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Abstract

Hands are an indispensable part of human bodies used in our everyday life to
express ourselves and manipulate the surrounding world. Moreover, a hand con-
tains highly-unique characteristics that allow for distinguishing among different
individuals. Though fingerprints are widely-known for this, the hand also has a
unique geometric shape, palmprint, and vein structure. The shapes of a hand and
its parts have been studied as biometric identifiers in the past, yielding state-of-
the-art approaches in the field of Biometrics; however, these are limited in their
practicality. This thesis aims at overcoming the limitations and improving the
performance of hand-shape-based biometric systems, taking advantage of the
latest developments in Deep Learning and 3D Sensing. In particular, such sys-
tems can be improved either by means of biometric fusion or by working directly
with the hand shape.

Biometric fusion allows for improvement in hand-shape-based biometric sys-
tems by simultaneously utilizing other modalities such as palmprints or finger-
prints. To this end, we propose novel deep-learning based approaches to contact-
free palmprint and fingerprint recognition. These improvements achieve state-
of-the-art results on multiple standard benchmarks in both palmprint recognition
and in processing latent fingerprint impressions.

Additionally, current 3D-sensing technologies provide low-cost sensors that
allow us to capture the surface of the hand as a 3D point cloud. This type of
data is often noisy but can be dealt with by employing recent deep-learning ar-
chitectures designed for point clouds. We base our solution on state-of-the-art
geometric deep learning architectures, extending them with a novel clustering
layer. We show how to train an optimal representation of a noisy 3D point cloud
of a human hand purely from synthetic data. For evaluation, we collect a brand-
new dataset of human hand videos in RGB-D, named NNHand RGB-D. Extensive
evaluation of our approach on our dataset unveils the viable potential of low-
precision, hand-shape-based biometric systems.
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Chapter 1

Introduction

Hands are an indispensable part of human bodies used in our everyday life to
express ourselves and manipulate the surrounding world. Moreover, a hand
contains highly-unique characteristics that allow for distinguishing among dif-
ferent individuals. The shapes of a hand and its parts have been studied as bio-
metric identifiers in the past, yielding state-of-the-art approaches in the field of
Biometrics; however, these are limited in their practicality. This thesis aims at
overcoming the limitations and improving the performance of hand-shape-based
biometric systems, taking advantage of the latest developments in Deep Learning
and 3D Sensing. In particular, such systems can be improved either by means of
biometric fusion or by working directly with the hand shape.

The human hand has been extensively studied as a biometric identifier in the
last 30 years, yielding state-of-the-art approaches in fingerprint recognition [Mal-
toni et al., 2009; Jain et al., 2010b; Wang et al., 2014c; Cao and Jain, 2015] and
palmprint recognition [Jalali et al., 2015; Minaee and Wang, 2016; Fei et al.,
2019a]. Besides this, it has been shown that hand veins [Ding et al., 2005; Wang
et al., 2006a; Huang et al., 2014; Mirmohamadsadeghi and Drygajlo, 2011] and
hand geometry [Zunkel, 1996; Ross et al., 1999; Sanchez-Reillo et al., 2000; Ku-
mar et al., 2003; Kanhangad et al., 2009, 2011; de Santos-Sierra et al., 2011]
form patterns that are, to a certain degree, distinctive between individuals.

The focus of this work is the development of novel deep-learning-based ap-
proaches with applications to hand-geometry recognition and its potential fusion
with palmprint and fingerprint biometrics.

1



2 1.1 Motivation

1.1 Motivation

Unlike two-dimensional hand geometry recognition, which is receiving attention
recently [Afifi, 2019], the current state-of-the-art in three-dimensional hand ge-
ometry recognition [Kanhangad et al., 2009, 2011] is aging, as the last notable
work dates back to 2011. The proposed methods are designed for highly con-
trolled environments and do not perform well in challenging scenarios, such as
in the presence of noise, variable illumination or non-rigid deformations of the
hand. Several works have tried to propose improvements, which however do not
manage to remove the aforementioned constraints Wang et al. [2014a]; Svoboda
et al. [2015] or are mainly focused on the geometry of the palmprint area and
not the whole hand [Genovese et al., 2014].

Since then the field of computer vision has been revolutionized with the re-
naissance of deep learning [Masci et al., 2011; Krizhevsky et al., 2012], setting
the new state-of-the-art in image processing and analysis. For biometrics, in par-
ticular, deep learning has been applied to the task of facial recognition [Yi et al.,
2014; Taigman et al., 2014; Hu et al., 2015; Sun et al., 2014], demonstrating
machines can do better than humans at recognizing people by their faces. Con-
volutional neural networks [Fukushima, 1980; LeCun, 1998a] have also been
successfully applied in other areas of biometrics such as fingerprinting [Wang
et al., 2014c; Cao and Jain, 2015; Lin and Kumar, 2018; Su et al., 2017; Darlow
and Rosman, 2017; Tang et al., 2017b; Nguyen et al., 2018] and gait recogni-
tion [Wan et al., 2018]. In 2015, it has been brought to attention that the con-
volutional neural networks, so powerful on image processing tasks, can be easily
fooled using so-called adversarial attacks [Goodfellow et al., 2015], which poses
a threat, especially for security-oriented applications. Taking into consideration
the issue of adversarial examples, hand-geometry recognition could benefit from
deep learning as well.

Besides deep learning, 3D-sensing technology has greatly advanced over the
last decade, bringing many affordable off-the-shelf 3D sensors (e.g. Microsoft
Kinect, Intel RealSense, etc.), suitable for industrial deployment thanks to their
favorable form factor, resolution, and price.

Last but not least, the new 3D sensors have brought much more attention to
hand pose estimation and to the development of novel algorithms [Tang et al.,
2015; Zhou et al., 2016; Chen et al., 2017; Zimmermann and Brox, 2017; Romero
et al., 2017; Kulon et al., 2019; Bouritsas et al., 2019; Kulon et al., 2020], which
work well on noisy and low precision data, in challenging settings such as partial
occlusions or highly non-rigid deformations. These algorithms could ease the
semantic segmentation of a 3D hand point cloud and potentially allow for non-



3 1.2 Contributions

rigid 3D hand geometry recognition.
We believe that the recent advances in computer vision and machine learn-

ing allow for a "rebirth" in the field of hand geometry recognition. The current
state-of-the-art could be improved by either performing fusion of several differ-
ent biometric modalities [Ross et al., 2011] (allowing one to compensate for
another, which is possibly corrupted in some difficult setting) or robust hand
annotation (taking advantage of recent progress in hand pose estimation).

1.2 Contributions

The main goal of this work is to leverage successes of the latest trends in com-
puter vision and machine learning and bring the same paradigm shift to 3D hand-
biometric systems. So far, 3D hand-biometric systems have heavily relied on the
ability to fuse several different modalities, typically shape and palmprint [Kan-
hangad et al., 2011]. Adding to this, we introduce the following improvements
to the field of hand-based biometric systems:

• First we propose a novel solution to palmprint recognition. Instead of de-
signing new features by hand, we follow the recent trends and employ
convolutional neural networks to learn the most suitable features automat-
ically. We define our problem by means of metric learning, aiming at the
separation of the genuine and impostor score distributions, and design a
novel objective based on the discriminative index [Daugman, 2000a] called
d-prime. This novel loss function shows better generalization and outper-
forms the traditional Siamese loss [Bromley et al., 1993; Chopra et al.,
2005] used for metric learning in deep neural networks. Moreover, d-prime
loss presents a general principle that has been shown useful in many appli-
cations beyond biometrics [Vijay Kumar et al., 2016; Wang et al., 2018a;
Gainza et al., 2019].

• Next, we hypothesize that, by using a high-resolution RGB camera, one
can potentially see at least partial fingerprints on the human hand, as
well. This scenario shares similarities with latent-fingerprint extraction
and matching, where partial fingerprints are typically lifted from a surface
and photographed with a high-resolution camera for further processing. It
is appealing to approach the problem using convolutional autoencoders;
however, it yields the problem of scarce training data. Inspired by the
work of Schuch et al. [2016], we decide to solve the task at hand by train-
ing an autoencoder model on a synthetically-generated dataset of latent
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fingerprints. We evaluate this approach on publicly-available benchmarks
showing state-of-the-art performance. The achieved results support the
notion that a lack of training data for deep learning models in biometrics
can be overcome by means of transfer learning by generating a training set
synthetically.

• Both of the above contributions employ convolutional neural networks in
order to improve biometric systems. In 2015, Goodfellow et al. [2015] has
shown that such models are very vulnerable to noise, which makes them
easy to attack adversarially. Over the years, many attack mechanisms have
been proposed [Yuan et al., 2019; Chakraborty et al., 2018] making this a
real concern. The situation becomes even more critical in biometric appli-
cations, where security and reliability are priority number one. We, there-
fore, devoted some time to work on the stability of neural networks. This
resulted in a novel family of architectures called PeerNets, wherein alter-
nate classical Euclidean convolutions with graph convolutions to harness
information from a graph of peer samples. PeerNets have shown to be more
stable yielding state-of-the-art performance on different types of attacks.
Beyond adversarial attacks, the concept of PeerNets is the first attempt to
bring together traditional convolutional neural networks with graph neural
networks, resulting in a general principle with far more applications. We
have recently demonstrated this by applying PeerNets to arbitrary image
style transfer [Svoboda et al., 2020a].

• Ultimately, we would like to not depend on the fusion of several different
modalities and perform recognition based solely on the 3D-shape informa-
tion. This ideal becomes more accessible with the recent development of
3D sensing, which has brought some affordable off-the-shelf RGB-D sen-
sors to the market. Data acquired by such sensors will, indeed, be of lower
quality compared to that from high-end 3D scanners. Nevertheless, the
dawn of geometric deep learning [Bronstein et al., 2017a] (GDL) has in-
troduced many approaches to more reliable processing of low-precision
range scans and point cloud data. To make research in this direction possi-
ble, we present a new dataset of RGB-D sequences of hands captured with
the Intel RealSense RS-300 camera, together with several baseline meth-
ods based on GDL. The new dataset is an attempt to revive the field of 3D
hand biometrics. Furthermore, it opens the door to designing and evalu-
ating methods for non-rigid 3D hand recognition, as well as hand-shape
recognition from dynamic RGB-D sequences.
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1.3 Structure

The remaining text is structured as follows. Chapter 2 gives an overview of the
development and the current state-of-the-art in hand biometrics. Chapter 3 sum-
marizes the relevant advances in computer vision. Chapters 4 and 5 present two
algorithms designed to improve the fusion-based techniques. In Chapter 4, a
novel loss function for training deep palmprint recognition models is described.
Chapter 5 presents an approach to improve low-quality fingerprints based on con-
volutional autoencoders. Chapter 6 proposes a novel family of architectures that
improves the stability and security of deep learning models. Diverting towards
pure 3D geometry-based hand recognition, Chapter 7 presents our new dataset
and first approach to less constrained 3D-hand geometry recognition based on
RGB-D input from a low-cost 3D sensor. The work is concluded in Chapter 8,
where eventual future steps are discussed.
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Chapter 2

Background in hand biometrics

Hand biometrics is the set of biometric traits found on a human hand. In par-
ticular, such traits are of fingerprints, palmprint, hand shape, and veins. These
are among some of the oldest biometric identifiers throughout history; for exam-
ple, fingerprints have been used as means of person authentication since ancient
times. This chapter first gives an overview of what a biometric system is and how
to evaluate its performance. Afterwards, it discusses the most significant hand
traits: hand shape, fingerprints and palmprint (see Figure 2.1).

2.1 Biometric systems

A biometric system is an information system that first acquires biometric trait
from a subject. It follows by extracting some features from the data and compares
the extracted features against a database of feature templates (feature vectors
from enrolled users). Finally, based on the comparison score the system makes a
decision and executes appropriate action. In general, a biometric system consists
of the following modules [Jain et al., 2010a]:

• Data acquisition module: A specific device that is used to acquire the bio-
metric data from a user. The performance of the biometric system is highly
dependent on the performance of the acquisition module. Poor quality of
the acquired data has a direct impact on the decision of the system and
often strongly degrades its reliability.

• Feature extraction module: An algorithm that is designed to extract a set
of salient discriminative features from the pre-processed input data (i.e.
biometric trait). It is often preceded by input data quality assessment in
order to avoid processing poor input samples and rather reject them at an

7
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Figure 2.1. The main biometric traits on the palm side of human hand (Gen-
ovese et al. [2014]);

early stage. The extracted feature vector is passed to the matching module
or, in case of enrollment, stored as a template in the database.

• Matching module: Performs a comparison of the extracted feature vectors
against the template feature vectors stored in the database in order to gen-
erate match scores. It contains a decision-making submodule, which, based
on the match scores, either validates a claimed identity (i.e. verification)
or provides a ranking of the enrolled identities in order to identify an indi-
vidual (i.e. identification).

• Database module: Stores the biometric information of individuals that were
enrolled in the system. During the enrollment process, several samples
are acquired for the new identity and processed to extract feature vectors
that are stored in the database as so-called templates. Depending on the
demands on the enrollment process, it might or might not be supervised
by a human operator.
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(a)

(b)

(c)

Figure 2.2. Enrollment, identification and verification modes of a biometric
system. [Jain et al., 2010a].

2.1.1 Modes of operation

Depending on the desired application, a biometric system typically has two modes
of operation: identification and verification [Jain et al., 2010a] (see also Fig-
ure 2.2):

• Identification: In this mode, the biometric system attempts to recognize an
individual by comparing it to the templates of all the users in the database
looking for a matching identity. The system is thus performing one-to-
many comparison and answers to which identity the presented biometric
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trait belongs or fails in case it does not find any match. Such systems are
often applied in criminal investigations or monitoring of people.

• Verification: An individual who desires to be recognized by the system first
claims his identity (via PIN, smart card or user name). The system then
acquires the individual’s biometric data and compares the extracted feature
vectors to the template stored in the database for the claimed identity.

2.2 Evaluation of biometric systems

This section introduces the basic terminology and scores that are used for the
evaluation of a biometric system. As opposed to for example card reader based
systems, where we search the database for an exact match with the hash stored
on the card, in biometrics it is very rare to encounter an exact match. This is
due to e.g. sensor noise, nature of human behavior, environmental conditions,
etc. As a result, two feature vectors coming from two different acquisitions of
the same biometric trait of one user will very rarely be perfectly identical. This
yields the following terminology [Jain et al., 2010a]:

• Intra-class variability: The variability observed between biometric feature
vectors originating from the same individual.

• Inter-class variability: Is the variability between feature vectors originating
from two different individuals.

• Biometric entropy: The measure of how much information does a partic-
ular biometric trait contain. The higher the biometric entropy, the more
discriminative power a biometric trait has.

In practice, it is desired to extract features which have small intra-class variability
and large inter-class variability, so that they allow to distinguish well between
different individuals while staying very similar for the same individual.

Similarity between two biometric feature vectors is expressed by so-called
similarity score [Jain et al., 2010a]:

• Genuine score: Similarity score from matching two feature vectors from the
same individual.

• Impostor score: Similarity score obtained while matching two feature vec-
tors originating from two different individuals.
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The decision of the biometric system is typically defined by decision threshold T,
which says what is a sufficient matching score in order to yield a positive result
of matching. There are the following possible outcomes:

• True Accept: Genuine score which is greater than T.

• True Reject: Impostor score which is smaller than T.

• False Accept: Impostor score which is greater than T.

• False Reject: Genuine score which is smaller than T.

False Accept and False Reject are also sometimes called False Match and False
Non-Match respectively in the literature.

2.2.1 Error visualization and metrics

With the following terminology in hand, we can introduce some measures typi-
cally used in biometric systems [Jain et al., 2010a]:

• False Accept Rate (FAR): The fraction of impostor scores that exceed the
threshold T (see Figure 2.3(a)).

