For the tests of the homogene-
ity of variances between groups, the analysis by the classical analysis tends to reject more
often than the fuzzy one the hypothesis of homogeneity, violating by that a basic postulated
assumption of typical Mult-ANOVA models.

This chapter is organized as follows. In Section 7.1, we recall the basic concepts of the
classical Mult-ANOVA, followed by a brief introduction of fuzzy regression in Section 7.2. We
expose in Section 7.3 the fuzzy multi-ways analysis of variance Mult-FANOVA, where we pro-
pose two approaches of decision making: a heuristic one based on the obtained fuzzy sums,
and another one totally based on a chosen metric. We give after a particular case of Mult-
FANOVA by the signed distance, where we show that using symmetrical shapes of modelling
fuzzy numbers, we return exactly the classical approach. The section is closed by a procedure
of calculating sequential sums of squares, when the ordering effect intervenes. This is caused
by the unbalance in the studied design. Finally, the Section 7.4 is devoted for two empirical
applications where we provide multiple tests in order to investigate the influence of the choice
of distance, and of shapes of the modelling fuzzy numbers, on Mult-FANOVA models.

7.1 Classical multi-ways analysis of variance

It is easy to see that the multi-ways ANOVA or Mult-ANOVA can be done by a regression model
with categorical independent variables. The terminology of the multi-ways ANOVA approach
relates to the fact that multiple categorical variables are considered to explain one response
variable only.

Based on a regression model, let us briefly recall the Mult-ANOVA in the classical theory.
To simplify the case, we propose a model based on two factors only with no interactions. The
multiple case, with eventually adding the interactions can analogously be conceived.

In a given experiment, consider a sample X of N observations, and 2 factors. We denote by
k = 1, 2 the index of a given factor in the set of factors. Consider ik = 1, ... , gk to be the index
of a given level related to the factor k , with nik the corresponding number of observations.
In addition, let jk = 1, ... , nik be the index of a given observation in the set of observations
corresponding to level ik of the factor k , such that N =

∑gk
ik =1 nik for every value of k = 1, 2.
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We suppose in a first step that our design is balanced, i.e. the number of observations is the
same accross all the factor levels. Therefore, we get that for every cell related simultaneously
to the level i1 of factor 1 and the level i2 of factor 2, the number of observation is equal to n.
As such, we have that jk = j .

The approach of the multi-factors ANOVA relies on testing the null hypothesis H0 that the
means related to all the levels of a factor are equal in the experiment, against the alternative
one H1 that at least one pair of means is not equal, at a significance level δ. The null and
alternative hypotheses H0 and H1 can then be written as follows:

H0 : µ1 = ... = µik = ... = µgk , against H1 : not all the means are equal, (7.1)

where µik is the mean of the population at the level ik related to the factor k . In such hypotheses
tests, the following conditions are generally assumed:

• The population variance of the response variable denoted by σ2 is the same across all
the observations;

• The observations are supposed to be independent;

• Each observation is drawn from a normal distribution.

For the last condition on the normality of the distribution of the data set, the central limit
theorem is often used to asymptotically validate this assumption in case of large samples.
Consequently, it would be useful to investigate after whether the distribution of residuals of the
considered model tend to be normal or close enough.

Let us expose the decomposition of the data set of the N observations on 2 factors in the
following manner:

Factor 2

1 2 ... i2 ... g2

1 XXX 11 XXX 12 ... XXX 1i2 ... XXX 1g2

2 XXX 21 XXX 22 ... XXX 2i2 ... XXX 2g2

...

Factor 1 i1 XXX i11 XXX i12 ... XXX i1i2 ... XXX i1g2

...

g1 XXX g11 XXX g12 ... XXX g1i2 ... XXX g1g2
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where XXX i1i2 =
(
Xi1i21, ... , Xi1i2j , ... , Xi1i2n

)′ is the vector of observations belonging to the level i1
of factor 1, and i2 of factor 2 at the same time.

Let us now expose the multi-ways model explaining the variable Xi1i2j . It is given as follows:

Xi1i2j = µ + τi1 + βi2 + εi1i2j , (7.2)

where µ is the overall sample mean, τi1 is the i1-th treatment effect of the first factor with∑g1
i1=1 τi1 = 0, and βi2 is the i2-th treatment effect of the second factor with

∑g2
i2=1 βi2 = 0, and

εi1i2j is an independent random error drawn from the normal distribution with a mean 0 and a
variance σ2.

Nevertheless, since the aim is to test whether the mean of the dependent variable is statis-
tically different across all the levels, or not, it would be interesting to express the multi-factors
ANOVA model in terms of the expectation of the response variable analogously to the model
described in Berkachy and Donzé (2018b) for the univariate case. Thus, for i1 = 1, ... , g1,
i2 = 1, ... , g2 and j = 1, ... , n, the multi-factors ANOVA model can then be written as follows:

E(Xi1i2j )︸ ︷︷ ︸
mean response

= µ︸︷︷︸
overall expectation

+ τi1︸︷︷︸
treatment effect of
factor 1

+ βi2︸︷︷︸
treatment effect of
factor 2

, (7.3)

where the sample analogue X ••• of the overall expectation µ is given by:

X ••• =
1

g1g2n

g1∑
i1=1

g2∑
i2=1

n∑
j=1

Xi1i2j . (7.4)

One could also calculate the mean of the ik -th population of the factor k . As instance, we
denote by X i1••, the mean of the observations of level i1 related to the factor 1. It is expressed
by:

X i1•• =
1

g2n

g2∑
i2=1

n∑
j=1

Xi1i2j . (7.5)

The mean X i1•• is the empirical analogue of the expectation of the i1-th population denoted by
µi1 . In the same way, the i2-th population mean of the factor 2 can be written as:

X •i2• =
1

g1n

g1∑
i1=1

n∑
j=1

Xi1i2j . (7.6)

The model given in Equation 7.3 leads to the following decomposition of a given observation:

Xi1i2j︸︷︷︸
observation

= X •••︸︷︷︸
overall sam-
ple mean

+
(
X i1•• − X •••

)︸ ︷︷ ︸
estimated treatments
or hypotheses effect
for factor 1

+
(
X •i2• − X •••

)︸ ︷︷ ︸
estimated treatments
or hypotheses effect
for factor 2

+
(
X i1i2j − X i1i2•

)︸ ︷︷ ︸
residuals

, (7.7)
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where

X i1i2• =
1
n

n∑
j=1

Xi1i2j ,

is the mean of the observations belonging at the same time to the level i1 from the factor 1
and the level i2 from the factor 2. By decomposing Xi1i2j , the sum X i1i2• can also be written as
X i1i2• = X i1•• + X •i2• − X •••.

Let us now square and sum the deviations given by Xi1i2j − X ••• seen in Equation 7.7, over i1,
i2 and j . We get the following:

g1∑
i1=1

g2∑
i2=1

n∑
j

(
Xi1i2j − X •••

)2 =
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X i1•• − X •••

)2 +
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X •i2• − X •••

)2

+
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X i1i2j − X i1i2•

)2,

=
g1∑

i1=1

ng2
(
X i1•• − X •••

)2 +
g2∑

i2=1

ng1
(
X •i2• − X •••

)2

+
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X i1i2j − X i1i2•

)2. (7.8)

We denote respectively by T the total sum of squares, by B1 the treatment sum of squares
related to the factor 1, by B2 the treatment sum of squares related to the factor 2, and by E the
residual sum of squares. These sums are written as follows:

T =
g1∑

i1=1

g2∑
i2=1

n∑
j

(
Xi1i2j − X •••

)2, (7.9)

B1 =
g1∑

i1=1

ng2
(
X i1•• − X •••

)2, (7.10)

B2 =
g2∑

i2=1

ng1
(
X •i2• − X •••

)2, (7.11)

E =
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X i1i2j − X i1i2•

)2, (7.12)

such that
T = B1 + B2 + E.

We add that the decomposition in sums of squares given in Equation 7.8 is associated to a
decomposition in the degrees of freedom as follows:

g1g2n − 1 = (g1 − 1) + (g2 − 1) +
(
g1g2n − (g1 + g2 − 1)

)
, (7.13)
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where g1g2n − 1, g1 − 1, g2 − 1, and g1g2n − (g1 + g2 − 1) are the degrees of freedom of T,
B1, B2 and E respectively.

Different methods of testing can be adopted in this context. Researchers used to calculate
the ratio of the treatment mean sum of squares to the error mean sum of squares. This ratio
serves afterwards as a test statistic. According to the decompositions given in Equations 7.8
and 7.13, the ratio F1 related to the first factor of the model can be expressed by:

F1 =
MB1

ME
=

B1/dfB1

E/dfE
, (7.14)

where MB1 is the treatment mean sum of squares related to the factor 1, ME is the error mean
sum of squares, with dfB1 = g1 − 1 and dfE =

(
g1g2n − (g1 + g2 − 1)

)
the degrees of freedom

of B1 and E respectively. The ratio F2 related to the second factor can be in the same way
calculated. This ratio can then be written by:

F2 =
MB2

ME
=

B2/dfB2

E/dfE
, (7.15)

where MB2 is the treatment mean sum of squares related to the factor 2 with dfB2 = g2 − 1.

A decision rule is needed to be able to decide whether to reject or not the equality of
means (hypothesis given in Equation 7.1). Under the classical assumptions of the analysis
of variance model, one could prove that the test statistic is taken from a Fisher-Snedecor
distribution. Namely, the previously calculated statistic F1 related to the factor 1 is taken from
the Fisher-Snedecor distribution with dfB1 and dfE degrees of freedom. The corresponding
decision rule is then given by:

Decision rule. The statistic F1 will be compared to the quantile of the Fisher-Snedecor distri-
bution with dfB1 and dfE degrees of freedom at the significance level δ, i.e. F(1−δ;dfB1 ,dfE). The
rule is given by:

• if F1 > F(1−δ;dfB1 ,dfE), we reject the null hypothesis H0 at the significance level δ;

• Otherwise, we do not reject H0.

The decision rule of the test statistic F2 related to the factor 2 can be similarly conceived.

We mention that in a multivariate context, a wide range of sophisticated test statistics are
constructed for similar decision making problems, such as the Wilks Lambda, the Hotelling-
Lawley Trace or the Pillai Trace etc.1 In addition, some researchers used also the so-called
Bonferroni correction given in Bonferroni (1935) to measure the effects of belonging to a given
level.

1The detailed references can be found respectively in Wilks (1932), Wilks (1946), Hotelling (1951), Lawley
(1938), and Pillai (1965).
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7.2 Introduction to fuzzy regression

Based on the regression, known to be a performant tool in statistical analysis, and in the spirit
of developing new ways of modelling data, researchers tended to design new approaches of
analysis. When some of them started to take into account the uncertainty contained in the data
they collect, the need for regression models defined in a fuzzy environment became subject
to discussion.

Researchers often explained that fuzzy regression models are a fuzzy variant of the clas-
sical regression models, in which specific elements have a fuzzy nature. The fuzziness may
affect a given model by having uncertain data and/or model parameters. These entities can
consequently be modelled by fuzzy sets. It can be due to the fuzziness of the dependent vari-
ables, the independent variable or the regression coefficients of the model. Thus, for a model
explaining one response variable only, researchers roughly reduced the possible scenarios to
the following ones:

1. the response variable is fuzzy, but the explanatory variables and the parameters are
crisp. The model can then be written by:

E(Ỹ ) = β0 + β1X1 + ... + βpXp, (7.16)

where Ỹ is the fuzzy response variable, X1, ... , Xp are the crisp explanatory variables
and β0, ... ,βp are the crisp parameters of the regression model;

2. the response variable and the explanatory variables are crisp, but the parameters are
fuzzy, such that

E(Y ) = β̃0 ⊕ β̃1X1 ⊕ ...⊕ β̃pXp; (7.17)

3. the response variable and the explanatory variables are fuzzy, but the parameters are
crisp, such that

E(Ỹ ) = β0 ⊕ β1X̃1 ⊕ ...⊕ βpX̃p; (7.18)

4. the response variable and the parameters are fuzzy, and the explanatory variables are
crisp. Then, we get the following model:

E(Ỹ ) = β̃0 ⊕ β̃1X1 ⊕ ...⊕ β̃pXp; (7.19)

5. all the entities are fuzzy. The model is then given such that

E(Ỹ ) = β̃0 ⊕
(
β̃1 ⊗ X̃1

)
⊕ ...⊕

(
β̃p ⊗ X̃p

)
. (7.20)

Since in some of these cases, the fuzzy multiplication and fuzzy addition are needed, then
we can remark that a fuzzy type prediction is not always ensured. We add that in regression
models, the uncertainty can be due to many factors: the data, the model structure, the igno-
rance of the relation between the independent and dependent variables, etc. Some authors
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might not believe that the fuzziness is only contained in the data set or in the analysis, but
considered otherwise that the fuzziness of the model is rather a consequence of the way the
data are collected. The uncertainty and the randomness are present in such methodologies.
This idea was less studied in literature than the one related to the fuzziness of the data and/or
the parameters.

For such models, two main approaches were often discussed in literature: the Tanaka’s
fuzzy linear regression models, and the fuzzy least-squares regression models. The first one
is based on the so-called minimum fuzziness criterion. This approach was firstly described
by Tanaka, Uejima, and Asai (1982) who introduced a definition of the concept of fuzzy linear
regression models. In this contribution, the parameters were considered as fuzzy sets, particu-
larly fuzzy numbers, and the dependent variable as interval or fuzzy-valued. In this approach,
the authors asserted that the fuzziness is a matter of model structure. Therefore, Tanaka,
Uejima, and Asai (1982) and Guo and Tanaka (2006) stated that the deviations between the
predicted and the observed entities of their model depend on the indefiniteness of the structure
of the system. In addition, in the theory of Tanaka, Uejima, and Asai (1982), the possibilistic
models were estimated by means of linear or quadratic programming algorithms relying on
the principle of "minimum fuzziness" or "maximum possibility" under the studied parameters.
Accordingly, the idea of the authors was to determine the fuzzy coefficients by minimizing the
so-called index of fuzziness of the possibilistic model. Several researchers have extended the
idea of Tanaka, Uejima, and Asai (1982) and paved the way to other regression-based mod-
els. As instance, Buckley and Jowers (2008) provided an estimation of the model parameters
using Monte Carlo calculations. In addition, they stated that if the fuzzy response variable are
modelled by triangular fuzzy numbers, then the "best" model fitting the data will be the one for
which the fuzzy linear regression parameters are triangular fuzzy numbers.

For the fuzzy least-squares approach, the aim of all the researches were to find the "best"
fitting model in a given metric space and where the response variable is supposed to be
modelled by L-R fuzzy numbers. For this case, the fuzziness is assumed to be a matter of
data. Celmins (1987) introduced a methodology of estimation based on the least-squares
method, where the objective was to minimize a given least-squares function. Diamond (1988)
introduced the Hausdorff metric in the procedure of estimation in order to define a criterion
function based on the least-squares. This function has to be afterwards minimized, as in the
classical theory. Inspired by this work, Nather (2006) embedded the notion of random fuzzy
sets in the regression model, and by that he designed a model estimating these parameters. A
wide number of researchers has worked on this specific approach since it is seen as a direct
extension of the classical one. It is obvious to see that in similar contexts, the problem of
estimation can be solved by using an adequate metric. In other words, the objective in this
situation is to minimize the deviation between the fuzzy prediction and the fuzzy output with
respect to particular distances between fuzzy numbers.

We are mainly interested in modelling a Mult-ANOVA based on a regression model. In-
deed, we model the response variable as a function of factors. In our case, the dependent
variable is considered to be uncertain and will be modelled by fuzzy numbers. The objective
is then to test whether the means of the observations related to the different levels are equal
or not. In this perspective, it is natural to see that our model will be similar to the one given
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in Case 4. We would like to consider the Aumann-type expectation of the fuzzy response
variable shown in Definition 4.4.4. Therefore, following the above description of the two fuzzy
regression approaches, we will particularly proceed by the least-squares one. The idea is
then to prudently choose a metric to be used in the process. We propose to use the metrics
introduced in Chapter 3, in order to investigate their utility in such contexts.

7.3 Fuzzy multi-ways analysis of variance

By analogy to the classical statistical theory, the Mult-ANOVA in the fuzzy context can be seen
as a particular case of a fuzzy regression model. In other terms, we will consider a set of
crisp independent factors, and we would like to explain a given fuzzy dependent variable. The
considered model will be similar to the one shown in Case 4 of Section 7.2. We then expect
the parameters of the model to be fuzzy as well as the response variable. By the Mult-FANOVA
and accordingly to the test given in Equation 7.1 in the fuzzy environment, we intend to verify
whether the fuzzy means corresponding to all the groups of a given factor are equal, or not, at
the significance level δ. If at least 2 means are not equal, then the hypothesis of equality will be
rejected. Otherwise, this hypothesis will not be rejected. In the same setups of the multi-ways
ANOVA model proposed in Section 7.1, the fuzzy version of this model can be expressed in
the following sense.

Let X be a sample of N observations, and 2 factors. Consider again the following indices:

• k = 1, 2 is the index of a factor in the set;

• ik = 1, ... , gk is the index of a level related to factor k ;

• and jk = 1, ... , nik is the index of a given observation corresponding to the level i related
to factor k , for which N =

∑gk
ik =1 nik . Similarly to the classical case, we suppose that the

design of the subsequent model is balanced. In other words, the number of observations
related any cell is the same. It is then equal to n. Therefore, there is no need to index j .
Thus, we get that j = 1, ... , n.

We would like to extend the classical approach of multi-ways ANOVA to the fuzzy envi-
ronment. Two possible scenarios can be applied on the fuzziness contained in the response
variable X : the collected data set could be rather given by fuzzy numbers by nature, or given
by crisp numbers which will be afterwards modelled by corresponding sets of membership
functions. In both cases, the fuzzy variable will be written by X̃ . We note that in such models,
the same conditions of the classical model have also to be fulfilled in the fuzzy context.

By generalizing the classical approach to the fuzzy sets, the sample containing the fuzzy
variable X̃ related to both factors can be arranged as follows:
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Factor 2

1 2 ... i2 ... g2

1 X̃XX 11 X̃XX 12 ... X̃XX 1i2 ... X̃XX 1g2

2 X̃XX 21 X̃XX 22 ... X̃XX 2i2 ... X̃XX 2g2

...

Factor 1 i1 X̃XX i11 X̃XX i12 ... X̃XX i1i2 ... X̃XX i1g2

...

g1 X̃XX g11 X̃XX g12 ... X̃XX g1i2 ... X̃XX g1g2

where X̃XX i1i2 =
(
X̃i1i21, ... , X̃i1i2j , ... , X̃i1i2n

)′ is the vector of fuzzy observations X̃i1i2j belonging to
the i1-th level of factor 1 and the i2-th level of factor 2.

In compliance with the model given in Case 4 of Section 7.2 and with the model of the
classical theory shown in Equation 7.3, the corresponding Mult-FANOVA model in terms of
the expectation of the fuzzy response variable can be written in the following manner:

Ẽ(X̃i1i2j ) = µ̃ + τ̃i1 + β̃i2 , (7.21)

where Ẽ(X̃i1i2j ) is the fuzzy expectation of the population, µ̃ is the fuzzy overall expectation, τ̃i1
is the i1-th population fuzzy treatment effect for the factor 1, and β̃i2 is the i2-th population fuzzy
treatment effect for the factor 2. We note that in the fuzzy environment, the sample estimator
of the fuzzy expectation µ̃ denoted by X̃ ••• is expressed by:

X̃ ••• =
1

g1g2n

g1∑
i1=1

g2∑
i2=1

n∑
j=1

X̃i1i2j . (7.22)

We denote by µ̃ik the fuzzy expectation related to the level ik of the factor k . This expectation
µ̃ik can be estimated by a fuzzy sample mean for each of the corresponding levels ik of the
factor k . For a given level i1 related to the first factor of our model, the fuzzy sample mean
written as X̃ i1•• can be expressed by:

X̃ i1•• =
1

g2n

g2∑
i2=1

n∑
j=1

X̃i1i2j =
1

g2n

[( n∑
j=1

X̃i11j

)
⊕ ...⊕

( n∑
j=1

X̃i1g2j

)]
. (7.23)

It is the same for a particular level i2 related to the second factor. Thus, the fuzzy sample
mean for the level i2 written as X̃ •i2• can be expressed by:

X̃ •i2• =
1

g1n

g1∑
i1=1

n∑
j=1

X̃i1i2j =
1

g1n

[( n∑
j=1

X̃1i2j

)
⊕ ...⊕

( n∑
j=1

X̃g1i2j

)]
. (7.24)
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The Mult-FANOVA model intends to compare the different populations’ means. For models
described in the context of the multivariate analysis of variance, Kang and Han (2004) asserted
that in the fuzzy environment, a given dependent variable can be partitioned into different
sums, as well as the partition done in the classical theories. If we reason similarly to Kang and
Han (2004) regarding our Mult-FANOVA model, and to the decomposition given in Equation
7.8 for the classical approach, we consider the following decomposition into fuzzy sums:

X̃i1i2j = X̃ •••︸︷︷︸
fuzzy overall
sample mean

⊕
(
X̃ i1•• 	 X̃ •••

)︸ ︷︷ ︸
fuzzy estimated treat-
ments or hypotheses
effect for factor 1

⊕
(
X̃ •i2• 	 X̃ •••

)︸ ︷︷ ︸
fuzzy estimated treat-
ments or hypotheses
effect for factor 2

⊕
(
X̃i1i2j 	 X̃ i1i2•

)︸ ︷︷ ︸
fuzzy residuals

, (7.25)

where X̃ i1i2• is the fuzzy mean of the observations which belong simultaneously to the level i1
from factor 1, and to the level i2 from factor 2. It can be expressed as follows:

X̃ i1i2• =
1
n

n∑
j=1

X̃i1i2j . (7.26)

This sum can also be written2 as

X̃ i1i2• = X̃ i1•• ⊕ X̃ •i2• 	 X̃ •••. (7.27)

Following this decomposition and the procedure of the classical Mult-ANOVA approach, one
could eventually define the fuzzy total sum of squares T̃ given by:

T̃ =
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X̃i1i2j 	 X̃ •••

) 2©. (7.28)

The fuzzy sum T̃ is partitioned into three different fuzzy sums:

• the fuzzy treatment sum of squares for factor 1 denoted by B̃1, also called the fuzzy
hypothesis sum of squares for factor 1;

• the fuzzy treatment sum of squares for factor 2 denoted by B̃2, also called the fuzzy
hypothesis sum of squares for factor 2;

• the fuzzy residual sum of squares denoted by Ẽ, also called fuzzy error sum of squares.

The fuzzy sum T̃ can then be written as:

T̃ = B̃1 ⊕ B̃2 ⊕ Ẽ, (7.29)

2Despite the complexity induced by the difference arithmetic in the decomposition of X̃i1 i2 j , remark that X̃ i1 i2• is
expressed by this form in accordance with the expression of the classical theory.
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such that the fuzzy sums B̃1, B̃2 and Ẽ can be expressed as follows:

B̃1 =
g1∑

i1=1

ng2
(
X̃ i1•• 	 X̃ •••

) 2©, (7.30)

B̃2 =
g2∑

i2=1

ng1
(
X̃ •i2• 	 X̃ •••

) 2©, (7.31)

Ẽ =
g1∑

i1=1

g2∑
i2=1

n∑
j

(
X̃ i1i2j 	 X̃ i1i2•

) 2©. (7.32)

The described decomposition of the Mult-FANOVA model with the corresponding degrees of
freedom are summed up in Table 7.1.

Mult-FANOVA

Source of variation df Fuzzy Sum of Squares

Treatment effect - Factor 1 g1 − 1 B̃1

Treatment effect - Factor 2 g2 − 1 B̃2

Residual - Error g1g2n − (g1 + g2 − 1) Ẽ

Total g1g2n − 1 T̃

Table 7.1: The Mult-FANOVA table

Nevertheless, it is expected in such situations to calculate a test statistic able to serve in
the process of decision making. In our fuzzy situation, it is clear that the calculated sums of
squares will be fuzzy. However, since the intermediate fuzzy operations (difference, product
and consequently the square) are expensive in terms of computations, this task is seen as
laborious. Yet, two possible ideas can be given:

• Method 1. Based on preserving the fuzziness in the calculations using fuzzy approxi-
mations.

• Method 2. Based on using a specific metric in the calculation procedure.

Method 1

The first one is a preliminary method. From our point of view, this idea is interesting to
explore at this stage since it is directly inspired from ranking fuzzy numbers by the signed dis-
tance measure. The method intends to preserve the fuzzy nature of these sums, and construct
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decision rules based on the fuzzy entities. Yet, a typical drawback for such methodologies is
the computational burden that can be induced by the calculations of the difference and the
product operations in the fuzzy context. For this purpose, we propose to calculate numerically
the fuzzy sums by using convenient fuzzy approximations to estimate the fuzzy arithmetic op-
erations. The problems can be overcome in specific conditions of the shapes of the modelling
fuzzy numbers only, and thus, cannot be generalized to all possible cases. Thus, in our ap-
proximations, we consider the cases of trapezoidal and triangular fuzzy numbers only. By this
exploratory method, we get decisions in the same spirit as the outcome of the tests by fuzzy
confidence intervals shown in Subsection 5.4.1. In other terms, using some particular fuzzy
approximations of these operations, a new set of fuzzy sums of squares could be constructed.
We could then benefit from a decision produced on the basis of fuzzy entities.

Ideally, we would be interested in calculating a fuzzy test statistic. However, the ratio be-
tween fuzzy sets is challenging as well. Therefore, we propose to compare the different means
of the fuzzy sums of squares instead of calculating their ratio. Since no fuzzy ordering exists
between fuzzy numbers and in the idea of ranking fuzzy numbers, a reasoning by defuzzifica-
tion similar to the one in Subsection 5.4.2 can be envisaged for the comparison between the
fuzzy sums of squares.

At this stage, the decision rule is required. From a practical point of view, we propose a
heuristic reasoning based on calculating the surface of the concerned fuzzy numbers. For a
particular factor k , consider Surf(B̃k ) and Surf(Ẽ) to be the surfaces under the membership
functions of the fuzzy numbers B̃k and Ẽ denoting the respective means of the treatment and
the residuals fuzzy sums of squares. In the case of L-R fuzzy sums of squares, it is easy to
see that these surfaces are nothing but two times the signed distances of the corresponding
fuzzy numbers measured from the fuzzy origin 0̃. In other terms, they can be expressed as
follows:

Surf(B̃k ) =
∫ 1

0

(
B̃k

L
α(α) + B̃k

R
α (α)

)
dα = 2× dSGD(B̃k , 0̃), (7.33)

Surf(Ẽ) =
∫ 1

0

(
Ẽ

L
α(α) + Ẽ

R
α (α)

)
dα = 2× dSGD(Ẽ , 0̃). (7.34)

In the conventional case, we used to compare the ratio of the mean sums of squares of the
treatment and the residuals to a quantile of the Fisher-Snedecor distribution. In the fuzzy con-
text, another important drawback appears at this stage. It is mainly because of the ignorance
of the theoretical distribution of the corresponding test statistic. Thus, consider TSurf to be a
test statistic expressed by:

TSurf =
Surf(B̃k )

Surf(Ẽ)
=

dSGD(B̃k , 0̃)

dSGD(Ẽ , 0̃)
. (7.35)
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The knowledge about the theoretical distribution of such tests is not evident and have to be
investigated. This theoretical distribution could be empirically estimated for example by boot-
strap techniques and Monte Carlo simulations.

Based on an initial data set, we propose to construct bootstrap statistics to estimate TSurf. We
would like then to generate D bootstrap samples. This task can be done by simply drawing
with replacement a given number of observations.

Another idea to accomplish this task can be done using Proposition 3.7.6. In other terms,
one could generate bootstrap samples for which every observation corresponds to a given unit
of the set of the nearest symmetrical trapezoidal fuzzy numbers. Therefore, by this step, we
intend to preserve the couple of characteristics of location and dispersion (s0, ε) of each fuzzy
number constructing our primary data set.