• False Reject Rate (FRR): The fraction of genuine scores that fall below the
threshold T (see Figure 2.3(a)).

• Genuine Accept Rate (GAR): It is defined as GAR = 1 − FRR, which is the
fraction of genuine scores that exceed the threshold T.

The decision threshold T allows us to control the FAR and FRR of a biometric
system. However, as we decrease FAR, the FRR increases and the other way
around. It is not possible to decrease both of them at the same time. The behavior
of FAR and FRR for different values of T can be summarized by Detection Error
Tradeoff (DET) curve [Martin et al., 1997] that plots the dependency of FRR
on FAR for different values of T on a normal deviate scale. As an alternative,
one can use Receiver Operating Characteristic (ROC) curve [Egan, 1975], which
instead plots the dependency of GAR on FAR (see Figure 2.3(b)) typically on
linear, logarithmic or semi-logarithmic scale.

As opposed to curves, a single value measure of performance of a biometric
system is the so-called Equal Error Rate (EER). The EER is defined as the point
on the DET curve where FAR = FRR, or equally the point on ROC curve, where
GAR= FAR.
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(a) (b)

Figure 2.3. (a) An example of the genuine and impostor score distribu-
tions [Fakhar et al., 2016]; (b) An example of the ROC curve.

An alternative single value measure is the discriminative index (d-prime) [Daug-
man, 2000a], which measures the separation between the means of genuine
and impostor distributions in standard deviation units under the assumption that
both distributions can be modelled as normal distributions. It is defined as:

d ′ =

p
2|µgen −µimp|
q

σ2
gen +σ

2
imp

, (2.1)

where µgen,σgen and µimp,σimp are the means and standard deviations of the
genuine and the impostor distributions respectively. The higher the value of d-
prime is, the better the performance of the biometric system.

2.3 Hand shape

The first research on 3D hand shape recognition appeared in 1988 when appa-
ratus for 3D hand profile identification [Sidlauskas, 1988] was invented. This
initial attempt served as a starting point for the development of this new field,
which in the following years attracted many researchers, producing devices such
as Biomet Digi-2 (discontinued by now) or the still commercially used Hand-
Key II [Allegion, 2017]. Such devices, however, simulate the 3D information by
obtaining several 2D images from different viewpoints and processing them sep-
arately. The vast majority of works focusing on data from similar devices has
been summarized in Duta [2009].
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The first approach working with full 3D information dates back to the early
2000’s. The rapid development in 3D sensing allowed researchers to either pur-
chase or design their own 3D scanner, making it possible to capture the previ-
ously unavailable 3D structure of the human body. Such technologies have been
proven valuable in face recognition applications and started making their way
into different areas of biometrics since then.

The pioneering work of Woodard and Flynn [2005] focused on using 3D range
images of the dorsal side of a hand, extracting finger profiles and using them for
biometric identification. This effort was followed a year later, in 2006, by Malas-
siotis et al. [2006], who presented follow-up work on 3D finger geometry.

Other researchers, in contrast to these initial efforts, have focused mainly on
the palm side of the hand, as it supposedly contains much more useful informa-
tion for recognition. Kanhangad et al. [2009] were the first ones to exploit the
full shape of the hand. Using a precise 3D scanner, they collected a dataset of
hand 3D range scans that they have made publicly available to other researchers,
offering the first standard benchmark for 3D hand biometric recognition. Their
efforts were followed by others [Genovese et al., 2014; Wang et al., 2014a; Svo-
boda et al., 2015], further shaping the field.

The following sections provide a summary of steps that are usually taken in
3D hand shape biometric approaches and present the main ideas employed in
the past.

2.3.1 Three-dimensional data acquisition

Over the last decade, leveraging 3D information in computer vision tasks has at-
tracted particular interest, because it provides more information about the shape
of an object and therefore makes tasks such as object recognition, scene segmen-
tation or automated quality control easier. This has set a fast pace to new devel-
opments in 3D sensing, desired by researchers and industry in order to capture
the newly popular 3D information.

Numerous methods have been proposed to address the problem of 3D re-
construction, such as passive stereo vision, photometric stereo, structured-light,
time-of-flight and several others (e.g. ultrasound, computed tomography, mag-
netic resonance imaging, light field cameras, etc.). The particular method has
to be carefully chosen based on the use-case, as each imposes some constraints
in order for it to provide correct measurements. Moreover, one has to choose a
compromise between accuracy and hardware cost. The most relevant methods
with respect to the rest of this text are described in the following paragraphs.
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Passive stereo vision Based on principles closely related to human vision [Klette
et al., 1998], it is probably the most common technology. Human vision is essen-
tially a binocular process taking two images obtained from different viewpoints
and using the parallax between them in order to estimate the depth informa-
tion. Their main advantage is the simplicity of the hardware setup, which, in the
simplest case, consists only of two RGB cameras.

The system consists of two (or more) cameras that capture the scene at the
same time. The reconstruction process is based on principles from epipolar ge-
ometry [Klette et al., 1998], which is used to produce the so-called disparity
map. Such a disparity map serves as input for the 3D coordinate estimation. The
detailed description of such a pipeline can be found in Drahanský [2018].

Structured-light methods The structured-light principle can be viewed as a
modification of the static binocular stereo [Klette et al., 1998], replacing one
of the cameras by a light source, which projects a light pattern into the scene.
Depth information is then triangulated by intersecting the camera projection ray
and the light ray (or sometimes plane) that is generated by the light source. Var-
ious light patterns are available. They can be either statically projected (stripe
patterns, dots), or dynamically changing based on temporal coding of several
patterns (binary encoding, phase shifting), see Klette et al. [1998]. Latest devel-
opments in structured light methods have brought e.g. time-multiplexed struc-
ture light approach by Zabatani et al. [2019]. An example of a structured-light
method is depicted in Figure 2.4(a).

Time-of-flight approaches A laser range finder is used in order to capture the
surface of an object based on the speed of light. It sends multiple pulses of
light toward the object and calculates the elapsed time for the pulses to bounce
on the surface of the object and come back to the sensor, which is illustrated
in Figure 2.4(b). Time-of-flight approaches are gaining popularity in the last
years, which is well demonstrated by the recent announcement of micro lidar
technologies by Apple Inc. and Intel.

Plenoptic cameras Sometimes also called light-field cameras, capture informa-
tion about the light field in a scene. In contrast to a classical camera, which
records the light intensity, plenoptic camera records the intensity of light in a
scene, but also the direction that the light rays are traveling in space. This en-
ables new possibilities, such as refocusing the acquired image to different depths
or viewing the same scene from slightly different perspectives.
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(a) (b)

Figure 2.4. (a) Multiple parallel stripes structured-light pattern [Klette et al.,
1998]; (b) An illustration of the Time-Of-Flight imaging principle [Stemmer-
Imaging, 2020].

2.3.2 Acquisition constraints

The 3D hand data acquisition for biometric purposes can be categorized into two
main groups:

• Constrained acquisition: Imposes constraints on the data acquisition pro-
cess (e.g. user behavior constraints, environmental constraints).

• Unconstrained acquisition: Data is captured without imposing any specific
constraints on the user, environment or hardware.

• Less-constrained acquisition: The compromise between constrained and un-
constrained. Some of the constraints are dropped in favor of convenience.

Most solutions nowadays use constrained acquisition. For a 2D setup, that
would mean restricting the hand placement by so-called distance pegs [Jain et al.,
1999]. In the case of 3D, the acquisition is kept contact-free and the constraints
are typically imposed in terms of environmental light, constant background, etc.

The constrained setup is unfortunately very impractical and researchers, there-
fore, strove towards introducing unconstrained solutions. As this has been very
challenging, a third group, so-called less-constrained acquisition, has been intro-
duced. An interested reader can find more details in Drahanský [2018].

2.3.3 Preprocessing

Input smoothing Range data acquired by low-cost depth cameras, in compar-
ison to high-precision 3D scanners, contain inherently much more noise due to
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the lower quality optics hardware and usually less-precise reconstruction meth-
ods that are used. Input range scans, therefore, have to be further smoothed in
order to get a better model suitable for the recognition. We seek a compromise
between model smoothness and loss in detail. A possible solution could be the
use of mesh denoising methods [Sun et al., 2007; Lu et al., 2016], which have
shown promising results being applied to 3D face recognition by Mráček et al.
[2015] in the past.

Figure 2.5. The points of interest on a human hand [Intel, 2015];

Segmentation and annotation Detecting the object of interest is a crucial step
in any camera-based biometric system. Range scans provide very valuable infor-
mation for this task and make the segmentation process much simpler compared
to any purely RGB-based method. The vast majority of 3D cameras nowadays
provide a one-to-one mapping between RGB data and range map pixels, which
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makes the segmentation performed in one channel easily transferable into the
other. Strangely, there are only a few methods that have employed range infor-
mation in the past. All, however, assume that certain positioning constraints are
met. The work by Svoboda et al. [2015] assumes the hand to be the object clos-
est to the camera. To further improve the separation of the hand from the rest of
the arm, one can consider the approach of Wang et al. [2014a]. A more robust
solution, requiring fewer constraints, would be to perform statistical modeling
of the hand in 3D space as presented in Malassiotis et al. [2006].

Once we have the object of interest segmented, we need to understand it as
a human hand. In particular, we are interested in knowing the position of fin-
gertips, finger valleys, the center of the palm and possibly wrist (see Figure 2.5),
which are needed by a majority of the existing feature extraction methods. The
center of the palm is often detected by means of distance transform, while anno-
tation of fingertips and finger valleys is typically done using curvature analysis of
the hand contour. A more detailed explanation is provided in Drahanský [2018].

Pose normalization Our hands are naturally massively non-rigid objects. Most
of the real-world scenarios will, therefore, yield samples with out-of-plane rota-
tions or non-rigid deformations of the hands. Many state-of-the-art approaches
are not robust to those. There are a few [Kanhangad et al., 2011; Wang et al.,
2014a; Svoboda et al., 2015] that try to either reject incorrectly posed hands or
compensate for out-of-plane rotations by, e.g., fitting a plane to the previously
located center of the palm. The rotation angle is then computed using the plane
normal and this can be used to de-rotate the hand. To the best of our knowledge,
there are however no methods that could deal with non-rigid deformations of the
hand surface.

2.3.4 Feature extraction

Given the data is already annotated and normalized, the next step is to extract
features that will be matched against reference templates in order to perform the
recognition. As of now, the majority of the existing methods describe the hand
surface by means of distances, normal vectors and surface curvatures.

Surface normal estimation Normal vectors are essential for performing curva-
ture analysis of a 3D surface. Methods for their estimation differ based on what
representation of the 3D surface we are given. Typically we work on range data,
and the neighborhood structure is represented by the range map implicitly. We
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can therefore obtain an estimate of the surface normal n = (nx , ny , nz) at point
pu,v = (pu,v

x , pu,v
y , pu,v

z ) using finite difference method expressed by

n′ = (pu+1,v
z − pu−1,v

z , pu,v+1
z − pu,v−1

z , 2.0), (2.2)

n=
n′

||n′||2
, (2.3)

where u, v are the range map grid coordinates. Approaches for computing 3D sur-
face normals for different types of representations are further discussed in Dra-
hanský [2018].

Curvature analysis One of the traditional, yet still widely used, approaches to
the 3D hand geometry analysis. The curvature of a surface S at point p is typically
computed analytically by fitting a polynomial to a set of neighboring points Sp.
Various types of polynomials have been employed in the past, e.g. bicubic Monge
surface [Woodard and Flynn, 2005]. Such polynomial can be further used to
compute principal curvatures of the surface κmin and κmax , from which we can
compute so-called Shape Index (SI) [Dorai and Jain, 1997], which can be used
for classification and is expressed as

SI =
1
2
−

1
π

arctan
�

κmax + κmin

κmax − κmin

�

, (2.4)

where κmax ≥ κmin and SI ∈ [0,1]. Visual meaning of SI is depicted in Figure 2.6.
An alternative to this approach would be for example fitting 2D polynomi-

als to cross-sectional line segments [Kanhangad et al., 2009] and other methods
discussed in Drahanský [2018]. Besides analytic curvature computation, Wang
et al. [2014a] proposed an approach performing discrete curvature analysis on
a three-dimensional hand contour, which is summarized in more detail by Dra-
hanský [2018].

Geodesic distance computation Utilizing the one-to-one correspondence be-
tween range map points and point cloud vertices, a 2D annotation algorithm can
be used to find the positions of the fingertips and finger valleys, which are used
to compute an axis of each finger. Consequently, a finger geodesic length is com-
puted by walking on the finger surface along the direction of the finger axis using
a fast marching algorithm, as proposed by Svoboda et al. [2015].

Computation of the finger axes is done by first separating each finger from
the hand blob, employing the algorithm from de Santos-Sierra et al. [2011].
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Figure 2.6. Geometrical meaning of different values of Shape Index (SI).
Thakku et al. [2015].

Subsequently, for each finger blob, the image moments [de Santos-Sierra et al.,
2011] are computed as

mi j =
∑

x ,y

Ix ,y x j y i, (2.5)

where Ix ,y is the pixel value at a position (x , y). It is then straightforward to
express the center of mass

x̄ =
m10

m00
, ȳ =

m01

m00
, (2.6)

which is further used to express the central moments

µi j =
∑

x ,y

Ix ,y(x − x̄) j(y − ȳ)i. (2.7)

The second-order central moments form a 2D covariance matrix as

cov(Ix ,y) =

�

µ′20 µ′11
µ′11 µ′02

�

, (2.8)

with coefficients expressed as

µ′20 =
µ20

µ00
,µ′02 =

µ02

µ00
,µ′11 =

µ11

µ00
. (2.9)

Performing an eigendecomposition of this matrix gives the orientation of the
principal axis as the angle between the eigenvector associated with the largest
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eigenvalue and the axis which is closest to this eigenvector

Θ =
1
2

arctan

�

2µ′11

µ′20 −µ
′
02

�

, (2.10)

where the special case of µ′20 −µ
′
02 = 0 is assumed to be handled explicitly.

2.3.5 Matching

Depending on the features extracted from the hand 3D surface, different match-
ing algorithms have been developed in the past, giving the matching score, which
is used to determine the identification outcome. Let us list the main ones in the
following paragraphs.

Shape Index matching As the name suggests, this matching method proposed
by Woodard and Flynn [2005] is used together with the SI features that are de-
scribed earlier in this section. The matching score is computed as the normalized
correlation coefficient of two SI features, giving a value in range [−1,1], where
higher means better. It is given by the following formula:

eCC(SIQ, SIT ) =

∑

(i, j)∈valid(SIQ(i, j)− SIQ)(SIT (i, j)− SI T ))
Ç

∑

(i, j)∈valid(SIQ(i, j)− SIQ)2 ·
∑

(i, j)∈valid(SIT (i, j)− SI T ))2
,

(2.11)
where SIQ(i, j), SIT (i, j) are shape index values, which are implicitly assumed to
be valid. SIQ, SI T are the sample mean shape index values of the query and the
template images respectively. The SI matching score is typically computed for
each finger separately followed by a score-level fusion.

Matching curvatures and normals Efficient methods to match curvature and
normal features were designed by Kanhangad et al. [2009]. Such features are
usually extracted from fingers of the hand and the final score is afterwards ob-
tained by score-level fusion, which should compensate for small off-the-plane
rotations of the hand. Given features extracted from Ns cross-sectional segments
on i-th finger for both template Ti and query Q i samples, they propose to match
curvature features using the cosine similarity metric defined as

sc
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∑
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i , l j
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, (2.12)
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where Φ is a function ensuring both Ti and Q i are the same lengths. For its
definition, we refer a reader to Drahanský [2018]. The cosine similarity distance
cannot be used to match the normal vectors directly and the authors, therefore,
propose another metric to match the normals, based on the angle between two
vectors, expressed by

sn
i =

1
Ns

Ns
∑

j=1

cos−1(Φ(T j
i , l j

T , l j
Q)Φ(Q

j
i , l j

Q, l j
T )). (2.13)

The resulting matching score is then computed as a linear combination of the
curvature score sc

i and normal score sn
i

S = w
1
4

4
∑
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sc
i + (1−w)

1
4

4
∑

i=1

sn
i , (2.14)

where w is an empirical weight expressing the importance of the normal features
compared to the curvature features.