To sum up, for such constructions two algorithms can be eventually used. The first one
consists on simply generating random bootstrap samples as follows:

Algorithm 1:

1. Compute the value of the test statistic TSurf related to the considered original
fuzzy sample.

2. From the primary data set, draw randomly with replacement a set of fuzzy
observations to construct the bootstrap data set.

3. Calculate the bootstrap statistic T boot
Surf .

4. Recursively repeat the Steps 2 and 3 a large number D of times to get a set of
D values constructing the bootstrap distribution of test statistic.

5. Find κ the 1− δ-quantile of the bootstrap distribution of test statistic.

In the same way, the (s0, ε)-based algorithm can be written in the following manner:
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Algorithm 2:

1. Consider a fuzzy sample. Calculate for each observation the couple of charac-
teristics (s0, ε).

2. From the calculated set of couples (s0, ε), draw randomly with replacement and
with equal probabilities a sample of couples (s0, ε). Construct the bootstrap
sample.

3. Calculate the bootstrap statistic T boot
Surf .

4. Recursively repeat the Steps 2 and 3 a large number D of times to get a set of
D values constructing the bootstrap distribution of test statistic.

5. Find κ the 1− δ-quantile of the bootstrap distribution of test statistic.

Once κ the 1−δ-quantile of the bootstrap distribution of the test statistic T boot
Surf is estimated,

one could deduce the following decision rule:

Decision Rule: For a particular factor k , by comparing the test statistic TSurf of the original
data set to the quantile κ of the bootstrap distribution of test statistics at the significance level
δ, the decision rule could be given by:

• If TSurf = Surf(B̃k )
Surf(Ẽ)

> κ, the null hypothesis is rejected.

• Otherwise, the null hypothesis is not rejected.

Furthermore, since it is difficult to precisely calculate the value of the p-value of such test
statistic, it would be important to conveniently estimate the bootstrap p-values related to the
distribution of test statistics. This p-value denoted by pboot can be written as follows:

pboot =
1 + #(T boot

Surf ≥ TSurf)
D + 1

. (7.36)

Another way to decide whether to reject or not the null hypothesis in terms of the surfaces
under the membership functions could also be established. Let κ be the 1− δ-quantile of the
bootstrap distribution of test statistic and by Ẽ

∗
the weighted fuzzy number expressed by

Ẽ
∗

= Ẽ × κ, (7.37)

such that its surface is given by the following expression:

Surf(Ẽ
∗
) = Surf(Ẽ × κ) = 2× dSGD(Ẽ

∗
, 0̃). (7.38)
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It is then obvious that if we would like to compare Surf(B̃k ) to Surf(Ẽ
∗
), we could eventually

compare dSGD(B̃k , 0̃) to dSGD(Ẽ
∗
, 0̃). Concerning the decision rule, we have to compare the

constructed test statistic TSurf given in Equation 7.35 to the quantile κ. This latter is equivalent

to comparing the signed distance of Ẽ
∗

to the signed distance of B̃k , regarded as ranking the
fuzzy numbers Ẽ

∗
and B̃k . Thus, we could write the subsequent decision rule:

Decision Rule. By comparing dSGD(Ẽ
∗
, 0̃) = dSGD(Ẽ × κ, 0̃) to dSGD(B̃k , 0̃) at the significance

level δ, the decision rule can be written as follows:

• If dSGD(Ẽ
∗
, 0̃) ≤ dSGD(B̃k , 0̃), the null hypothesis H0 is rejected;

• If dSGD(Ẽ
∗
, 0̃) > dSGD(B̃k , 0̃), the null hypothesis H0 is not rejected.

An additional argument to strengthen our support to this procedure is that if B̃k and Ẽ
∗

overlap
partially or totally, the case is considered to be critical. No decision can be made since reject-
ing or not the null hypothesis is not completely clear. A reasoning on the surfaces under the
curves as above described, seen as a defuzzification by the SGD operator is most probably
needed.

If we want to reason similarly to the hypotheses test by confidence interval given in Sec-
tion 5.4, we could additionally translate (in the sense of "standardizing") the fuzzy numbers
B̃k and Ẽ × κ to the interval [0; 1] of the x-axis, in order to get fuzzy numbers close in terms
of properties and interpretations to the ones of the fuzzy decisions, and to probably obtain a
degree of "rejection" of the null hypothesis by defuzzifying these fuzzy numbers.

Finally, if one would like to enhance the decision regarding the different hypotheses, it
would be interesting to define as well the so-called contribution of the error and the treatment
sums of squares to the total sum of squares. They are written as the following ratios:

C(B̃k ) =
Surf(B̃k )

Surf(B̃k ) + Surf(Ẽ
∗
)
, (7.39)

C(Ẽ
∗
) =

Surf(Ẽ
∗
)

Surf(B̃k ) + Surf(Ẽ
∗
)
, (7.40)

where C(B̃k ) and C(Ẽ
∗
) are respectively the contributions of the treatment and of the error

sums of squares to the model. They are contained in the interval [0; 1] such that C(B̃k ) +
C(Ẽ

∗
) = 1. These contributions are written in terms of the weighted mean of the fuzzy residual

sum of squares Ẽ
∗

since the objective of constructing such indicators is to complement the
decision made. However, it would also make sense to write them using the mean of the fuzzy
residual sums of squares Ẽ if the aim is to compare both means of the fuzzy sums without the
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need of a threshold of comparison (obviously the quantile κ in our case).

A final remark is that a further investigation of this approach is crucial, because the choice
of convenient fuzzy numerical approximations of the arithmetics should be argumented or
criticized, as well as the decisions obtained by the aforementioned procedure. In addition, a
further investigation of the theoretical distribution of the corresponding test statistic have to be
performed.

Method 2

The second approach is to consider the Aumann-type expectation of the fuzzy dependent
variable as shown in Definition 4.4.4. It could be done by choosing a convenient metric to
model the distance between fuzzy numbers. We know that the multi-ways case extends the
one-way model by considering a set of factors instead of only one. In Berkachy and Donzé
(2018b), we showed a univariate case of fuzzy one-way ANOVA where we proposed to use
the SGD between fuzzy numbers. A generalization to the multi-factors case is thoroughly con-
ceivable. Hence, the Chapter 3 giving a list of possible choices of distances can be of good
use in this purpose.

Consider a corresponding metric denoted by d . We could re-write the sums given in 7.28,
7.30, 7.31 and 7.32 with respect to this distance d . We highlight that the obtained sums will
be crisp entities. They can be written as follows:

Td =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

d
(
X̃i1i2j , X̃ •••

)
× d

(
X̃i1i2j , X̃ •••

)
=

g1∑
i1=1

g2∑
i2=1

n∑
j=1

(
d
(
X̃i1i2j , X̃ •••

))2
, (7.41)

B1d =
g1∑

i1=1

ng2d
(
X̃ i1••, X̃ •••

)
× d

(
X̃ i1••, X̃ •••

)
=

g1∑
i1=1

ng2

(
d
(
X̃ i1••, X̃ •••

))2
, (7.42)

B2d =
g2∑

i2=1

ng1d
(
X̃ •i2•, X̃ •••

)
× d

(
X̃ •i2•, X̃ •••

)
=

g2∑
i2=1

ng1

(
d
(
X̃ •i2•, X̃ •••

))2
, (7.43)

Ed =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

d
(
X̃i1i2j , X̃ i1i2•

)
× d

(
X̃i1i2j , X̃ i1i2•

)
=

g1∑
i1=1

g2∑
i1=1

n∑
j=1

(
d
(
X̃i1i2j , X̃ i1i2•

))2
. (7.44)

We have to verify now that the following decomposition equation

Td = B1d + B2d + Ed (7.45)

is true. The proof is given as follows:
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Proof. From Equations 7.41, 7.42, 7.43 and 7.44, and for a well pre-defined associative and
distributive metric d , the sum Td can be decomposed as follows:

Td =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(
d
(
X̃i1i2j , X̃ •••

))2
,

=
g1∑

i1=1

g2∑
i2=1

n∑
j=1

[
d
(
X̃i1i2j , X̃ i1i2•

)
+ d
(
X̃ i1i2•, X̃ •••

)]2
,

since (
d
(
X̃i1i2j , X̃ •••

))2
=
(

d
(
X̃i1i2j , 0̃

)
− d

(
X̃ •••, 0̃

))2

=
(

d
(
X̃i1i2j , 0̃

)
− d

(
X̃ •••, 0̃

)
+ d
(
X̃i1i2•, 0̃

)
− d

(
X̃i1i2•, 0̃

))2

=
[
d
(
X̃i1i2j , X̃ i1i2•

)
+ d
(
X̃ i1i2•, X̃ •••

)]2
.

Then, by developing
[
d
(
X̃i1i2j , X̃ i1i2•

)
+ d
(
X̃ i1i2•, X̃ •••

)]2
, we get the following decomposition of

Td :

Td =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

[(
d
(
X̃i1i2j , X̃ i1i2•

))2
+
(

d
(
X̃ i1i2•, X̃ •••

))2
+ 2d

(
X̃i1i2j , X̃ i1i2•

)
d
(
X̃ i1i2•, X̃ •••

)]

= Ed +
g1∑

i1=1

g2∑
i2=1

n∑
j=1

[(
d
(
X̃ i1i2•, X̃ •••

))2 + 2d
(
X̃i1i2j , X̃ i1i2•

)
d
(
X̃ i1i2•, X̃ •••

)]
.

Our purpose is then to prove that

g1∑
i1=1

g2∑
i2=1

n∑
j=1

(
d
(
X̃ i1i2•, X̃ •••

))2
= B1d + B2d , (7.46)

and that
g1∑

i1=1

g2∑
i2=1

n∑
j=1

2d
(
X̃i1i2j , X̃ i1i2•

)
d
(
X̃ i1i2•, X̃ •••

)
= 0. (7.47)

It can be done in the following manner:

1. At a first stage, let us prove the Equation 7.46. From Equation 7.27, we know that
X̃ i1i2• = X̃ i1•• ⊕ X̃ •i2• 	 X̃ •••. Then, if we would like to calculate the distance of X̃ i1i2•
measured from the fuzzy origin 0̃, we could write the following:

d(X̃ i1i2•, 0̃) = d(X̃ i1••, 0̃) + d(X̃ •i2•, 0̃)− d(X̃ •••, 0̃).
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Therefore, by decomposing the expression
∑g1

i1=1
∑g2

i2=1
∑n

j=1

(
d
(
X̃ i1i2•, X̃ •••

))2
and sub-

stituting the distance of X̃ i1i2• to the fuzzy origin by d(X̃ i1••, 0̃) + d(X̃ •i2•, 0̃) − d(X̃ •••, 0̃),
we get the following:

g1∑
i1=1

g2∑
i2=1

n∑
j=1

(
d
(
X̃ i1i2•, X̃ •••

))2 =
g1∑

i1=1

g2∑
i2=1

n
(

d
(
X̃ i1i2•, X̃ •••

))2

=
g1∑

i1=1

g2∑
i2=1

n
[
d
(
X̃ i1i2•, 0̃

)
− d

(
X̃ •••, 0̃

)]2

=
g1∑

i1=1

g2∑
i2=1

n
[
d
(
X̃ i1••, 0̃

)
+ d
(
X̃ •i2•, 0̃

)
− d

(
X̃ •••, 0̃

)
− d

(
X̃ •••, 0̃

)]2

=
g1∑

i1=1

g2∑
i2=1

n
[
d
(
X̃ i1••, X̃ •••

)
+ d
(
X̃ •i2•, X̃ •••

)]2

=
g1∑

i1=1

g2∑
i2=1

n
[
d
(
X̃ i1••, X̃ •••

)]2
+

g1∑
i1=1

g2∑
i2=1

n
[
d
(
X̃ •i2•, X̃ •••

)]2

+
g1∑

i1=1

g2∑
i2=1

n
[
2d
(
X̃ i1••, X̃ •••

)
d
(
X̃ •i2•, X̃ •••

)]

= B1d + B2d +
g1∑

i1=1

g2∑
i2=1

n
[
2d
(
X̃ i1••, X̃ •••

)
d
(
X̃ •i2•, X̃ •••

)]
,

= B1d + B2d + 2n
g1∑

i1=1

d
(
X̃ i1••, X̃ •••

) g2∑
i2=1

d
(
X̃ •i2•, X̃ •••

)
.

Let us now prove that

2n
g1∑

i1=1

d
(
X̃ i1••, X̃ •••

) g2∑
i2=1

d
(
X̃ •i2•, X̃ •••

)
= 0.

From Equations 7.23 and 7.24, we know that

X̃ i1•• =
1

g2n

g2∑
i2=1

n∑
j=1

X̃i1i2j and X̃ •i2• =
1

g1n

g1∑
i1=1

n∑
j=1

X̃i1i2j ,

which induces the following relations:

1
g1

g1∑
i1=1

X̃ i1•• =
1
g1

g1∑
i1=1

1
g2n

g2∑
i2=1

n∑
j=1

X̃i1i2j = X̃ •••

and
1
g2

g2∑
i2=1

X̃ •i2• =
1
g2

g2∑
i2=1

1
g1n

g1∑
i1=1

n∑
j=1

X̃i1i2j = X̃ •••.
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Thus, it is clear to see that the distance of X̃ ••• to the fuzzy origin can be written as:

d
(
X̃ •••, 0̃

)
=

1
g1

g1∑
i1=1

d
(
X̃ i1••, 0̃

)
=

1
g2

g2∑
i2=1

d
(
X̃ •i2•, 0̃

)
.

Then, we get the following:

g1∑
i1=1

d
(
X̃ i1••, X̃ •••

)
=

g1∑
i1=1

[
d
(
X̃ i1••, 0̃

)
− d

(
X̃ •••, 0̃

)]

=
g1∑

i1=1

d
(
X̃ i1••, 0̃

)
− g1d

(
X̃ •••, 0̃

)
= 0.

It is the same for
∑g2

i2=1 d
(
X̃ •i2•, X̃ •••

)
= 0.

We then deduce that

2n
g1∑

i1=1

d
(
X̃i1••, X̃ •••

) g2∑
i2=1

d
(
X̃•i2•, X̃ •••

)
= 0.

2. For the proof of the Equation 7.47, we can write that

g1∑
i1=1

g2∑
i2=1

n∑
j=1

2d
(
X̃i1i2j , X̃ i1i2•

)
d
(
X̃ i1i2•, X̃ •••

)
= 2

g1∑
i1=1

g2∑
i2=1

d
(
X̃ i1i2•, X̃ •••

) n∑
j=1

d
(
X̃i1i2j , X̃ i1i2•

)
.

We know from Equation 7.26 that X̃ i1i2• = 1
n
∑n

j=1 X̃i1i2j . By calculating the distance of

X̃ i1i2• to the fuzzy origin 0̃, we get the following expression:

d
(
X̃ i1i2•, 0̃

)
=

1
n

n∑
j=1

d
(
X̃i1i2j , 0̃

)
.

Therefore, the Equation 7.47 can be written in the following manner:

2
g1∑

i1=1

g2∑
i2=1

d
(
X̃ i1i2•, X̃ •••

) n∑
j=1

d
(
X̃i1i2j , X̃ i1i2•

)
= 2

g1∑
i1=1

g2∑
i2=1

d
(
X̃ i1i2•, X̃ •••

) n∑
j=1

[
d
(
X̃i1i2j , 0̃

)
− d

(
X̃ i1i2•, 0̃

)]

= 2
g1∑

i1=1

g2∑
i2=1

d
(
X̃ i1i2•, X̃ •••

) [ n∑
j=1

d
(
X̃i1i2j , 0̃

)
− nd

(
X̃ i1i2•, 0̃

)]
= 0.
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Consequently, the decomposition given in Equation 7.45 is verified.

The produced sums of squares are now on crisp. We denote by Tdist the test statistic
related to a given factor k . It can be written as follows:

Tdist =
Bk d

Ed
, (7.48)

where Bk d is defined as the mean of the treatment sum of squares for the factor k and Ed is
the mean of the error sum of squares.

Moreover, the crisp entities Bkd and Ed are measurable and independent. In the conven-
tional approach, a typical statistic of the form of Tdist divided by the ratio of degrees of freedom
is proved to be taken from the Fisher-Snedecor distribution with dfBk d

and dfEd degrees of free-
dom at the significance level δ. The derivation of the theoretical distribution is possible only
if suitable assumptions are made in the modelling process. The classical assumption in such
cases is the normality of the error terms of the constructed model. In our fuzzy model, we did
not assume till now any particular distribution. Researchers have explored several methods to
solve this problem. Many of them have used bootstrap techniques in similar contexts, such as
Gonzalez-Rodriguez, Colubi, and Gil (2012), Ramos-Guajardo and Maria Asuncion Lubiano
(2012) and Gil, Montenegro, et al. (2006) where the authors have proposed to construct boot-
strap test statistics approximated by the Monte Carlo methods to estimate the distribution of
the test statistic Tdist.

Jiryaei, Parchami, and Mashinchi (2013) proved that in the context of a one-way fuzzy anal-
ysis of variance using symmetrical triangular and exponential fuzzy numbers, the calculated
test statistic is taken from a Fisher-Snedecor distribution under the null hypothesis, similarly
to the classical approach. As for us, we will benefit from the constructed Algorithms 1 and
2 of the first method to perform a bootstrap analysis to quantify the distribution of the test
statistic, where we denote by ζ its 1− δ-quantile. We will after be interested in experimentally
investigating the proposition of Jiryaei, Parchami, and Mashinchi (2013) but in the multi-ways
situation.

Note that in this case, the calculation of the bootsrapp p-value pboot is exactly the same as
Equation 7.36. Accordingly, the decision rule of this hypotheses test can be written in terms of
ζ as follows:

Decision Rule. The decision rule related to this test can be depicted by comparing the test
statistic Tdist to the quantile ζ of the corresponding bootstrap distribution at the significance
level δ. The decision rule can be expressed by the following:

• If Tdist > ζ, the null hypothesis H0 is rejected;
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• Otherwise, H0 is not rejected.

Finally, we have to highlight that the coefficients of the concerned model are also fuzzy,
and have to be estimated. Their calculations are made similarly to the procedure made in the
classical context. In other terms, we suppose that these coefficients can be found by the ordi-
nary least-squares method applied using the distances between the fuzzy response variable
and the fuzzy parameters from one side, and to the fuzzy origin from another one.

7.3.1 Particular cases

Practitioners often use triangular and trapezoidal fuzzy numbers because of their simplicity.
Gaussian fuzzy numbers are used because of the smoothness of the shape. It is interesting
to investigate the Mult-FANOVA using particular shapes of fuzzy numbers specifically when
the signed distance is considered, and the fuzzy numbers are supposed to be symmetrical
around the core. In the procedure discussed in Berkachy and Donzé (2018b), we provided
similar particular cases but in one-factor setups. Note that the interpretations of Berkachy and
Donzé (2018b) are exactly the same for multi-factors and one-factor cases.

Consider first symmetrical triangular and trapezoidal fuzzy numbers given respectively by
the tuple (p, q, r ) where p ≤ q ≤ r and the quadruple (p, q, r , s) with p ≤ q ≤ r ≤ s. Since
the considered fuzzy numbers are symmetrical around their core, we can directly deduce that
p + r = 2q for the triangular case, and p + s = q + r for the trapezoidal one. Let us also consider
the distance d to be the SGD described in Section 3.6. For the multi-ways analysis of variance,
we have to re-write the Equations 7.41, 7.42, 7.43 and 7.44 with respect to the SGD. We know
that the SGD of a triangular fuzzy number X̃ = (p, q, r ) is d(X̃ , 0̃) = 1

4 (p + 2q + r ), and the SGD
of a trapezoidal fuzzy number X̃ = (p, q, r , s) is d(X̃ , 0̃) = 1

4 (p + q + r + s). Then, for the case of
triangular symmetrical fuzzy numbers, the sums of squares are the following:

TSGD =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(
qi1i2j − q•••

)2
, (7.49)

B1SGD =
g1∑

i1=1

ng2
(
qi1•• − q•••

)2, (7.50)

B2SGD =
g2∑

i2=1

ng1
(
q•i2• − q•••

)2, (7.51)

ESGD =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(
qi1i2j − qi1i2•

)2, (7.52)

where qi1i2j , qi1••, q•i2•, qi1i2• and q••• are the respective cores of the fuzzy numbers X̃i1i2j ,

X̃ i1••, X̃ •i2•, X̃ i1i2• and X̃ •••, for given values of i1, i2 and j .
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For the trapezoidal case, the sums are as follows:

TSGD =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(qi1i2j + ri1i2j

2
− q••• + r•••

2

)2
, (7.53)

B1SGD =
g1∑

i1=1

ng2

(qi1•• + ri1••
2

− q••• + r•••
2

)2
, (7.54)

B2SGD =
g2∑

i2=1

ng1

(q•i2• + r•i2•
2

− q••• + r•••
2

)2
, (7.55)

ESGD =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(qi1i2j + ri1i2j

2
−

qi1i2• + ri1i2•
2

)2
, (7.56)

where the intervals [qi1i2j ; ri1i2j ], [qi1••; ri1••], [q•i2•; r•i2•], [qi1i2•; ri1i2•],and [q•••; r•••] are the re-

spective core intervals of the fuzzy numbers X̃i1i2j , X̃ i1••, X̃ •i2•, X̃ i1i2• and X̃ •••, for particular
values of i1, i2 and j .

We would like now to propose the case using gaussian fuzzy numbers. Therefore, we
suppose that the fuzzy numbers modelling the response variable have gaussian shapes with
their parameters η and σ. We know that the SGD of a gaussian fuzzy number X̃ with the
couple of parameters (η,σ) is d(X̃ , 0̃) = η. We highlight that this distance is independent from
σ. The sums of squares can then be given by:

TSGD =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(
ηi1i2j − η•••

)2
, (7.57)

B1SGD =
g1∑

i1=1

ng2

(
ηi1•• − η•••

)2
, (7.58)

B2SGD =
g2∑

i2=1

ng1

(
η•i2• − η•••

)2
, (7.59)

ESGD =
g1∑

i1=1

g2∑
i2=1

n∑
j=1

(
ηi1i2j − ηi1i2•

)2
, (7.60)

where for given values i1, i2 and j , ηi1i2j , ηi1••, η•i2•, ηi1i2• and η••• are the means of the gaussian

fuzzy numbers X̃i1i2j , X̃ i1••, X̃ •i2•, X̃ i1i2• and X̃ •••.

Regardless of the value of the parameter σ of the modelling fuzzy numbers, it is easy to
see that the approach with gaussian fuzzy numbers gives instinctively the same result as the
classical approach. In a more general sense, we could deduce that the 3 cases (triangular,
trapezoidal and gaussian) gave the same conclusion. In the considered setups, these three
calculations return exactly the result by the conventional approach. This leads to say that
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in such contexts, by choosing symmetrical shapes around the core of the modelling fuzzy
numbers, we can return exactly the same results as in the classical approach.

We could finally remark that our defended fuzzy approach with the signed distance seems
to be a reproduction of the classical approach, but with more flexibility on modelling the un-
certainty of the response variable. However, choosing symmetrical shapes around the core of
the considered fuzzy numbers should somehow be avoided while using the signed distance in
order to benefit from the properties of the fuzzy approaches.

7.3.2 Ordering effect and sequential sums

We proposed above a Mult-FANOVA model based on a balanced design. Such designs are
often used in experimental studies. The reason for this use is that balanced designs make
it easier to recognize the effect of a given level or factor, and would eventually decrease the
influence of the non-homogeneity in the sample. However, in survey studies, unbalanced de-
signs are more frequent. In other terms, the number of observations in each set of treatments
is not necessarily the same. On the other hand, we know that the purpose of introducing an
additional independent variable to a model is to explain more variability of the dependent one,
and by that, to decrease as much as possible the error of prediction of the model. The con-
sequence of considering unbalanced designs in a multi-ways analysis of variance is that the
order of introducing the predictors should no more be neglected. This order now on matters.
As such, in the Mult-ANOVA models, due to the ordering effect of adding one or more fac-
tors, the sequential sums of squares are introduced. It could be defined as an increase in the
amount of explained variability, or a decrease in the error sum of squares, i.e. the amount of
reduced error. These sums of squares therefore depend on which factor is added before the
other. A method of monitoring the influence of ordering the independent variables introduced
in the Mult-ANOVA model on the sum of squares is then proposed.

Similarly to the conventional approach, we introduce the expressions of the sequential
sums of squares in the fuzzy context using the considered distance d . Let us first define the
different components of these sequential sums.

We denote by Ed (F1, ... , Fk , ... , Fp) and Bd (F1, ... , Fk , ... , Fp) respectively the error sum of
squares and the regression sum of squares in the model composed by the p factors F1, ... , Fk ,
... , Fp. As instance, if the factor F1 is the only independent variable in the model, then the
sums of squares will be written as Ed (F1) and Bd (F1). The entities Ed and Bd correspond to
the expression of the error and hypotheses sum of squares using the metric d given in Equa-
tions 7.44, 7.42, and 7.43.

In the same way, we denote by Bd (Fk | F1, ... , Fk−1) the sequential sum of squares, defined
as the sum of squares obtained by introducing the factor Fk to the model composed by the
factors F1, ... , Fk−1. The sequential sum of squares is then given by the following expression:

Bd (Fk | F1, ... , Fk−1) = Ed (F1, ... , Fk−1)− Ed (F1, ... , Fk−1, Fk ). (7.61)
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It is easy to see that this expression is the difference between the residuals of the model com-
posed by the factors F1, ... , Fk−1 and the residuals of the model with the factors F1, ... , Fk−1, Fk .

The computations should then be done recursively by adding at once one factor only. We
add that for these operations, the total sum of squares Td remains the same through all the
models. The variations happen only in the decomposition between the error and the treatment
sums of squares. The detailed steps of the calculation of sums of squares are given in the
following algorithm:

Algorithm:

1. Introduce the factor F1. Calculate Td , Bd (F1) and Ed (F1) for the model com-
posed by F1 only - Equations 7.41, 7.42, 7.43 and 7.44.

2. Introduce the factor F2. Calculate Ed (F1, F2) for the model composed by F1
and F2 - Equation 7.44.

3. Calculate Bd (F2 | F1) = Ed (F1)− Ed (F1, F2) - Equation 7.61.

4. Recursively do the same calculations for the cases 3, ... , k − 1.

5. Introduce the factor Fk . Calculate Ed (F1, F2, ... , Fk ) for the model composed by
F1, F2, ... , Fk - Equation 7.44.

6. Calculate Bd (Fk | F1, ... , Fk−1) - Equation 7.61.

The obtained sums of squares are summarized in Table 7.2 as follows:

Models Td Ed Bd

F1 T Ed (F1) Bd (F1)

F1 + F2 T Ed (F1, F2) Bd (F2 | F1)
...

...
...

...

F1 + ... + Fk−1 T Ed (F1, ... , Fk−1) Bd (Fk−1 | F1, ... , Fk−2)

F1 + ... + Fk T Ed (F1, ... , Fk ) Bd (Fk | F1, ... , Fk−1)

Table 7.2: The notations of the sums of squares affected by the ordering of the factors F1, ... , Fk

All the procedures described in this section are illustrated by the following two empirical
applications.
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7.4 Applications

We propose now two empirical applications of the multi-ways analysis of variance in the fuzzy
context as introduced in Section 7.3. The fuzzy approach followed by the classical one are
given. We close the section by a discussion and a comparison between both approaches.

As mentioned in the introduction, we remind that the main objective of this chapter is to
show an application of such methodologies and how one could benefit from the idea of ranking
fuzzy numbers by the signed distance and the generalized one. We use bootstrap techniques
to empirically construct the distribution of the test statistic.

The objectives of the proposed applications are reduced to the following ones:

• To show how one can use the proposed approaches and consequently make a decision
related to each factor of the model;

• To understand the influence of the shapes of the modelling fuzzy numbers;

• To understand the influence of the choice of a particular distance to be used in the
process of estimation.

7.4.1 Application 1 - Nestlé data set

For the first application, we use the experimental data set from Nestlé beverages described
in Appendix A.1.2. The data set is composed of 160 observations resulting from 32 trials of
an experiment on a given beverage. We are interested in the variable FILLING collected by
experts judging the filling of the beverage. We consider as well the 11 factors F1, ... , F11 of the
data set. These factors describe different aspects of the beverage. In Berkachy (2018), we
exposed a study showing a wide range of Mult-FANOVA examples using this data set in order
to understand the pros and cons of applying such tools on the considered experimental set of
data.

At the significance level δ = 0.05, we would like to test the hypothesis of equality of popu-
lation means across all the factor levels. In addition, we suppose that the experts perception
of the filling of the beverage is subject to fuzziness. In the process of testing, this latter will
then be taken into account using a convenient treatment approach. We mention that in this
application, the design is balanced, i.e. the numbers of observations in all the factor levels
are the same. Thus, the order of introduction of the factors does not matter. No effect of this
ordering exists. Last but not least, we will perform the procedure of Mult-FANOVA modelled
by the Aumann-type expectation.

The first step is to fuzzify the variable FILLING. We then have to choose a corresponding
set of membership functions. This choice is usually done according to the experience of the
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practitioner in the field. Yet, in an ideal context, we would expect to have the membership
functions chosen directly by the experts at the moment of the experiment.

For this application, we will use the set of membership functions where we consider non-
symmetrical trapezoidal fuzzy numbers for modelling the uncertainty of the variable FILLING.
This variable will then be denoted by Z̃ . The corresponding α-cuts are seen in Table 7.3.

The fuzzy number The left α-cut The right α-cut

{Z̃t}t=0,...,5 (Z̃t )L
α (Z̃t )R

α

Z̃0 = (0, 0, 2.3) (Z̃0)L
α = 0 (Z̃0)R

α = 2.3− 2.3α

Z̃1 = (0, 0.8, 1.1, 3.25) (Z̃1)L
α = 0.8α (Z̃1)R

α = 3.25− 2.15α

Z̃2 = (0.9, 1.4, 2.15, 4) (Z̃2)L
α = 0.9 + 0.5α (Z̃2)R

α = 4− 1.85α

Z̃3 = (1.5, 2.5, 3.25, 4.5) (Z̃3)L
α = 1.5 + α (Z̃3)R

α = 4.5− 1.25α

Z̃4 = (1.25, 3.7, 4.1, 4.75) (Z̃4)L
α = 1.25 + 2.45α (Z̃4)R

α = 4.75− 0.65α

Z̃5 = (2.7, 5, 5, 5) (Z̃5)L
α = 2.7 + 2.3α (Z̃5)R

α = 5

Table 7.3: The α-cuts corresponding to the variable FILLING - Section 7.4.1

We propose a Mult-FANOVA model where we include the response variable, i.e. FILLING

and the 11 factors existing in our data set. Each of the factors is divided into 2 categories
(Down or Up). We remind that the ordering of the independent variables is not important
for our design. In addition, we assume that there is no interaction between the concerned
factors3. The complete model explaining the variable FILLING is expressed as follows:

Z̃ ∼ F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11, (7.62)

where Z̃ is the fuzzy response variable, and F1, ... , F11 are the 11 factors of the model, i.e. the
independent variables.

Consider that the distance d is the generalized signed distance, and that the corresponding
parameter θ? representing the weight of the shape of the fuzzy numbers, is equal to 1. The
overall fuzzy mean Z̃ of the variable FILLING given in Equation 7.22, is as follows:

Z̃ ••• = (1.1981, 2.6513, 3.2053, 4.4031),

with its generalized signed distance measured from the fuzzy origin dGSGD(Z̃ •••, 0̃) = 3.0147.

We have to calculate after the fuzzy means at each level related to a given factor, as seen
in Equations 7.23 and 7.24. Since the modelling membership functions are trapezoidal, it is
evident to expect that the concerned fuzzy means will be trapezoidal as well. The Table 7.4
gives a summary of all the calculated means per factor level (Up and Down for each factor) .

3The case with interactions can be similarly conceivable. Models which include interactions can be found in
Berkachy (2018).
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Up Down

Factor p q r s p q r s

F1 1.32 2.77 3.30 4.43 1.08 2.54 3.11 4.37

F2 1.22 2.66 3.21 4.40 1.17 2.64 3.20 4.40

F3 1.44 3.80 4.17 4.77 0.95 1.50 2.24 4.04

F4 1.14 2.58 3.16 4.39 1.25 2.72 3.25 4.42

F5 1.31 2.78 3.31 4.44 1.08 2.52 3.10 4.37

F6 1.21 2.67 3.23 4.42 1.19 2.63 3.18 4.39

F7 1.15 2.61 3.18 4.39 1.25 2.69 3.23 4.41

F8 1.15 2.58 3.15 4.38 1.24 2.72 3.26 4.42

F9 1.14 2.58 3.16 4.39 1.25 2.72 3.25 4.42

F10 1.21 2.66 3.21 4.41 1.18 2.64 3.20 4.40

F11 1.22 2.64 3.20 4.40 1.18 2.66 3.21 4.40

Table 7.4: Fuzzy means related to the levels Up and Down of each factor given by the trapezoidal
number (p, q, r , s) - Section 7.4.1

It is natural to see that whenever we take into consideration the fuzziness in our data
set and we decide to model this uncertainty by fuzzy numbers, the resulting error, treatment
and total sums of squares are consequently expected to be composed of fuzzy numbers.
However, using the metric d , the different sums of squares Ed , Bd and Td calculated as seen
in Equations 7.41, 7.42, 7.43 and 7.44 will be crisp. For our case, we used the GSGD to obtain
crisp values of these elements. We calculated after the treatment mean sums of squares given
by the treatment sum of squares of each factor divided by its degree of freedom. A summary
of the different calculations related to the variable FILLING is given in Table 7.5. In addition,
we estimated by the bootstrap technique the test statistic distributions, and the corresponding
p-values related to each factor of the model where 1000 iterations are considered.

The hypotheses test of the Mult-ANOVA approach consists to test the equality of means
of the response variable by level factor. For the factor F1, this can be done by comparing the
statistic Tdist to the 1− δ-quantile of the bootstrap distribution T boot

dist written as ζ. The decision
related to this factor, will then be the following:

Decision. The test statistic Tdist = 14.37 is greater than the bootstrap quantile ζ = 11.05 at the
significance level 5%. The null hypothesis H0 of equality of the group means is then rejected
at the 0.05 significance level.

This decision can also be seen from the p-value calculated for each factor of the model. Thus,
for the factor F1, the corresponding p-value indicates a strong presumption against the null
hypothesis.



206 Chapter 7. Fuzzy analysis of variance

Factors Df Td Ed Bd Bd mean Sq. Tdist T boot
dist Pr(> T boot

dist )

F1 1 93.45 92.04 1.41 1.41 14.37 11.05 0.00∗∗∗

F2 1 93.45 93.43 0.02 0.02 0.25 7.69 0.78

F3 1 93.45 19.03 74.42 74.42 755.82 279.84 0.00∗∗∗

F4 1 93.45 93.05 0.40 0.40 4.06 3.66 0.05∗∗

F5 1 93.45 91.85 1.60 1.60 16.26 12.65 0.00∗∗∗

F6 1 93.45 93.41 0.04 0.04 0.45 2.00 0.29

F7 1 93.45 93.26 0.19 0.19 1.98 2.54 0.11

F8 1 93.45 93.08 0.37 0.37 3.74 3.32 0.05∗∗

F9 1 93.45 93.05 0.40 0.40 4.06 3.34 0.04∗∗

F10 1 93.45 93.44 0.01 0.01 0.12 1.28 0.53

F11 1 93.45 93.45 0.00 0.00 0.02 2.00 0.80

Residuals 148 0.0985

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.5: The summary of the Mult-FANOVA model for the fuzzy variable FILLING - Section 7.4.1

Application with the classical approach

It is interesting to compare the results of the fuzzy and the classical approaches of Mult-
ANOVA. For this reason, we perform the Mult-ANOVA method with the same setups but in
the classical approach, i.e. with the procedure presented in Section 7.2. In this case, the
assumption of fuzziness of the response variable is not considered. Thus, the variable FILLING

is assumed to be precise. We briefly display the results of this analysis. We note that the
overall mean of the variable FILLING is 3.0813. The Table 7.6 gives the summary of the
classical Mult-ANOVA model, the sums of squares with their respective degrees of freedom,
the F-statistics and their p-values etc. The F-statistic of the complete model on 11 and 148
degrees of freedom is 104.5373 with a p-value of 0.

For the factor F1, the decision by the classical approach is as follows:

Decision. Since the test statistic 9.92 is greater than the 95% fractile of the Fisher-Snedecor
distribution with 1 and 148 degrees of freedom, i.e. F(0.95;1,148) = 3.9051, then the decision is
to reject the null hypothesis H0 at the confidence level 95%.

For this factor, the decision is the same for the classical and the fuzzy approaches. Similar
analyses should be done for the rest of the factors.
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Discussion

For the comparison between the defended fuzzy approach and the classical well-known ap-
proach concerning each factor of both models, we can clearly see from Tables 7.5 and 7.6
that the decomposition of the sums of squares per independent variable change between
both analyses. This behavior is stronger for the sums of squares and the test statistics than
the p-values. The total, treatment and error sums of squares of the fuzzy analysis are relatively
smaller than the classical one. In addition, we can easily see that the ratios Error/Total and
Treatment/Total are different. We believe that the way these sums are behaving in the fuzzy
approach is worth investigating so far, specifically depending on the shapes and spreads of
modelling fuzzy numbers, or on the metric used in the process. Even though the test statistics
on each factor of both analyses change, we can remark that both of them gave almost the
same decision related to rejecting or not the null hypothesis H0. However, we should highlight
that by the fuzzy approach, our presumption against the null hypothesis is stronger than the
classical approach. For example, for the factors F8 and F9, the null hypothesis is rejected at
a significance level of 10% in the conventional Mult-ANOVA model, and at a 5% significance
level in the fuzzy one.

Regarding the residuals of the model, the normality and the homogeneity of the variances
between groups have been tested as a final step. For the normality of the residuals, we used
two inference tests: the Shapiro-Wilks and the Anderson-Darling tests. For the homogeneity
of the variances between groups, we used the Bartlett’s test applied on each factor. The re-
sults are given in Table 7.7.

For the analyses on the residuals of our models related to the normality assumption, the
p-values of the Shapiro-Wilks and the Anderson-Darling tests are less than 0.05 implying that
the distributions of the residuals are significantly different from the normal distribution on a 5%
significance level as seen in Table 7.7 for the fuzzy and the classical approaches. Normality
of the residuals cannot be assumed. This result could be due to different facts such as the
limited number of observations by category, the few categories etc. For the skewness and the
excess of kurtosis of the distributions of residuals, we can remark that the characteristics re-
lated to the fuzzy approach are closer to the ones of the normal distribution than the classical
approach. As such, the skewness by the fuzzy approach is close to be 0. Thus, one could
suspect that the distribution of the residuals by the fuzzy approach is overall a bit closer to the
normal distribution than the one by the conventional approach.

For the assumption of the homogeneity of the variances between groups, we performed
the Bartlett’s tests for each factor of the model. The results are shown in Table 7.7. The
statistics of these tests and their p-values are different between both analyses, implying that
the set of variables assuming the homogeneity of the variances between groups is not the
same. We remind that a p-value greater than 0.05 refers to the decision of not rejecting the
hypothesis of equality of variances between groups. Accordingly, a conclusion is that by the
classical approach, we tend to reject more often than the fuzzy approach the hypothesis of
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homogeneity of the variances between the groups. This fact violates a basic assumption of
application of the Mult-ANOVA models. Therefore, in terms of the homogeneity of variances,
one can conclude that the classical Mult-ANOVA is more pessimistic than the fuzzy one.

Factors Df T E B B mean Sq. F value Pr(>F)

F1 1 183.94 182.54 1.41 1.41 9.92 0.00∗∗∗

F2 1 183.94 183.94 0.01 0.01 0.04 0.83

F3 1 183.94 25.94 158.01 158.01 1114.90 0.00∗∗∗

F4 1 183.94 183.44 0.51 0.51 3.57 0.06∗

F5 1 183.94 182.14 1.81 1.81 12.74 0.00∗∗∗

F6 1 183.94 183.89 0.06 0.06 0.40 0.53

F7 1 183.94 183.79 0.16 0.16 1.10 0.30

F8 1 183.94 183.44 0.51 0.51 3.57 0.06∗

F9 1 183.94 183.44 0.51 0.51 3.57 0.06∗

F10 1 183.94 183.94 0.01 0.01 0.04 0.83

F11 1 183.94 183.94 0.01 0.01 0.04 0.83

Residuals 148 0.1417

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.6: The summary of the Mult-ANOVA model for the variable FILLING - Section 7.4.1

In addition, in the same context of using the GSGD in the process of calculations of the
sums of squares, we could perform a Tukey’s HSD (honestly significant difference) post-hoc
test4 adapted to the fuzzy sets using this distance, in the purpose of completing our study.
Well, based on these calculations, we got very close outputs in terms of interpretations to the
calculated p-values, which give us indications about whether to reject or not the hypotheses
of equality of means between the two groups Up and Down of the different factors.

7.4.2 Application 2 - Finanzplatz data set

For the second empirical application, we perform a Mult-ANOVA related to the Finanzplatz
data set described in Appendix A.1.1. We use the factors "branch" and "size" of the concerned

4For more informations about this test, Tukey (1949) described the detailed procedure.
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firms. Consider that the variable "the expected state of business in the next 12 months" con-
tains uncertainty. We would like to know whether the means of this variable differ between the
branch and size groups at the significance level 0.05.

Fuzzy approach Classical approach

statistic p-value statistic p-value

Shapiro-Wilks test 0.8168 6.959e−13 ∗∗∗ 0.7837 4.207e−14 ∗∗∗

Anderson-Darling test 13.688 2.2e−16 ∗∗∗ 8.2562 2.2e−16 ∗∗∗

Bartlett test

F1 3.9843 0.0459∗∗ 63.7065 1.4441e−15 ∗∗∗

F2 0.6137 0.4334 15.3422 8.9688e−5 ∗∗∗

F3 0.0336 0.8545 0.0938 0.7593

F4 2.5988 0.1069 7.1774 0.0074∗∗∗

F5 4.1783 0.0409 ∗∗ 49.3127 2.1824e−12 ∗∗∗

F6 0.0645 0.7995 27.9212 1.2635e−7 ∗∗∗

F7 0.3571 0.5501 4.2002 0.0404∗∗

F8 0.1884 0.6642 14.5413 0.0001∗∗∗

F9 2.4746 0.1157 5.0291 0.0249∗∗

F10 0.0112 0.9158 5.1291 0.0235∗∗

F11 0.0410 0.8395 1.2393 0.2656

Skewness 0.3308 1.9666

Excess of kurtosis -1.1906 15.5690

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.7: The different tests for normality and homogeneity of variances of the residuals obtained
from the Mult-FANOVA and the Mult-ANOVA models explaining the variable FILLING - Section 7.4.1

The aim is to estimate a Mult-ANOVA model where the response variable is "the expected
state of business in the next 12 months", and the independent variables are the size and
branch of firms. Note that the variable "size" is composed by three groups (small, medium,
big), and the variable "branch" is composed by four groups (banks, insurances, investment
and financial service companies). For this data set, the design is unbalanced. The ordering of
the integration of the covariates has then an influence in the model. In addition, we suppose
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that no interactions between the factors exist. We would like to take into consideration the
uncertainty contained in the response variable. Let us denote the fuzzy version of this latter
by S̃. The concerned model is then given as follows:

S̃ ∼ size + branch, (7.63)

where S̃ is the fuzzy response variable, size and branch are the factors of the model.

For the fuzzification step, we propose to consider 2 cases in order to analyse the differ-
ence between them. For the first case, we chose arbitrarily to model each observation of the
variable S by considering symmetrical triangles of spread 2 units. Since the idea is to use the
procedure of Mult-FANOVA by the Aumann-type expectation, we propose to use the GSGD,
for which the parameter θ? is equal to 1. We remind that using the considered set of member-
ship functions, if the distance d is the signed distance, the method gives results exactly the
same as the classical approach as seen in Section 7.3.1.

The overall fuzzy mean S̃ of the response variable expressed by the Equation 7.22 is given
by:

S̃••• = (2.5812, 3.5812, 4.5812).

Its generalized signed distance measured from the fuzzy origin is dGSGD(S̃•••, 0̃) = 3.5928.
One has to calculate now the fuzzy means related to each level factor. These calculations
will lead us to compute the total, the treatment and the error sums of squares. However, it is
important to remark that the ordering is important in this case. Thus, we have to calculate the
related sequential sums of squares as given in the algorithm of Section 7.3.2. Using the con-
sidered distance, the resulting sums of squares related to each factor with the corresponding
degrees of freedom are shown in Table 7.8. For this application, we consider the bootstrap
Algorithms 1 and 2 given in Section 7.3 with 1000 iterations. The test statistics Tdist, the boot-
strap ones T boot

dist , and the corresponding bootstrap p-values are presented in Table 7.9. In
addition, we mention that the test statistic of the model is 1.8518, where the bootstrap p-value
by the Algorithm 1 is 0.14 and the one by the Algorithm 2 is 0.13.

By the results of Table 7.9, we could conclude that for both factors, we cannot reject the
hypothesis of equality of means between groups, particularly by the fact that the bootstrap p-
values are higher than the significance level 0.05. However, for the whole model, it is clear that
the p-value is greater than the threshold of 5%. Thus, our model seems to be not statistically
significant.
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Factors Df TS ES BS BS mean Sq.

size 2 144.9573 ES(size) = 143.6574 BS(size) = 1.2999 0.6499

branch 3 144.9573 ES(branch, size) = 142.6401 BS(branch | size) = 1.0171 0.3391

Residuals 228 0.6256

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.8: The summary of the Mult-FANOVA model for the fuzzy variable "expected state of business
in the next 12 months" - Case of symmetrical FN with the GSGD distance - Section 7.4.2

One could expect that by changing the chosen metric, we could get different values for the
sums of squares, or different decisions related to the factors of the model. For our present
case using symmetrical triangles, we replicated the same analysis with the different distances
described in Chapter 3. The results obtained using all the distances and from the classical
approach are very similar, almost all at the order of 10−3. The present case with fuzziness
seems to be a reproduction of the classical model. This conclusion is proved in Section 7.3.1
for the signed distance.

In addition, it is clear to see that the bootstrap techniques given in Algorithms 1 and 2 give very
close results in terms of the p-values and the decisions related to the model and to each fac-
tor. Thus, the choice between both algorithms seems to be not influencing the decisions made.

Algorithm 1 Algorithm 2

Factors Tdist T boot
dist Pr

(
> T boot

dist

)
T boot

dist Pr
(
> T boot

dist

)
size 1.0389 4.15 0.17 3.95 0.17

branch 0.5419 5.25 0.34 5.37 0.33

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.9: The summary of the test statistics related to the Mult-FANOVA model for the fuzzy variable
"expected state of business in the next 12 months" using the bootstrap Algorithms 1 and 2 - Case of
symmetrical FN with the GSGD distance - Section 7.4.2

From another side, we propose now to use non-symmetrical membership functions for the
fuzzification step. Consider then the trapezoidal fuzzy terms modelling the different answers
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of the variable "expected state of business in the next 12 months" given as follows:

S̃1 = (0, 0.5, 1.1, 3.7),
S̃2 = (0.9, 1.8, 2.45, 4.5),
S̃3 = (1.9, 2.6, 3.65, 4.9),
S̃4 = (1.25, 3.7, 4.3, 4.85),
S̃5 = (2.7, 5, 5, 5).

The Table 7.10 provides a summary of the Mult-FANOVA table related to our analysis.
For both factors, the related p-values lead us to not reject the equality of means between the
groups. In addition, both algorithms gave p-values close to the case shown in Table 7.8. The
test statistic of the model Tdist is 3.3442 where the bootstrap quantile by the Algorithm 1 for
instance is 16.33 with a p-value of 0.1498. This p-value indicates that our model does not
appear to be statistically significant at the significance level 0.05.

The interpretations of this case using non-symmetrical fuzzy numbers is exactly the same as
the case using symmetrical ones. In particular, by the Table 7.11 we could clearly remark that
the choice between the Algorithms 1 and 2 does not have any effect on the decisions made.
Therefore, both algorithms could be useful in such situations. In further research, it would
interesting to investigate cases where the difference between both could eventually be glaring.

Factors Df TS ES BS BS mean Sq.

size 2 54.2188 ES(size) = 53.4102 BS(size) = 0.8086 0.4043

branch 3 54.2188 ES(branch, size) = 52.6736 BS(branch | size) = 0.7366 0.2455

Residuals 228 0.2310

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.10: The summary of the Mult-FANOVA model for the fuzzy variable "expected state of business
in the next 12 months" - Case of non-symmetrical FN with the GSGD distance - Section 7.4.2
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Algorithm 1 Algorithm 2

Factors Tdist T boot
dist Pr

(
> T boot

dist

)
T boot

dist Pr
(
> T boot

dist

)
size 1.75 8.90 0.20 8.19 0.20

branch 1.06 5.88 0.36 6.08 0.34

The significance levels as as follows:

’***’ p-value ≤ 0.01,

’**’ p-value ≤ 0.05,

’*’ p-value ≤ 0.10.

Table 7.11: The summary of the test statistics related to the Mult-FANOVA model for the fuzzy variable
"expected state of business in the next 12 months" using the bootstrap Algorithms 1 and 2 - Case of
non-symmetrical FN with the GSGD distance - Section 7.4.2

From another side, we know that in the conventional approach, a given test statistic in such
analysis of variance is considered to be derived from a Fisher distribution. Since this latter can
not be insured in the fuzzy approach, the bootstrap technique has been used. However, one
could suspect that a particular relationship between the bootstrap distributions of test statistics
and the Fisher theoretical distribution could exist. For this reason, we propose the qq-plots of
the bootstrap distributions with the corresponding theoretical Fisher-Snedecor distribution as
shown in Figures 7.1 and 7.2. From these latter, it seems that effectively a possible relation
between the proposed distributions could be remarked.
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Figure 7.1: QQ-plot of the bootstrap distribution of the model test statistic and the theoretical Fisher
distribution - Section 7.4.2.

Let us now perform a Mult-FANOVA where we calculate numerically the fuzzy sums of
squares. It would then be interesting to proceed the fuzzy approach by the heuristic decision
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Figure 7.2: QQ-plots of the bootstrap distributions of the test statistics related to the factors size and
branch respectively with the theoretical Fisher distribution - Section 7.4.2.

rule presented in Section 7.3. The decisions will be made according to each variable of the
model. Consider the variable "branch" for this test, and consider also the fuzzy membership
functions to be symmetrical triangular as described above. Note that for these calculations the
difference between fuzzy numbers is approximated. Following these setups, we calculated the
Mult-FANOVA model and we got the fuzzy numbers defining respectively the fuzzy treatment
and the fuzzy weighted residuals sums of squares, shown in Figure 7.3.

In order to make a decision regarding the equality of means between the different branches
of the firms, we have to calculate either the surfaces under the membership functions of the
fuzzy numbers, or either the signed distances of these latter, as given in Equations 7.33 to
7.38. Let us use the signed distance measured from 0̃. By the Algorithm 1 of the bootstrap
technique presented in Section 7.3, let us consider κ to be the 95%-quantile of the bootstrap
distribution of the test statistic for the factor branch. At 1000 iterations, we found that κ =
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Figure 7.3: Fuzzy means of the treatment and the residuals sums of squares related to the variable
"branch" of the Mult-FANOVA model - Section 7.4.2

1.4315. We get the following results:

dSGD(Ẽ
∗
, 0̃) = dSGD(Ẽ × κ, 0̃) = 2.013;

dSGD(B̃, 0̃) = 0.3077,

where the trapezoidal fuzzy numbers Ẽ = (1.1908, 1.2055, 1.6069, 1.6216) and B̃ = (0.2436,
0.2758, 0.3391, 0.3722) are respectively the fuzzy residuals mean sum of squares and the
fuzzy treatment mean sum of squares related to the factor branch.

According to these distances, we are now able to make a decision. It is then given as follows:

Decision Rule. Since dSGD(Ẽ
∗
, 0̃) > dSGD(B̃, 0̃), then we tend to not reject the null hypothesis

of equality of means between groups of the variable branch at the significance level δ = 0.05.

Thus, we deduce that the different economic branches might have close visions related to the
next 12 months with respect to their means.

We could also calculate the contribution of both sums of squares to the total sums of
squares of the Mult-FANOVA model as given in Equations 7.39 and 7.40, and we get:

C(Ẽ
∗
) =

Surf(Ẽ
∗
)

Surf(B̃) + Surf(Ẽ
∗
)

= 0.867,

C(B̃) =
Surf(B̃)

Surf(B̃) + Surf(Ẽ
∗
)

= 0.133.
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The previous decision rule can also be viewed by the big gap between the contributions of both
fuzzy sums. On the other hand and in terms of the bootstrap distribution of the test statistic
of this analysis, we could see from the qq-plots shown in Figure 7.4 that the estimated distri-
bution seems to be somehow lacking from being drawn from a Fisher-Snedecor distribution.
This could be due for instance to the fuzzy approximations.

As a conclusion, we could say that the Mult-FANOVA approach using a pre-defined dis-
tance, and the one preserving the fuzzy nature of the sums of squares gave exactly the same
decision for the variable "branch". In further situations, the decision relying on the fuzzy type
sums might be difficult to make since overlapping between these fuzzy sums of squares re-
lated to the treatment and the residuals could be somehow strongly expected. Thus, in such
situations, a heuristic decision rule, similar to the proposed one, could be a prudent idea.
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Figure 7.4: QQ-plots of the bootstrap distributions of the test statistics related to the factors size and
branch respectively with the theoretical Fisher distribution - Section 7.4.2.
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7.5 Conclusion

The aim of this chapter is to present an approach of the Mult-ANOVA in the fuzzy environment,
based on the concept of fuzzy regression where the signed distance and the generalized one
are used as ranking methods. For this model composed by a range of factors, we assumed
that the uncertainty is contained in the response variable, and in the model parameters. Two
methods were introduced for this purpose. In the first procedure, we proposed to preserve
the fuzzy nature of the numerically calculated sums of squares, and we exposed a heuris-
tic decision rule related to the corresponding test statistic. In the second one, we used the
Aumann-type expectation where a convenient distance is needed. As a particular case, we
used the signed distance with a set of membership function having the particularity of being
symmetrical around the core of the fuzzy number. The method related to the Aumann ex-
pectation returned exactly the results of the classical approach. Furthermore, we showed the
procedure of calculations of the sequential sums of squares when the considered design is
not balanced. To illustrate our approaches, we displayed two empirical applications where the
objectives were to understand the influence of the choice of symmetry in the shapes of the
modelling fuzzy numbers, and the use of the distances on the Mult-FANOVA models. For this
latter, we completed our study by the classical approaches.

An interesting finding of this chapter is that the more we get closer to precise modelling
fuzzy numbers, the more we tend to obtain results similar to the classical approach. In other
terms, the more we suppose that the fuzziness contained in the data is high, the more we
should expect to get different results than the conventional approach. Thus, the fuzzy ap-
proach seems to be a reproduction of the classical one in terms of decisions made, but with
more flexibility on the treatment of uncertainty of the response variable. One could say that the
fuzzy approach is in some sense a generalization of the classical one. In the cases exposed
in this chapter, we overall got similar decisions related to the null hypothesis, by the classi-
cal and the fuzzy approaches. Although the decisions made using both approaches are the
same, one have to clearly see that the decomposition of the sums of squares is different. An
investigation of this result would be interesting in order to reveal the analytical characteristics
of these sums.

To confirm our hypotheses, we performed in previous researches the same Mult-FANOVA
model using different symmetrical and non-symmetrical shapes of modelling fuzzy numbers.
The conclusions of the tested cases are comparable. The interpretations of the parameter
vector and their p-values, the residuals and the predicted values in both approaches differ
sometimes. For the fuzzy case, regarding the assumption of the equality of variance, we
see that whenever we get farther from symmetrical shapes, one could expect to get slightly
different decisions according to the hypothesis postulated for the model. However, using the
classical approach, we tend more strongly to reject the normality of the residuals of the Mult-
ANOVA model than the fuzzy approach. This latter can be seen as a disadvantage of the
classical Mult-ANOVA compared to the fuzzy one. A deeper investigation of the behavior of
the residuals is needed.