Metric learning approach Wang et al. [2014a] and Svoboda et al. [2015] pro-
pose a learning-based approach for matching k-dimensional vectors of distances
computed over the hand surface. Under the assumption that some of the com-
puted distances are more important for telling apart different individuals, it is
desired to introduce some weighting, which will give more importance to the
more prominent features. Such weighting can be introduced by using the Maha-
lanobis distance

dM(x,y) =
Æ

(x− y)T M(x− y), (2.15)

where x and y are two feature vectors and M defines a metric space that is better
suitable for comparing x and y. The matrix M can be obtained, e.g., by metric
learning, as described in Drahanský [2018].

2.4 Fingerprints

Fingerprints are, both historically and nowadays, the most widespread means
of biometric person authentication. As stated in Moenssens [1971]; Lee and
Gaensslen [2001], human fingerprints date back to the ancient times as they have
been discovered on many archeological items. However, the first more scientific
work examining fingerprints dates back to the 19th century [Galton, 1892]. By
the beginning of the 20th century, fingerprints were already well understood and
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fingerprint recognition was formally accepted as a personal identification method
and became a standard procedure in forensics. Since then, various methods for
processing different types of fingerprints were introduced. Fingerprints remain
one of the most popular biometric traits until nowadays since they are very stable
and unique. Compared to other biometric traits, they suffer less from aging and
develop at a very early age.

2.4.1 Data acquisition

With regard to how the fingerprints are collected, they can be classified as off-line
or online (live-scan). An off-line fingerprint is obtained by applying ink on the
fingertip and then placing or rolling the fingertip on a piece of paper. The inked
impression is then typically digitalized by means of an optical scanner. A par-
ticular type of off-line fingerprints are the latent fingerprints. The greasy nature
of human skin can leave a fingerprint impression on surfaces we touch. Using
special chemicals, latent fingerprints can be lifted from the surface and stored.
Such greasy impressions can be usually found at crime scenes. On the other
hand, an online fingerprint is captured directly by placing the fingertip on a sen-
sor that digitalizes the impression upon contact. Some examples of fingerprints
acquired using different acquisition devices are shown in Figure 2.7. Based on
the acquisition method, fingerprints can be further categorized as follows

• inked - rolled (nail-to-nail), flat (single finger) or slap (four-finger flat);

• sensor-scan - different technologies yielding various acquisition qualities,
e.g. optical, capacitive, etc.;

• latent -impressions of the papillary lines that are unintentionally left by a
subject at e.g. crime scenes.

2.4.2 Feature extraction

The selection of the fingerprint representation has far-reaching implications on
the matching modules [Maltoni et al., 2009]. One needs to be particularly careful
to select features which are suitable for discriminating between identities and
remain invariant for a given individual over time.

Fingerprint pattern can be analyzed at different scales at which it exhibits
different types of features:
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(a) (b) (c)

(d) (e) (f)

Figure 2.7. Fingerprint images from different sensors: (a) FTIR-based optical
scanner; (b) Capacitive scanner; (c) Piezoeletric scanner; (d) Thermal scanner;
(e) Inked impression; (f) Latent fingerprint. [Maltoni et al., 2009]

• Global-level at which the ridgeline flow forms specific patterns (see Fig-
ure 2.8). These are typically called singular points(loop or delta) and de-
fine control points surrounded by the ridgelines. Besides that, at a global
level, additional features as shape, orientation image and frequency image
can be computed.

• Local-level for which Moenssens [1971] identified a total of about 150 dif-
ferent ridge characteristics called minutiae details. Their visibility heavily
depends on the quality of fingerprints impression. Two most prominent
minutiae are ridge endings and ridge bifurcations (see Figure 2.9(a)).

• Very-fine-level allows detecting intra-ridge details, such as width, shape,
curvature, edge contours of ridges, etc. Supposedly the most important
of which are finger sweat pores (see Figure 2.9(b)), whose geometry is
considered highly distinctive. Extracting the fine details however requires
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very high-resolution sensing and is often neither practical nor feasible.

(a) (b) (c)

(d) (e)

Figure 2.8. Coarse level fingerprint patterns: (a) Left loop; (b) Right loop; (c)
Whorl; (d) Arch; (e) Tended arch; Squares and triangles denote loop-type and
delta-type singular points respectively. [Maltoni et al., 2009]

2.4.3 Fingerprint matching

Fingerprint matching is an extremely difficult problem due to the large varia-
tions in different impressions of the same finger cause by displacement, rotation,
partial overlap, non-linear distortion, variable pressure, etc. Human fingerprint
examiners consider several factors during the manual fingerprint matching pro-
cess, which are listed in Maltoni et al. [2009].

Automated fingerprint matching is usually inspired by the approach of human
experts and according to Maltoni et al. [2009] it can be categorized into three
classes as follows:

• Correlation-based matching takes two superimposed fingerprint images and
computes the correlation between corresponding pixels for different align-
ments.
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(a) (b)

Figure 2.9. Fine-level fingerprint patterns: (a) Black circles denote fingerprint
minutiae; (b) Transparent circles denote sweat pores on a single ridgeline. (Mal-
toni et al. [2009])

• Minutiae-based matching starts by extracting minutiae from two finger-
prints and storing them as sets of points in two-dimensional space. Match-
ing is then equivalent to finding the alignment between two sets of minu-
tiae that results in the maximum number of minutiae pairings.

• Feature-based matching is applied for low-quality fingerprints, where ex-
tracting minutiae would be too difficult or impossible. Instead, it is more
reliable to extract less informative texture information, local orientation
and frequency, etc.

Finding the optimal matching mechanism always yields a trade-off between
whether one should do more engineering in order to obtain better quality data
or whether to spend more time designing a very robust matching algorithm that
will be less sensitive to different qualities of the input samples.

The first two categories have been thoroughly researched in the past yielding
state-of-the-art traditional methods like Lee et al. [2001]; Komarinski [2004];
Maltoni et al. [2009]; Cappelli et al. [2010]; Jain et al. [2000, 2001]; Feng
[2008]; Jain et al. [2010b]; Tico and Kuosmanen [2003]; Jiang and Yau [2000]
as well as methods based on deep learning [Wang et al., 2014c; Cao and Jain,
2015; Lin and Kumar, 2018; Su et al., 2017; Darlow and Rosman, 2017; Tang
et al., 2017b; Nguyen et al., 2018]. On the contrary, latent fingerprints are typi-
cally partial, blurred and noisy which yields poor ridge quality. They can be lifted
from the surface by means of sophisticated chemical procedures or photographed
using a high-resolution camera for further processing. The latter type of acquisi-
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tion makes this scenario very similar to extracting fingerprints from RGB stream
of a depth camera that provides photographs of fingerprints, if available, of very
poor quality. There have been several works [Jain and Feng, 2011; Yoon et al.,
2010, 2011; Sankaran et al., 2011; Feng et al., 2013; Cao et al., 2014; Tang et al.,
2017] trying to improve latent fingerprint matching. Many of them are however
only semi-automatic and therefore not suitable for the use-case targeted in this
text.

2.5 Palmprint

Palmprint is probably the most prominent texture-based characteristic of the hu-
man hand viewed from the palm side. Compared to fingerprints, palmprints
appear to be more user friendly, as their capture can be performed easily in a
contactless manner with a regular CCD camera sensor. Palmprints are similar to
fingerprints in their structure, which allowed for the transfer of knowledge from
fingerprint technologies and has boosted the development in the last 20 years.

Similarly to fingerprints, the palmprint consists of the following characteris-
tics (see Figure 2.10):

• flexion creases - the three principal lines on the palm;

• secondary creases - several additional well-visible wrinkles;

• series of ridges - similar to ridges that fingerprints are composed of, creating
features such as singular points and minutiae.

2.5.1 Data acquisition

The type of features that can be captured from a palmprint strongly depends
on the acquisition device. There are very precise sensors that capture also the
fine ridges, thus allowing for high-precision palmprint recognition. Such sensors
are usually less user-friendly. Nevertheless, decent palmprint information allow-
ing for high-accuracy palmprint recognition, while maintaining the advantage of
user-friendliness, can be captured even by an ordinary CCD camera. According
to Genovese et al. [2014] the acquisition methods can be grouped into

• Touch-based two-dimensional methods are further divided into offline and
online. Offline methods include scanning of inked palmprints and lifting
of latent impressions. Online methods, instead, use an optical device or
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Figure 2.10. Characteristics of palmprint [Genovese et al., 2014];

CCD camera, which captures palmprint of the user’s hand placed on a fixed
support.

• Touch-based three-dimensional methods again require the user to place his
hand on fixed support in order to create a 3D reconstruction of the hand
palmprint using structured light illumination techniques.

• Touchless two-dimensional methods are mostly based on CCD cameras, smart-
phones, etc. Such methods are typically used to design a low-cost and more
user-friendly palmprint recognition systems.

• Touchless three-dimensional methods make use of costly three-dimensional
laser scanners to enable accurate and less constrained palmprint recogni-
tion.
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2.5.2 Palmprint features

Depending on the level of detail of the input samples, Genovese et al. [2014]
categorized features that can be extracted from palmprint images as follows:

• Principal line features represent the flexion creases on a human hand palm (see
Figure 2.10 and 2.11). Such features are very stable and thanks to their
prominence, they are easy to capture even with low-resolution sensors.
Unfortunately, they can be easily faked and are not very distinctive.

• Wrinkle features are the secondary creases (see Figure 2.10), which are
very distinctive due to their high irregularity. They are still well-collectable,
even though they require a higher resolution sensor compared to the prin-
cipal line features. Moreover, they are less permanent.

• Delta point features are similar to the delta points extracted from finger-
prints. Their collectability, unfortunately, depends on a high-resolution
sensing device.

• Minutiae features represent the same minutiae features that are typically
extracted from fingerprints (e.g. bifurcations, etc.). They are very distinc-
tive and permanent but require acquisition using a high-resolution sensor.

• Level 3 features such as pores, incipient ridges or scars analogically to the
features extracted from fingerprints. These features are very distinctive but
require highly precise acquisition devices.

In practice, input resolutions ranging from 150dpi up to 400dpi or more [Kong
et al., 2009] are used. High-resolution images, allowing for the extraction of
minutiae, are typically used only for forensic applications [Duta et al., 2002; Shu
and Zhang, 1998]. On the other hand, the vast majority of the current research
and state-of-the-art methods focus on lower-resolution images that can be em-
ployed in civil and commercial applications.

2.5.3 Feature extraction and matching

Different approaches for palmprint recognition have been proposed based on the
acquisition method and algorithms used to extract and match palmprint features.
In a broader sense, we can divide palmprint recognition techniques into five dif-
ferent categories [Genovese et al., 2014], which are shortly described next:
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Figure 2.11. Palmprint principal line features: (1) the heart line; (2) the head
line; (3) the life line; (4) the fate line. [Genovese et al., 2014];

• Ridge-based methods are analyzing the ridge pattern, the position of the
delta points and the location of the minutiae points in order to perform
recognition [Liu et al., 2013; Laadjel et al., 2010]. They are usually in-
spired by technologies for processing fingerprints.

• Line-based approaches focus on processing of the flexion and secondary
creases [Nibouche and Jiang, 2013; Wu et al., 2004]. The processing is
typically based on computer vision methods for edge detection and de-
scription.

• Subspace-based methods leverage feature extraction based on PCA, LDA
or ICA [Huang et al., 2008; Ribaric and Marcetic, 2012; Wang and Ruan,
2006b]. The input images can be additionally preprocessed by means of
e.g. Fourier transform, Gabor filtering, etc.

• Statistical approaches are either based on local or global statistics of the
image. Local statistics (e.g. mean, variance) are computed on subregions
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of the input image. Global statistics, instead, are computed on the entire
image. In particular, e.g. Zernike moments [Yang and Wang, 2010], Bi-
narized Statistical Image Features (BSIF) [Raghavendra and Busch, 2014],
etc. have been applied in the past.

• Texture-based or sometimes also coding-based approaches are first prepro-
cessing the input by means of different filters and then create an encoding
by quantization of the magnitude or phase of the response. The Ham-
ming distance is used to compute the similarity between the templates.
Typical representatives of such methods are PalmCode [Kumar and Shen,
2004], Competitive Code [Kong and Zhang, 2004], Ordinal Code [Sun
et al., 2005], etc. Most coding based schemes are using the Hamming
distance with several different offsets for matching.

• Hybrid approaches Some researchers have worked on a combination of sev-
eral of the above categories in order to improve performance. This results
in so-called hybrid approaches [Lu et al., 2009; Wang et al., 2012, 2013].

In recent years, the field of deep learning has become popular, yielding a vast
amount of applications, including biometrics. In palmprint recognition, the most
notable works are Ariyanto et al. [2018]; Jalali et al. [2015]; Minaee and Wang
[2016]; Zhong et al. [2019]; Izadpanahkakhk et al. [2018], however only a few
have evaluated their method on contactless palmprint recognition. A broader
summary of palmprint recognition methods can be found in Fei et al. [2019a];
Ungureanu et al. [2020].

2.6 Biometric fusion

In less-constrained settings, such as contactless hand recognition, it is often dif-
ficult to obtain high-quality data. The system should, therefore, be able to deal
with sensor noise, which may be imposed by a sudden environmental change
(e.g. sunlight, rain, etc.), incorrect use of the device as well as a spoofing at-
tempt. As suggested by Ross et al. [2006], one of the straightforward ways of
dealing with sensor noise is to introduce a fusion of multiple biometric modal-
ities, which is further discussed in Ross et al. [2011]; Fierrez et al. [2018]. In
such case, may there be a noisy or invalid input from one sensor, the other sen-
sors could potentially still provide useful information and system could function
transparently. Besides, using a multimodal biometric system can significantly
improve population coverage and provide additional protection against spoofing
attacks.
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There are however several considerations to be taken into account in the de-
sign of a multimodal biometric system. One has to make a trade-off between
additional cost and performance improvements [Ross et al., 2011]. The acqui-
sition process has to be defined carefully as multiple biometric traits are being
captured. Last but not least, an appropriate fusion scheme has to be chosen.

As we have already shown in the previous section, human hands not only al-
low us to measure their geometry, but also possess some of the strongest biomet-
ric modalities, such as fingerprints and palmprints. They are therefore naturally
good candidate for performing biometric fusion.

2.6.1 Levels of fusion

The critical thing to be decided while designing a multimodal biometric system
is at which stage the information should be combined by the fusion algorithm.
Biometric information from different modalities can be fused at different levels,
either prior or after matching. Clearly, the earlier we decide to merge several
different modalities, the more information we have available for the fusion pro-
cess. For example, a raw input data can have several megabytes of information,
while the fusion of the decision scores has to work with only a few bytes. A brief
description of the most typical fusion types is described next.

Sensor-level fusion operates on raw data captured by multiple sources before
they are fed to the feature extraction module, also-called image-level fusion.
In biometrics, a typical example would be merging multiple images made by a
sweep-sensors [Xia and O’Gorman, 2003] in order to create a composite finger-
print image in a process often regarded to as mosaicing. Stitching several images
together can be also applied in for example face recognition, observing face from
multiple different viewpoints and merging them into one resulting face image.
A similar approach can be also taken advantage of in order to reconstruct an
approximate 3D model of one’s face.