Finally, we have to highlight that the main purpose of adopting such fuzzy approaches is
the ability to efficiently take into account the uncertainty and fuzziness occuring in data sets.
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Hence, additional tests have to be performed in order to diagnose the influence of different
variations of the choice of the distance, the shape and the spread of the fuzzy numbers, the
number of observations per category and the number of categories, the algorithm chosen for
bootstrap, etc. in the purpose of being able to stress the use of each one of these latter.



Part III

A R package for fuzzy statistical
analysis. A detailed description
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Despite the fact that the approaches presented in the first two parts are appealing from a
theoretical point of view, being able to apply them in statistical analysis with real data sets
seems to be another level of challenge. These analyses are always computed by func-
tions describing the corresponding procedures in the R statistical software found in R Core
Team (2015). Several researchers have already developed R functions used in similar con-
texts. We briefly review some of them. For basic introduction of fuzzy numbers, the package
FuzzyNumbers described in Gagolewski (2014) is very known in the field. It provides methods
to deal with basic fuzzy numbers. In addition, based on the extension principle, this package
gives the required tools to perform arithmetic operations on fuzzy numbers. This task can
be accomplished by an approximation or by exact fuzzy values, often based on trapezoidal or
piecewise continuous fuzzy numbers. These operations are described theoretically in Chapter
1.

Several packages have treated the subject of linguistic terms by fuzzy tools. Many of
them considered fuzzy systems as presented in Chapter 2. We note for example the package
FuzzyToolkitUoN described in Knott et al. (2013), which consists on a framework of fuzzy
inference systems based on different inference and aggregation rules, and using some known
defuzzification operators. In the same way, the package lfl ("Linguistic Fuzzy Logic") pre-
sented in Burda (2018) and Burda (2015), provides algorithms of computations of fuzzy rule-
based systems.

From another side, from a statistical programming point of view, the approach by Féron -
Puri and Ralescu of Section 4.2.2 is more prevalent than the Kwakernaak - Kruse and Meyer
approach of Section 4.2.1. Researchers tended more often to implement the statistical mea-
sures by the first approach for multiple reasons, such that its practical and light computational
burden, its crisp nature and the related facility to be implemented and interpreted, etc. How-
ever, for the Kwakernaak - Kruse and Meyer approach, the computations are known to be
more tedious, since one has to deal with fuzzy type sets all along the calculations. This fact
increases the computational burden of such tasks.

We know that the Féron - Puri and Ralescu methodology needs a distance as discussed
in Chapter 4. Some distances described in Chapter 3 are implemented in available packages.
Trutschnig and A. Lubiano (2018), the authors of the package SAFD, i.e. "Statistical Analysis
of Fuzzy Data", provides an implementation of the Bertoluzza distance described in Section
3.2. The authors also expose univariate statistical tools where they consider fuzzy data having
the shape of a polygon. Using this package, basic operations on fuzzy numbers can be com-
puted. We note for example, the addition, the scalar multiplication, the mean, the median etc.
The sample variance is also implemented as proposed in Section 4.4, where the Bertoluzza
distance is used. The authors finally propose one and multi-sample bootstrap tests for the
equality of means as given in Gil, Montenegro, et al. (2006). For the package FuzzyStatTra
given in A. Lubiano and Rosa de Saa (2017), the authors exposed some fundamental func-
tions of statistical summaries using trapezoidal fuzzy numbers. As instance, they proposed
ways to calculate the mean, the variance, the median and some other scale measures based
on the mid/spr and the φ-wabl/ldev/rdev metric. These ideas were particularly developed by
Blanco-Fernandez, Maria R. Casals, Colubi, Corral, Garca-Barzana, et al. (2013) and Sinova,
Rosa de Saa, and Gil (2013). This package also introduced the ρ1 distance, in addition to
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the implemented versions of the so-called "M-estimators of scale with loss function" and the
"Gini-Simpson diversity index", presented in Sinova, Gil, and Aelst (2016).

From another side, the maximum likelihood method was often involved in R functions. For
example, the estimations by this method were used extensively in the context of the EM al-
gorithm with incomplete data. For the fuzzy environment, the package EM.Fuzzy described
in Parchami (2018b) has the aim of providing a tool to apply these algorithms based on the
maximum likelihood method using triangular and trapezoidal fuzzy numbers. The unknown
parameter, assumed to be a fuzzy number, is then estimated by the corresponding functions
as proposed in Denoeux (2011).

For the topic of statistical inference described in Chapter 5, multiple fuzzy programming
packages have been introduced. Parchami (2017) proposed a package called Fuzzy.p.value
based on Filzmoser and Viertl (2004) and Parchami, Taheri, and Mashinchi (2010), where the
main goal is to supply the membership function of a fuzzy type p-value, based either on fuzzy
hypotheses or data. Nevertheless, the authors of this package asserted that if the required
p-value is fuzzy, then it would be convenient to assume that the significance level is fuzzy as
well. For this purpose, they proposed to compare the obtained fuzzy p-value to the significance
level by a corresponding evaluation method.

Some packages were proposed to compute hypotheses tests related to the equality of
means as mentioned in Chapter 7. Beside the package SAFD which introduces bootstrap tests
for the equality of means, Parchami (2018a) proposed a package so-called ANOVA.TFNs for
univariate ANOVA implementations, as described theoretically in Parchami, Nourbakhsh, and
Mashinchi (2017). This package, mainly reduced to the function FANOVA for the fuzzy one-way
ANOVA procedure, gives the test statistic with its corresponding p-value summarized in an
ANOVA table. A generalization to the multi-factors case as proposed in Chapter 7 is an asset.

The complex and expensive computations of fuzzy type numbers occuring in statistical
methods are two big disadvantages of applying fuzzy logic in such contexts. Convenient
computation methods taking into account this burden is needed to be able to overcome the
problem from one side. From another one, a package resuming, upgrading and generalizing
all these functions on a more compact programming interface is required.

We created a R package with numerous functions. Our main aims are to:

• implement all the theoretical tools developed previously;

• have a coherent programming environment;

• have a user-friendly analytical procedures;

• propose a panoply of calculation methods;

• construct a complete self-sustaining package.
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We propose then a package of R functions called FuzzySTs described in Berkachy and Donzé
(2020), which aims to support the different theoretical approaches. To complement the pack-
age FuzzyNumbers as instance, we introduce gaussian and gaussian bell fuzzy numbers to
the class of fuzzy numbers. In terms of fuzzy arithmetic operations with respect to the ex-
tension principle given in Chapter 1, we propose a numerical procedure to compute the fuzzy
difference and the fuzzy square, where the polynomial forms of their α-cuts are implemented.
According to our package, when the data are considered to be fuzzy rather than crisp, two
ways of fuzzification given by two R functions, are proposed. The choice of functions is related
to the shape of the modelling fuzzy numbers, such that a function based on trapezoidal fuzzy
numbers defined by their quadruples, and another one given by their numerical α-level sets.
Note that our functions have the great advantage of being able to consider any shape of fuzzy
numbers.

Furthermore, since by the Féron - Puri and Ralescu approach, a distance is needed in the
process, then we provide a function performing the different possibilities of distances illustrated
in Chapter 3. Statistical measures such as the mean, the variance, the moment, etc. are
consequently implemented. The contribution of this package is that, in compliance with the
concepts given in Chapter 4, a numerical method of computation of the fuzzy variance by
the Kwakernaak - Kruse and Meyer approach is introduced, in addition to the Féron - Puri and
Ralescu one. We propose after a function which enables to test fuzzy hypotheses and/or fuzzy
data by both approaches using convenient functions. These functions cover all the notions of
Chapter 5. In other words, for the Kwakernaak - Kruse and Meyer approach, our functions
allow to draw the fuzzy decisions based on a hypotheses test by fuzzy confidence intervals as
given in Section 5.3. All the situations of intersection between the fuzzy confidence intervals
and the fuzzy hypotheses are taken into account. In addition, it is up to the user to choose
the method of calculation of the confidence interval, i.e. using the traditional expression or the
maximum likelihood method. In the same way, for the Féron - Puri and Ralescu approach, the
fuzzy p-value can be easily computed and defuzzified. Related decisions are easily listed.

For the idea of the global and individual evaluations expressed in Chapter 6, no previ-
ous implementations in similar sense were found in the R repository. For this reason, we
propose functions accomplishing this task, where our computations can be used with all the
above mentioned distances. We have to note that the indicators of information’s rate are also
exposed. In addition, the weight factor and the missingness in the data can be taken into
account by corresponding weights readjustment tools as shown in Section 6.2. Finally, for the
concepts of Chapter 7, we introduce numerical estimations of multi-ways analysis of variance
models in the fuzzy context. The unbalance in the considered designs are also foreseen.

To sum up, we can obviously say that the defended package provides a complete frame-
work of the tools described in the theoretical and applied sections, including a big panoply of
possibilities in terms of computations. This chapter intends then to show the documentation
of the R functions implemented to follow up the theoretical and application parts. For each
function, we give a detailed description followed by the corresponding syntax, its arguments
and the expected output. Note that the functions described in this chapter are designed and
developed from scratch in compliance with the needed concepts of the theoretical part. How-
ever, these functions depend only on the package FuzzyNumbers presenting the basic notions
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of introduction of fuzzy numbers, on the package polynom for computing polynoms, on the
package EM.Fuzzy for estimating MLE estimators by the EM-algorithm in addition to the ba-
sic functions of R. Thereafter, they have been validated on multiple data bases from different
sources. For our current case, simple examples illustrate each proposed function. In order to
be more user friendly, note that eventual optimisation and enhancement are needed from a
technical point of view.



Chapter 8

A R package for fuzzy statistical
analysis. A detailed description

Description of the package

The objective of the package FuzzySTs is to provide an implementation of the theoretical ap-
proaches presented in the first two parts. Despite the fact that our functions are all coherent
and constitute a whole, in order to present our package, we describe each function in the
same order as their content appears in the previous chapters. For each function, we expose a
detailed description, its arguments, the obtained outputs and the different function dependen-
cies. They are finally illustrated by simple examples. We have to mention that the numerical
integrations are mainly made by the Simpson method.

Dependencies

FuzzyNumbers, polynom, EM.Fuzzy
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is.alphacuts Verifies if a matrix is set of left and right α-cuts 1

Description

This function verifies if a given matrix can be a matrix of numerical α-cuts. It is then verified
if the considered matrix has the following requirements: it should be composed by 2 vectors
in columns with no missing values, for which the lengthes of both vectors are equal. The first
vector should be increasing and named "L" as left, and the second one should be decreasing
and named "U" as upper. The last value of the first vector should be less than the first value
of the second vector.

This function intentionally requires a form of the set of numerical α-cuts similar to the out-
put of the function alphacut of a fuzzy number by the package FuzzyNumbers described in
Gagolewski (2014) .

Usage

is.alphacuts (matrix)

Arguments

matrix a matrix of 2 equal length columns with no NA.

Value

Returns a value TRUE if the concerned object can be a set of numerical left and right α-cuts,
FALSE otherwise.

See Also

is.fuzzification 7, is.trfuzzification 8, nbreakpoints 2, tr.gfuzz 9.

Examples

mat <- matrix(c(1,2,3,7,6,5), ncol = 2)
is.alphacuts(mat)
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nbreakpoints Calculates the number of breakpoints of a numerical matrix of α-cuts 2

Description

For a given fuzzy number object expressed by its numerical α-cuts such that is.alphacuts
= TRUE, the function nbreakpoints calculates the number of breakpoints chosen to numeri-
cally construct these α-cuts. In other terms, it is the number of sample points on which the
membership functions are evaluated.

Usage

nbreakpoints (object)

Arguments

object a matrix of numerical α-cuts or a 3-dimensional array. No NA are allowed.

Value

Returns a numerical positive integer .

See Also

is.alphacuts 1, is.fuzzification 7, is.trfuzzification 8, tr.gfuzz 9.

Examples

X <- TrapezoidalFuzzyNumber(1,2,3,4)
alpha.X <- alphacut(X, seq(0,1,0.01))
nbreakpoints(alpha.X)
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GaussianFuzzyNumber Creates a Gaussian fuzzy number 3

Description

This function creates a Gaussian fuzzy number from the class of Gaussian fuzzy numbers as
presented in Definition 1.2.3. This fuzzy number is given by its numerical α-cuts such that
is.alphacuts = TRUE. The smoothness of the constructed curve are defined by the step, the
margin and the precision fixed by default to 0.01, [3*sigma;3*sigma] and 4.

Usage

GaussianFuzzyNumber (mean, sigma, alphacuts = FALSE, margin = c(3*sigma,
3*sigma), step = 0.01, breakpoints = 100, precision=4,
plot=FALSE)

Arguments

mean a numerical value of the parameter µ of the Gaussian curve.

sigma a numerical value of the parameter σ of the Gaussian curve.

alphacuts fixed by default to "FALSE". No α-cuts are printed in this case.

margin an optional numerical couple of values representing the range of calculations
of the Gaussian curve written as [mean - 3*sigma; mean + 3*sigma] by de-
fault.

step a numerical value fixing the step between two knots dividing the interval [mean
- 3*sigma; mean + 3*sigma].

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

precision an integer specifying the number of decimals for which the calculations are
made. These latter are set by default to be at the order of 1

104 .

plot fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is
required.
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Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors
representing the left and right α-cuts. For this output, is.alphacuts = TRUE. If the parameter
alphacuts="FALSE", the function returns a list composed by the Class, the mean, the sigma,
the vectors of the left and right α-cuts.

See Also

is.alphacuts 1, nbreakpoints 2, GaussianBellFuzzyNumber 4.

Examples

GFN <- GaussianFuzzyNumber(mean = 0, sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GFN)

GaussianBellFuzzyNumber Creates a Gaussian two-sided bell fuzzy number 4

Description

This function creates a two-sided Gaussian Bell fuzzy number from the class of Gaussian
Bell fuzzy numbers as seen in Definition 1.2.4. The constructed curve is a combination of
two Gaussian curves. The smoothness of the constructed curve are defined by the step, the
margin and the precision fixed by default to 0.01, [3*left.sigma;3*right.sigma] and 4.

Usage

GaussianBellFuzzyNumber (left.mean, left.sigma, right.mean,
right.sigma, alphacuts = FALSE, margin =
c(3*left.sigma,3*right.sigma), step = 0.01,
breakpoints = 100, precision=4, plot=FALSE)
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Arguments

left.mean a numerical value of the parameter µ of the left Gaussian curve.

right.mean a numerical value of the parameter µ of the right Gaussian curve.

left.sigma a numerical value of the parameter σ of the left Gaussian curve.

right.sigma a numerical value of the parameter σ of the right Gaussian curve.

alphacuts fixed by default to "FALSE". No α-cuts are printed in this case.

margin an optional numerical couple of values representing the range of calculations
of the Gaussian curve written as [left.mean - 3*left.sigma; right.mean
+ 3*right.sigma] by default.

step numerical value fixing the step between two knots dividing the interval
[left.mean - 3*left.sigma; right.mean + 3*right.sigma].

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the α-cuts. breakpoints is fixed to 100 by default.

precision an integer specifying the number of decimals for which the calculations are
made. These latter are set by default to be at the order of 1

104 .

plot fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is
required.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors
representing the left and right α-cuts. For this output, is.alphacuts = TRUE. If the parameter
alphacuts="FALSE", the function returns a list composed by the Class, the mean, the sigma,
the vectors of the left and right α-cuts.

See Also

is.alphacuts 1, nbreakpoints 2, GaussianFuzzyNumber 3.

Examples

GBFN <- GaussianBellFuzzyNumber(left.mean = -1, left.sigma = 1, right.mean = 2,
right.sigma = 1, alphacuts = TRUE, plot=TRUE)
is.alphacuts(GBFN)
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Fuzzy.Difference Calculates the difference between two fuzzy numbers 5

Description

This function calculates the difference between two trapezoidal fuzzy numbers with respect
to the extension principle given in Definition 1.6.5. In case the fuzzy numbers are not trape-
zoidal, and written by their numerical α-cuts, the function constructs a trapezoidal approxima-
tion composed by the minimum and maximum values of the left and the right α-cuts of the
fuzzy number.

Usage

Fuzzy.Difference(X, Y, alphacuts=FALSE, breakpoints = 100)

Arguments

X a fuzzy number of any type.

Y a fuzzy number of any type.

alphacuts fixed by default to "FALSE". No α-cuts are printed in this case.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the α-cuts. breakpoints is fixed to 100 by default.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors
representing the left and right α-cuts. For this output, is.alphacuts = TRUE. If the parameter
alphacuts="FALSE", the function returns a trapezoidal fuzzy number given by the quadruple
(p,q,r,s), such that p ≤ q ≤ r ≤ s.

See Also

is.alphacuts 1, nbreakpoints 2, GaussianFuzzyNumber 3, GaussianBellFuzzyNumber 4,
Fuzzy.Square 6.
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Examples

X <- TrapezoidalFuzzyNumber(5,6,7,8)
Y <- TrapezoidalFuzzyNumber(1,2,3,4)
Fuzzy.Difference(X,Y)

Fuzzy.Square Calculates numerically the square of a fuzzy number 6

Description

This function calculates numerically the square of a fuzzy number with respect to the extension
principle. The computations are made according to the Definition 1.6.2 of the fuzzy product.
The considered input fuzzy number is supposed to be trapezoidal or triangular. However, if a
fuzzy number of some other types is introduced by its numerical α-cuts, a trapezoidal approx-
imative fuzzy number is constructed by considering the minimum and maximum values of the
left and the right α-cuts of the fuzzy number. The calculations are based on resolving second
order polynoms.

Usage

Fuzzy.Square(X, breakpoints=100, plot = FALSE)

Arguments

X a fuzzy number.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the α-cuts. breakpoints is fixed to 100 by default.

plot fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is
required.

Value

Returns a matrix composed by 2 vectors representing the numerical left and right α-cuts. For
this output, is.alphacuts = TRUE.
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If the polynomial expressions of the left and right α-level sets are needed, the functions

Fuzzy.Square.poly.left (X, breakpoints=100)

and Fuzzy.Square.poly.right (X, breakpoints=100)

can be respectively used to print the related polynoms at the corresponding definition domains.

See Also

is.alphacuts 1, nbreakpoints 2, GaussianFuzzyNumber 3, GaussianBellFuzzyNumber 4,
Fuzzy.Difference 5.

Examples

X <- TrapezoidalFuzzyNumber(1,2,3,4)
Fuzzy.Square(X, plot=TRUE)

is.fuzzification Verifies if a matrix is a fuzzification matrix 7

Description

This function checks if an array can be a fuzzification matrix of a given variable. If it is verified,
the considered array should fulfill the following requirements: It should be an array composed
by 3 dimensions (m, n, p), where the number of lines m is the number of observations in the
data set, the number of columns n is the number of chosen breakpoints, and the third dimen-
sion should be fixed to the value p=2 (related to the left and right α-cuts of a fuzzy number).
The numbers of lines and columns should be the same for dimensions p=1, i.e. left, and p=2
i.e. right.

Usage

is.fuzzification (object)

Arguments

object an array of 3 dimensions c(m,n,2), with m lines, n columns. No NA are al-
lowed.
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Value

Returns a value TRUE if the concerned object is a numerical fuzzification matrix, FALSE other-
wise.

See Also

is.alphacuts 1, nbreakpoints 2, is.trfuzzification 8, tr.gfuzz 9.

Examples

data <- array(c(1,1,2,2,3,3,5,5,6,6,7,7),dim=c(2,3,2))
is.fuzzification(data)

is.trfuzzification Verifies if a matrix is a fuzzification matrix of trapezoidal fuzzy num-
bers 8

Description

This function checks if a considered matrix can be a matrix of fuzzification of a variable mod-
elled by trapezoidal fuzzy numbers written by the quadruple (p,q,r,s). The matrix should be
composed by 4 columns (p,q,r,s), such that p ≤ q ≤ r ≤ s, where the number of lines corre-
sponds to the number of observations of the data set. Note that for triangular fuzzy numbers,
the column q is equal to the column r.

Usage

is.trfuzzification (object)

Arguments

object a matrix of 4 columns (p,q,r,s), where p ≤ q ≤ r ≤ s. No NA are allowed.



237

Value

Returns a value TRUE if the concerned object is a trapezoidal or triangular fuzzification matrix,
FALSE otherwise.

See Also

is.alphacuts 1, nbreakpoints 2, is.fuzzification 7, tr.gfuzz 9.

Examples

data <- matrix(c(1,1,2,2,3,3,4,4),ncol=4)
is.trfuzzification(data)

tr.gfuzz Transforms a trapezoidal fuzzification matrix into a numerical one 9

Description

This function transforms a trapezoidal fuzzification matrix such that is.trfuzzification =
TRUE, to a 3-dimensional numerical fuzzification matrix for which is.fuzzification = TRUE.

Usage

is.trfuzzification (object, breakpoints = 100)

Arguments

object a matrix of 4 columns (p,q,r,s), where p ≤ q ≤ r ≤ s. No NA are allowed.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. breakpoints is fixed to 100 by default.
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Value

Returns an 3-dimensional array with dimensions (m,n,2), i.e. m lines, n columns, with no NA.

See Also

is.alphacuts 1, nbreakpoints 2, is.fuzzification 7, is.trfuzzification 8.

Examples

data <- matrix(c(1,1,2,2,3,3,4,4),ncol=4)
data.tr <- tr.gfuzz(data); is.fuzzification(data.tr)

FUZZ Fuzzifies a variable modelled by trapezoidal or triangular fuzzy numbers 10

Description

This function fuzzifies a variable modelled by trapezoidal or triangular fuzzy numbers as de-
scribed in Section 2.1. The output is such that is.trfuzzification = TRUE. The membership
functions are required. They should be introduced in the following manner: they should be
called "MF" attached to the index of the main-item followed by the one of the sub-item i.e. the
variable, and finally the index of the linguistic term. Note that the decomposition in main-items
and sub-items is described in Section 6.1. This syntax is the same as the one used in the
fuzzification process of the package FuzzyToolkitUoN given in Knott et al. (2013).

To illustrate the programming language related to the syntax of the membership functions of
the modelling fuzzy numbers, we propose this following example:

Consider a data set composed by 5 linguistic variables. The aim is to fuzzify the fourth variable
of a given data base. For this example, we suppose that the decomposition in main and sub-
items is needed. We propose to divide the data set into 2 main-items as given in Table 8.1. For
each linguistic term of the considered variable, one has to choose a corresponding modelling
fuzzy number. Suppose we want to model the linguistic L213, i.e. the third linguistic term of the
first variable found in the second main-item, by a fuzzy number written as L̃213. Its membership
function should then be expressed by MF213. This case is seen in Table 8.1.
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Main-item (mi=1) Main-item 2 (mi=2)

Sub-item 1 Sub-item 2 Sub-item 3 Sub-item 1 Sub-item 2

(si=1) (si=2) (si=3) (si=1) (si=2)

L̃111 MF111 L̃121 MF121 L̃131 MF131 L̃211 MF211 L̃221 MF221

L̃112 MF112 L̃122 MF122 L̃132 MF132 L̃212 MF212 L̃222 MF222

L̃113 MF113 L̃123 MF123 L̃133 MF133 L̃213 MF213

L̃114 MF114 L̃134 MF134 L̃214 MF214

Table 8.1: Decomposition 1

If the decomposition in main and sub-items is not required, it is then recommended to fix the
index of the main-item to 1. Consequently, the index of the sub-item will be nothing but the
column position of the variable in the architecture of the data set. For the same example previ-
ously described where the fourth variable has to be fuzzified, suppose that no decomposition
is desired, then the architecture becomes as seen in the following Table 8.2. Therefore, the
considered linguistic term L213 of the previous example is now on called L143 with its corre-
sponding fuzzy number L̃143. Its membership function will afterwards be denoted by MF143 as
seen in Table 8.2.

Main-item 1 (mi=1)

Sub-item 1 Sub-item 2 Sub-item 3 Sub-item 4 Sub-item 5

(si=1) (si=2) (si=3) (si=4) (si=5)

L̃111 MF111 L̃121 MF121 L̃131 MF131 L̃141 MF141 L̃151 MF151

L̃112 MF112 L̃122 MF122 L̃132 MF132 L̃142 MF142 L̃152 MF152

L̃113 MF113 L̃123 MF123 L̃133 MF133 L̃143 MF143

L̃114 MF114 L̃134 MF134 L̃144 MF144

Table 8.2: Decomposition 2

Usage

FUZZ (object,mi,si,PA)
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Arguments

object a data set.

mi the index of the main-item containing the concerned variable.

si the index of the sub-item of a given main-item mi.

PA a vector of the linguistic terms of the considered variable.

Value

Returns a fuzzification matrix composed by 4 columns c(p,q,r,s), and m lines, i.e. number
of observations. No NA is allowed.

See Also

is.alphacuts 1, is.trfuzzification 8, tr.gfuzz 9, GFUZZ 11.

Examples

# Fuzzification of the first sub-item of a data set - No decomposition is required
data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
is.trfuzzification(data.fuzzified)

GFUZZ Fuzzifies a variable modelled by any type of fuzzy numbers 11

Description

This function fuzzifies a variable modelled by any type of fuzzy numbers as described in Sec-
tion 2.1. The output is such that is.fuzzification = TRUE. The list of possible types of fuzzy
numbers is the one by the FuzzyNumbers including the functions GaussianFuzzyNumber 3 and
GaussianBellFuzzyNumber 4.
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For the construction of the fuzzification matrix, the membership functions are required.
One has the possibility to consider identical membership functions. In other terms, we mean
that every linguistic will be modelled by different or identical fuzzy number across all the obser-
vations of the concerned variable. The membership functions should be called "MF" attached
to the index of the main-item followed by the one of the sub-item i.e. the variable, and finally
the index of the linguistic term, as described in the decomposition shown in Section 6.1. A
detailed example of the syntax of these membership functions can be found in the description
of the function FUZZ 10.

Usage

GFUZZ (object,mi,si,PA,spec="Identical", breakpoints = 100)

Arguments

object a data set.

mi the index of the main-item containing the concerned variable.

si the index of the sub-item of a given main-item mi.

PA a vector of the linguistic terms of the considered variable.

spec specification of the fuzzification matrix. The possible values are "Identical"
and "Not Identical".

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. breakpoints is fixed to 100 by default.

Value

Returns a numerical fuzzification array of 3 dimensions (m,n,2), with m lines, n columns and
no NA.

See Also

is.alphacuts 1, is.fuzzification 7, tr.gfuzz 9, FUZZ 10.

Examples

# Fuzzification of the first sub-item of a data set - No decomposition
# is required
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data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- GFUZZ(data,mi=1,si=1,PA=PA11)
is.fuzzification(data.fuzzified)

distance Calculates a distance between fuzzy numbers 12

Description

This function calculates the distance between two fuzzy numbers with respect to a distance
chosen from the family of distances presented in Chapter 3. The family of distances is com-
posed by the following ones: ρ1, ρ2, dBertoluzza, ρ?p, δ?p,q, dmid/spr , dφ−wabl/ldev/rdev , dSGD, dθ

?

SGD,
and the dGSGD. Note that the numerical integrations are made by the Simpson method.

Usage

distance (X,Y, type, i=1, j=1, theta = 1/3, thetas = 1, p=2, q=0.5,
breakpoints=100)

Arguments

X a fuzzy number.

Y a fuzzy number.

type type of distance chosen from the family of distances. The different choices
are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr",
"wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .
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thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

Value

Returns a numerical value.

See Also

is.alphacuts 1, GaussianFuzzyNumber 3, GaussianBellFuzzyNumber 4, Fuzzy.Difference
5, GFUZZ 9.

Examples

X <- TrapezoidalFuzzyNumber(1,2,3,4)
Y <- TrapezoidalFuzzyNumber(4,5,6,7)
distance(X, Y, type = "DSGD.G")
distance(X, Y, type = "GSGD")

Fuzzy.sample.mean Calculates the fuzzy sample mean 13

Description

This function calculates the fuzzy sample mean of a given fuzzy variable as shown in Defini-
tion 4.5.2. If the variable is encoded by trapezoidal fuzzy numbers written by their quadruple,
this function can return a fuzzy number of the same form. The function can return as well a
fuzzy number given by its numerical α-cuts.
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Usage

Fuzzy.sample.mean(object, breakpoints = 100, alphacuts=FALSE)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

alphacuts fixed by default to "FALSE". No α-cuts are printed in this case.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors
representing the numerical left and right α-cuts. For this output, is.alphacuts = TRUE. If the
parameter alphacuts="FALSE", the function returns a trapezoidal fuzzy number given by the
quadruple (p,q,r,s).

See Also

is.alphacuts 1, nbreakpoints 2, GaussianFuzzyNumber 3, GaussianBellFuzzyNumber 3, FUZZ
10, GFUZZ 11, Weighted.fuzzy.mean 14.

Examples

# Simple example
mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4)
Fuzzy.sample.mean(mat)
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Weighted.fuzzy.mean Calculates the weighted fuzzy sample mean 14

Description

This function calculates the weighted fuzzy sample mean of a given fuzzy variable. If the
variable is encoded by trapezoidal fuzzy numbers written by their quadruple, this function can
return a fuzzy number of the same form. The function can return as well a fuzzy number given
by its numerical α-cuts.

Usage

Weighted.fuzzy.mean(object, weight, breakpoints = 100, alphacuts=FALSE)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

weight a weighting vector of the same length of the fuzzification matrix. No NA al-
lowed.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

alphacuts fixed by default to "FALSE". No α-cuts are printed in this case.

Value

If the parameter alphacuts="TRUE", the function returns a matrix composed by 2 vectors
representing the numerical left and right α-cuts. For this output, is.alphacuts = TRUE. If the
parameter alphacuts="FALSE", the function returns a trapezoidal fuzzy number given by the
quadruple (p,q,r,s).

See Also

is.alphacuts 1, nbreakpoints 2, GaussianFuzzyNumber 3, GaussianBellFuzzyNumber 4, FUZZ
10, GFUZZ 11, Fuzzy.sample.mean 13.
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Examples

# Simple example
mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4)
w <- c(1,3)
Weighted.fuzzy.mean(mat, w)

Moment Calculates a central sample moment of a random fuzzy variable 15

Description

This function calculates the k -th classical central sample moment of a random fuzzy variable
by the Féron - Puri and Ralescu approach, as given in Definition 4.5.3. This moment can
be calculated using a distance chosen from the family of distances presented in Chapter 3.
By this function, one can easily compute the skewness and the kurtosis of the random fuzzy
variable.

Usage

Moment (object, k, dist.type, i=1, j=1, theta = 1/3, thetas = 1, p=2,
q=0.5, breakpoints=100)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

k the order of the moment.

dist.type type of distance chosen from the family of distances. The different choices
are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr",
"wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .
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thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

Value

Returns a numerical value.

See Also

is.alphacuts 1, FUZZ 10, GFUZZ 11, Skewness 16, Kurtosis 17.

Examples

# Simple example
mat <- matrix(c(1,2,2,3,3,4,4,5), ncol =4)
Moment(mat, k=4, dist.type = "GSGD")

Skewness Calculates the skewness of a random fuzzy variable 16

Description

This function calculates the skewness of a random fuzzy variable based on the expression
of the central sample moments shown in Definition 4.5.3. The calculation is made using the
function Moment 15. For a random fuzzy variable X̃ , the skewness is given by the following
ratio:

Skewness(X̃ ) =
ν3(X̃ )

(ν2(X̃ ))3/2
, (8.1)

where ν3(X̃ ) is the third central sample moment of the variable X̃ , and ν2(X̃ ) is its second
central sample moment.
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Usage

Skewness (object, dist.type, i=1, j=1, theta = 1/3, thetas = 1, p=2,
q=0.5, breakpoints=100)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

dist.type type of distance chosen from the family of distances. The different choices
are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr",
"wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

Value

Returns a numerical value.

See Also

is.alphacuts 1, FUZZ 10, GFUZZ 11, Moment 15, Kurtosis 17.
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Examples

# Simple example
mat <- matrix(c(1,2,0.25,1.8,2,2.6,0.5,3,3,2.6,3.8,4,4,4.2,3.9,5), ncol =4)
Skewness(mat, dist.type = "GSGD")

Kurtosis Calculates the excess of kurtosis of a random fuzzy variable 17

Description

This function calculates the excess of kurtosis of a random fuzzy variable based on the ex-
pression of the central sample moments shown in Definition 4.5.3. The calculation is made
using the function Moment 15. For a random fuzzy variable X̃ , the excess of kurtosis denoted
by Kurtosis(X̃ ), is given by the following ratio:

Kurtosis(X̃ ) =
ν4(X̃ )

(ν2(X̃ ))2
− 3, (8.2)

where ν4(X̃ ) is the fourth central sample moment of the variable X̃ , and ν2(X̃ ) is its second
central sample moment.

Usage

Kurtosis (object, dist.type, i=1, j=1, theta = 1/3, thetas = 1, p=2,
q=0.5, breakpoints=100)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

dist.type type of distance chosen from the family of distances. The different choices
are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr",
"wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .
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thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

Value

Returns a numerical value.

See Also

is.alphacuts 1, FUZZ 10, GFUZZ 11, Moment 15, Skewness 16.

Examples

# Simple example
mat <- matrix(c(1,2,0.25,1.8,2,2.6,0.5,3,3,2.6,3.8,4,4,4.2,3.9,5), ncol =4)
Kurtosis(mat, dist.type = "GSGD")

Fuzzy.variance Calculates the variance of a fuzzy variable 18

Description

This function calculates the variance of a fuzzy variable. By this function, one could compute
the following types of variances:

• the Fréchet variance of a random fuzzy variable as defined in Definition 4.4.5.
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• a numerical "point to point" fuzzy type variance for trapezoidal and triangular fuzzy num-
bers using the functions Fuzzy.Difference 5 and Fuzzy.Square 6.

We have to mention that for the calculations, any type of fuzzy numbers can be used.
However, these numbers will be treated as trapezoidal fuzzy numbers. A condition on the
monotony of the left of the right α-level sets of the produced fuzzy number is postulated.
Thus, the left side should always be ascending, and the right one should always be
descending.

For the fuzzy variance by this method, we propose two additional functions defined as

Fuzzy.exact.variance.poly.left (object, breakpoints = 100)

and Fuzzy.exact.variance.poly.right (object, breakpoints = 100),

which produce the polynomial forms of the numerical α-cuts obtained using the function

Fuzzy.variance (object, method="exact", ...).

The output is a table composed by the coefficients of the second order equations of the
left and the right sides, given at the corresponding definitions domains.

• a cheap fuzzy type variance basically for trapezoidal and triangular fuzzy numbers by
5 different approximations of the fuzzy square. Note that for these computations, the
function Fuzzy.Difference 5 is used. We add that the fuzzification matrix should be
obtained by the function FUZZ for trapezoidal and triangular fuzzy numbers. The different
approximations can be written as follows:

1. Approximation 1: For a trapezoidal fuzzy number X̃ = (p, q, r , s), p ≤ q ≤ r ≤ s, the
fuzzy square of X̃ can be approximated by:

X̃ ⊗ X̃ = (p, q, r , s)⊗ (p, q, r , s) =
(
q2 − 2qp, q2, r2, 2rs − r2).

2. Approximation 2: For a trapezoidal fuzzy number X̃ = (p, q, r , s), p ≤ q ≤ r ≤ s, the
fuzzy square of X̃ can be approximated by:

X̃ ⊗ X̃ = (p, q, r , s)⊗ (p, q, r , s) =
(

min(p2, ps), q2, r2, max(ps, s2)
)
.

3. Approximation 3: Consider a trapezoidal fuzzy number X̃ = (p, q, r , s), p ≤ q ≤
r ≤ s. Let T (X̃ ) = (pr , qr , rr , sr ) be the trapezoidal fuzzy number resulting from the
approximation of Ỹ = X̃ ⊗ X̃ . The quadruple representing T (X̃ ) is given by the
following:

pr = max
{

y ∈ Ỹα
L | µX̃⊗X̃ (y ) = 0

}
,

qr = min
{

y ∈ Ỹα
L | µX̃⊗X̃ (y ) = 1

}
,

rr = max
{

y ∈ Ỹα
R | µX̃⊗X̃ (y ) = 1

}
,

sr = min
{

y ∈ Ỹα
R | µX̃⊗X̃ (y ) = 0

}
.
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4. Approximation 4: For a fuzzy number defined as a piecewise one, we approximate
its fuzzy square using the product operation ∗ defined by the FuzzyNumbers pack-
age.

5. Approximation 5: For a trapezoidal fuzzy number X̃ = (p, q, r , s), p ≤ q ≤ r ≤ s, the
fuzzy square of X̃ can be approximated by:

X̃ ⊗ X̃ = (p, q, r , s)⊗ (p, q, r , s)

=
(

min(p2, ps, s2), min(q2, qr , r2), max(q2, qr , r2), max(p2, ps, s2)
)

.

Using almost all of these approximations, a computational complexity induced by the
approximation operation is expected to occur. It is related to the ordering of the obtained
non-positive elements of the quadruples defining the fuzzy numbers. This fact violates
the principles of the direction of the left and right α-cuts of a LR fuzzy number. There-
fore, we proposed to solve the problem using the shifting technique, also known as the
translation technique.

Usage

Fuzzy.variance (object, method, dist.type = "DSGD", i=1, j=1, theta = 1/3,
thetas = 1, p=2, q=0.5, breakpoints=100, plot=FALSE)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

method the choices are the following: "distance", "exact", "approximation1", "approxi-
mation2", "approximation3", "approximation4", "approximation5".

dist.type type of distance chosen from the family of distances. The different choices
are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr",
"wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.
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p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

plot fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is
required.

Value

If the parameter method = "distance", returns a numerical value. If else, returns the numer-
ical α-cuts of the estimated fuzzy variance.

See Also

Fuzzy.Difference 5, Fuzzy.Square 6, is.fuzzification 7, is.trfuzzification 8, FUZZ 10,
GFUZZ 11, distance 12.

Examples

data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)

data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
Fuzzy.variance(data.fuzzified, method = "approximation5", plot=TRUE)
Fuzzy.variance(data.fuzzified, method = "exact", plot=TRUE)
Fuzzy.variance(data.fuzzified, method = "distance")

data.fuzzified2 <- GFUZZ(data,mi=1,si=1,PA=PA11)
Fuzzy.variance(data.fuzzified2, method = "exact", plot=TRUE)
Fuzzy.variance(data.fuzzified2, method = "distance")
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boot.ml Estimates the bootstrap distribution of the likelihood ratio LR 19

Description

This function estimates the empirical distribution of the likelihood ratio LR by the bootstrap
technique as exposed in Section 5.3.2. It produces a vector of replications of LR for several
random drawings from a primary data set as presented in the Algorithms 1 and 2 of the Section
5.3.2. The coefficient η proposed in Equation 5.37 is then nothing but the 1 − δ-quantile of
this distribution. This function can till now be used to the following distributions: the normal,
the Poisson and the Student distributions. The related density functions are known and their
likelihood functions can be accordingly computed. In addition, this function computes internally
the MLE-estimator by the EM-algorithm using the function EM.Trapezoidal by the EM.Fuzzy
package proposed in Parchami (2018b). A fuzzy number modelling the crisp estimator can be
added. The default spread of this number is 2.

The number of replications, the smoothness and the margins of calculations of the obtained
distributions are defined by the nsim, step and the margin fixed by default to 100, 0.05 and
c(5, 5) respectively.

Usage

boot.ml (object, algorithm, distribution, sig, ct=c(1,1), nsim=100,
mu=NA, sigma=NA, step = 0.05, margin = c(5,5), breakpoints =
100, plot=TRUE)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

algorithm an algorithm chosen between "algo1" or "algo2".

distribution a distribution chosen between "normal", "poisson" or "Student".

sig a numerical value representing the significance level of the interval.

ct an optional numerical couple of values fixed to [1;1], the difference between
the lower bounds of the core set and the support set of the fuzzy number
modelling the MLE-estimator from one side, and the difference between the
upper bounds of both sets from another one.
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nsim an integer giving the number of replications needed in the bootstrap proce-
dure. It is set to 100 by default.

mu if the mean of the normal distribution is known, mu should be a numerical
value. Otherwise, the argument mu is fixed to NA.

sigma if the standard deviation of the normal distribution is known, sigma should be
a numerical value. Otherwise, the argument sigma is fixed to NA.

margin an optional numerical couple of values fixed to c(5, 5), representing the range
of calculations around the parameter, i.e. [parameter-5; parameter+5].

step a numerical value fixed to 0.05, defining the step of iterations on the interval
[parameter-5; parameter+5].

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

plot fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is
required.

Value

Returns a vector of decimals representing the bootstrap distribution of LR.

See Also

is.alphacuts 1, is.fuzzification 7, FUZZ 10, GFUZZ 11, Fuzzy.sample.mean 13,
fci.ml 20.

Examples

data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)

emp.dist <- boot.ml(data.fuzzified, algorithm = "algo1", distribution = "normal",
sig = 0.05, sigma = 0.62)
eta.boot <- quantile(emp.dist, probs = 95/100)
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fci.ml Estimates a fuzzy confidence interval by the Likelihood method 20

Description

This function estimates the fuzzy confidence interval by the likelihood method as described in
Section 5.3.2. It produces the left and right α-cuts as shown respectively in Equations 5.59
and 5.60. The proposed method can be used to compute the interval without any specifica-
tion of the distribution to estimate a given parameter. However, for our current situation, we
restrict ourselves to distributions drawn from the normal, the Poisson and the Student distribu-
tion since the related density functions are known and their likelihood functions can be easily
computed. An eventual upgrade to this function is welcomed in order to be able to introduce
empirical density functions as instance. The smoothness and the margins of calculations of
the constructed interval are defined by the step and the margin fixed by default to 0.05 and
c(5, 5).

Usage

fci.ml (object, t, distribution, sig, coef.boot, mu=NA, sigma=NA, step =
0.05, margin = c(5,5), breakpoints = 100, plot=TRUE)

Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

t a given numerical or fuzzy type parameter of the distribution.

distribution a distribution chosen between "normal", "poisson" or "Student".

sig a numerical value representing the significance level of the interval.

coef.boot a decimal representing the 1-sig-quantile of the bootstrap distribution of LR.

mu if the mean of the normal distribution is known, mu should be a numerical
value. Otherwise, the argument mu is fixed to NA.

sigma if the standard deviation of the normal distribution is known, sigma should be
a numerical value. Otherwise, the argument sigma is fixed to NA.

margin an optional numerical couple of values fixed to c(5, 5), representing the range
of calculations around the parameter t.

step a numerical value fixed to 0.05, defining the step of iterations on the interval
[t-5; t+5].

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

plot fixed by default to "FALSE". plot="TRUE" if a plot of the fuzzy number is
required.
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Value

Returns a matrix composed by 2 vectors representing the numerical left and right α-cuts. For
this output, is.alphacuts = TRUE.

See Also

is.alphacuts 1, is.fuzzification 7, FUZZ 10, GFUZZ 11, Fuzzy.sample.mean 13,
Fuzzy.variance 18, boot.ml 19.

Examples

data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)
Fmean <- Fuzzy.sample.mean(data.fuzzified)
fci.ml(data.fuzzified, t = Fmean, distribution = "normal", sig= 0.05,
coef.boot = 1.8225, sigma = 0.62)

Fuzzy.decisions Computes the fuzzy decisions of a fuzzy inference test by the tradi-
tional fuzzy confidence intervals 21

Description

This function calculates the fuzzy decisions obtained from a fuzzy inference test based on
the fuzzy confidence intervals defined in Equations 5.24 and 5.25. The corresponding con-
struction of these decisions are given in Subsection 5.4.1. We have to mention that for this
function, all the cases of intersection between the fuzzy confidence intervals and the fuzzy
null hypothesis are taken into account. The different possible positions for the two-sided and
the one-sided cases are given respectively in Tables A.10, A.8 and A.9. In addition, by this
function, one could get the defuzzification of the obtained fuzzy decisions. This task can be
made using the distance of these fuzzy numbers to the fuzzy origin. The different distances
are shown in Chapter 3. Note that for the likelihood method, an analog function is called

Fuzzy.decisions.ML (data.fuzzified, H0, H1, t, coef.boot, mu=NA, sigma=NA, etc).
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Usage

Fuzzy.decisions (type, H0, H1, t, s.d, n, sig, distribution,
distance.type="DSGD", i=1, j=1, theta = 1/3, thetas=1, p=2,
q=0.5, breakpoints=100)

Arguments

type a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test,
the category "1" for a lower unilateral one, and "2" for an upper unilateral test.

H0 a trapezoidal or a triangular fuzzy number representing the fuzzy null hypoth-
esis, written by its numerical α-cuts.

H1 a trapezoidal or a triangular fuzzy number representing the fuzzy alternative
hypothesis, written by its numerical α-cuts.

t a given numerical or fuzzy type value representing the parameter of the dis-
tribution.

s.d a numerical value for the standard deviation of the distribution.

n the total number of observations of the data set.

sig a numerical value representing the significance level of the test.

distribution a distribution chosen between "normal", "poisson" or "Student".

distance.type type of distance chosen from the family of distances, set by default by
the signed distance. The different choices are given by: "Rho1", "Rho2",
"Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.
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Value

Returns a list composed by the arguments, the fuzzy confidence intervals and their comple-
ments, the fuzzy decisions and the defuzzified values.

See Also

is.alphacuts 1, Fuzzy.variance 5, Fuzzy.sample.mean 13, Fuzzy.decisions 21,
Fuzzy.decisions.ML 21, Fuzzy.CI.test 22, Fuzzy.CI.ML.test 23.

Examples

H0 <- alphacut(TriangularFuzzyNumber(2.9,3,3.1), seq(0,1, 0.01))
H1 <- alphacut(TriangularFuzzyNumber(3,3,5), seq(0,1,0.01))
t <- alphacut(TriangularFuzzyNumber(0.8,1.80,2.80), seq(0,1,0.01))
res <- Fuzzy.decisions(type = 0, H0, H1, t = t, s.d = 0.79, n = 10, sig = 0.05,
distribution = "normal", distance.type = "GSGD")

Fuzzy.CI.test Computes a fuzzy inference test by the traditional fuzzy confidence in-
tervals 22

Description

This function tests a fuzzy null hypothesis against a fuzzy alternative one, based on traditional
fuzzy confidence intervals as proposed in Section 5.4. This test is computed using the func-
tion Fuzzy.decisions 21 which provides the fuzzy decisions related to the test. As seen in
Subsection 5.4.2, these decisions are afterwards defuzzified by calculating their distance to
the fuzzy origin, with respect to the different distances given in Chapter 3. This operation is
described in Equation 5.99.

Note that this function is made for the case of the mean only. This function is designed to be
used with the normal, the Poisson and the Student distributions.
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Usage

Fuzzy.CI.test (type, H0, H1, t, s.d, n, sig, distribution,
distance.type="DSGD", i=1, j=1, theta = 1/3, thetas=1, p=2,
q=0.5, breakpoints=100)

Arguments

type a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test,
the category "1" for a lower unilateral one, and "2" for an upper unilateral test.

H0 a trapezoidal or a triangular fuzzy number representing the fuzzy null hypoth-
esis.

H1 a trapezoidal or a triangular fuzzy number representing the fuzzy alternative
hypothesis.

t a given numerical or fuzzy type value representing the parameter of the dis-
tribution.

s.d a numerical value for the standard deviation of the distribution.

n the total number of observations of the data set.

sig a numerical value representing the significance level of the test.

distribution a distribution chosen between "normal", "poisson" or "Student".

distance.type type of distance chosen from the family of distances, set by default by
the signed distance. The different choices are given by: "Rho1", "Rho2",
"Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.
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Value

Returns a list composed by the arguments, the fuzzy confidence intervals, the fuzzy decisions,
the defuzzified values and the decision made.

See Also

is.alphacuts 1, Fuzzy.sample.mean 13, Fuzzy.variance 18, boot.ml 19, fci.ml 20,
Fuzzy.decisions 21, Fuzzy.decisions.ML 21, Fuzzy.CI.ML.test 23.

Examples

H0 <- TriangularFuzzyNumber(2.9,3,3.1)
H1 <- TriangularFuzzyNumber(3,3,5)
res <- Fuzzy.CI.test(type = 0, H0, H1, t = TriangularFuzzyNumber(0.8,1.80,2.80),
s.d = 0.79, n = 10, sig = 0.05, distribution = "normal", distance.type="GSGD")

Fuzzy.CI.ML.test Computes a fuzzy inference test by the fuzzy confidence intervals
method calculated by the Likelihood method 23

Description

This function tests a fuzzy null hypothesis against a fuzzy alternative one, based on the fuzzy
confidence interval constructed using the Likelihood method as shown in Section 5.4. This
interval is computed using the function fci.ml 20 for the computation of the confidence inter-
val and Fuzzy.decisions.ML 21 for the computation of the fuzzy decisions. These latter are
then defuzzified by a distance chosen from the family of distances using the function distance
12. The use of the function Fuzzy.CI.ML.test is restricted to the distributions drawn from the
normal, the Poisson and the Student distribution. An eventual improvement of these functions
is to consider the empirical distributions, or any other known distribution.

Usage

Fuzzy.CI.ML.test (object, H0, H1, t, mu=NA, sigma=NA, sig, distribution,
coef.boot, distance.type="DSGD", i=1, j=1, theta = 1/3,
thetas=1, p=2, q=0.5, breakpoints=100, step = 0.05, margin =
c(5,5), plot=TRUE)
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Arguments

object a fuzzification matrix constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix. No NA are allowed.

H0 a trapezoidal or a triangular fuzzy number representing the fuzzy null hypoth-
esis.

H1 a trapezoidal or a triangular fuzzy number representing the fuzzy alternative
hypothesis.

t a given numerical or fuzzy type parameter of the distribution.

mu If the mean of the normal distribution is known, mu should be a numerical
value. Otherwise, the argument mu is fixed to NA.

sigma If the standard deviation of the normal distribution is known, sigma should be
a numerical value. Otherwise, the argument sigma is fixed to NA.

sig a numerical value representing the significance level of the test.

distribution a distribution chosen between "normal", "poisson" or "Student".

coef.boot a decimal representing the 1-sig-quantile of the bootstrap distribution of LR.

distance.type type of distance chosen from the family of distances, set by default by
the signed distance. The different choices are given by: "Rho1", "Rho2",
"Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

step a numerical value fixed to 0.05, defining the step of iterations on the interval
[t-5; t+5].
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margin an optional numerical couple of values fixed to [5; 5], representing the range
of calculations around the parameter t.

plot fixed by default to "FALSE". plot="FALSE" if a plot of the fuzzy number is not
required.

Value

Returns a list composed by the arguments, the fuzzy confidence intervals, the fuzzy decisions,
the defuzzified values and the decision made.

See Also

is.alphacuts 1, distance 12, Fuzzy.sample.mean 13, Fuzzy.variance 18, boot.ml 19,
fci.ml 20, Fuzzy.decisions 21, Fuzzy.decisions.ML 21, Fuzzy.CI.test 22.

Examples

data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
MF111 <- TrapezoidalFuzzyNumber(0,1,1,2)
MF112 <- TrapezoidalFuzzyNumber(1,2,2,3)
MF113 <- TrapezoidalFuzzyNumber(2,3,3,3)
PA11 <- c(1,2,3)
data.fuzzified <- FUZZ(data,mi=1,si=1,PA=PA11)

Fmean <- Fuzzy.sample.mean(data.fuzzified)
H0 <- TriangularFuzzyNumber(2.2,2.5,3)
H1 <- TriangularFuzzyNumber(2.5,2.5,5)

emp.dist <- boot.ml(data.fuzzified, algorithm = "algo1", distribution
= "normal", sig= 0.05, sigma = 0.7888)
eta.boot <- quantile(emp.dist, probs = 95/100)

(res <- Fuzzy.CI.ML.test(data.fuzzified, H0, H1, t = Fmean, sigma=0.7888,
sig=0.05, coef.boot=eta.boot, distribution="normal", distance.type="GSGD"))
res$decision
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Fuzzy.p.value Computes the fuzzy p-value of a given fuzzy hypothesis test 24

Description

This function calculates the fuzzy p-value of a given hypothesis test as presented in Proposi-
tion 5.4.2. For this fuzzy p-value, the null and the alternative hypotheses have to be defined,
as well as the corresponding parameter (the mean in this case), and the considered distri-
bution. The normal, the Poisson and the Student distributions can be used. We add that a
defuzzification of the obtained fuzzy number is proposed also, as seen in Subsection 5.4.4.
For this task, one can choose a distance from the family shown in Chapter 3.

Usage

Fuzzy.p.value (type, H0, H1, t, s.d, n, sig, distribution,
distance.type="DSGD", i=1, j=1, theta = 1/3, thetas = 1,
p=2, q=0.5, breakpoints=100)

Arguments

type a category betwenn "0", "1" and "2". The category "0" refers to a bilateral test,
the category "1" for a lower unilateral one, and "2" for an upper unilateral test.

H0 a trapezoidal or a triangular fuzzy number representing the fuzzy null hypoth-
esis.

H1 a trapezoidal or a triangular fuzzy number representing the fuzzy alternative
hypothesis.

t a given numerical or fuzzy type parameter of the distribution.

s.d a numerical value for the standard deviation of the distribution.

n the total number of observations of the data set.

sig a numerical value representing the significance level of the test.

distribution a distribution chosen between "normal", "poisson" or "Student".

distance.type type of distance chosen from the family of distances, set by default by
the signed distance. The different choices are given by: "Rho1", "Rho2",
"Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".
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i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

Value

Returns the defuzzified p-value, the decision made, and the plot of the fuzzy p-value with the
corresponding significance level.

See Also

is.alphacuts 1, distance 12, Fuzzy.sample.mean 13, Fuzzy.variance 18, fci.ml 20,
Fuzzy.decisions 21, Fuzzy.decisions.ML 21, Fuzzy.CI.test 22, Fuzzy.CI.ML.test 23.

Examples

H0 <- TriangularFuzzyNumber(2.2,2.5,3)
H1 <- TriangularFuzzyNumber(2.5,2.5,5)
Fuzzy.p.value(type=1, H0, H1, t=TriangularFuzzyNumber(0.8,1.8,2.8),
s.d=0.7888, n=10, sig=0.05, distribution="normal", distance.type="GSGD")
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adjusted.weight.SI Calculates the adjusted weight for a given sub-item of a linguistic
questionnaire 25

Description

For a given observation, this function calculates the adjusted weight of a sub-item of a lin-
guistic questionnaire when non-response is present. This function, expressed in Equation
6.6, re-distributes the weights on the non-missing answers. Counting the answers in a given
sub-item can be done based on the functions delta_jki and Delta_jki defined respectively
in Equations 6.1 and 6.5.

Usage

adjusted.weight.SI (data, i, k, b_jk)

Arguments

data the data set to evaluate.

i an observation index.

k a sub-item index

b_jk an array referring to the initial weights given to each sub-item of the consid-
ered main-item. This array will be afterwards re-calculated.

Value

Returns a numerical value giving the readjusted weight of the sub-item k of the considered
main-item for the observation i.

See Also

adjusted.weight.MI 26, IND.EVAL 27, GLOB.EVAL 28, R 29, Ri 30.

Examples

adjusted.weight.SI(data, 17, 1, c(0.5,0.5))
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adjusted.weight.MI Calculates the adjusted weight for a given main-item of a linguistic
questionnaire 26

Description

When non-response is present, this function calculates the adjusted weight given to a main-
item of a linguistic questionnaire related to a particular observation, as expressed in Equation
6.7. This function re-distributes the weights based on the missing answers occuring in a given
main-item. The calculation of the readjusted weight in a sub-item is done using the function
adjusted.weight.SI 25.