Feature-level fusion aims at consolidating information from two biometric fea-
ture sets of the same identity. The two feature sets might not necessarily have to
originate from the same biometric modality and feature extraction algorithm. In
the case of the same algorithms and modalities, the situation is quite simple. One
can either update or improve the existing template. For two different modalities,
however, the situation is rather problematic. In order to be able to combine fea-
tures from two different modalities, one has to perform feature normalization
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(many schemes have been proposed e.g. min-max, median, etc.) eventually fol-
lowed by feature selection and transformation (e.g. dimensionality reduction).
Besides, a novel approach based on feature-level rank fusion [Guo. et al., 2019]
has been proposed recently. An example of such process designed by Ross and
Govindarajan [2005] is depicted in Figure 2.12.

Figure 2.12. Feature-level fusion procedure. [Ross et al., 2011]

Rank-level fusion is typically used during identification, where the system out-
put can be viewed as a ranking of the identities in the database. The fusion
algorithm then merges the rankings from different biometric modalities in or-
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der to make the final decision. There are different methods for combining the
ranks, such as highest rank method, Borda count method, logistic regression
method, etc. [Ross et al., 2011]. An example of rank-level fusion is depicted in
Figure 2.13.

Decision-level fusion is employed mainly in systems where only the final de-
cision outputs of the individual matching modules are available. Numerous
schemes for decision-level fusion have been proposed in the past including AND/OR
rules [Daugman, 2000b], majority voting [Lam and Suen, 1997], weighted ma-
jority voting [Kuncheva, 2004], Bayesian decision fusion [Xu et al., 1992], the
Dempster-Shafer theory of evidence [Xu et al., 1992] and behavior knowledge
space [Huang and Suen, 1995]. More details about the specific schemes can be
found in Ross et al. [2011]. See Figure 2.14 for an example of a decision-level
biometric fusion.
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Figure 2.13. An illustration of rank-level fusion for two different fusion
schemes. [Ross et al., 2011]
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Figure 2.14. Combining decisions of multiple matching modules based on the
majority voting scheme. ID and Ver denote the identification and verification
modes of operation respectively. [Ross et al., 2011];
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Chapter 3

Related advances in deep learning

Biometric traits are often captured by cameras, leading to overlap in the fields
of biometrics and computer vision. Both fields share the same principles for
extraction of interesting features from the input. This chapter discusses the ad-
vancements in deep learning for computer vision which are closely related to
applications in this work.

Deep learning is a powerful machine learning framework for both supervised
and unsupervised learning tasks. Increasing depth of networks allows represent-
ing functions of higher complexity. In recent years, deep learning has revolu-
tionized many fields (see Figure 3.1(a)), such as image processing [Ciresan
et al., 2011b,a; Krizhevsky et al., 2012; Zhu et al., 2017], natural language pro-
cessing [Young et al., 2017], and many others, achieving performances nobody
could imagine a decade ago. Only very recently, deep learning has made its
way into fields working on non-Euclidean data (see Figure 3.1(b)) such as point
clouds or social graphs. This was with the introduction of Geometric Deep Learn-
ing (GDL) [Bronstein et al., 2017a], which focuses on designing deep-learning
approaches for data without conveniently-organized Euclidean structure.

Surprisingly, despite their success, these methods are only slowly making
their way into some fields of biometrics. They have been heavily exploited for fin-
gerprinting applications [Wang et al., 2014c; Cao and Jain, 2015; Schuch et al.,
2016, 2017], face recognition [Yi et al., 2014; Taigman et al., 2014; Hu et al.,
2015; Sun et al., 2014] and palmprint [Jalali et al., 2015; Minaee and Wang,
2016; Ariyanto et al., 2018; Genovese et al., 2019; Fei et al., 2019a; Ungureanu
et al., 2020], showing the looming potential. However, the hand geometry and
has been left quite untouched by the latest trends. The aforementioned works
suggest that re-developing three-dimensional hand geometry biometrics based
on the current computer vision trends could lead to previously unprecedented

37
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results.

(a) Euclidean domains

(b) Non-Euclidean domains

Figure 3.1. Deep learning on different domains - examples of the data struc-
tures that can come as an input. [Bronstein et al., 2017b]
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3.1 Multilayer perceptron (MLP)

MLPs [Rosenblatt, 1958], in machine learning slang sometimes also-called “uni-
versal approximators” [Cybenko, 1989; Hornik et al., 1989], are the essential
elements of deep learning models [Ivakhnenko and Lapa, 1965; Ivakhnenko,
1971] nowadays. In simple words, continuous function f can be approximated
with a feedforward network, which defines a mapping y = f (x ,θ ). The network
is representing a classifier y = f (x), which maps an input sample x to a class
y , and θ are the learnable parameters of the network, which are optimized to
provide the best approximation of the function f . Feedforward neural networks
can be further extended with feedback connections, which results in so-called
recurrent neural networks [McCulloch and Pitts, 1943; Kleene, 1956].

Such models are called networks because they are typically composed of
many different functions, which are connected together in a directed acyclic
graph describing the relations between different functions. Such functions can
be connected in a chain, where the first function would be called the first layer,
second the second layer, and so on. The number of layers is called the depth
of the neural network. Deeper networks were found to provide better perfor-
mance, which yields the name of the field deep learning. Each hidden layer has
its dimensionality, called width, defined. The last layer of the model is called
the output layer and all layers between the first and last are referred to as hid-
den layers because their outputs are not directly visible. For an example of such
feed-forward network, the reader is referred to the book of Goodfellow et al.
[2016].

3.2 Building blocks

In the following paragraph, we will explain the relevant building blocks of deep
learning models such as Fully connected layer, Convolutional layer, Pooling layer
and Activation function. Please note that this is not an exhaustive overview.
For more details, we refer the reader to Schmidhuber [2015]; Goodfellow et al.
[2016].

Fully connected layer is a basic building block of multilayer perceptrons men-
tioned above. It computes a nonlinear transformation of its input xi and outputs
new representation yi. It is represented by an affine transformation ti which
is parametrized by weights Wi and bias bi, typically followed by a non-linear
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activation function σ. The above can be summarized as:

xi = yi−1, (3.1)

ti =Wixi + bi, (3.2)

yi = σ(ti), (3.3)

where i ∈ {1, . . . , N} is the index of a layer for a multilayer perceptron with N
layers. Output of the i-th layer is the input to the i + 1-st layer. The input to the
first layer is then the input sample fed to the multilayer perceptron, while output
of the last layer is the final output of the model.

Convolutional layers were pioneered by Fukushima [1980]; Waibel [1987];
Weng et al. [1993]; LeCun et al. [1998b] for data with regular spatial struc-
ture, such as audio or images. Compared to fully connected layers, they can also
capture the spatial relationships in the data. Combination of such layers gives
raise to so-called Convolutional Neural Networks (CNNs). A convolutional layer
operating on an N -dimensional input f (x) = { f1(x), . . . , fn(x)}with a set of filters
H = {hi j|i = 1 . . . m, j = 1 . . . n} and a nonlinearity σ can be defined as:

gn(x) = σ

�

m
∑

j=1

( f j ? hi j)(x)

�

, (3.4)

where g is a m-dimensional output g(x) = {g1(x), . . . gm(x)}, so-called feature
maps. The operator ? denotes standard convolution. CNNs are thoroughly de-
scribed by Schmidhuber [2015]; Goodfellow et al. [2016].

Pooling layers Convolutional layers are often combined with pooling layers
which perform some sort of data sub-sampling in order to reduce the spatial di-
mensionality of the data. The most common types of pooling are the average and
max pooling, which take the mean and maximum respectively, and are applied
over a fixed-size receptive field of the inputs.

Activation functions are chosen depending on a problem at hand. If the model
is being trained to predict unbounded real-valued outputs, activation is left as the
identity function. Should one desire to bound the output of the model in a certain
range, a variety of activation functions have been proposed, such as sigmoid,
hyperbolic tangent, Rectified Linear Unit [Nair and Hinton, 2010], Exponential
Linear Unit [Clevert et al., 2015] and others. The outputs of the model can
also represent a categorical probability distribution over a set of labels, which is
realized by using the softmax activation function.
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3.3 Training neural networks

Training of a neural network is the process of adjusting the parameters θ in order
to find the best approximation of the desired function f on a given dataset. The
function we desire to approximate is defined by so - called objective function,
which computes the scalar loss we are trying to minimize during learning. The
most common choices of objective functions are Binary Cross-Entropy loss (BCE),
Siamese [Bromley et al., 1993; Chopra et al., 2005; Hadsell et al., 2006] or Triplet
loss [Wang et al., 2014b; Hoffer and Ailon, 2015], Mean Squared Error (MSE),
etc.

In order to prevent the phenomenon of overfitting [Caruana et al., 2000],
one needs to employ different regularization techniques, such as weight decay,
dropout [Srivastava et al., 2014], early stopping [Holmström, 1989; Caruana
et al., 2000] or batch normalization [Ioffe and Szegedy, 2015].

The parameters of a neural network are typically optimized using gradient
descent, which however requires the computation of derivatives of the objective
function. The most common method to efficiently compute derivatives of the
neural network outputs with respect to the inputs is called backpropagation [Lin-
nainmaa, 1976; Werbos, 1982]. It is essentially a backward pass through the
neural network (passing through the layers in the reverse order of the forward
pass using the chain rule of derivatives). Backpropagation computes derivatives
for each layer’s activations and parameters using activations stored during the
forward pass and the intermediate derivatives computed so far, which equals the
complexity of the forward pass and makes the backward propagation efficient.
The backpropagation is described in detail by Schmidhuber [2015]; Goodfellow
et al. [2016].

3.4 Learning paradigms

Based on the problem at hand and the available data one has to choose the
best-suited learning paradigm. These can be divided into three main groups:
supervised learning, unsupervised learning and semi-supervised learning. The
following sections focus on the first two groups, while for the description of the
last group, we refer a reader to Goodfellow et al. [2016].
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3.4.1 Supervised learning

In the supervised setting, the learning algorithm is provided with labelled data,
which allows it to accurately measure the performance at each step. Supervised
learning is mainly useful in the following areas:

Classification Given a set of labels Y and some input data, the algorithm is
asked to predict a label y ∈ Y for each input sample. Classification models are
commonly trained using the Cross-Entropy (CE) objective function, defined as:

CE(y, ŷ) =
∑

(x ,y)

−logp(ŷ= y|x,Θ), (3.5)

where y is a one-hot vector encoding the target label y , ŷ is the output vector of
predictions, x is input sample and Θ are model parameters.

Regression In regression problems, we look at continuous data. Given a par-
ticular input sample x, we are trying to estimate the expected value of a variable
y. The hypothesis, therefore, is that there is a correlation between variables x
and y. Regression models can be trained for example with Mean Squared Error
(MSE) objective:

MSE(y, ŷ) =
1
n

n
∑

i=1

(yi − ŷi)
2. (3.6)

Metric learning Aims to learn a distance metric that well establishes the notion
of similarity/dissimilarity between groups of objects. On one hand, it tries to
decrease the distance between similar objects, and on the other hand, it aims
to increase the distance between dissimilar objects. The optimization is usually
realized using the Triplet loss:

L =
1
2
||x− xpos||2 +max{0, M − ||x− xneg ||2}, (3.7)

where (x,xpos,xneg) are a triplet. The M is the separating margin that is being
enforced between similar and dissimilar samples.

3.4.2 Unsupervised learning

In unsupervised learning, the model is provided data without any specific anno-
tations or guidelines on correct behavior. As there is no desired outcome prede-
fined by the dataset, the model is handed the raw data and attempts to discover
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Figure 3.2. Illustration of Siamese/Triplet learning, where the same network
is run multiple times for triplets of inputs producing three outputs x , xpos and
xneg having x and xpos coming from the same category and x and xneg being two
different categories..

the main factors of variation that explain the data at hand. It is typically used for
data clustering, anomaly detection or learning embeddings of the data, which
are shortly described next.

Clustering In clustering, the deep learning model tries to learn a measure of
similarity between the training data samples and group them together accord-
ingly. Approaches to deep clustering in different domains have been proposed
by Tian et al. [2014]; Xie et al. [2015]; Hershey et al. [2016]; Caron et al. [2018].

Self-supervised methods Self-supervised learning aims at getting supervision
from the unlabeled data itself by exploiting the intrinsic structure of the domain
to generate target signals. This can be done by e.g. withholding some part of
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the data and train the network to predict the missing part. It is widely used in
natural language processing [Mikolov et al., 2013; Devlin et al., 2019], where
it can be formulated as predicting next word in a sentence given the previous
sequence of words. Only recently, successful applications in computer vision and
image processing started appearing as well [Hjelm et al., 2018; van den Oord
et al., 2018].

Autoencoder Autoencoders are amongst the most common architectures em-
ployed in unsupervised learning tasks. They are neural network architectures
trained to output an identical reconstruction of its input (see Figure 3.3). Such
architectures typically consist of two parts, the encoder function z = f (x) which
maps the input x to an internal code called latent representation and a decoder
function x̂ = g(z) that aims to reconstruct the original input x given its latent
representation z. Convolutional autoencoders were introduced by Masci et al.
[2011] and have established state-of-the-art results in many fields of computer
vision over the last years. A broader overview of autoencoder architectures is
provided in Schmidhuber [2015]; Goodfellow et al. [2016].

Figure 3.3. Typical autoencoder neural network architecture consists of an
encoder E that produces a latent representation z, and a decoder D which takes
the latent representation and reconstructs back the original input.

3.5 Geometric deep learning

Many fields of science focus on data with non-Euclidean underlying structure (e.g.
social networks, brain imaging, meshed surfaces, etc.). Witnessing the success
of deep learning models in one- and two-dimensional signal processing, there
has been an increasing interest in generalization of the powerful deep learning
to non-Euclidean structured data such as graphs and manifolds. This gave rise to
a new field referred to as geometric deep learning in Bronstein et al. [2017a]. The
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first attempts of learning on graph structures date back to the works of Goller
and Küchler [1995]; Küchler and Goller [1996]; Sperduti and Starita [1997];
Frasconi et al. [1998]; Gori et al. [2005]; Scarselli et al. [2009], where the au-
thors considered steady-state of learnable diffusion process (recent works of Li
et al. [2016] and Gilmer et al. [2017] improved this approach using modern deep
learning schemes). Since then, much work has been done introducing novel ap-
proaches, which can be divided into two main computation paradigms presented
below.

3.5.1 Spectral domain graph CNNs

They were developed by Bruna et al. [2014] and Henaff et al. [2015] by formulat-
ing convolution-like operations in the spectral domain, defined by eigenvectors
of the graph Laplacian. The notable drawback of this architecture is O (n2) com-
putational complexity yielded by the cost of computing the forward and inverse
graph Fourier transform. Furthermore, such architectures have O (n) parameters
per layer, and no guarantee of spatial localization of the filters.

In order to mitigate the drawbacks of previous works, Defferrard et al. [2016];
Kipf and Welling [2017a] and others have proposed spectral filters that can be
expressed in terms of simple operations (additions, scalar and matrix multipli-
cations) w.r.t. the Laplacian. In particular, Defferrard et al. [2016] considered
polynomial filters of degree p, which incur only p times multiplications by the
Laplacian matrix (having cost O (|ε|) in general or O (n) if the graph is sparsely
connected), also guaranteeing filters that are supported in p-hop neighborhoods.
Kipf and Welling [2017a] further simplified this idea, proposing Graph Convolu-
tional Network (GCN) reducing to only 1st order approximation. This work was
later extended with attention mechanism by Veličković et al. [2018] in Graph
Attention Network (GAT). Levie et al. [2018] proposed rational filter functions
including additional inversions of the Laplacian, which were carried out approx-
imately using an iterative method. Monti et al. [2018] used multivariate poly-
nomials w.r.t. multiple Laplacians defined by graph motifs; Monti et al. [2017b]
used Laplacians defined on products of graphs in the context of matrix comple-
tion problems. Approaches that are the most relevant for us are shortly described
below.

Graph Convolutional Network (GCN) Proposes a way of reducing the com-
putational complexity of spectral graph CNNs, which require explicit computa-
tion of the Laplacian eigenvectors, a very costly operation, especially for a larger
graph. Kipf and Welling [2017a] proposed to circumvent the problem by using a
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1st order approximation of the spectral filter. For a signal X ∈ RN×C with C input
channels, the convolution with F filters can be written as:

Z= D̃−
1
2 ÃD̃−

1
2 XΘ, (3.8)

where Θ ∈ RC×F is matrix of filter parameters and Z ∈ RN×F is the output signal
matrix. Ã = A + IN , where A is the adjacency matrix and IN an identity, and
D̃ii =

∑

j Ãi j.

(a) (b)

Figure 3.4. GAT graphically: (a) The attention mechanism employed
by the GAT model. (b) Illustration of multi-head attention of the node h1

on its neighborhood (different line colors correspond to different attention
heads). [Veličković et al., 2018]

Graph Attention Network (GAT) Introduces an attention mechanism as a sub-
stitute to the statically normalized “convolution” used in GCN. Veličković et al.
[2018] defined the convolution operation performed by GAT as:

h′i = σ

 

∑

j∈Ni

αi jWh j

!

, (3.9)

where hi,h j ∈ RF are the node features for nodes i and j respectively, Ni is the
neighborhood of node i in the graph, W ∈ RF ′×F is the weight matrix and αi j is
the attention coefficient between nodes i and j which are computed as follows:

αi j =
exp

�

LeakyReLU
�

aT
�

Whi||Wh j

���

∑

k∈Ni
exp (LeakyReLU (aT [Whi||Whk]))

, (3.10)
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where a ∈ R2F ′ is the weight vector parametrizing the attention mechanism and
|| is the concatenation operation. Complexity of the approach is reduced by per-
forming so-called masked attention, which computes the attention mechanism
only for nodes j ∈ Ni. The main principles of GAT are depicted graphically in
Figure 3.4.

3.5.2 Spatial domain graph CNNs

Spatial domain graph CNNs operate on local neighborhoods on the graph [Du-
venaud et al., 2015; Atwood and Towsley, 2016; Hamilton et al., 2017; Wang
et al., 2019; Kipf and Welling, 2017b]. Monti et al. [2017a] proposed the Mixture
Model networks (MoNet), generalizing the notion of image patches to graphs.
The construction is based on a system of local pseudo-coordinates ui j ∈ Rd as-
signed to a neighbor j of each vertex i. The convolution operation is in this case
redefined as a Gaussian mixture in these coordinates.

In the last years, special deep neural networks operating directly on point
cloud data, which are designed to handle the irregularity of point clouds, have
been designed. The pioneering approach in this area is PointNet [Qi et al., 2016],
where the invariance to permutation of points is achieved by processing each
point independently and accumulating features by applying a symmetric func-
tion. There have been various extensions to PointNet, which allow exploiting
local features by considering neighborhoods of points rather than operating on
each point independently [Qi et al., 2017; Shen et al., 2017]. They, however,
treat points in local neighborhood independently to allow permutation invari-
ance, which neglects the geometric relationships among points. This limitation
has been mitigated by Wang et al. [2019], who treats the local neighborhood by
constructing graph over it, which describes the geometric relationships on the
local level. The idea of learning the underlying graph structure of the data has
been extended by introducing a fully differentiable graph module (DGM) by Kazi
et al. [2020], which allows learning a function that dynamically predicts the edge
probabilities in the graph relevant for the task at hand. Approaches that are the
most relevant for this work are shortly described below.

PointNet++ Successor of PointNet, which learns a spatial encoding of indi-
vidual points and aggregates the pointwise features into a global feature vec-
tor describing the whole point cloud, which however does not capture the local
structure induced by the metrics. PointNet++ applies its predecessor PointNet
hierarchically at differently subsampled versions of the input point cloud. This
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results in so-called Set Abstraction layer (see Figure 3.5), which combines the
following operations into a single step:

• Sampling: Selects a set of points which will be the centroids of the new
local regions. The sampling is typically realized using Farthest Point Sam-
pling (FPS).

• Grouping: Assigns points to local regions by finding neighbors around the
region centroids. This is usually done using either ball of radius r or k-
Nearest Neighbors search.

• PointNet: Realizes the PointNet operation on the local regions in order to
encode them into feature vectors.

Figure 3.5. PointNet++ architecture comprising of multiple Set Abstraction
Layers and an additional sub-networks which have different structure depending
on the application: segmentation or classification. [Qi et al., 2017]

Dynamic Graph CNN (DGCNN) Introduces a new neural network module
called EdgeConv, which exploits the local geometric structure by constructing a
local neighborhood graph and applying operations on edges connecting neigh-
boring pairs of points. Such an approach yields the properties of translation
invariance and non-locality. The neighborhood graph is not fixed, but it is dy-
namically updated after each layer of the network using the k-Nearest Neighbors



49 3.6 The curse of adversarial examples

search, which allows capturing changes in the neighborhood structure from one
layer to another based on the current embedding.

The EdgeConv operation aggregates the edge features associated with edges
from each connecting vertex. The edge features are defined as ei j = hΘ(xi,x j),
where h : RF × RF → RF ′ is some parametric non-linear function with a set of
learnable parameters Θ and xi,x j ∈ RF are two vertices i and j respectively. The
operation is illustrated in Figure 3.6 and the output of EdgeConv for a vertex xi

is defined as:
x′i =

∑

j∈Ni

hΘ(xi,x j), (3.11)

where Ni is the set of vertices neighboring vertex i. The EdgeConv operation can
be applied multiple times interleaved with other operations, such as pooling or
spatial transformer, depending on the task at hand.

(a) (b)

Figure 3.6. DGCNN operations: (a) Computation of an edge feature ei j from
a pair of vertices x i, x j. Here, the hΘ is realized as a fully connected layer with
learnable parameters Θ; (b) Explanation of the EdgeConv operation, whose out-
put is calculated by aggregating the edge features associated with the i-th vertex
neighborhood. [Wang et al., 2019]

3.6 The curse of adversarial examples

It has been discovered by Szegedy et al. [2014] that the deep neural networks,
achieving state-of-the-art results in many computer vision tasks, tend to learn
very discontinuous mappings from input to the output, which can result in mis-
classification of an image while influenced by just a barely perceptible adversarial
perturbation. Many methods for finding such perturbations have been proposed
to date [Moosavi-Dezfooli et al., 2016, 2017; Su et al., 2019].
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Discovery of this phenomena has potentially very dramatic implications on
the security of deep learning, undermining its suitability for security applications.
As a consequence, adversarial attacks and defenses against them have become a
very active topic of research [Rauber et al., 2017; Kurakin et al., 2018].

Figure 3.7. An input image of panda was recognized as panda with almost 60%
confidence. After adding sufficient amount of adversarial noise µ controlled by
parameter ρ, the network will wrongly recognize a gibbon with nearly 100%
confidence. [Goodfellow et al., 2015]

3.6.1 Adversarial noise

Let us first explain what adversarial noise is. Szegedy et al. [2014] has explained
the vulnerability of neural networks to subtle changes in the input using a simple
linear model as:

wT x̃=wT x+wTµ, (3.12)

where w are the network weights, x is the input feature vector, µ is an adversarial
noise vector and x̃ is the input feature vector corrupted by the noise. Adversarial
noise is structured noise (see examples in Figure 3.8) which is generated based
on the desired outcome. The maximum norm of µ will not grow with increas-
ing dimensionality. However, as the problem size increases, many infinitesimal
changes in x may accumulate into one significant change in x̃. This is danger-
ous as the linear model is forced to attend exclusively the signal which aligns the
most with its weights, despite the fact that there would be some alternative, even
better, choices. It implies that if a linear model has sufficiently high dimensional-
ity, it can have adversarial examples. Neural networks we encounter in machine
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Figure 3.8. Examples of universal adversarial noise introduced by Moosavi-
Dezfooli et al. [2017] generated for images from various datasets.

learning are highly non-linear models, which are however designed to behave in
a very linear way. As Szegedy et al. [2014] explains, this suggests that a simple
perturbation of a linear model should damage non-linear models as well (see an
example in Figure 3.7).

3.6.2 Adversarial attacks

Adversarial attacks are methods designed to foster adversarial examples. An
adversarial attack is typically an optimization process, which aims at generating
adversarial noise that will result in a shift of the decision boundary of the neural
network model classifier. Their performance is measured in terms of so-called
fooling rate, which is the number of images for which the resulting label changes
under the effect of the generated adversarial noise.

They can be categorized in several different ways which will be described
next. First, we can divide adversarial attacks into two groups based on the desired
outcome as:

• Non-targeted: Given an input sample x and conditional probability over
the labels p(x|x), the goal is to generate an adversarial example x̃ such
that p(x̃| ỹ) is highest for any ỹ 6= y , while keeping the strength of the
perturbation small enough, i.e. ||x̃− x|| ≤ ε.

• Targeted: Given an input sample x and conditional probability over the
labels p(x|x), the goal is to generate an adversarial example x̃ such that
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p(x̃| ỹ) is highest for some class ỹ = A where ỹ 6= y , while keeping the
strength of the perturbation small enough, i.e. ||x̃− x|| ≤ ε.

Another way of categorizing adversarial attacks is by the amount of knowledge
about the model they work with:

• White-box: Attacks that have perfect knowledge of the model (e.g. they
have access to the architecture, model parameters, optimization process,
etc.).

• Black-box: Attacks that generally view the model as a black-box. They have
limited or no knowledge of the model.

Now that the categorization has been introduced, we will spend a few para-
graphs on briefly introducing some of the most common adversarial attack meth-
ods.

Gradient-descent attack generates an adversarial example by solving a con-
strained optimization problem using gradient descent algorithm. It can be de-
fined by the following formula:

x̃← x̃+ ε · ∇ log p( ỹ|x̃),

where ten ε values are scanned in ascending order, until the algorithm either
succeeds or fails.

Fast Gradient Sign Method (FGSM) proposed by Goodfellow et al. [2015]
generates an adversarial example x̃ for an input x with label y as follows:

x̃← x+ ε sign(∇xJ(θ ,x, y)),

where J(θ ,x, y) is the loss function used during training (e.g. cross-entropy as
above), and ε controls the magnitude of the perturbation.

Projected Gradient Descent (PGD) represents a much stronger adversary as it
lifts any constraints on how much time the adversary has to find the best attack. It
is often referred to as a multi-step FGSMk method [Madry et al., 2017]. Formally,
given an input x with label y , a single iteration generating adversarial sample
xt+1 is defined:

xt+1←
∏

x+S

(xt + ε sign(∇xJ(θ ,x, y))),

where J(θ ,x, y) is the training loss and ε controls the magnitude of the pertur-
bation. Operator

∏

defines the projection on S-ball around x.
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Universal Adversarial Perturbation Moosavi-Dezfooli et al. [2017] has designed
an attack that is able to generate a universal adversarial perturbation v, which
works across different network architectures and datasets. The authors have pro-
vided a publicly available implementation in their toolbox DeepFool. The strength
of the perturbation was bound by ||v||2 ≤ ρE||x||2, where the expectation is taken
over the set of training images used to generate the attack and the parameter ρ
controls the strength.

3.6.3 Defense against adversarial attacks

Many have recently tried to theoretically explain the phenomena [Goodfellow
et al., 2015; Fawzi et al., 2018] and propose strategies to defend against adversar-
ial perturbations. The efforts have focused on network architecture [Mahdizade-
haghdam et al., 2018; Dhillon et al., 2018], training procedure [Tramèr et al.,
2018] and data pre-processing [Meng and Chen, 2017; Zantedeschi et al., 2017].

Lately, Athalye et al. [2018] have pointed out the problem of so-called gradi-
ent obfuscation, which has to be taken into consideration while designing a new
defense method. The authors have proven that many state-of-the-art methods,
in fact, obfuscate the gradient and that causes them to, seemingly, work. We pro-
pose a novel defense mechanism which addresses the aforementioned problem
later in Chapter 6.
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Chapter 4

Exploiting palmprint images using
discriminative index learning

This chapter is based on Svoboda et al. [2016]. It begins by going over one
of the first approaches to efficiently apply CNNs for palmprint recognition. In
the majority of cases, 3D scanners provide RGB-D streams, which contain not
only the depth information but an intensity image as well. Besides fusing differ-
ent types of 3D features, one can think of fusing the 2D information, obtained
from an intensity image, together with 3D information, which is provided by
the range map. This type of fusion has been shown to be powerful Kanhangad
et al. [2011]. What types of features one can extract from the intensity image
heavily depends on its resolution. Off-the-shelf, low-cost RGB-D sensors often
provide considerably-noisy depth maps; therefore, it is advantageous to fuse the
geometry with analysis of the intensity image. Even though intensity images
from RGB-D sensors are not of relatively high quality, even just extraction of
the principal lines together with some more prominent wrinkles gives valuable
information when combined with the depth.

To this end, we propose the use of a convolutional architecture while training
the model with a novel loss function closely related to the d-prime discrimination
index from biometrics, which allows achieving a better genuine/impostor separa-
tion of the score distributions. As opposed to previous learning-based approaches
working on the computed scores directly (e.g. the Siamese loss [Bromley et al.,
1993; Chopra et al., 2005]), the genuine/impostor score distributions are ap-
proximated as normal distributions, and the maximum separation between the
distributions is enforced by means of pushing the means apart while maintaining
small standard deviations among both distributions.

We evaluate our method on standard benchmarks in palmprint recognition

55
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and show competitive performance with respect to the current state-of-the-art.
By considering the entire distributions, rather than individual scores themselves,
this approach learns a more general representation of palmprints and generalizes
better to new, previously unseen, subjects.

4.1 Discriminative Index Optimization

The key goal of biometric recognition system based on metric learning approaches
is achieving a separation of the genuine and impostor score distributions. As ex-
plained in Section 2.2.1, a popular criterion in literature is d-prime (also referred
to as sensitivity- or discriminative index) [Daugman, 2000a], modeling the gen-
uine and impostor score distributions as normal distributions N (µgen,σgen) and
N (µimp,σimp) respectively, where µgen,µimp are the means and σgen,σimp the
standard deviations. The separation of the normal distributions can be measured
as

d ′ =
µimp −µgen

Ç

1
2(σ

2
imp +σ2

gen)
. (4.1)

Well-separated distributions in the d-prime sense should thus have distant means
and small variances. Based on the discriminative index, this work proposes a
novel similar criterion of separation referred to as d-prime loss,

l = σgen +σimp +µgen +max{0, M −µimp}, (4.2)

where the last term is a standard hinge loss trying to pull the genuine and im-
postor means at least M apart.

Assuming that sample distances can be approximated by a normal distribu-
tion, d-prime loss provides better generalization and therefore allows to train
successfully having only little training data available.

In order to be able to use a gradient-descent optimization algorithm, the gra-
dients of the d-prime loss for a batch of samples have to be derived, as follows:

∂ l
∂ d i

gen

=
1
N

�

2(d i
gen −µgen) + 1

�

(4.3)

∂ l
∂ d i

imp

=
1
N

�

2(d i
imp −µimp)− J(µimp < M)

�

, (4.4)
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where

µgen =
1
N

N
∑

i=1

d i
gen, µimp =

1
N

N
∑

i=1

d i
imp,

σ2
gen =

1
N

N
∑

i=1

(d i
gen −µgen)

2, σ2
imp =

1
N

N
∑

i=1

(d i
imp −µimp)

2

are the means and standard deviations of the normal distributions and

d i
gen = ||x

i − xi
+||, d i

imp = ||x
i − xi

−||

are the genuine and impostor distances respectively. N is the number of samples
in a training batch, J is full unit matrix and x+ is a feature vector belonging to
the same class as x, while and x− belongs to a class different from x.
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Figure 4.1. Score distributions produced with a CNN trained using: (a) the
classical Siamese and (b) the proposed d-prime loss. Notice the better separa-
tion of the genuine/impostor distributions with the new loss.