Usage

adjusted.weight.MI (data, i, j, b_j, b_jk, SI)

Arguments

data the data set to evaluate.

i an observation index.

j a main-item index

b_j an array referring to the initial weights given to each main-item of the consid-
ered main-item. This array will be afterwards re-calculated.

b_jk a matrix of length(b_j) rows and max(SI) columns expressing the initial
weights of each sub-item of a given main-item. By analogy to the hypothesis
of the method described in Section 6.1, this matrix should be given in the
following form:

bjk =



b11 ... b1k ... b1mj

...
...

...

bj1 ... bjk ... bjmj

...
...

...

br1 ... brk ... brmj
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Note that if the main-items of the questionnaire do not have the same number
of sub-items, the weights of the excluded sub-items are null. For example, if
the first main-item has 5 sub-items and the second one is composed by 3
only, then the matrix bjk will be the following:

bjk =

b11 b12 b13 b14 b15

b21 b22 b23 0 0


SI an array representing the total numbers of sub-items per main-item.

Value

Returns a numerical value giving the readjusted weight of the main-item j for the observation
i.

See Also

adjusted.weight.SI 25, IND.EVAL 27, GLOB.EVAL 28, R 29, Ri 30.

Examples

b_j <- c(1/3,1/3,1/3)
b_jk <- matrix(c(0.5,0.125,0.2,0.5,0.125,0.2,0,0.125,0.2,0,0.125,0.2,0,0.125,
0.2,0,0.125,0,0,0.125,0,0,0.125,0),nrow=MI)
SI <- c(2,8,5)
adjusted.weight.MI(data, 17, 1, b_j, b_jk, SI)

IND.EVAL Calculates the individual evaluations of a linguistic questionnaire 27

Description

This function calculates the individual evaluations expressed in Equation 6.11, following the
procedure described in Section 6.3. The user has to define the data set to be evaluated, and
the decomposition of the linguistic questionnaire by main and sub-items. The related initial
weights have to be defined as well. In addition, a distance has to be chosen from the family
shown in Chapter 3. Finally, the fuzzy numbers modelling the different linguistic terms should
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be given. The computations can be made using all types of fuzzy numbers. We add that the
argument spec = "Identical" refers to the fact that every linguistic Lq will be modelled by
the identical fuzzy number across all the observations of the concerned variable. Each fuzzy
linguistic should be called "MF" attached to the index of its main-item, followed by the index of
its sub-item, and the one of the linguistic term, as explained in the description of the function
FUZZ 10. We have to mention that adding up the answers of a given linguistic expressed
by the Equations 6.1 and 6.5, are implemented as the functions delta_jki and Delta_jki
respectively.

If missingness occurs in the data set, we proposed in Section 6.2 to readjust the weights of
the main and sub-items. Practically, this task will be performed using the function adjusted.
weight.MI and adjusted.weight.SI as developed in Equations 6.7 and 6.6.

Usage

IND.EVAL (data, MI, bmi, SI, b_jkt, range, distance.type, i=1,
j=1, theta = 1/3, thetas=1, p=2, q=0.5, breakpoints=100,
spec="Identical")

Arguments

data the data set to evaluate.

MI a numerical value representing the total number of main-items dividing the
linguistic questionnaire.

bmi an array referring to the initial weights of the main-items.

SI an array representing the total numbers of sub-items per main-item.

b_jkt a matrix of MI rows and max(SI) columns expressing the initial weights of
each sub-item of a given main-item. By analogy to the hypothesis of the
method described in Section 6.1, this matrix should be given in the following
form:

bjkt =



b11t ... b1kt ... b1mj t
...

...
...

bj1t ... bjkt ... bjmj t
...

...
...

br1t ... brkt ... brmj t


.
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range a vector of 2 elements giving the range of definition of the produced individual
evaluations. The range is usually chosen in the interval between 0 and the
maximum of the support set of all the membership functions modelling the
data set.

distance.type type of distance chosen from the family of distances, set by default to
the signed distance. The different choices are given by: "Rho1", "Rho2",
"Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

spec specification of the fuzzification matrix. The possible values are "Identical"
and "Not Identical".

Value

Returns the data set of individual evaluations, for which the number of observations is exactly
the same as the initial data set.

See Also

distance 12, adjusted.weight.SI 25, adjusted.weight.MI 26, GLOB.EVAL 28, R 29, Ri 30.
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Examples

MI <- 3
bmi <- c(1/3,1/3,1/3)
b_jkt <- matrix(c(0.5,0.125,0.2,0.5,0.125,0.2,0,0.125,0.2,0,0.125,0.2,0,0.125,
0.2,0,0.125,0,0,0.125,0,0,0.125,0),nrow=MI)
SI <- c(2,8,5)
range <- matrix(c(rep(0,15), rep(28,15)), ncol=2)
IND.EVAL(data, MI, bmi, SI, b_jkt, range = range, distance.type ="DSGD.G")

GLOB.EVAL Calculates the global evaluation of a linguistic questionnaire 28

Description

This function calculates the global evaluation of a linguistic questionnaire as expressed in
Equation 6.11. The arguments of this function are very similar to the ones of the function
IND.EVAL 27.

We have to remind that under the assumption of non-missingness, the global evaluation is
the weighted mean of the set of individual evaluations resulting from the function IND.EVAL 27,
as seen in Proposition 6.3.2. Thus, one can get the global evaluation using the basic function
Weighted.mean. Nevertheless, we introduce a function GLOB.EVAL.mean (ind.eval, p_ind)
applied on the vector of individual evaluations called ind.eval which executes this task using
the vector of weights denoted by p_ind. We add that if no sampling weights are applied, the
argument p_ind is set to be p_ind=rep(1, length(ind.eval)).

Usage

GLOB.EVAL (data, MI, bmi, SI, b_jkt, p_ind = rep(1/nrow(data)),
distance.type, i=1, j=1, theta = 1/3, thetas=1, p=2, q=0.5,
breakpoints=100)

Arguments

data the data set to evaluate.

MI a numerical value representing the total number of main-items dividing the
linguistic questionnaire.

bmi an array referring to the initial weights of the main-items.

SI an array representing the total numbers of sub-items per main-item.
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b_jkt a matrix of MI rows and max(SI) columns expressing the initial weights of
each sub-item of a given main-item. By analogy to the hypothesis of the
method described in Section 6.1, this matrix should be given in the following
form:

bjkt =



b11t ... b1kt ... b1mj t
...

...
...

bj1t ... bjkt ... bjmj t
...

...
...

br1t ... brkt ... brmj t


.

p_ind a vector of the relative sampling weights of the units, for which length(p_ind)
= nrow(data). If the weights are not relative, the following expression should
be applied on the vector:

p_ind∑n
i=1 p_ind

.

If no sampling weights are used, the vector of weights is reduced to a vector
of values 1, i.e. rep(1, nrow(data)).

distance.type type of distance chosen from the family of distances, set by default to
the signed distance. The different choices are given by: "Rho1", "Rho2",
"Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr", "wabl", "DSGD", "DSGD.G", "GSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

Value

Returns a numerical value representing the global evaluation of the linguistic questionnaire.
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See Also

distance 12, adjusted.weight.SI 25, adjusted.weight.MI 26, IND.EVAL 27, R 29, Ri 30.

Examples

MI <- 3
bmi <- c(1/3,1/3,1/3)
b_jkt <- matrix(c(0.5,0.125,0.2,0.5,0.125,0.2,0,0.125,0.2,0,0.125,0.2,0,0.125,
0.2,0,0.125,0,0,0.125,0,0,0.125,0),nrow=MI)
SI <- c(2,8,5)
range <- matrix(c(rep(0,15), rep(28,15)), ncol=2)
ind.eval <- IND.EVAL(data, MI, bmi, SI, b_jkt, range=range, distance.type
="GSGD")
GLOB.mean <- GLOB.EVAL.mean(ind.eval)
GLOB <- GLOB.EVAL(data, MI, bmi, SI, b_jkt, distance.type ="GSGD")

R Calculates the indicator of information’s rate of the data base 29

Description

This function calculates the indicator of information’s rate of the complete data base as given in
Equation 6.13. This computation uses the functions adjusted.weight.SI 25 and Delta.jki.

Usage

R (data, p_ind, b_jk, SI)

Arguments

data the data set to evaluate.

p_ind a vector of the relative sampling weights of the units. Thus, if the weights are
not relative, the following expression should be applied on the vector:

p_ind∑n
i=1 p_ind

.
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b_jk a matrix of length(b_j) rows and max(SI) columns expressing the initial
weights of each sub-item of a given main-item. By analogy to the hypothesis
of the method described in Section 6.1, this matrix should be given in the
following form:

bjk =



b11 ... b1k ... b1mj

...
...

...

bj1 ... bjk ... bjmj

...
...

...

br1 ... brk ... brmj


.

SI an array representing the total numbers of sub-items per main-item.

Value

Returns a numerical value giving the indicator of information’s rate of the complete linguistic
questionnaire. Note that the obtained value is interpreted as the more it tends to the value 1,
the less the complete questionnaire contains missing values.

See Also

adjusted.weight.SI 25, adjusted.weight.MI 26, IND.EVAL 27, GLOB.EVAL 28, Ri 30.

Examples

p_ind <- weight/sum(weight)
b_jk <- matrix(c(0.5,0.125,0.2,0.5,0.125,0.2,0,0.125,0.2,0,0.125,0.2,0,0.125,
0.2,0,0.125,0,0,0.125,0,0,0.125,0),nrow=MI)
SI <- c(2,8,5)
R (data, p_ind, b_jk, SI)
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Ri Calculates the indicator of information’s rate of the data base for a given unit 30

Description

This function calculates the indicator of information’s rate of the complete data base for a given
unit as given in Equation 6.14. This computation uses the functions adjusted.weight.SI 25
and Delta.jki.

Usage

Ri (data, i, b_jk, SI)

Arguments

data the data set to evaluate.

i the observation index.

b_jk a matrix of length(b_j) rows and max(SI) columns expressing the initial
weights of each sub-item of a given main-item. By analogy to the hypothesis
of the method described in Section 6.1, this matrix should be given in the
following form:

bjk =



b11 ... b1k ... b1mj

...
...

...

bj1 ... bjk ... bjmj

...
...

...

br1 ... brk ... brmj


.

SI an array representing the total numbers of sub-items per main-item.

Value

Returns a numerical value giving the indicator of information’s rate of the complete linguistic
questionnaire for a particular observation. Note that the obtained value is interpreted as the
more it tends to the value 1, the less the observation i contains missing values.
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See Also

adjusted.weight.SI 25, adjusted.weight.MI 26, IND.EVAL 27, GLOB.EVAL 28, R 29.

Examples

b_jk <- matrix(c(0.5,0.125,0.2,0.5,0.125,0.2,0,0.125,0.2,0,0.125,0.2,0,0.125,
0.2,0,0.125,0,0,0.125,0,0,0.125,0),nrow=MI)
SI <- c(2,8,5)
Ri (data, i = 4, b_jk, SI)

FMANOVA Computes a Mult-FANOVA model 31

Description

This function estimates a Mult-FANOVA model based on the construction of linear regres-
sion models. For this model, multiple factors can be introduced. The detailed procedure is
described in Section 7.3. This function can be computed by 3 different methods (distance,
exact and approximation) as given in the description of the function Fuzzy.variance 18. The
descriptions of the three procedures are given as follows:

• distance: By respect to a conveniently chosen distance, the calculations can be done
as proposed in the first part of Section 7.3 and in Berkachy and Donzé (2018b) for the
univariate one-way case using the signed distance. This method can be applied using
the function distance 12. The computed distances used in the calculations of the sums
of squares are seen as a defuzzification of the obtained fuzzy numbers. The decision
rule is done by comparing the obtained test statistics with respect to the distances to the
quantiles of the Fisher distribution.

• exact: For the method denoted by exact, the functions Fuzzy.Difference 5 and Fuzzy.
Square 6 as numerical calculations of the difference and the square of two fuzzy num-
bers, are used. In this case, we practically preserve the fuzzy nature of the sums of
square. Thus, no defuzzification of these sums are directly performed. Fuzzy numbers
referring to the mean of the fuzzy treatment sums of squares B̃ and the weighted mean
of the fuzzy residuals sums of squares denoted by Ẽ?, are constructed in order to make
a decision. However, since overlapping between these fuzzy numbers is often expected,
then a defuzzification as a last step is required. The decision rule for this test is based
on the surfaces of both fuzzy numbers B̃ and Ẽ?. The contribution of each fuzzy number
to the total variation of fuzzy sums of squares is afterwards given.
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• approximation: For the third case, i.e. approximation, the function is defined exactly in
the same manner as the function by the exact method. The function Fuzzy.Difference
5 is used for the difference operation basically between trapezoidal or triangular fuzzy
numbers. However, the calculation of the fuzzy square is based on an approximation for
this case. The approximation used is the one given in Approximation 4 of the function
Fuzzy.variance 18. In other terms, for the fuzzy product, we use the operator proposed
by the package FuzzyNumbers. The decision rule is the same as the one for the exact
procedure.

For the cases exact and approximation, we have to highlight that the outcome related to each
factor could be printed at a time. No view of the overall set of factors can be exposed. Thus,
the index of the factor in the model should be entered by the user.

From another side, we note that for the univariate case, a similar function is constructed. It
is denoted by FANOVA, and could be applied using exactly the same three methods previously
described. For the case with the distance method, the procedure is described in Berkachy and
Donzé (2018b). For the cases with the exact and approximation methods, the function FANOVA
returns fuzzy type decisions. Since the defuzzification is needed in these cases, a function
called Defuzz.FANOVA is proposed. The distance to be used in this case is set by default to
the signed distance. Yet, several metrics can be used for this calculation. The output of the
function Defuzz.FANOVA is the same as the FANOVA one but with the defuzzified results. We
add that the bootstrap technique is used in such procedures to estimate the distributions of the
corresponding statistics. A final remark is that for this function, the data set should be attached.

Usage

FMANOVA (formula, dataset, data.fuzzified, sig = 0.05, method,
distance.type = "DSGD", index.var = NA, nsim=100, i=1,
j=1, theta = 1/3, thetas = 1, p=2, q=0.5, breakpoints=100,
int.method = "int.simpson", plot = TRUE)

Arguments

formula a description of the model to be fitted.

dataset the data frame containing all the variables of the model.

data.fuzzified the fuzzified data set constructed by a call to the function FUZZ or the function
GFUZZ, or a similar matrix.

sig the significance level of the test. It is set by default to 0.05.

method the choices are the following: "distance", "exact", "approximation".

index.var the column index of the considered variable for which the output will be
printed. It is an argument of the Mult-FANOVA models by the exact and the
approximation methods only.
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nsim an integer giving the number of replications needed in the bootstrap proce-
dure. It is set to 100 by default.

distance.type type of distance chosen from the family of distances. The different choices
are given by: "Rho1", "Rho2", "Bertoluzza", "Rhop", "Delta.pq", "Mid/Spr",
"wabl", "DSGD", "DSGD.G", "GSGD". It is set by default to "DSGD".

i and j parameters of the density function of the Beta distribution, fixed by default to
i = 1 and j = 1.

theta a numerical value between 0 and 1, representing a weighting parameter. By
default, theta is fixed to 1

3 referring to the Lebesgue space. This measure
is used in the calculations of the following distances: dBertoluzza, dmid/spr and
dφ−wabl/ldev/rdev .

thetas a decimal value between 0 and 1, representing the weight given to the shape
of the fuzzy number. By default, thetas is fixed to 1. This parameter is used
in the calculations of the dθ

?

SGD and the dGSGD distances.

p a positive integer such that 1 ≤ p ≤ ∞, referring to the parameter of the
metrics ρ?p or δ?p,q.

q a decimal value between 0 and 1, referring to the parameter of the metric δ?p,q.

breakpoints a positive arbitrary integer representing the number of breaks chosen to build
the numerical α-cuts. It is fixed to 100 by default.

int.method the method of numerical integration. It is set by default to the Simpson
method, i.e. int.method="int.simpson".

plot fixed by default to "TRUE". plot="FALSE" if a plot of the fuzzy number is not
required.

Value

Returns a list of all the arguments of the function, the total, treatment and residuals sums of
squares, the coefficients of the model, the test statistics with the corresponding p-values, and
the decision made.

See Also

summary.FMANOVA 32, is.balanced 33, SEQ.ORDERING 26, FTukeyHSD 35, Ftests 36, distance
12, Fuzzy.Difference 5, Fuzzy.Square 6.
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Examples

YExVar <- FUZZ(data,1,15,c(1,2,3,4,5))
attach(data)
formula <- ExVar ∼ F1 + F2 + F1*F2
res <- FMANOVA(formula, data, YExVar, method = "distance", distance.type = "wabl")
res1 <- FMANOVA(formula, data, YExVar, method = "exact", index.var = 1)

summary.FMANOVA Prints the summary of the estimation of a Mult-FANOVA model 32

Description

In the case of the Mult-FANOVA model computed using a given distance, this function prints
the summary of the estimation of the corresponding Mult-FANOVA model, resulting from the
function FMANOVA 31. If the considered model includes interaction terms, then the function
summary.interactions. FMANOVA (res) can be used to print the summary statistics related
to these terms. We note that the obtained output is very similar to the one given by the known
aov and lm functions of R. Thus, the elements of the result of a call of the function FMANOVA is
compatible with the class of lm functions, as instance with the functions terms, fitted.values,
residuals, df.residuals etc.

For the one-way case, an analog function denoted by summary.FANOVA is introduced as
well, in order to be compatible with the function FANOVA.

Usage

summary.FMANOVA (res)

Arguments

res a result of a call of FMANOVA 31, where method = "distance".

Value

Returns a list of summary statistics of the estimated model given in res, shown in a FMANOVA
table. In addition, the F-statistics with their p-values, and the decision are given.
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See Also

FMANOVA 31, is.balanced 33, SEQ.ORDERING 34, FTukeyHSD 35, Ftests 36.

Examples

YExVar <- FUZZ(data,1,15,c(1,2,3,4,5))
attach(data)
formula <- ExVar ∼ F1 + F2 + F1*F2
res <- FMANOVA(formula, data, YExVar, method = "distance", distance.type = "wabl")
summary.FMANOVA(res)
summary.interaction.FMANOVA(res)

is.balanced Verifies if a design is balanced 33

Description

This function is used to verify if a considered fitting model is balanced, i.e. if the number of
observations by factor levels is the same.

Usage

is.balanced (nvar)

Arguments

nvar a line array given by the contingency table related to the considered variable.
Often written as a result of a call of the function table.

Value

Returns a logical decision TRUE or FALSE, to indicate if a given design is respectively bal-
anced or not.
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See Also

FMANOVA 31, summary.FMANOVA 32, SEQ.ORDERING 34, FTukeyHSD 35, Ftests 36, table.

Examples

data <- matrix(c(1,2,3,2,2,1,1,3,1,2),ncol=1)
ni <- t(table(data))
is.balanced(ni)

SEQ.ORDERING Calculates the sequential sums of squares 34

Description

If the design of the model is not balanced, such that is.balanced = FALSE, the ordering
of the variables affects the model. This function re-calculates then the fitting model but by
taking into account the sequential ordering of the factors. It calculates as well the coef-
ficients of the model, the predicted values and the residuals according to the new model.
We add that the coefficients of the model are calculated by compliance to the least squares
method. Finally note that 3 versions of this function, related to the 3 methods (distance,
exact and approximation), are proposed separately. These versions are respectively called
SEQ.ORDERING, SEQ.ORDERING.EXACT and SEQ.ORDERING.APPROXIMATION.

Usage

SEQ.ORDERING (scope, data, f.response)

Arguments

scope a description of the complete fitting model.

data the data frame containing all the variables of the model.

f.response the vector of distances of the fuzzy response variable to the fuzzy origin.



282 Chapter 8. A R package for fuzzy statistical analysis. A detailed description

Value

Returns a list of the new sets of sums of squares, as well as the coefficients, the residuals and
the fitted.values.

See Also

FMANOVA 31, summary.FMANOVA 32, is.balanced 33, FTukeyHSD 35, Ftests 36, distance 12.

Examples

attach(data)
formula <- ExVar ∼ F1 + F2 + F1*F2
f.response <- distance(ExVar, TriangularFuzzyNumber(0,0,0), "GSGD")
SEQ.ORDERING (scope = formula, data = data, f.response = f.response)

FTukeyHSD Calculates the Tukey HSD test corresponding to the fuzzy response variable 35

Description

In the case of the Mult-FANOVA model performed by the distance method, this function cal-
culates the Tukey HSD test applied on the mean of the fuzzy response variable related to the
different factor levels. We have to remind that this test is done by variable, and not for the
complete model.

Usage

FTukeyHSD (test, variable, cont=c(1,-1), conf.level=0.95)
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Arguments

test a result of a call of FMANOVA(formula, method="distance", ...) 31.

variable the name of a variable in the data set.

cont the contrasts of the model. It is set by default to [1;−1].

conf.level the confidence level of the test. It is set by default to 95%.

Value

Returns a table of comparisons of means of the different levels of a given factor, two by two.
The table contains the means of populations, the lower and upper bounds of the confidence
intervals, and their p-values.

See Also

FMANOVA 31, summary.FMANOVA 32, is.balanced 33, SEQ.ORDERING 34, Ftests 36, distance
12.

Examples

YExVar <- FUZZ(data,1,15,c(1,2,3,4,5))
attach(data)
formula <- ExVar ∼ F1 + F2 + F1*F2
res <- FMANOVA(formula, data, YExVar, method = "distance", distance.type =
"wabl")
FTukeyHSD(res, "F1")[[1]]

Ftests Calculates multiple tests corresponding to the fuzzy response variable 36

Description

In the case of the Mult-FANOVA model performed by the distance method, this function cal-
culates multiple indicators of the comparison between the means of the different level factors.
We draw the attention that these indicators are constructed on the sums of squares related to
the complete model. Thus, no particular factors are specifically involved.
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Usage

Ftests (test)

Arguments

test a result of a call of FMANOVA(formula, method="distance", ...) 31.

Value

Returns a table of the following different indicators "Wilks","F-Wilks", "Hotelling-Lawley trace"
and "Pillai Trace".

See Also

FMANOVA 31, summary.FMANOVA 32, is.balanced 33, SEQ.ORDERING 34, FTukeyHSD 35, distance
12.

Examples

YExVar <- FUZZ(data,1,15,c(1,2,3,4,5))
attach(data)
formula <- ExVar ∼ F1 + F2 + F1*F2
res <- FMANOVA(formula, data, YExVar, method = "distance", distance.type = "wabl")
Ftests(res)



Conclusion

The core objective of this three-parts thesis has been to introduce improved versions of the
signed distance measure, and to provide a range of fuzzy statistical analyses based on these
distances, from a theoretical, an empirical and a programming points of view.

We proposed in the first part the foundations of the theory of fuzzy sets and known con-
cepts of the Mamdani-Sugeno fuzzy process. We then exposed a review of some metrics
used to measure the distance between two fuzzy numbers. Even though the signed distance
measure appears to have nice properties, this distance presents some drawbacks. For this
reason, we presented improved versions of it given by two L2 distances called the dθ

?

SGD and
the generalized signed distance dGSGD. The dGSGD distance is a directional one which has
comparable properties to the signed distance, while the dθ

?

SGD distance is a non-directional
one. The key strength of these distances is that they take into consideration the shape and
the spreads of the involved fuzzy numbers. This fact makes their use more efficient and realis-
tic than the original signed distance. In addition, for the dGSGD, the directionality is conserved.
Thus, the sign of this measure describes the direction of travel between the concerned fuzzy
numbers. Our purpose was to investigate the use of these distances in various statistical
methods.

We exposed after two approaches defining the concept of random variables in a fuzzy
context, with their corresponding parameters and their point estimators. The use of a given
metric is in some cases required. Therefore, we proposed the original signed distance and the
improved versions of it. Using these distances, we estimated different statistical parameters,
such as the sample mean, the classical sample moments, the variance etc. To illustrate these
definitions, we provided a simulation study where uncertain random data sets were generated
in different setups. The objectives were to understand the influence of increasing the size of
the chosen sample on the variance, the skewness and the kurtosis measures from one side,
and to investigate the differences of use of the proposed distances in terms of these statistical
measures from another one. By this analysis, we found that the size of the sample did not
affect the concerned measures. Accordingly, one could settle on a relatively medium sized
data base, in terms of 1000 observations threshold for example. For the second test, we
saw that the variance and the kurtosis calculated using all the distances are close. No clear
interpretations on the difference of use between all the distances can be depicted. However,
for the skewness measure, the situation is different. By the non-directional distances, we get
very close skewness measures, while the ones by the directional distances are very close as
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well. In addition, the directional distances present a skewness close to the value 0, in contrary
with the none-directional ones. We could then see the relevance of the use of such directional
distances compared to the ones already existing.

All the abovementioned notions lead us to introduce fuzzy hypotheses testing procedures
using the defended distances. The fuzziness of the data and/or the hypotheses can be treated
by our methods. We showed a methodology of testing hypotheses based on fuzzy confidence
intervals. These latter are usually estimated using traditional expressions defined for specific
parameters only, and where the distributions have to be a priori defined. We discussed of a
practical procedure of construction of such intervals by the likelihood ratio method, for which
the advantage is that it is in some sense general and it can be used with any type of param-
eters without the obligation of pre-defining a particular distribution. Using these intervals, we
propose test statistics inducing decisions given by fuzzy numbers. One has then to decide
whether to reject or not the null hypothesis according to the obtained fuzzy decisions. Since
this task could sometimes lead to a difficult interpretation, we propose to defuzzify these deci-
sions by corresponding tools, such as the original signed distance or an improved version of it.
In the conventional theory, it is well-known that a test decision can also be made by calculating
a p-value, and comparing it to the significance level. It is the same for the fuzzy theory. Thus,
we presented a methodology of calculation of the fuzzy p-value where the data and/or the hy-
potheses are assumed to be vague. The decision rule was also given. The fuzzy p-value can
accordingly be defuzzified. Both testing approaches were illustrated by applications on real
data sets. Moreover, for the p-value calculations, we proposed different additional tests in the
purpose of investigating the influence of the shape and spread of the null and the alternative
hypotheses (considered as fuzzy) on the obtained decisions. We found that the alternative
hypothesis has no influence of the obtained decision. However, it is clear that variating the
shape and the spread of the fuzzy null hypothesis could influence heavily the decision. By
comparing these decisions to the ones obtained from the classical approach, we concluded
that these latter seem to be a particular case of the fuzzy one. In addition, one could deduce
that the more the data set contains fuzziness, the more the decision made tends to be farther
from the one obtained by the conventional procedure.

For the application part of this thesis, we showed two main cases where the generalized
signed distance and some other distances were used. We first proposed a method of assess-
ment of linguistic questionnaires made on two levels: a global and an individual ones. A great
asset of our method is that it can take into account the sampling weights and the missing
values occuring in a given data base. We also proposed the so-called indicators of informa-
tion’s rate related to the global and the individual levels of evaluation. These indicators aim to
measure the quantity of missingness occuring respectively in the complete data set, or in the
records of a particular unit. Some empirical studies were after given. A first finding is that the
obtained individual evaluations tend to be normally distributed. We could not reject the nor-
mality hypothesis of the obtained distribution. In addition, we performed a test which intends
to investigate the influence of the presence of missing values on the defended procedure.
We saw that for the same data set, a clear linear relation exists between the evaluations with
missing values from one side, and the evaluations without missing values from another one.
This result seems to be promising since the presence of the missing values did not penalize
the results of the assessment. Last but not least, we performed a simulation study where we
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computed our evaluation method using the different distances. We found that different statis-
tical measures based on the individual evaluations were not affected by the variation of the
sample size. A threshold of 1000 observations could eventually be postulated. In terms of the
skewness measure, it appears that an order for the skewness of the distributions calculated
using the different distances exists. These distances could be grouped by Lp spaces. Thus, by
the L3 metrics, we got the smallest values of the skewness measure, followed by the L2 met-
rics, and finally by the L1 ones. In addition, the skewness measures of the evaluations by the
improved versions of the signed distance are close to the value 0, which signalizes an even-
tual relation of the defuzzified data with the standard normal distribution. This fact is known to
be important in terms of the hypothesis on the distribution of the data encountered in various
statistical analysis. We finally compared our evaluations with the data set obtained by a fuzzy
rule-based systems where we considered symmetrical and non-symmetrical modelling fuzzy
numbers. Our model seems to be well adapted to both cases in terms of symmetry of fuzzy
numbers. Note that the procedure by the fuzzy rule-based systems was drastically affected by
the symmetry of the modelling fuzzy numbers.

For the second application, we proposed to consider the multi-ways analysis of variance
in the fuzzy environment. According to the tested hypotheses, two exploratory methods of de-
cision making were presented: a heuristic decision rule based on preserving the fuzzy nature
of the calculated sums of squares, and another one based on the Aumann-type expectation
using a chosen distance. A particular case by the signed distance was given. Two empirical
applications were also shown. From these examples, it appears that the more the fuzziness is
higher in the modelling fuzzy numbers, the more we tend to be farther from the results of the
classical approach. The opposite is true as well.

We finally presented the implementation from scratch of the content of all the previously
mentioned approaches by R functions. These novel functions form a coherent self-sustaining
R package with a complete documentation of the use of each function and its connection
with the corresponding theoretical procedure. The involved functions present a wide range of
calculation methods. They are also validated on several real and synthetic data sets.

It is important to highlight that our main objectives described in the introduction of this
thesis are fulfilled. As such, new sophisticated directional and non-directional distances based
on the signed distance have been proposed, where the shape and its possible irregularities
are taken into account. The application of these distances in some theoretical, empirical and
programming contexts was aftewards shown.

A general conclusion of all our previously described methods is that the fuzzy approach
seems to be a reproduction of the classical one, but with more flexibility in the treatment of
uncertainty contained in different components of the concerned models. In addition, if some
other complexities arise in data sets such as irregularities in the shapes of fuzzy numbers,
etc., the use of our models are suggested. Yet, despite all the nice mentioned properties
of our procedures, several difficulties still persist. Even though fuzzy set theory is mainly
proposed for analysing natural human-based language, mastering the concepts of this theory
is mandatory. As such, the defended models can not easily be within the reach of any analyst
without having a clear detailed overview on the different concepts of this theory. In addition, the
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fuzzy output results are in many situations difficult to interpret. From another side, if a given
expert would like to model the opinion of a human written as a linguistic term by choosing
himself the modelling fuzzy numbers, this choice is seen as subjective and in many cases
can be biased. Note that the choice of the shape and the spread of the fuzzy numbers are
often arbitrary. No criteria is fixed on these choices, except the ones related to the theoretical
definition of fuzzy sets and fuzzy numbers. Thus, one would absolutely recommend if possible
that each unit of the sample answers by his own fuzzy numbers to avoid such modelling bias.

From the development of the abovementioned procedures, many challenging ideas for
future works have arised. Despite the fact that our studies are very promising, they are still
in some sense preliminary. Further validations of our models have to be expected. In the
foreseable future, since almost all the concepts were considered in a one-dimensional setting,
we would be interested to generalize them to the multi-dimensional case. From another side,
the directionality of the defended distances seemed to be an asset in the proposed analyses.
We would like thus to explore its eventual "negative" influence in the purpose of clarifying the
guidelines of use of such distances. We would like also to deepen our studies on the influence
of the choice of a particular distance in a wider range of statistical approaches. Furthermore,
it is clear to see that when fuzziness intervenes, it is not evident to highlight the influence
of the method of collection of records on the statistical procedures. This point should be
from our point of view deeper investigated, specifically because of the lack of discussion of
this problem in the literature. In addition, it would be interesting to investigate the considered
unknown distributions of the test statistics in the fuzzy context. In this purpose, non-parametric
methods could eventually be a pathway. From a technical point of view, we would enhance the
code not only in terms of optimisation, but also in terms of expanding the proposed calculation
methods, in order to be able to include empirical distributions. Indeed, we intend to improve
our R package FuzzySTs in order to be better within the reach of other researchers.
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A.1 Description of the data bases

This section is devoted to the descriptions of the Finanzplatz and the Nestlé data sets.

A.1.1 The Finanzplatz data base

The questionnaire, so-called the "Finanzplatz Zurich: Umfrage 2010" described in BAK (2010)
is a survey of the financial place of Zurich, Switzerland. On behalf of the Department of
Economic Affairs of the Canton of Zurich, the ASAM (Applied Statistics And Modelling) group
was in charge of the design plan and the data analysis of this survey in 2010. The chosen
sample is mainly composed by financial entreprises, i.e. banks or insurances of the canton
Zurich and the surrounding. The aim of this survey is to investigate the situation of the financial
market of the canton of Zurich, by answering to a written questionnaire about their actual
situation and their views for the future. As such, it intends to understand the expectations of
the demand, the income and the employment of the different firms for the foreseable future.

This questionnaire consists on 21 questions from which 19 are linguistic ones with five
Likert scale terms each. This survey is then recognized as a linguistic one. These questions
are divided into 4 groups. The data base is composed of 245 observations, i.e. firms. Variables
related to company size and branch are also present, as well as the sampling weights. From
this questionnaire, we consider 18 variables only, including 15 linguistic ones divided into 3
groups. The Table A.1 gives a detailed description of the considered attributes.

Note that non-response exists in this data base. We excluded the records for which a
particular firm did not answer to any of the questions of this questionnaire. The size of the
sample becomes then 234 observations.

Table A.1: The variables of the Finanzplatz data set - Section A.1.1

Variables Possible answers Description

Group 1

F2.1 1 (bad), 2, 3 (fair), 4, 5 (excellent) The present state of business

F2.2 1 (worst), 2, 3 (same), 4, 5 (better) The expected state of business in the next

12 months

Group 2

F3.1 1 (less), 2, 3 (equal), 4, 5 (greater) The demand for our services / products

compared to the last 12 months

F3.4 1 (less), 2, 3 (equal), 4, 5 (greater) The demand of domestic private customers for

our products compared to the last 12 months

Continued on next page
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Table A.1 – Continued from previous page

Variables Possible answers Description

F3.5 1 (less), 2, 3 (equal), 4, 5 (greater) The demand from foreign private clients for

services / products compared to the last

12 months

F3.6 1 (less), 2, 3 (greater), 4, 5 (greater) The demand of corporate / institutional clients

for our services / products compared to the

last 12 months

F3.7 1 (worst), 2, 3 (same), 4, 5 (better) The expected demand for our services

/ products in the next 12 months

F3.10 1 (worst), 2, 3 (same), 4, 5 (better) The expected demand of domestic private

customers for our products in the next

12 months

F3.11 1 (worst), 2, 3 (same), 4, 5 (better) The expected demand from foreign private

clients for services / products in the next

12 months

F3.12 1 (worst), 2, 3 (same), 4, 5 (better) The expected demand of corporate /

institutional clients for our services / products

in the next 12 months

Group 3

F4.1 1 (less), 2, 3 (equal), 4, 5 (greater) The gross profit compared to the last 12 months

F4.2 1 (less), 2, 3 (equal), 4, 5 (greater) The employment compared to the last 12 months

F4.4 1 (worst), 2, 3 (same), 4, 5 (better) The expected gross profit in the next 12 months

F4.5 1 (worst), 2, 3 (same), 4, 5 (better) The expected employment in the next 12 months

F4.6 1 (worst), 2, 3 (same), 4, 5 (better) The expected use of technical and personal

capacities in the next 12 months

w12 a numerical positive value The sampling weights

size 1 (small), 2 (medium), 3 (big) The size of the firms

branch 1 (bank), 2 (investment), The branch of the firms

3 (financial services), 4 (insurance)



292 Appendix A. Appendix

A.1.2 The Nestlé data base

This data base is collected by the beverage section of the company Nestlé. An expert is asked
to rate different aspects of a given confidential beverage. The collected data set is composed
by 160 observations resulting from 32 trials of an experiment on the beverage. The full data
base comprised 13 variables among them 11 factors having 2 levels each given by "Up" and
"Down", and the variables FLOW and FILLING. A description of the variables constituting this
data set is given in Table A.2.

Variables Possible answers Description

F1 Factor with two levels: Down (1) and Up (2) Aspect 1 of the beverage

F2 Factor with two levels: Down (1) and Up (2) Aspect 2 of the beverage

F3 Factor with two levels: Down (1) and Up (2) Aspect 3 of the beverage

F4 Factor with two levels: Down (1) and Up (2) Aspect 4 of the beverage

F5 Factor with two levels: Down (1) and Up (2) Aspect 5 of the beverage

F6 Factor with two levels: Down (1) and Up (2) Aspect 6 of the beverage

F7 Factor with two levels: Down (1) and Up (2) Aspect 7 of the beverage

F8 Factor with two levels: Down (1) and Up (2) Aspect 8 of the beverage

F9 Factor with two levels: Down (1) and Up (2) Aspect 9 of the beverage

F10 Factor with two levels: Down (1) and Up (2) Aspect 10 of the beverage

F11 Factor with two levels: Down (1) and Up (2) Aspect 11 of the beverage

FLOW Four linguistic answers: 0 to 3. Flow of the liquid

FILLING Six linguistic answers: 0 to 5. Filling of the liquid in the container

Table A.2: The variables of the Nestlé data set - Section A.1.2
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A.2 Proofs of Chapter 3

Proof of Corollary 3.6.1. Using the definition of the metric ρ1, we have that

ρ1(X̃ , Ỹ ) =
1
2

∫ 1

0
|X̃ L
α − Ỹ L

α |dα +
1
2

∫ 1

0
|X̃ R
α − Ỹ R

α |dα.

Then, if |X̃ L
α − Ỹ L

α | = X̃ L
α − Ỹ L

α and |X̃ R
α − Ỹ R

α | = X̃ R
α − Ỹ R

α , we get the following

ρ1(X̃ , Ỹ ) =
1
2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)
dα +

1
2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)
dα

=
1
2

∫ 1

0

(
X̃ L
α + X̃ R

α

)
dα− 1

2

∫ 1

0

(
Ỹ L
α + Ỹ R

α

)
dα

= dSGD(X̃ , 0̃)− dSGD(Ỹ , 0̃)
= dSGD(X̃ , Ỹ ).

Alternatively, if |X̃ L
α − Ỹ L

α | = −(X̃ L
α − Ỹ L

α) and |X̃ R
α − Ỹ R

α | = −(X̃ R
α − Ỹ R

α ), we obtain that

dSGD(X̃ , Ỹ ) = −ρ1(X̃ , Ỹ ). (A.3)

Furthermore, for all fuzzy numbers X̃ and Ỹ ∈ F?c(R), the following is always true

(X̃ L
α − Ỹ L

α) ≤ |X̃ L
α − Ỹ L

α | and (X̃ R
α − Ỹ R

α ) ≤ |X̃ R
α − Ỹ R

α |.

Since these expressions are integrable, we can write that

1
2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)
dα +

1
2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)
dα ≤ 1

2

∫ 1

0
|X̃ L
α − Ỹ L

α |dα +
1
2

∫ 1

0
|X̃ R
α − Ỹ R

α |dα,

we have then that

dSGD(X̃ , Ỹ ) ≤ ρ1(X̃ , Ỹ ).

From another side, we know that the ρ1 metric is symmetric and that the signed distance
is directional, then from Proposition 3.6.2, we have that:

dSGD(Ỹ , X̃ ) ≤ ρ1(Ỹ , X̃ ) is equivalent to − dSGD(X̃ , Ỹ ) ≤ ρ1(X̃ , Ỹ ),

then, we conclude that

dSGD(X̃ , Ỹ ) ≥ −ρ1(X̃ , Ỹ ).
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Proof of Proposition 3.7.1.

1. Consider X̃ a fuzzy number of F?c(R). From Properties 3.6.1, we know that the signed
distance is reflexive, then dSGD(X̃ , X̃ ) = 0. The reflexivity of dθ

?

SGD, i.e. dθ
?

SGD(X̃ , X̃ ) = 0, can
then be proven as follows:

dθ
?

SGD(X̃ , X̃ ) =

√(
dSGD(X̃ , X̃ )

)2 + θ?
(∫ 1

0
max

(
devRX̃ − devLX̃ , devRX̃ − devLX̃

)
dα
)2

=

√
0 + θ?

(∫ 1

0

(
devRX̃ − devLX̃

)
dα
)2

,

with∫ 1

0

(
devRX̃ − devLX̃

)
dα =

∫ 1

0

(
X̃ R
α − dSGD(X̃ , 0̃)− dSGD(X̃ , 0̃) + X̃ L

α

)
dα

=
∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)
]
dα− 2 · 1

2

∫ 1

0

[
X̃ L
α(α) + X̃ R

α (α)
]
dα = 0,

which induces that
dθ

?

SGD(X̃ , X̃ ) = 0.

2. By construction, it is clear that

dθ
?

SGD(X̃ , Ỹ ) ≥ 0, ∀X̃ , Ỹ ∈ F?c(R).

3. If dθ
?

SGD(X̃ , Ỹ ) = 0, then√(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

= 0,

implying that

dSGD(X̃ , Ỹ ) = 0 (A.4)

and θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

= 0. (A.5)

For Equation A.4, we know from Properties 3.6.1 that the distance dSGD is non-degenerate.
Then,

dSGD(X̃ , Ỹ ) = 0 also written as dSGD(X̃ , 0̃) = dSGD(Ỹ , 0̃), is equivalent to X̃ = Ỹ . (A.6)

For Equation A.5, we suppose that θ? 6= 0. If

max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
= devRỸ − devLX̃ ,
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then we get∫ 1

0

(
devRỸ − devLX̃

)
dα =

∫ 1

0

(
Ỹ R
α (α)− dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) + X̃ L

α(α)
)
dα

=
∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα− dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃).

Therefore, since
( ∫ 1

0 max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

= 0, we could write that

∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα− dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) = 0.

If we would like now to verify Equation A.5 by the inclusive results of Equation A.6, we
could replace dSGD(Ỹ , 0̃) by dSGD(X̃ , 0̃). We get that∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα− dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) =

∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα− 2 · dSGD(X̃ , 0̃)

=
∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα−

∫ 1

0

(
X̃ L
α(α) + X̃ R

α (α)
)
dα

=
∫ 1

0

(
Ỹ R
α (α)− X̃ R

α (α)
)
dα,

where Ỹ R
α (α) − X̃ R

α (α) is integrable and non negative. From Equation A.5, since X̃ = Ỹ , then
X̃ R
α (α) = Ỹ R

α (α). We deduce that∫ 1

0

(
Ỹ R
α (α)− X̃ R

α (α)
)

dα = 0.

For the left hand sides of X̃ and Ỹ , we replace this time dSGD(X̃ , 0̃) by dSGD(Ỹ , 0̃). We get
that ∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα− dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) =

∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα− 2 · dSGD(Ỹ , 0̃)

=
∫ 1

0

(
Ỹ R
α (α) + X̃ L

α(α)
)
dα−

∫ 1

0

(
Ỹ L
α(α) + Ỹ R

α (α)
)
dα

=
∫ 1

0

(
X̃ L
α(α)− Ỹ L

α(α)
)
dα = 0,

since X̃ = Ỹ and consequently X̃ L
α(α) = Ỹ L

α(α). Note that X̃ L
α(α)− Ỹ L

α(α) is integrable and non
negative.

For the case where max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
= devRX̃ − devLỸ , we get

exactly the same result.
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On the other hand, in order to confirm the property-based equivalence, we have to prove
now that if X̃ = Ỹ , then dθ

?

SGD(X̃ , Ỹ ) = 0. It can be done by means of the following:

We know that if X̃ = Ỹ , then

devRỸ − devLX̃ = devRX̃ − devLỸ = devRX̃ − devLX̃
= X̃ R

α − dSGD(X̃ , 0̃)− dSGD(X̃ , 0̃)− X̃ L
α

= X̃ R
α − 2dSGD(X̃ , 0̃)− X̃ L

α.

Furthermore, we get that

∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα =

∫ 1

0

(
X̃ R
α − 2dSGD(X̃ , 0̃)− X̃ L

α

)
dα

= 2dSGD(X̃ , 0̃)− 2dSGD(X̃ , 0̃)
∫ 1

0
dα = 0.

4. For the fuzzy numbers X̃ and Ỹ , we know that dSGD is partially symmetric as seen in
Proposition 3.6.2, then we have that

dθ
?

SGD(X̃ , Ỹ ) =

√(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

=

√(
dSGD(Ỹ , X̃ )

)2 + θ?
(∫ 1

0
max

(
devRX̃ − devLỸ , devRỸ − devLX̃

)
dα
)2

= dθ
?

SGD(Ỹ , X̃ ).

5. Let X̃ , Ỹ and Z̃ be fuzzy numbers. We want to prove the following triangular inequality

dθ
?

SGD(X̃ , Ỹ ) ≤ dθ
?

SGD(X̃ , Z̃ ) + dθ
?

SGD(Z̃ , Ỹ ).

We know that(
dθ

?

SGD(X̃ , Ỹ )
)2 =

(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

.

Let us decompose the previous expression. From the properties of the signed distance, we
have that

dSGD(X̃ , Ỹ ) = dSGD(X̃ , Z̃ ) + dSGD(Z̃ , Ỹ ).

Then, we get: (
dSGD(X̃ , Ỹ )

)2 ≤
(
dSGD(X̃ , Z̃ )

)2 +
(
dSGD(Z̃ , Ỹ )

)2,
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since dSGD(X̃ , Z̃ ) · dSGD(Z̃ , Ỹ ) ≥ 0.

For the second part, suppose that

max
(
devRX̃ − devLỸ , devRỸ − devLX̃

)
=
(
devRỸ − devLX̃

)
,

and with
∫ 1

0

(
devLZ̃ − devRZ̃

)
dα = 0, we have that:(∫ 1

0
max

(
devRX̃ − devLỸ , devRỸ − devLX̃

)
dα
)2

=
(∫ 1

0

(
devRỸ − devLX̃

)
dα
)2

=
(∫ 1

0

(
devRỸ − devLX̃

)
dα−

∫ 1

0

(
devLZ̃ − devRZ̃

)
dα
)2

=
(∫ 1

0

(
devRZ̃ − devLX̃

)
dα−

∫ 1

0

(
devRỸ − devLZ̃

)
dα
)2

≤
(∫ 1

0

(
devRZ̃ − devLX̃

)
dα
)2

+
(∫ 1

0

(
devRỸ − devLZ̃

)
dα
)2

. (A.7)

Then, since the fuzzy number Z̃ is supposed to be an intermediate number between X̃ and
Ỹ , then we have that

max
(
devRZ̃ − devLX̃ , devRX̃ − devLZ̃

)
= devRZ̃ − devLX̃

max
(
devRZ̃ − devLỸ , devRỸ − devLZ̃

)
= devRỸ − devLZ̃ .

From Equation A.7, we get the following equality:(∫ 1

0

(
devRZ̃ − devLX̃

)
dα
)2

+
(∫ 1

0

(
devRỸ − devLZ̃

)
dα
)2

(A.8)

=
(∫ 1

0
max

(
devRZ̃ − devLX̃ , devRX̃ − devLZ̃

)
dα
)2

+
(∫ 1

0
max

(
devRỸ − devLZ̃ , devRZ̃ − devLỸ

)
dα
)2

. (A.9)

We finally deduce that for 0 ≤ θ? ≤ 1,

(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRX̃ − devLỸ , devRỸ − devLX̃

)
dα
)2

≤
(
dSGD(X̃ , Z̃ )

)2 + θ?
(∫ 1

0
max

(
devRZ̃ − devLX̃ , devRX̃ − devLZ̃

)
dα
)2

+
(
dSGD(Z̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLZ̃ , devRZ̃ − devLỸ

)
dα
)2

⇔ dθ
?

SGD(X̃ , Ỹ ) ≤ dθ
?

SGD(X̃ , Z̃ ) + dθ
?

SGD(Z̃ , Ỹ ), (A.10)

since dθ
?

SGD(X̃ , Ỹ ), dθ
?

SGD(X̃ , Z̃ ) and dθ
?

SGD(Z̃ , Ỹ ) are positive.



298 Appendix A. Appendix

Proof of Proposition 3.7.2.

• For the translation invariance, consider the fuzzy numbers X̃ and Ỹ ∈ F?c(R), and k ∈ R,
by applying dθ

?

SGD on X̃ + k and Ỹ + k , we have that

dθ
?

SGD
(
(X̃ + k ), (Ỹ + k )

)
=
[(

dSGD
(
(X̃ + k ), (Ỹ + k )

))2

+ θ?
(∫ 1

0
max

(
devR(Ỹ + k )− devL(X̃ + k ), devR(X̃ + k )− devL(Ỹ + k )

)
dα
)2] 1

2 .

From Properties 3.6.1, since dSGD is translation invariant, i.e dSGD
(
(X̃ + k ), (Ỹ + k )

)
=

dSGD
(
X̃ , Ỹ ), the deviations in the shapes of X̃ + k and Ỹ + k are then

devL(X̃ + k ) = dSGD(X̃ + k , 0̃)− (X̃ + k )L
α = dSGD(X̃ , 0̃) + k − X̃ L

α − k = devLX̃ ,
devR(X̃ + k ) = (X̃ + k )R

α − dSGD(X̃ + k , 0̃) = X̃ R
α + k − dSGD(X̃ , 0̃)− k = devRX̃ .

It is the same for devL(Ỹ + k ) and devR(Ỹ + k ). Then, we directly get that

dθ
?

SGD
(
(X̃ + k ), (Ỹ + k )

)
= dθ

?

SGD
(
X̃ , Ỹ

)
.

• For the scale invariance, let X̃ and Ỹ be two fuzzy numbers in F?c(R), and k ∈ R. The
dθ

?

SGD distance between (k · X̃ ) and (k · Ỹ ) is written as

dθ
?

SGD
(
(k · X̃ ), (k · Ỹ )

)
=
[(

dSGD
(
(k · X̃ ), (k · Ỹ )

))2

+ θ?
(∫ 1

0
max

(
devR(k · Ỹ )− devL(k · X̃ ), devR(k · X̃ )− devL(k · Ỹ )

)
dα
)2] 1

2 .

We have that if k ≥ 0,

devL(k · X̃ ) = dSGD(k · X̃ , 0̃)− (k · X̃ )L
α = k · dSGD(X̃ , 0̃)− k · X̃ L

α = k · devLX̃ , (A.11)
devR(k · X̃ ) = (k · X̃ )R

α − dSGD(k · X̃ , 0̃) = k · X̃ R
α − k · dSGD(X̃ , 0̃) = k · devRX̃ . (A.12)

If k < 0, the case is much more complicated. According to the negative value of k , a ro-
tation between the left and right sides of the fuzzy number arises. A subtle consequence
related to the α-cuts of the obtained fuzzy number is as follows:

(k · X̃ )L
α = k · X̃ R

α and (k · X̃ )R
α = k · X̃ L

α.
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Then, we get that:

devL(k · X̃ ) = dSGD(k · X̃ , 0̃)− (k · X̃ )L
α = k · dSGD(X̃ , 0̃)− k · X̃ R

α = −k · devRX̃ ,(A.13)
devR(k · X̃ ) = (k · X̃ )R

α − dSGD(k · X̃ , 0̃) = k · X̃ L
α − k · dSGD(X̃ , 0̃) = −k · devLX̃ . (A.14)

According to both conditions on k , i.e. k ≥ 0 and k < 0, the scale invariance property
written by

dθ
?

SGD
(
(k · X̃ ), (k · Ỹ )

)
= |k | · dθ?SGD

(
X̃ , Ỹ

)
, ∀k ∈ R,

can then be easily deduced.

Proof of Proposition 3.7.3.

For θ? 6= 0, we have that

dθ
?

SGD(X̃ , Ỹ ) = |dSGD(X̃ , Ỹ )| ⇔
∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)

= 0

⇔
∫ 1

0

(
devRỸ − devLX̃

)
dα
)

= 0

or
∫ 1

0

(
devRX̃ − devLỸ

)
dα
)

= 0.

Suppose the case for which
∫ 1

0

(
devRỸ − devLX̃

)
dα
)

= 0. Then, we get

∫ 1

0

(
devRỸ − devLX̃

)
dα
)

= 0 ⇔
∫ 1

0

(
Ỹ R
α − dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) + X̃ L

α

)
dα
)

= 0

⇔ 1
2

∫ 1

0

(
X̃ L
α − X̃ R

α

)
dα =

1
2

∫ 1

0

(
Ỹ L
α − Ỹ R

α

)
dα

⇔ spr (X̃ ) = spr (Ỹ ).

The result is the same for the case
∫ 1

0

(
devRX̃ − devLỸ

)
dα
)

= 0.

We have now to prove that if spr (X̃ ) = spr (Ỹ ), then dθ
?

SGD(X̃ , Ỹ ) = |dSGD(X̃ , Ỹ )|. In other
words, we would like to prove that if spr (X̃ ) = spr (Ỹ ), then

∫ 1
0 max

(
devRỸ − devLX̃ , devRX̃ −

devLỸ
)
dα
)

= 0.
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spr (X̃ ) = spr (Ỹ ) ⇔ 1
2

∫ 1

0

(
X̃ L
α − X̃ R

α

)
dα =

1
2

∫ 1

0

(
Ỹ L
α − Ỹ R

α

)
dα

⇔ 1
2

∫ 1

0

(
X̃ L
α − X̃ R

α

)
dα− 1

2

∫ 1

0
X̃ L
αdα +

1
2

∫ 1

0
X̃ L
αdα

− 1
2

∫ 1

0

(
Ỹ L
α − Ỹ R

α

)
dα +

1
2

∫ 1

0
Ỹ R
α dα− 1

2

∫ 1

0
Ỹ R
α dα = 0

⇔ 1
2

∫ 1

0
X̃ L
αdα− 1

2

∫ 1

0
X̃ R
α dα− 1

2

∫ 1

0
X̃ L
αdα +

1
2

∫ 1

0
X̃ R
α dα

− 1
2

∫ 1

0
Ỹ L
αdα +

1
2

∫ 1

0
Ỹ R
α dα +

1
2

∫ 1

0
Ỹ R
α dα− 1

2

∫ 1

0
Ỹ R
α dα = 0

⇔
∫ 1

0
X̃ L
αdα− 1

2

∫ 1

0

(
X̃ L
α + X̃ R

α

)
dα− 1

2

∫ 1

0

(
Ỹ L
α + Ỹ R

α

)
dα +

∫ 1

0
Ỹ R
α dα = 0

⇔
∫ 1

0

(
X̃ L
α − dSGD(X̃ , 0̃)− dSGD(Ỹ , 0̃) + Ỹ R

α

)
dα = 0

⇔
∫ 1

0

(
devRỸ − devLX̃

)
dα = 0

⇔
∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα = 0,

with |dSGD(X̃ , 0̃)| ≤ |dSGD(Ỹ , 0̃)|.

For the case where
∫ 1

0 max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)

= devRX̃ − devLỸ , the
result can be extended.

Proof of Proposition 3.7.4.

By applying the Jensen’s inequality in the following expression, we have that:(
dSGD(X̃ , Ỹ )

)2 =
(
dSGD(X̃ , 0̃)− dSGD(Ỹ , 0̃)

)2

=
(1

2

∫ 1

0

(
X̃ L
α + X̃ R

α

)
dα− 1

2

∫ 1

0

(
Ỹ L
α + Ỹ R

α

)
dα
)2

=
(1

2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)
dα +

1
2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)
dα
)2

≤ 1
2

(∫ 1

0

(1
2
(
X̃ L
α − Ỹ L

α

)2 +
1
2
(
X̃ R
α − Ỹ R

α

)2
)

dα
)

=
1
2
(
ρ2(X̃ , Ỹ )

)2.

Suppose now that∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα =

∫ 1

0

(
devRỸ − devLX̃

)
dα.
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Then, we have that∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα =

∫ 1

0

(
Ỹ R
α − dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) + X̃ L

α

)
dα

=
1
2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)
dα− 1

2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)
dα.

It follows that(∫ 1

0

(
devRỸ − devLX̃

)
dα
)2

=
(1

2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)
dα− 1

2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)
dα
)2

≤ 1
2

(1
2

∫ 1

0

(
X̃ L
α − Ỹ L

α

)2dα +
1
2

∫ 1

0

(
X̃ R
α − Ỹ R

α

)2dα
)

=
1
2
(
ρ2(X̃ , Ỹ )

)2.

Then, we get the following inequality:

dθ
?