4.2 Comparison to Siamese networks

Figure 4.1 shows the difference between the genuine and impostor score distri-
butions produced by our CNN using the novel d-prime loss function compared to
the traditional Siamese loss [Bromley et al., 1993; Chopra et al., 2005] which is
applied to individual scores rather than to distributions

lsiam =
1
2
||x− x+||2 +max{0, M − ||x− x−||}, (4.5)
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where x,x+ and x− denote the feature vectors of a genuine, and an impostor, sub-
ject respectively. The newly proposed d-prime loss results in a better separation
of the genuine and impostor score distributions.

4.3 Experiments

This section presents an extensive evaluation of our method on several different
standard benchmarks. A short review of the datasets used in this work is pre-
sented first. Next, the CNN architecture used in all our experiments is discussed.
Subsequently, we compare our performance to some of the existing state-of-the-
art methods. Finally, we provide visual reasoning behind what has the model
learnt.

4.3.1 Datasets

The proposed approach was evaluated on two standard contactless palmprint
datasets.

The IIT Delhi database [Kumar, 2008; Kumar and Shekhar, 2011], which con-
tains 5 samples of segmented palmprint images for each of left and right hands
of 230 different subjects. Only right hand samples are used, and the dataset is
split into disjoint equally-sized training and test sets, containing different sub-
jects. Two-fold cross-validation is employed, always having 50% of subjects for
training and 50% for testing. This process is repeated 8 times having a differ-
ent split of the subjects in each iteration (in each iteration, there are 5 samples
for each subject and therefore five times leave-one-out cross-validation is per-
formed followed by averaging the results to get the performance for the current
iteration).

The CASIA database [Sun et al., 2005] contains 5,502 images captured from
312 different subjects with approximately 9 images per subject (both left and
right hands). The dataset did not provide extracted palmprint regions. A palm-
print region-of-interest (ROI) extraction algorithm described in Zhang et al. [2003]
was used and only the subjects for which at least 5 images were successfully ex-
tracted were kept (successful extraction was assumed if the ROI coordinates were
within image bounds). This results in a dataset including 283 subjects for the
right and 282 subjects for the left hand, always with 5 images per subject. The
splitting and cross-validation settings are the same as for the IIT Delhi dataset.
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4.3.2 CNN architecture

In all experiments, a CNN that is applied to a 128 × 128 image of palmprint
region extracted using methods described in Genovese et al. [2014] has been
used. The CNN architecture is a sequence of convolutional layers applying banks
of filters to the input image or the output of the previous layer, pooling (non-
linear averaging and downsampling), and linear combination. The weights of
the filters are learnable parameters of the network, selected by an optimization
procedure minimizing a task-specific loss function, the d-prime loss.

Figure 4.2. The CNN architecture, containing four convolutional layers fol-
lowed by two fully connected layers and outputting a 32-dimensional feature
vector.

The architecture of the network is illustrated in Figure 4.2. It comprises of
four convolutional, one pooling, one fully connected, and an output layer of
32 units. The output of the CNN is thus a 32-dimensional feature vector de-
scribing the input palmprint image. The first two convolutional layers are a
simplified version of the first two layers of AlexNet [Krizhevsky et al., 2012].
The batch-normalization is applied only after the first layer’s ReLU, as applying
it also after the successive layers showed neither performance nor convergence
improvement. The output of the last convolutional layer is fed to the linear fully
connected layer with a dropout of 30%. This layer is linked to the last fully
connected layer with 32 linear output units. The method thus produces feature
vectors of 32 values with 32-bit floating-point precision, which is 128-bytes in
total.

4.3.3 Performance evaluation

Table 4.1 and Table 4.2 summarize the performance of the compared methods
on the IIT Delhi and CAISA datasets respectively. The proposed d-prime CNN



60 4.3 Experiments

method outperforms the other approaches in terms of EER and performs well
also in terms of the d-prime index. The output feature vector size of the d-prime
approach is 128 bytes, the smallest amongst the compared methods. Figure 4.3
shows the ROC curves of different methods. The novel method achieves signif-
icantly lower false acceptance rates, which indicates its potential in large-scale
applications. Figure 4.4 depicts the genuine and impostor score distributions for
different approaches. The aim is to reduce the overlap of the two distributions,
which is speaking clearly in favor of the d-prime based solution.
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Figure 4.3. ROC curve (tradeoff between acceptance and rejection rates) of
the evaluated methods on the IIT Delhi and Casia datasets.

Table 4.1. Performance in terms of EER (the lower the better).

Method IIT Delhi CASIA Feature size

Competitive Code 2.33% 2.90% 384 Bytes

Ordinal Code 2.08% 2.41% 384 Bytes

Siamese CNN 6.08% 3.15% 128 Bytes

d-prime CNN 1.64% 1.86% 128 Bytes

4.3.4 Visual analysis of results

To validate our approach, visual inspection of information represented by the
output feature vector is provided. One can follow Zeiler’s visualization [Zeiler
and Fergus, 2014] in our d-prime CNN in order to obtain a saliency map for each
dimension of the output feature vector x ∈ R. The saliency map is produced
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Table 4.2. Genuine/impostor distributions separability in terms of d-prime
index (the higher the better).

Method IIT Delhi CASIA

Competitive Code [Kong and Zhang, 2004] 3.32 4.72

Ordinal Code [Sun et al., 2005] 3.92 5.75

Siamese CNN 2.91 2.20

d-prime CNN 4.84 5.73

to visually verify that dimensions of x represent meaningful information - some
part of a palm line, wrinkle or their combination.

Figure 4.5 shows results for several individual dimensions of an output fea-
ture vector on the right. It is clearly visible that different elements of the feature
vector represent different lines and wrinkles on the palmprint. The bottom left-
most image then shows a combination of visualizations from all 32 dimensions
of the output feature vector. This suggests that the novel d-prime based method
in combination with modified backpropagation can be used for palmprint seg-
mentation as well.

4.4 Discussion

This chapter has explored the use of deep learning techniques for biometric palm-
print image recognition. It presented a novel siamese-type convolutional neural
network architecture, which is designed specifically for contactless palmprint.
Unlike previous methods based on "handcrafted" features requiring manual ad-
justments, this approach automatically adapts the features from the data and
does not need cumbersome parameter tuning. Instead of training the network
with the traditional Siamese loss, it employs the novel d-prime loss, which aims
to maximize the separation of the genuine and impostor score distributions. The
aforementioned separation of score distributions results in improved recognition
performance and better scalability.

Compared to its non-learning based counterparts, this approach is easily trans-
ferable across different datasets. The network architecture stays the same and it
is only necessary to retrain the filters. This way, one can obtain very good classi-
fier for any palmprint database without the need for tedious parameter tuning.

The results presented on the identification task are very encouraging. The



62 4.4 Discussion

900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700
0

0.2

0.4

0.6

0.8

1

Matching score

genuine
impostor

(a) Competitive code

900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900 2,000
0

0.2

0.4

0.6

0.8

1

Matching score

genuine
impostor

(b) Ordinal code

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Matching score

genuine
impostor

(c) d-prime CNN

Figure 4.4. Score distributions on the IIT Delhi dataset for two baseline ap-
proaches (a,b) and the proposed method (c). Genuine and impostor distribu-
tions are shown in green and red, respectively. Higher score corresponds to
smaller similarity between the palmprint images. The aim is to minimize the
overlap between the two distributions, which is better achieved by d-prime in
comparison to the other state-of-the-art approaches.
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Figure 4.5. Representation of an input image by the output feature vector
of our CNN. The input image is in the top row on the left, the whole represen-
tation by all the features is in the bottom row on the left (red color indicates
the relative importance of the pixel). The remaining four images on the right
are representation of the input image by four random dimensions of the output
feature vector.

success of deep-learning-based approaches for contactless palmprint recognition
has been later on followed by e.g. Ariyanto et al. [2018]; Wang et al. [2018];
Bensid et al. [2018]; Genovese et al. [2019]; Fei et al. [2019b]; Ungureanu et al.
[2020]. Besides, the visual inspection of what the output feature vector repre-
sents supports the desire of exploiting this approach in palmprint segmentation
tasks in the future. Last but not least, d-prime learning has presented itself as a
general learning paradigm, which has been successfully adopted by many other
works in various fields [Vijay Kumar et al., 2016; Wang et al., 2018a; Gainza
et al., 2019; Guo et al., 2020].
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Chapter 5

Towards low-quality fingerprint
improvement

This chapter is based on Svoboda et al. [2017]. It presents a method to enhance
and reconstruct missing details in low-quality partial fingerprint impressions –
for example, latent fingerprints.

In addition to inspecting the palm of the hand, one can view the hand as a
whole, including the fingers. In an ideal scenario, access to fingerprints – one
of the oldest and most powerful biometric modalities – would be readily avail-
able. Fingerprints in conjunction with hand geometry and palmprint may result
in a very robust, contactless biometric system. Contactless, image-based finger-
print sensing is an extremely challenging task, even more so in unconstrained
environments. This may result in samples containing only partial fingerprints,
very low-quality impressions, etc. Similar challenges are typical for processing
of latent fingerprints, which we have decided to use as our model use-case.

The centerpiece of the model is an autoencoder architecture, which receives
damaged fingerprints as input and learns to reconstruct the complete original.
Such denoising autoencoder models, however, typically require a fair number of
original/damaged pairs as training samples, which no existing fingerprint dataset
provides. Training of our model is made possible by accumulating a large dataset
of synthetic fingerprints using an open-source implementation of SFinGE [Cap-
pelli et al., 2000] called Anguli [Ansari, 2011] and adding certain noise to the
samples as post-processing. The experiments show it is possible to train a model
able to reconstruct fingerprints fully on synthetic data, therefore overcoming the
large database requirement. Fingerprints reconstructed using this method are
then fed to several standard feature-extraction and matching pipelines, yielding
state-of-the-art results on the IIIT Delhi latent fingerprint database [Sankaran
et al., 2011, 2015].
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5.1 Fingerprint similarity measure

The proposed method is based on Convolutional Autoencoders (CAE). Gradi-
ent analysis of the fingerprint image ridge pattern is, therefore, a natural choice
as the computation of the image gradient can be implemented using the con-
volutional operator. In particular, gradient analysis allows extracting the ridge
positions and orientations.

Ridge positions. Ridge positions can be recovered simply by computing gradi-
ent magnitude image using directional derivatives. Directional derivative of the
fingerprint sample I is computed using directional kernel Sθ as follows:

Gθ (I) = I ? Sθ , (5.1)

where θ ∈ {0,45, 90,135} is the gradient direction.
Criterion of similarity of a target image It and its reconstruction Ir is then

defined as average Mean Squared Error (MSE) over all the directions:

Egrad(It , Ir) =

∑

θ∈T
1
n‖(It − Ir) ? Sθ‖2

2

|T |
, (5.2)

where T = {0, 45,90,135} is the set of considered orientation angles (in de-
grees) and n is the number of image pixels.

Ridge pattern orientation. Orientation of the ridge pattern (see Chapter 2) is
defined through image moments based on image gradients. Considering Gx = G0

and Gy = G90, the covariance matrix of the image is defined using second order
central moments (µ′20, µ′02, µ′11) Hu [1962]:

Cov(I(x , y)) =

�

µ′20 µ′11
µ′11 µ′02

�

=

�

Gx x Gx y

Gx y Gy y

�

, (5.3)

where Gx x = gΣs
? (Gx · Gx), Gy y = gΣs

? (Gy · Gy) and Gx y = gΣs
? (Gx · Gy). In

the above, gΣ represents a Gaussian smoothing kernel with covariance Σ and ·
denotes the element-wise product.

Eigenvectors of the covariance matrix Cov(I(x , y)) point in the directions of
the major and minor intensity of image I . This information is enough to compute
the orientation as the angle between the eigenvector corresponding to the largest
eigenvalue and the x-axis, which is expressed by formula:

Θ =
1
2

tan−1

�

2Gx y

Gx x − Gy y

�

. (5.4)



67 5.2 Fingerprint reconstruction model

Further, the reliability orientation field [Khalil, 2011] is calculated in order
to strengthen the similarity between the reconstructed image and the associated
ground-truth. The ridge orientation image is converted into a continuous vector
field as

(Φx ,Φy) = (cos(2Θ), sin(2Θ)), (5.5)

Subsequently, the resulting vector field is denoised applying a low-pass Gaussian
filter

(Φ′x ,Φ′y) = (gΣo
?Φx , gΣo

?Φy). (5.6)

The reliability measure R is then defined by means of minimum inertia Imin and
maximum inertia Imax as follows:

Imin =
(Gy y + Gx x)− (Gx x − Gy y)Φ′x − Gx yΦ

′
y

2
, (5.7)

Imax = Gy y + Gx x − Imin, (5.8)

R= 1−
Imin

Imax
. (5.9)

The intuition behind is that when the ratio Imin/Imax approaches 1, there is very
little orientation information at that point.

Finally, the orientation energy Eori and reliability energy Erel is defined as the
MSE of the orientation and reliability measures computed on the target image It

and the reconstructed image Ir ,

Eori =
1
n
‖Θ(It)−Θ(Ir)‖2

2, (5.10)

Erel =
1
n
‖R(It)− R(Ir)‖2

2. (5.11)

5.2 Fingerprint reconstruction model

Following the principles introduced in the previous section, the model is a fully
convolutional autoencoder network designed according to the guidelines pre-
sented in [Radford et al., 2015]. The full architecture is depicted in Figure 5.1.
In the encoder, each convolutional layer is equipped with REctified Linear Unit
(ReLU) [Nair and Hinton, 2010] nonlinearity. Batch normalization is applied to
each layer for faster convergence [Ioffe and Szegedy, 2015].

The output of the encoder is directly fed to the decoder, which copies the
architecture of the encoder with the following changes. Convolutional layers
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are replaced with de-convolutional layers (i.e. fractionally strided convolutional
layers [Radford et al., 2015]) and ReLU nonlinearities with Leaky-ReLU [Maas
et al., 2013]. The original grayscale image is reproduced at the output by means
of an additional convolutional layer equipped with a sigmoid activation which is
attached to the end of the decoder.

Training objective. The chosen objective function is based on the analysis of
gradient-based fingerprint similarity measures described in Section 5.1. It is com-
posed as a weighted average of three different losses, in particular:

E = Egrad +λ(Eori + Erel), (5.12)

where Egrad enforces the model to reconstruct the fingerprint ridges at the same
positions, while Eori and Erel regularize the model in order to produce consistent
orientation of the fingerprint ridge pattern with respect to the original input.
Parameter λ= 0.1 weights the regularization losses.

Training procedure. Training of autoencoder models is subject to the availabil-
ity of a sufficient dataset. This approach overcomes this shortcoming by training
purely on synthetic data. The generated fingerprints undergo transformations
such as rotation, translation, directional blur, morphological dilation and finally
blending with several different backgrounds in order to simulate latent finger-
print impressions.

The ground truth (target) images are further binarized using approach based
on Bartunek et al. [2006]. The presented autoencoder model, therefore, learns
not only to reconstruct the original image (target) but also directly produces its
binarized version, which is a more favorable representation for feature extraction
and matching modules.