SGD(X̃ , Ỹ ) =

√(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

≤
√

1
2
(
ρ2(X̃ , Ỹ )

)2 +
1
2
θ?
(
ρ2(X̃ , Ỹ )

)2

≤
√

1
2

+
θ?

2
ρ2(X̃ , Ỹ ) ≤ ρ2(X̃ , Ỹ ),

since
√

1
2 + θ?

2 ≤ 1 for θ? ≤ 1.

It is the same for the case
∫ 1

0 max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα =

∫ 1
0

(
devRX̃ −

devLỸ
)
dα.

For the lower bound of the inequality, we have from Corollary 3.6.1 that dSGD(X̃ , Ỹ ) ≥
−ρ1(X̃ , Ỹ ). Then,

dθ
?

SGD(X̃ , Ỹ ) =

√(
dSGD(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

≥

√(
− ρ1(X̃ , Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

≥ ρ1(X̃ , Ỹ ), (A.15)

since θ?
( ∫ 1

0 max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2
≥ 0 and ρ1(X̃ , Ỹ ) ≥ 0.
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Proof of Proposition 3.7.5.

1. It is sufficient to prove that dθ
?

SGD ≤ dmid/spr to directly conclude that dθ
?

SGD ≤ dBertoluzza.
Thus, we will subsequently prove the first inequality only.

Since the signed distance measured from the fuzzy origin coincides with the mid measure as
seen in Remark 3.6.1, and according to Definition 3.5.1, the idea is to compare∫ 1

0

(
sprX̃ −sprỸ

)2dα to θ?
(∫ 1

0
max

(
devRỸ −devLX̃ , devRX̃ −devLỸ

)
dα
)2

with 0 ≤ θ? ≤ 1.

Suppose that

θ?
(∫ 1

0
max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

= θ?
(∫ 1

0

(
devRỸ − devLX̃

)
dα
)2

.

Accordingly, the proof can be done as follows:

θ?
(∫ 1

0

(
devRỸ − devLX̃

)
dα
)2

= θ?
(∫ 1

0

(
Ỹ R
α − dSGD(Ỹ , 0̃)− dSGD(X̃ , 0̃) + X̃ L

α

)
dα
)2

= θ?
(∫ 1

0

(1
2

(Ỹ R
α − Ỹ L

α)− 1
2

(X̃ R
α − X̃ L

α)
)
dα
)2

≤ θ?
∫ 1

0

(1
2

(Ỹ R
α − Ỹ L

α)− 1
2

(X̃ R
α − X̃ L

α)
)2

dα

≤ θ?
∫ 1

0

(
sprỸ − sprX̃

)2dα

≤
∫ 1

0

(
sprX̃ − sprỸ

)2dα.

We then conclude that
dθ

?

SGD(X̃ , Ỹ ) ≤ dmid/spr (X̃ , Ỹ ).

2. We would like to compare now
∫ 1

0

(
1
2

(
ldevφX̃ − ldevφỸ

)2 + 1
2

(
rdevφX̃ − rdevφỸ

)2
)

dα to( ∫ 1
0 max

(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

, when φ is Lebesgue measured. Suppose

that
( ∫ 1

0 max
(
devRỸ − devLX̃ , devRX̃ − devLỸ

)
dα
)2

=
( ∫ 1

0

(
devRỸ − devLX̃

)
dα
)2

. We note

that by decomposing dSGD(X̃ , 0̃), we can easily prove the following∫ 1

0

(
dSGD(X̃ , 0̃)− dSGD(X̃ , 0̃)

)
dα =

∫ 1

0

(1
2

devLX̃ − 1
2

devRX̃
)
dα = 0.
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Then, from Remark 3.7.1, we have that:(∫ 1

0

(
devRỸ − devLX̃

)
dα
)2

=
(∫ 1

0

(
devRỸ + dSGD(Ỹ , 0̃)− dSGD(Ỹ , 0̃)− devLX̃

+ dSGD(X̃ , 0̃)− dSGD(X̃ , 0̃)
)
dα
)2

=
(∫ 1

0

(
devRỸ +

1
2

devLỸ − 1
2

devRỸ − devLX̃ +
1
2

devLX̃ − 1
2

devRX̃
)
dα
)2

=
1
4

(∫ 1

0

(
devLỸ − devLX̃

)
+
(
devRỸ − devRX̃

)
dα
)2

≤ 1
2

∫ 1

0

(1
2
(
devLỸ − devLX̃

)2 +
1
2
(
devRỸ − devRX̃

)2
)

dα

=
1
2

∫ 1

0

(1
2
(
ldevφX̃ − ldevφỸ

)2 +
1
2
(
rdevφX̃ − rdevφỸ

)2
)

dα.

Finally, since [
dSGD(X̃ , 0̃)− dSGD(Ỹ , 0̃)

]2
=
[
wablφ(X̃ )− wablφ(Ỹ )

]2
,

we can deduce that
dθ

?

SGD(X̃ , Ỹ ) ≤ dφ−wabl/ldev/rdev (X̃ , Ỹ ).

Proof of Proposition 3.7.6.

The nearest trapezoidal fuzzy number to a given fuzzy number X̃ denoted by S̃ is given by
[s0 − 2ε, s0 − ε, s0 + ε, s0 + 2ε]. Its α-cuts are written as S̃α = [s0 − 2ε + εα, s0 + 2ε − εα]. Its
signed distance is dSGD(S̃, 0̃) = s0. In addition, the deviations in the shape are as follows:

devLS̃ = dSGD(S̃, 0̃)− S̃L
α = 2ε− εα,

devRS̃ = S̃R
α − dSGD(S̃, 0̃) = 2ε− εα.

Suppose now that

max
(
devRS̃ − devLX̃ , devRX̃ − devLS̃

)
= devRS̃ − devLX̃ .

By respect to the metric dθ
?

SGD, the parameters s0 and ε can be found as follows:

dθ
?

SGD(X̃ , S̃) =

√(
dSGD(X̃ , S̃)

)2 + θ?
(∫ 1

0
max

(
devRS̃ − devLX̃ , devRX̃ − devLS̃

)
dα
)2

=

√(
dSGD(X̃ , S̃)

)2 + θ?
(∫ 1

0

(
devRS̃ − devLX̃

)
dα
)2

=

√(
dSGD(X̃ , 0̃)− s0

)2 + θ?
(∫ 1

0

(
2ε− εα− dSGD(X̃ , 0̃) + X̃ L

α

)
dα
)2

.
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Finding the nearest fuzzy number means to find the optimum of dθ
?

SGD for s0 and ε. They can
be calculated by solving the equations based on the derivatives of dθ

?

SGD(X̃ , S̃) over s0 and ε.
We get:

∂dθ
?

SGD(X̃ , S̃)
∂s0

= 0 ⇔ 1
2

(dθ
?

SGD(X̃ , S̃))
1
2−1
[
− 2 ·

(
dSGD(X̃ , 0̃)− s0

)]
= 0

⇔ s0 = dSGD(X̃ , 0̃).

Similarly, for θ? 6= 0 and dθ
?

SGD(X̃ , S̃) 6= 0, we have:

∂dθ
?

SGD(X̃ , S̃)
∂ε

= 0 ⇔ 1
2

(dθ
?

SGD(X̃ , S̃))
1
2−1θ?

[
2
∫ 1

0
(2− α) ·

(
2ε− εα− dSGD(X̃ , 0̃) + X̃ L

α

)
dα
)]

= 0

⇔ ε =
9

14
dSGD(X̃ , 0̃)− 3

7

∫ 1

0
X̃ L
α

(
2− α

)
dα.

For max
(
devRS̃−devLX̃ , devRX̃ −devLS̃

)
= devRX̃ −devLS̃, the same result can be verified.

Proof of Proposition 3.7.7.

Consider now two fuzzy numbers X̃ and Ỹ . The aim is to find the nearest mid-way symmet-
rical trapezoidal fuzzy number by respect to the dθ

?

SGD. This fuzzy number is designated by S̃
such that S̃ = [s0−2ε, s0−ε, s0+ε, s0+2ε], with its α-cuts such that S̃α = [s0−2ε+εα, s0+2ε−εα].
The signed distance and the deviations in the shape of S̃ are given in the previous proof.

The parameters s0 and ε can be found by solving the derivatives of the distances over
these parameters. These latter can be found as follows:

dθ
?

SGD(X̃ , Ỹ ) = dθ
?

SGD(X̃ , S̃) + dθ
?

SGD(S̃, Ỹ )

=

√(
dSGD(X̃ , S̃)

)2 + θ?
(∫ 1

0
max

(
devRS̃ − devLX̃ , devRX̃ − devLS̃

)
dα
)2

+

√(
dSGD(S̃, Ỹ )

)2 + θ?
(∫ 1

0
max

(
devRỸ − devLS̃, devRS̃ − devLỸ

)
dα
)2

=

√(
dSGD(X̃ , S̃)

)2 + θ?
(∫ 1

0

(
devRS̃ − devLX̃

)
dα
)2

+

√(
dSGD(S̃, Ỹ )

)2 + θ?
(∫ 1

0

(
devRỸ − devLS̃

)
dα
)2

,

with

max
(
devRS̃ − devLX̃ , devRX̃ − devLS̃

)
= devRS̃ − devLX̃

and max
(
devRS̃ − devLỸ , devRỸ − devLS̃

)
= devRỸ − devLS̃,
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since S̃ is seen as an intermediate fuzzy number between X̃ and Ỹ . Furthermore, the fuzzy
number S̃ is in the mid-way between X̃ and Ỹ . It follows that

dθ
?

SGD(X̃ , S̃) = dθ
?

SGD(S̃, Ỹ ).

Suppose that the same weight θ? is considered. Then, we have that:

∂dθ
?

SGD(X̃ , Ỹ )
∂s0

= 0 ⇔
∂dθ

?

SGD(X̃ , S̃)
∂s0

+
∂dθ

?

SGD(Ỹ , S̃)
∂s0

= 0

⇔ 1
2
· (dθ?SGD(X̃ , S̃))

1
2−1 ·

[
− 2 ·

(
dSGD(X̃ , 0̃)− s0

)]
+

1
2
· (dθ?SGD(Ỹ , S̃))

1
2−1 ·

[
− 2 ·

(
dSGD(Ỹ , 0̃)− s0

)]
= 0

⇔ s0 =
1
2

dSGD(X̃ , 0̃) +
1
2

dSGD(Ỹ , 0̃).

For the parameter ε, we have that:

∂dθ
?

SGD(X̃ , S̃)
∂ε

= 0⇔
∂dθ

?

SGD(X̃ , S̃)
∂ε

+
∂dθ

?

SGD(Ỹ , S̃)
∂ε

= 0

⇔ 1
2

(dθ
?

SGD(X̃ , S̃))
1
2−1θ?

[
2
∫ 1

0
(2− α) ·

(
2ε− εα− dSGD(X̃ , 0̃) + X̃ L

α

)
dα
)]

+
1
2

(dθ
?

SGD(Ỹ , S̃))
1
2−1θ?

[
2
∫ 1

0
(−2 + α) ·

(
Ỹ R
α − dSGD(Ỹ , 0̃)− 2ε + εα

)
dα
)]

= 0

⇔ ε =
9

28
dSGD

(
X̃ , 0̃

)
− 9

28
dSGD

(
Ỹ , 0̃

)
− 3

14

[ ∫ 1

0
X̃ L
α

(
2− α

)
dα−

∫ 1

0
Ỹ R
α

(
2− α

)
dα
]
.



306 Appendix A. Appendix

A.3 Results of the Applications of Chapter 6

Company size

Statistical measure Small Medium Big

Mean 3.573 3.494 3.370

Median 3.527 3.495 3.348

Variance 0.333 0.237 0.161

Standard deviation 0.577 0.481 0.402

Skewness -0.192 0.084 0.268

Excess of Kurtosis 0.692 0.779 -0.596

Quantiles:

P = 0 2 2.229 2.587

P = 0.25 3.293 3.207 3.1

P = 0.5 3.527 3.495 3.348

P = 0.75 3.835 3.77 3.696

P = 1 4.827 4.95 4.25

Table A.3: Summary of the weighted statistical measures of the individual evaluations using the signed
distance, classified by company size - Section 6.5.
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Company branch

Statistical Banks Financial Investment Insurance

measure services companies companies companies

Mean 3.422 3.624 3.456 3.367

Median 3.473 3.527 3.367 3.407

Variance 0.287 0.281 0.340 0.226

Standard deviation 0.536 0.530 0.583 0.476

Skewness -0.633 -0.006 0.228 0.742

Excess of Kurtosis 0.574 1.106 -0.284 2.325

Quantiles:

P = 0 2 2.181 2.33 2.229

P = 0.25 3.150 3.367 3.104 3.077

P = 0.5 3.473 3.527 3.367 3.407

P = 0.75 3.7 3.888 3.690 3.696

P = 1 4.81 4.827 4.705 4.95

Table A.4: Summary of the weighted statistical measures of the individual evaluations using the signed
distance, classified by company branch - Section 6.5.

Table A.6: Summary of the statistical measures of the distribution obtained from the individual evalua-
tions for all distances - Section 6.6.

symmetrical MF non-symmetric MF

Distances Statistical measures 1000 10000 1000 10000

ρ2

Mean 3.044 3.048 3.051 3.053

Median 3.042 3.044 3.055 3.057

Variance 0.200 0.199 0.233 0.230

Standard deviation 0.447 0.446 0.483 0.480

Skewness 0.134 0.023 0.104 0

Excess of kurtosis -0.198 -0.182 -0.182 -0.162

Minimum 1.855 1.489 1.678 1.325

Maximum 4.458 4.458 4.602 4.602

Quartile 1 2.716 2.732 2.704 2.707

Continued on next page
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Table A.6 – Continued from previous page

symmetrical MF non-symmetric MF

Distances Statistical measures 1000 10000 1000 10000

Quartile 3 3.361 3.363 3.407 3.404

Mean 3.015 3.018 3.017 3.019

Median 3.016 3.016 3.012 3.022

Variance 0.202 0.201 0.236 0.234

Standard deviation 0.450 0.449 0.486 0.484

dBertoluzza Skewness 0.143 0.030 0.126 0.018

and dMid/Spr Excess of kurtosis -0.195 -0.182 -0.178 -0.163

Minimum 1.831 1.459 1.668 1.300

Maximum 4.445 4.445 4.592 4.592

Quartile 1 2.677 2.705 2.665 2.665

Quartile 3 3.329 3.330 3.374 3.374

δ?
3, 1

2

Mean 3.088 3.091 3.097 3.098

Median 3.083 3.085 3.094 3.094

Variance 0.196 0.194 0.230 0.227

Standard deviation 0.442 0.441 0.480 0.476

Skewness 0.123 0.015 0.072 -0.026

Excess of kurtosis -0.202 -0.183 -0.185 -0.160

Minimum 1.899 1.539 1.693 1.356

Maximum 4.477 4.477 4.615 4.615

Quartile 1 2.772 2.775 2.758 2.758

Quartile 3 3.407 3.410 3.448 3.430

Mean 3.425 3.428 3.408 3.409

Median 3.402 3.405 3.395 3.428

Variance 0.201 0.200 0.237 0.232

Standard deviation 0.449 0.447 0.487 0.482

ρ?3 Skewness 0.056 -0.039 -0.114 -0.175

Excess of kurtosis -0.220 -0.194 -0.18 -0.162

Minimum 2.170 1.798 1.848 1.518

Continued on next page
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Table A.6 – Continued from previous page

symmetrical MF non-symmetric MF

Distances Statistical measures 1000 10000 1000 10000

Maximum 4.755 4.759 4.771 4.771

Quartile 1 3.094 3.094 3.089 3.089

Quartile 3 3.727 3.713 3.763 3.761

dφ−wabl/ldev/rdev

Mean 3.014 3.017 3.016 3.019

Median 3.014 3.015 3.012 3.022

Variance 0.203 0.202 0.236 0.234

Standard deviation 0.450 0.449 0.486 0.484

Skewness 0.142 0.029 0.126 0.018

Excess of kurtosis -0.195 -0.182 -0.178 -0.163

Minimum 1.827 1.455 1.668 1.300

Maximum 4.444 4.444 4.592 4.592

Quartile 1 2.676 2.702 2.664 2.664

Quartile 3 3.329 3.330 3.374 3.374

Mean 2.998 3.002 2.999 3.001

Median 3 3 2.994 3

Variance 0.204 0.203 0.238 0.236

Standard deviation 0.452 0.451 0.488 0.486

dSGD and ρ1 Skewness 0.145 0.032 0.137 0.027

Excess of kurtosis -0.194 -0.181 -0.175 -0.164

Minimum 1.812 1.438 1.663 1.287

Maximum 4.438 4.438 4.587 4.588

Quartile 1 2.656 2.688 2.644 2.644

Quartile 3 3.312 3.312 3.350 3.350

Mean 3.031 3.035 3.048 3.050

Median 3.030 3.031 3.053 3.055

Variance 0.201 0.200 0.233 0.231

Standard deviation 0.449 0.448 0.483 0.480

dθ
?

SGD and dGSGD Skewness 0.135 0.024 0.106 0.002

Continued on next page
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Table A.6 – Continued from previous page

symmetrical MF non-symmetric MF

Distances Statistical measures 1000 10000 1000 10000

Excess of kurtosis -0.198 -0.182 -0.181 -0.162

Minimum 1.840 1.471 1.676 1.322

Maximum 4.451 4.451 4.601 4.601

Quartile 1 2.701 2.718 2.701 2.703

Quartile 3 3.349 3.350 3.405 3.402
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Statistical measure Case with NA Case without NA

Mean 3.534 3.565

Median 3.495 3.542

Variance 0.295 0.308

Standard deviation 0.543 0.555

Skewness -0.060 -0.153

Excess of Kurtosis 0.719 0.489

Quantiles:

P = 0 2.000 2.000

P = 0.25 3.233 3.260

P = 0.5 3.495 3.542

P = 0.75 3.809 3.8888

P = 1 4.950 4.950

Table A.5: Summary of the weighted statistical measures of the distributions obtained from individual
evaluations using the signed distance, for cases with and without NA - Section 6.5.

Table A.7: Summary of the statistical measures of the output distribution of the fuzzy rule-base system
with different defuzzification operators - Section 6.6.

symmetrical MF non-symmetric MF

Operators Statistical measures 1000 10000 1000 10000

Centroid

Mean 2.997 3.002 2.824 2.836

Median 3 3 2.821 2.821

Variance 0.033 0.037 0.044 0.047

Standard deviation 0.180 0.192 0.209 0.217

Skewness 0.130 0.144 0.510 0.601

Excess of kurtosis 3.522 4.942 2.392 2.100

Minimum 2.320 1.820 2.160 1.950

Maximum 3.680 4.180 3.533 3.767

Quartile 1 2.820 2.820 2.740 2.740

Quartile 3 3.001 3.180 2.873 2.873

Mean 2.990 2.998 2.787 2.803

Continued on next page
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Table A.7 – Continued from previous page

symmetrical MF non-symmetric MF

Operators Statistical measures 1000 10000 1000 10000

Median 3 3 2.800 2.800

Variance 0.068 0.071 0.071 0.078

Standard deviation 0.261 0.267 0.266 0.279

Bisector Skewness -0.034 0.098 0.664 0.876

Excess of kurtosis 3.196 3.295 2.177 2.915

Minimum 2.120 1.840 2 1.960

Maximum 3.880 4.160 3.760 4.800

Quartile 1 2.840 2.840 2.560 2.560

Quartile 3 3.120 3.160 2.840 2.840

MOM

Mean 3.002 3.002 2.817 2.834

Median 3 3 2.813 2.813

Variance 0.116 0.121 0.077 0.082

Standard deviation 0.340 0.347 0.277 0.287

Skewness 0.124 0.066 0.771 0.835

Excess of kurtosis 0.655 1.139 2.343 2.063

Minimum 2 1.5 2.028 1.899

Maximum 4 4.5 3.832 4.034

Quartile 1 2.750 2.750 2.707 2.707

Quartile 3 3.250 3.250 2.845 2.845

SOM

Mean 1.195 1.188 1.110 1.109

Median 1 1 1 1

Variance 0.187 0.195 0.071 0.082

Standard deviation 0.433 0.441 0.267 0.286

Skewness 2.080 2.359 3.171 3.642

Excess of kurtosis 3.570 5.355 12.642 16.980

Minimum 1 1 1 1

Maximum 3 4 2.600 3.720

Quartile 1 1 1 1 1

Continued on next page
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Table A.7 – Continued from previous page

symmetrical MF non-symmetric MF

Operators Statistical measures 1000 10000 1000 10000

Quartile 3 1 1 1 1

LOM

Mean 4.823 4.816 4.858 4.853

Median 5 5 5 5

Variance 0.172 0.184 0.110 0.119

Standard deviation 0.415 0.429 0.332 0.344

Skewness -2.226 -2.315 -2.226 -2.359

Excess of kurtosis 4.250 5.131 4.250 5.658

Minimum 3 2 3.400 2.360

Maximum 5 5 5 5

Quartile 1 5 5 5 5

Quartile 3 5 5 5 5
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A.4 Intersection situations between the fuzzy confidence inter-
vals and the fuzzy hypothesis

We express the possible situations of intersection between a given fuzzy confidence interval
and its complements from one side, and the fuzzy null hypothesis from another one. The
different FCI are calculated by the traditional expression. The proposed situations correspond
to the one-sided and the two-sided tests. As such, the Table A.8 displays the cases of a left
one-sided test, the Table A.9 displays the cases of a right one-sided test, and the Table A.10
the ones of a two-sided test. For all these cases, we note that the fuzzy null hypothesis H̃0
(the red curve), its core θ0 (the green dotted line), the fuzzy confidence interval Π̃ (the blue
curve) and its complement ¬Π̃ (the black curve) are proposed.

Table A.8: The different situations of intersection between the fuzzy null hypothesis H̃0 and the confi-
dence intervals: Case of left one-sided test.

Left one-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (1, 1, 1) | D̃0 = (0, 0, 0)

D̃1 = (0, 0, 0) | D̃1 = (1, 1, 1)

H0 is not rejected |H0 is rejected

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AR),µπ̃(θ0),µπ̃(AL))

D̃1 = (0,µ¬Π̃ (θ0),µ¬Π̃ (RR))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (1, 1, 1)

D̃1 = (0, 0,µ¬Π̃ (RR))

Continued on next page



A.4. Appendix 4 315

Table A.8 – Continued from previous page

Left one-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0,µπ̃(θ0),µπ̃(AL))

D̃1 = (µ¬Π̃ (RL),µ¬Π̃ (θ0),µ¬Π̃ (RR))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0, 0,µπ̃(AL))

D̃1 = (1, 1, 1)

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AR),µπ̃(θ0),µπ̃(AL))

D̃1 = (µ¬Π̃ (RL),µ¬Π̃ (θ0),µ¬Π̃ (RR))

Else The fuzziness is high
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Table A.9: The different situations of intersection between the fuzzy null hypothesis H̃0 and the confi-
dence intervals: Case of right one-sided test.

Right one-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0, 0, 0) | D̃0 = (1, 1, 1)

D̃1 = (1, 1, 1) | D̃1 = (0, 0, 0)

H0 is rejected |H0 is not rejected

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0,µπ̃(θ0),µπ̃(AR))

D̃1 = (µ¬Π̃ (RR),µ¬Π̃ (θ0),µ¬Π̃ (RL))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0, 0,µΠ̃ (AR))

D̃1 = (1, 1, 1)

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µΠ̃ (AL),µΠ̃ (θ0),µΠ̃ (AR))

D̃1 = (0,µ¬π̃(θ0),µ¬π̃(RL))

Continued on next page
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Table A.9 – Continued from previous page

Right one-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (1, 1, 1)

D̃1 = (0, 0,µ¬π̃(RL))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AL),µπ̃(θ0),µπ̃(AR))

D̃1 = (µ¬Π̃ (RR),µ¬Π̃ (θ0),µ¬Π̃ (RL))

Else The fuzziness is high
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Table A.10: The different situations of intersection between the fuzzy null hypothesis H̃0 and the confi-
dence intervals: Case of two-sided test.

Two-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0, 0, 0)

D̃1 = (1, 1, 1)

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (1, 1, 1)

D̃1 = (0, 0, 0)

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0, 0,µΠ̃ (AR))

D̃1 = (µ¬π̃(RR), 1, 1)

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0,µΠ̃ (θ0),µΠ̃ (AR))

D̃1 = (0,µ¬π̃(θ0),µ¬π̃(RL))

Continued on next page
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Table A.10 – Continued from previous page

Two-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0,µΠ̃ (θ0),µΠ̃ (AR))

D̃1 = (µ¬π̃(RR),µ¬π̃(θ0),µ¬π̃(RL))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0, 0,µΠ̃ (AL))

D̃1 = (µ¬π̃(RL), 1, 1)

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0,µΠ̃ (θ0),µΠ̃ (AL))

D̃1 = (0,µ¬π̃(θ0),µ¬π̃(RR))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (0,µπ̃(θ0),µπ̃(AL))

D̃1 = (µ¬Π̃ (RL),µ¬Π̃ (θ0),µ¬Π̃ (RR))

Continued on next page
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Table A.10 – Continued from previous page

Two-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AL),µπ̃(θ0),µπ̃(AR))

D̃1 = (µ¬Π̃ (RR),µ¬Π̃ (θ0),µ¬Π̃ (RL))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AR),µπ̃(θ0),µπ̃(AL))

D̃1 = (µ¬Π̃ (RL),µ¬Π̃ (θ0),µ¬Π̃ (RR))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (1, 1, 1)

D̃1 = (0, 0,µ¬Π̃ (RL))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AL),µπ̃(θ0),µπ̃(AR))

D̃1 = (µ¬Π̃ (RR),µ¬Π̃ (θ0),µ¬Π̃ (RL))

Continued on next page
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Table A.10 – Continued from previous page

Two-sided test

Situations Tuples of fuzzy intersection numbers

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (1, 1, 1)

D̃1 = (0, 0,µ¬Π̃ (RR))

x

µ

H
~

0

Π~

¬Π~
θ0

D̃0 = (µπ̃(AR),µπ̃(θ0),µπ̃(AL))

D̃1 = (µ¬Π̃ (RL),µ¬Π̃ (θ0),µ¬Π̃ (RR))

Else The fuzziness is high
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A.5 Possible positions of the areas Al and Ar under the MF of t̃ on
the left and right sides of the median M̃
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Membership functions of the fuzzy numbers t~ and M
~

x

α

 

 

t~ M
~

Al

Ar

(b) Position 2

Figure A.1: Positions 1 and 2 where Al > Ar .
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Figure A.2: Positions 3, 4 and 5 where Al ≤ Ar .





Acronyms

ANOVA analysis of variance 177–181, 186

FCI fuzzy confidence interval 95, 100–104, 109,
111, 112, 114–119, 121–123, 126, 141, 142,
314

FLS fuzzy logic system 31

FRV fuzzy random variable 67, 68, 71–78, 81, 87,
88, 105

GSGD generalized signed distance 3, 54, 58, 60,
95, 120, 127, 128, 130, 131, 137–139, 141,
145, 146, 179, 205, 208, 210

LR Likelihood Ratio 9, 14, 106, 112–115, 117–
119, 141, 142, 144

L-R Left-Right 15, 24, 185, 190

MF membership function 12, 13, 15–18, 20, 23,
26, 30, 68, 69, 76, 78, 79, 105, 107, 121,
132–134, 322

MLE maximum likelihood estimator 114–117, 141,
224, 254

Mult-ANOVA multi-ways analysis of variance 10, 177, 179,
185, 186, 188, 201, 205–209, 217

325



326 Acronyms

Mult-FANOVA multi-ways fuzzy analysis of variance 3, 5,
10, 14, 177–179, 186–189, 199, 201, 203,
204, 206, 209–217, 276, 277, 279, 282, 283

RFV random fuzzy variable 67, 68, 72, 73, 75–78,
80, 83–85

SGD signed distance 2, 3, 50–52, 54, 83, 85–87,
95, 120, 127, 128, 130, 131, 137–139, 141,
142, 144, 146, 164, 166, 178, 193, 194, 199,
200
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