5.3 Experiments

We provide an extensive evaluation of the proposed approach on two different
standard benchmarks, which are presented first. The section follows with a de-
scription of the experimental setup. Subsequently, we compare our performance
to the baseline performances reported by the authors of the datasets. Finally,
NBIS NIST [2007] utility is used to evaluate the quality of the samples recon-
structed by our method.
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5.3.1 Datasets

The proposed autoencoder model has been evaluated on publicly available latent
fingerprint datasets which are shortly described next.

IIIT-Delhi Latent Fingerprint [Sankaran et al., 2011] dataset consists of latent
fingerprint impressions of all ten fingers from 15 different subjects lifted from
two different backgrounds. Multiple instances are captured for each fingerprint
to allow latent-to-latent fingerprint comparisons. In total, there are 1046 latent
impressions

IIIT-Delhi Multi-sensor Optical and Latent Fingerprint (MOLF) [Sankaran et al.,
2015] contains 100 subjects and a total of 19200 fingerprints acquired using
three different sensors (Lumidigm Venus IP65 Shell, Secugen Hamster-IV, Cross-
Match L-Scan Patrol) and two versions of lifting latent impressions (single latent
fingerprints, simultaneous latent fingerprints) lifted using black powder dusting
process.

5.3.2 Experimental setup

First, performance is evaluated by applying standard fingerprint recognition al-
gorithms on original fingerprints and those enhanced by the presented method.
Two different feature extraction method are employed: one proposed by Abra-
ham et al. [2011] (further abbreviated as ABR) and MINDTCT from NBIS [NIST,
2007]. Extracted features are subsequently compared using two different match-
ing methods, namely BOZORTH3 [NIST, 2007] (abbreviated to BOZ in the fol-
lowing text) and Minutiae Cylinder Code (MCC) [Cappelli et al., 2010, 2011;
Ferrara et al., 2012, 2014].

For all the remaining evaluations, the best performing method on the latent
fingerprint matching, which is a combination of ABR + MCC, is chosen.

All the results are presented in terms of TopX measure and Cumulative Match
Characteristic (CMC) curves.

5.3.3 Latent-to-Latent matching

The evaluation was carried out using the protocol described in Sankaran et al.
[2011]. The whole IIIT-Delhi latent fingerprint dataset contains 1046 samples
of all ten fingerprints collected from 15 different subjects. The split strategy
of Sankaran et al. [2011] is adopted, randomly choosing 395 images as gallery
and 520 as probes, making sure that each class contains at least one gallery
sample. 131 images were left out since Sankaran et al. [2011] used them for
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Figure 5.2. Latent-to-Latent matching on IIIT-Delhi latent database. CMC
curve showing the performance improvement of our enhancement approach
(solid lines) against matching raw latent fingerprints (dashed lines).

training. Ten-fold cross-validation is performed in order to ensure the random
splitting does not influence the reported results.

Table 5.1 shows Rank-1 and Rank-10 accuracy for both recognition methods
with and without the proposed enhancement clearly demonstrating the boost
in performance while enhancing input samples using the proposed approach.
The novel approach outperforms all the fingerprint matching methods evaluated
by Sankaran et al. [2011]. It is worth pointing out that as opposed to Sankaran
et al. [2011], the proposed method does not need to be trained on a subset of
the data.

Careful examination of the CMC curves in Figure 5.2 shows that the proposed
approach boosts the performance of combination ABR + MCC much more than
that of MINDTCT + BOZ. This can be attributed to the fact that the energy min-
imized during the training of the model is composed of very similar operations
to the ridge binarization part of the ABR feature extraction algorithm.

5.3.4 Latent-to-Sensor matching

MOLF dataset was employed to evaluate the approach on a much more chal-
lenging task of latent-to-sensor fingerprint matching. The dataset contains all
ten fingerprints of 100 different subjects. The samples are of very different qual-
ity, including some very poor samples where no ridge structure is visible. Fin-
gerprints of each subject are capture with several commercial fingerprint scan-
ners (Lumidigm, Secugen and Crossmatch). In addition, each participant pro-
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Method Accuracy
Enhancement Extract + Match Rank-1 Rank-10

Raw ABR + MCC 35.58% 58.27%
Raw MINDTCT + BOZ 57.69% 71.92%
Our ABR + MCC 57.12% 79.04%
Our MINDTCT + BOZ 62.69% 78.85%

Table 5.1. Latent-to-Latent matching on IIIT-Delhi latent database. Matching
was performed on images obtained with the proposed fingerprint enhancement
(Our) and with no enhancement (Raw).

vides a set of latent fingerprint impressions. This allows performing matching of
latent fingerprints to the ones acquired by a sensor. Following the test protocol
of Sankaran et al. [2015], first and second instance fingerprints for each user
from a sensor scanned database are considered as the gallery. The whole latent
fingerprint dataset consisting of 4400 samples is considered the probe set.

We compare to the evaluation of Sankaran et al. [2015], where minutiae
were extracted automatically and matched using one of the standard algorithms.
Sankaran et al. [2015] evaluated the performance of publicly available MINDTCT
+ BOZ and commercial Verifinger [NeuroTechnology, 1998] fingerprint match-
ing methods, reporting very poor performance for both. Results for the proposed
approach are presented using the combination ABR feature extractor and MCC
matching algorithm (ABR + MCC) and summarized in Table 5.2 and Figure 5.3.
It shows that ABR + MCC performs very poorly on the original samples while
enhancing the samples using the novel approach results in a significant perfor-
mance boost.

5.3.5 Cross-dataset Latent-to-Sensor matching

To evaluate the influence of different sensors on the quality while matching la-
tent fingerprints to the sensor scans, an additional comparison of matching latent
fingerprints to Secugen and Crossmatch sensors using the ABR +MCC matching
method is presented. Quality of the acquired fingerprint samples is of-course
bound to the type of sensor that is used. Therefore, the performance of match-
ing latent fingerprints to samples from different sensors can slightly differ. Ta-
ble 5.3 and Figure 5.4 however both indicate that enhancing fingerprints using
the proposed method results in significant performance boost independently on
the sensor at hand.
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Figure 5.3. Latent-to-Sensor matching on IIIT-Delhi MOLF database. CMC
curves showing comparison of our enhancement approach (solid lines) against
matching raw latent fingerprints (dashed lines) to the Lumidigm database.

Method Accuracy
Enhancement Extract + Match Rank-25 Rank-50

Raw MINDTCT + MCC 8.02% 12.59%
Raw ABR + MCC 3.07% 5.45%
Our MINDTCT + MCC 12.55% 18.36%
Our ABR + MCC 16.14% 22.36%

Sankaran et al. [2015] MINDTCT + BOZ N/A 6.06%
Sankaran et al. [2015] VeriFinger N/A 6.80%

Table 5.2. Latent-to-Sensor matching on IIIT-Delhi MOLF database. Shown
as the performance of matching Lumidigm images to latent fingerprints with
enhancement (Our) and with no enhancement (Raw). Two more methods listed
in Sankaran et al. [2015] are compared.

5.3.6 Fingerprint quality

To qualitatively evaluate the reconstruction of latent fingerprints done by the
proposed model, quality assessment using the NIST Fingerprint Image Qual-
ity (NFIQ) utility (part of NBIS [NIST, 2007]) was carried out. It assigns a finger-
print image a numerical score from 1 (great quality) to 5 (very poor quality). The
distribution of score values shown in Figure 5.5 supports the claimed benefits of
using the proposed enhancement method, being compared to raw fingerprints



74 5.3 Experiments

5 10 15 20 25 30 35 40 45 50
0

10

20

30

Rank-N

A
cc

ur
ac

y
(%

)

Raw-Crossmatch
Raw-Secugen
Raw-Lumidigm
Our-Crossmatch
Our-Secugen
Our-Lumidigm

Figure 5.4. Cross-dataset Latent-to-Sensor matching on IIIT-Delhi MOLF
database. CMC curve showing the performance improvement of our enhance-
ment approach (solid lines) against matching raw latent fingerprints (dashed
lines) to the Lumidigm, Secugen, and Crossmatch scanner datasets.

Method Accuracy
Enhancement Gallery dataset Rank-25 Rank-50

Raw Lumidigm 3.07% 5.45%
Raw Secugen 2.59% 5.18%
Raw Crossmatch 2.68% 5.32%
Our Lumidigm 16.14% 22.36%
Our Secugen 13.27% 19.50%
Our Crossmatch 12.66% 19.07%

Table 5.3. Cross-dataset Latent-to-Sensor matching on IIIT-Delhi MOLF
database. Performance of matching Lumidigm, Secugen, and Crossmatch sen-
sor images to latent fingerprints enhanced by our model (Our) and with no
enhancement (Raw). In all cases, combination ABR + MCC was used for
feature extraction and matching.

and an alternative enhancement method based on histogram equalization.
Successful and unsuccessful results of latent fingerprint reconstruction for

both real and synthetic data are shown in Figure 5.6 and Figure 5.7 respectively.
The proposed method enhances the ridge information well in cases where it is
still somehow present. For very difficult cases, where no discernible ridges are
visible, the proposed approach expectedly fails. This is however not wrong, since
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producing ridge pattern where there is none visible could result in the generation
of false minutiae and negatively affect the matching results.
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Figure 5.5. Image quality assessment using NFIQ utility. We compare the
raw data with data improved using adaptive histogram equalization and data
improved using our enhancement. The quality assessment score ranges from
1-5, where the lower the better.

5.4 Discussion

In this chapter, a deep-learning-based technique for enhancement of damaged
and incomplete latent fingerprints has been presented. It is based on convolu-
tional autoencoder models popular in deep learning nowadays. The objective
function is based on gradient analysis of the fingerprint ridge structure in order
to make the autoencoder learn accurate reconstructions of fingerprints.

The proposed approach overcomes the burden of large dataset requirement
for training of the model by employing a synthetic fingerprint generation soft-
ware in order to generate sufficient, theoretically unlimited, amount of training
samples.

The trained model has been evaluated on standard benchmarks for latent-to-
latent fingerprint matching as well as latent-to-sensor fingerprint matching. In
both cases, the novel approach outperforms the current state-of-the-art on these
datasets by a significant margin.

Nevertheless, the model is not always successful and some of the failure cases
have been evaluated qualitatively, showing the potential risk of generating false
minutiae. This issue can influence the performance of fingerprint recognition
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(a) Successful reconstruc-
tions

(b) Fail cases

Figure 5.6. Examples of the fingerprint reconstructions on real latent finger-
prints. Each pair is (input, reconstruction) (a) successfully reconstructed sam-
ples (b) cases where the model fails to reconstruct the fingerprint well.

greatly and should, therefore, be addressed as future work. Meanwhile, others
have followed this work [Schuch et al., 2017; Li et al., 2018; Dabouei et al.,
2018; Joshi et al., 2019]. In particular, Schuch et al. [2017] have proposed
a conditional generative autoencoder-based model, which should address the
aforementioned issue, setting new state-of-the-art on the benchmark datasets.

As our approach does not directly extract minutiae or perform matching but
instead reconstructs the correct ridge pattern from a poor-quality fingerprint,
it has potential for broad alternative applications such as the reconstruction of
fingerprints affected by diseases or enhancement of fingerprints from camera-
based contactless fingerprint sensors.
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(a) Successful reconstructions (b) Fail cases

Figure 5.7. Examples of the fingerprint reconstructions on synthetic data. Each
triplet is from left to right (input, reconstruction, target) (a) successfully recon-
structed samples (b) cases where the model fails to reconstruct the fingerprint
well.
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Chapter 6

Improving robustness of neural networks

Previous chapters in this thesis covered novel methods for hand biometrics based
on image analysis using deep learning. Their performance is, however, heavily
influenced by the reliability of the trained model. Unfortunately, such systems
have been proven vulnerable to adversarial attacks [Szegedy et al., 2014], mak-
ing them easy to fool. This raises some serious concerns for the application of
deep learning in biometrics. It is, therefore, necessary to seek innovative design
methodologies to ensure deep neural networks be robust to such attacks.

This chapter is based on Svoboda et al. [2019]. It presents PeerNets, a novel
family of convolutional networks alternating classical Euclidean convolutions
with graph convolutions to harness information from a graph of peer samples.
This introduces the effect of non-local propagation within the model, where la-
tent features become conditioned on the global structure induced by the graph.
Extensive evaluations show that PeerNets are, indeed, more robust to many types
of adversarial attacks and, therefore, offer a way to mitigate the negative effect
of adversarial noise.

6.1 Peer Regularized Networks

A new deep neural network architecture that takes advantage of the data space
structure is proposed. The centerpiece of the model is the Peer Regularization (PR)
layer, designed as follows. Let X1, . . . ,XN be n× d matrices representing the fea-
ture maps of N images, which are referred to as peers (here n denotes the number
of pixels and d is the dimension of the feature in each pixel). Given a pixel of im-
age i, we consider its K nearest neighbor graph in the space of d-dimensional fea-
ture maps of all pixels of all the peer images, where the neighbors are computed
using e.g. the cosine distance. The kth nearest neighbor of the pth pixel xi

p taken

79
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from image i is the qkth pixel x jk
qk

taken from peer image jk, with k = 1, . . . , K and
jk ∈ {1, . . . , N}, qk ∈ {1, . . . , n}. A variant of graph attention network (GAT)
by Veličković et al. [2018] is applied to the nearest-neighbor graph constructed
this way,

x̃i
p =

K
∑

k=1

αi jk pqk
x jk

qk
, αi jk pqk

=
LeakyReLU(exp(a(xi

p,x jk
qk
)))

∑K
k′=1 LeakyReLU(exp(a(xi

p,x jk′
qk′
)))

(6.1)

where a() denotes a fully connected layer mapping from 2d-dimensional input to
scalar output, and αi jk pqk

are attention scores determining the importance of con-
tribution of the qkth pixel of image j to the output pth pixel x̃i

p of image i. This
way, the output feature map X̃i is a pixel-wise weighted aggregate of the peers.
Such Peer Regularization is reminiscent of non-local means denoising of Buades
et al. [2005], which operates on a single image and computes the attention be-
tween different pixels based on their neighborhood similarity. Matching pixels
in different images has some analogies with the PatchMatch algorithm [Barnes
et al., 2009]. Our Peer Regularization, instead, takes the pixels from multiple
images rather than from the same image, and the attention weights are learn-
able.

In principle, one would use a graph constructed by performing nearest neigh-
bor search across all the available training samples. This is unfortunately not
feasible in practice due to memory and computation limitations. Instead, an
approximation using the Monte Carlo method can be computed as follows.

Let X1, . . . ,XN ′ denote the images of the training set. M smaller batches of
N � N ′ peers are selected randomly with uniform distribution, batch m con-
taining images {lm1, . . . , lmN} ⊂ {1, . . . , N ′}. The nearest-neighbor graph is con-
structed separately for each batch m, such that the kth nearest neighbor of pixel
p in image i is pixel qmk in image jmk, where m = 1, . . . , M , jmk ∈ {lm1, . . . , lmN},
and qmk ∈ {1, . . . , n}. The output of the filter is approximated by empirical ex-
pectation on the M batches, which is estimated as follows:

x̃i
p =

1
M

M
∑

m=1

K
∑

k=1

αi jmk pqmk
x jmk

qmk
. (6.2)

As it is desired to limit the computation overhead, M = 1 is used during training,
whereas larger M is used during inference (see Section 6.3 for details).
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Figure 6.1. Our Peer Regularization illustrated on three pixels (red, green,
blue) of a CIFAR image (center). For each pixel, five nearest neighbors are
found in peer images. Plots represent the feature maps in the respective pixels;
numbers represent the attention scores.

6.2 Graph construction

There are different approaches to graph construction during the training and
testing phase, which are shortly described below.

During training, it is possible to construct the graph using all the images of the
current batch as peers. This is done by computing all-pairs distances followed
by the selection of the K-nearest neighbors. To mitigate the influence of the
small batch sizes during the training of PeerNets, a high level of stochasticity is
introduced inside the Peer Regularization layer by using dropout of 0.2 on the
all-pairs distances while performing K-nearest neighbors and 0.5 on the attention
weights right before the softmax nonlinearity.

For testing, N fixed peer images are randomly selected from the training set
and their distances with respect to all the testing samples are computed. Feeding
a batch of test samples, each of them can be adjacent only to the N samples in the
fixed graph, and not to other test samples. Because of the approximation in the
graph construction described in the previous section, one needs to ensure that
the random pre-selection of the graph nodes does not influence the performance.
This is done using Monte Carlo sampling over M forward passes with different
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uniformly sampled graphs with N nodes and averaging the predictions over the
M runs at the end.

6.3 Experiments

The robustness of proposed Peer Regularization against adversarial perturbations
is evaluated on standard benchmarks in computer vision, which are described
first. The section continues with presenting the evaluated model architectures
and subsequently follows evaluation on different adversarial attacks.

6.3.1 Datasets

Robustness of PeerNets is evaluated on the standard datasets MNIST [LeCun,
1998a], CIFAR-10 and CIFAR-100 [Krizhevsky, 2009]which are shortly described
next.

MNIST is a dataset of handwritten digits with a training set of 60000 exam-
ples and test set of 10000 examples. Each example belongs to one of the 10
classes (numbers 0 to 9). The digits have been further size-normalized and cen-
tered in a fixed-image size of 28× 28 pixels.

CIFAR-10 and CIFAR-100 are both labelled subsets of a big dataset of tiny
natural color images introduced by Torralba et al. [2008]. The size of each image
is 32× 32 pixels. In particular, CIFAR-10 consists of 50000 training images and
other 10000 images for testing, and has 10 classes, meaning 6000 images per
class. CIFAR-100 is similar, it has 50000 images in the training set and test set of
10000 images, but has 100 classes in total, meaning 600 images per class. The
100 classes are additionally grouped into 20 superclasses, which provides two
different labellings: on a coarse and fine level.

6.3.2 Experimental setup

Evaluation has been done using several common architectures such as LeNet [Le-
Cun, 1998a] or ResNet [He et al., 2015]. This is mainly to be able to compare to
the previous state-of-the-art in the field of adversarial attacks. The modifications
of the aforementioned architectures adding the novel PR layers are referred to
as PR-LeNet and PR-ResNet (see Figure 6.2) and are described next.
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Figure 6.2. Modification of LeNet-5 and ResNet with the novel Peer Regular-
ization Layer into PR-LeNet and PR-ResNet.

For MNIST, modified LeNet-5 architecture is introduced. Two PR layers are
added after each convolutional layer and before max-pooling (Figure 6.2 top).
Performance on CIFAR-10 is evaluated using modified ResNet-32 model. With
A = 16, B = 32 and C = 64 as depicted in Figure 6.2 (bottom). In particular,
two PR layers are added at the last change of dimensionality and before the
classifier. Each ResNet block is a sequence of Conv + BatchNorm + ReLU + Conv
+ BatchNorm + ReLU layers. Finally, ResNet-110 is used for CIFAR-100, with
A = 16, B = 32 and C = 64, modified in the same way as for CIFAR-10. Each
block is of size 18.

Timing. During training on CIFAR-10 with an unoptimized PR-ResNet-32 im-
plementation, batch of 64 samples is processed in 0.15s compared to traditional
ResNet-32 baseline which takes 0.07s. At inference time a batch of 100 samples
with a graph size of 100 is processed in approximately 1.5s whereas the baseline
takes only 0.4s. Nevertheless, much can be done in order to speed-up the PR
layer if needed as future work.

Gradient obfuscation. Athalye et al. [2018] has shown that many defenses
against adversarial attacks indeed do not work. It has been demonstrated that the
majority of the methods, in fact, obfuscate the gradients, which in other words
simply means that the gradients of the network cannot be propagated through the
defense mechanism and the attacker, therefore, does not know how to foster the
perturbation. Such methods block the gradient-based attacks but are not of any
use in case of e.g. black-box attacks. It also raises the concern that the proposed
defense mechanisms do not actually work, and better performance is achieved
only due to gradient obfuscation. Athalye et al. [2018] proposed several ways to
suggest whether a method is obfuscating gradients or not. Further experiments
show that PeerNets do not exhibit the behavior which typically accompanies this
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problem (e.g. the PR-models can be always fooled with an unbounded attack,
iterative attacks are more efficient than the single-step ones, etc.).

6.3.3 Sample specific attacks

PeerNets have been evaluated on different types of sample-specific non-targeted
attacks, defined as follows. Having a testing sample with label y , it aims to gen-
erate an adversarial sample particularly for this testing sample, which will have
label ŷ 6= y , while satisfying ||x − x̂||∞ ≤ ε, where ε is some small value to
produce a perturbation v that is ideally imperceivable. For reproducibility, an
implementation of the following methods provided by Foolbox by Rauber et al.
[2017] has been used. In this experiment we have tested against Gradient De-
scent, Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD)
attacks that are described in Section 3.6.2.
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Figure 6.3. Comparison of PeerNets and classical CNNs on the CIFAR-10
dataset using various gradient-based sample-specific attacks.

Figure 6.4 clearly demonstrates that the sample-specific gradient-based at-
tacks have to generate much more significant perturbation in order to fool the
PeerNets architectures. The visual interpretation is shown in Figure 6.4, suggest-
ing that it is hard to fool PeerNets without generating perturbation observable
by a human eye.

Presented results further confirm that PGD, the strongest attack that was
tested, can generate a perturbation for all the samples in the test set even while
using PeerNets. However, the generated perturbations are generally much stronger.
For classical ResNet-32, it is enough to set ε ≥ 0.013, while PR-ResNet-32 re-
quires ε≥ 0.651 in order to be fooled, which obviously generates much stronger
perturbation. The success of PGD is due to its iterative nature and it also supports
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(a) Gradient Descent

(b) FGSM

(c) PGD

Figure 6.4. Comparison of perturbation strength sufficient to fool the network,
as generated by different sample-specific gradient-based attacks. ResNet-32 is
always shown on the left, whereas our PR-ResNet-32 on the right.
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the fact that our method does not suffer from previously mentioned gradient ob-
fuscation, as a viable perturbation can be found based on the iterative processing
of network gradients for any test sample.

6.3.4 Universal adversarial perturbations

We evaluate PeerNets on the universal adversarial perturbation as well, using
the publicly available implementation of the adversarial attack from the Deep-
Fool Moosavi-Dezfooli et al. [2017] toolbox. The strength of the perturbation
was bound by ||v||2 ≤ ρE||x||2, where the expectation is taken over the set of
training images and the parameter ρ controls the strength.

The evaluation was carried out on MNIST dataset [LeCun, 1998a] and com-
pared to LeNet-5 as a baseline. The same evaluations were performed also on
CIFAR-10 and CIFAR-100 datasets, using ResNet-32 and ResNet-110 as baselines,
respectively. On CIFAR-10, additional comparison to other baselines is provided,
namely BRELU with Gaussian Additive Noise by Zantedeschi et al. [2017], and
MagNet of Meng and Chen [2017]. It has been shown that PeerNets perform
significantly better than MagNet in particular, and better than BRELU for strong
noise, as shown in Figure 6.5.

Considering MagNet, in particular, the key advantage of PeerNets is that it
can be fully trained end-to-end together with regularization layers instead of as a
separate independent module, which should allow learning more discriminative
and robust features. Moreover, training a separate module is often prone to the
gradient obfuscation problem mentioned before.

It should be noted that a minor loss in accuracy at ρ = 0 is observed while
using PeerNets. This is a consequence of the regularization due to the averaging
in feature space and could be possibly mitigated by increasing the model capac-
ity. This is demonstrated by an experiment with doubled number of maps in PR
layers (marked as v2 in Figure 6.5), which indeed shows notable improvement
while preserving its original robustness, as opposed to the ResNet baselines.

Universal perturbations generated for both classical CNNs and our PR-Nets
are depicted in Figure 6.6. It can be observed that perturbations generated for
PR-Nets have more localized structure. This suggests that the attack might be
trying to fool the KNN mechanism of the PR layers, which results in strong noise
in background areas rather than in the central parts usually containing the object.
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6.3.5 Black-box attacks

To show the generality of PeerNets against various classes of adversarial attacks,
an evaluation on some of the strong black-box attacks has been done as well. A
small subset of 100 test samples has been randomly sampled from the test set.
Both untargeted single-step and iterative black-box attacks computed using finite
difference method have been used, compared to CW-loss based white-box attack.

Achieved results in Table 6.1 demonstrate that PeerNets are efficient on black-
box attacks as well. Besides, it verifies that this novel approach does not cause
gradient masking. Athalye et al. [2018] explains that iterative attacks should be
stronger than single step and that black-box attacks should be a strict subset of
white-box attacks, which holds in all the presented results.

Table 6.1. Evaluation of PeerNets on finite-difference based query black-box
attacks using CIFAR-10 dataset.

Method
Attack
type

ε
Fooling rate [%]

White-box Black-box

ResNet-32 single step 8.0 82.00 82.00
PR-ResNet single step 8.0 34.00 14.00

ResNet-32 iterative 0.5 41.00 41.00
ResNet-32 iterative 8.0 100.00 100.00
PR-ResNet iterative 8.0 45.00 28.00
PR-ResNet iterative 12.0 63.00 37.00

6.3.6 Adversarial training

It has been also studied what is the effect of adversarial training [Madry et al.,
2017] compared to PeerNets. The baseline model was the same ResNet-32 that
appeared in the previous paragraphs. Two different configurations were used
producing two different baseline models, in particular:

1. ResNet-32 A - the default hyperparameters provided by the repository;

2. ResNet-32 B - the same hyperparameters as in our paper.

PeerNets model was trained traditionally using SGD with momentum without
adversarial training.



88 6.3 Experiments

0.0 0.2 0.4 0.6 0.8 1.0
0

20
40
60
80

100

ρ

Fo
ol

in
g

ra
te
[%
]

MNIST

NetArch ResNet-32 BRELU ResNet-32 MagNet
PR-NetArch PR-NetArch v2

0.0 0.035 0.07 0.1
0

20
40
60
80

100

ρ

CIFAR-10

0.0 0.02 0.04 0.06
0

20
40
60
80

100

ρ

CIFAR-100

Figure 6.5. Fooling rate on various datasets for different levels ρ of universal
adversarial noise. The NetArch is Lenet-5, ResNet-32 and ResNet-110 for
MNIST, CIFAR-10 and CIFAR-100 datasets respectively.

Results presented in the Table 6.2 show the superiority of PeerNets compared
to adversarial training. PR-ResNet outperforms the classical ResNet CNN by a
margin of 20%. Moreover, it should be noted that PR-ResNet was trained with-
out having any knowledge about the attack, as opposed to ResNet-32 trained
adversarially on the specific attack.

Table 6.2. Comparison of PeerNets to adversarially trained version of ResNet-
32 baseline on CIFAR-10 dataset.

Method Acc. orig. [%] Acc. pert. [%]

ResNet-32 A 78.86 45.47
ResNet-32 B 75.59 42.53
PR-ResNet 77.44 64.76

6.3.7 Interpretation of Peer Regularization

In order to verify and better understand what Peer Regularization presented in
Section 6.1 actually does, one can take the attention scores from the Peer Regu-
larization layer, backpropagate them to the input and compose a new image as
a weighted sum of the peer pixels. Results of this experiment depicted in Fig-
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Figure 6.6. Examples of generated universal adversarial perturbations for
CIFAR-10 dataset and their applications to a sample image for different values
of ρ. Shown are results of ResNet-32 (top couple of rows) and PR-ResNet-32
(bottom couple of rows).

ure 6.7 confirm that the Peer Regularization layer tries to recompose the original
feature maps using pixels of peer feature maps, resulting in a new representation
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of the same object.

Figure 6.7. Examples of “Franken-images” (second row) constructed by back-
propagating the attention scores to the input and using them to compose a
new image as a weighted sum of the peer pixels. Original images are shown in
the first row.

6.4 Discussion

A novel family of deep networks, so-called PeerNets, alternating Euclidean and
Graph convolutions to harness information from peer images was introduced. It
has been demonstrated that such models are more robust to adversarial attacks,
showing their robustness in a variety of scenarios through extensive experiments
for both white-box and black-box attacks. The framework is straightforward to
use and Peer Regularization layers can be easily incorporated into any baseline
model with minimum effort. Using PeerNets allows achieving much lower fool-
ing rates with negligible loss in performance. Interestingly, the amount of noise
required to fool PeerNets is much higher and results in the generation of new im-
ages where the noise has a clear structure and is significantly more perceivable
to the human eye.

Moreover, the analysis of the effect of Peer Regularization in feature space
shows the ability to recompose features from the graph of peers. This shows
potential for diverse applications in image processing such as inpainting or neural
style transfer [Svoboda et al., 2020a], and also in biometrics(e.g. using the graph
of peers for dynamic database search) and possibly many more.



Chapter 7

End-to-end 3D hand geometry
biometrics

With respect to methods involving fusion in biometrics, a more complete solu-
tion is to have a 3D hand biometric-recognition system based solely on geometric
properties of the hand shape. Such systems provide an interesting alternative in
places where fingerprints and palmprints cannot be used (e.g. wearing latex
gloves, very dirty hands) and face recognition is not an option (e.g. wearing face
masks, helmets, goggles or other protective equipment). Solutions have been
proposed in the past (see Section 2.3), which, however, neither offer satisfactory
performance nor are easy to use, often imposing strict constraints on the acqui-
sition environment. Recent advances in deep learning and 3D sensing suggest
that many of the acquisition constraints could be dropped. Attempts to propose
a system that would take advantage of the latest trends, however, requires a new
dataset, as evaluation data for such approaches are missing at the moment.

This chapter is based on Svoboda et al. [2020b]. It first presents a new dataset
for less-constrained 3D hand biometric recognition. The dataset was acquired
using a low-cost acquisition device (an off-the-shelf 3D camera) in variable envi-
ronmental conditions (there were no constraints on where the system was placed
during acquisition). Each sample is a short RGB-D recording (a video) of a user
performing a predefined gesture, which allows researchers to capture frames of
different hand poses or to perform recognition directly from the short video se-
quences.

Secondly, this chapter introduces a novel method presenting an end-to-end
3D hand-geometry biometric system based on geometric deep learning architec-
ture called Dynamic Graph CNN [Wang et al., 2019]. The novel architecture is
compared to two baselines, namely the popular PointNet [Qi et al., 2016] and

91
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the original Dynamic Graph CNN architectures for processing point cloud data.
Successful training of such models requires a considerable amount of annotated
data, which is typically not present in biometrics. To overcome this limitation,
we train the proposed model fully on synthetic data and then transfer the model
knowledge to a real dataset while preserving the performance.

7.1 NNHand RGB-D: Hand RGB-D Sequence Dataset

This section introduces a new dataset of human hands collected for the purpose
of evaluating hand biometric systems on real world data. At the moment, the first
version of the dataset, with suffix v1 1, has been released and comprises 79 indi-
viduals in total. An extension to at least 200 different identities is planned (ver-
sion v2) for the future.

The dataset is collected using an off-the-shelf range camera in different en-
vironments and lighting conditions. Each person contributing to the dataset is
asked to repeatedly perform three different series of gestures with their hand
in front of the camera, resulting in three RGB-D video sequences collected for
each participant. Each subject in the dataset has the following annotations: User
ID, Gender and Age. The dataset is mainly targeting three-dimensional shape
recognition. However, the presence of RGB-D information also allows attempt-
ing 2D shape or palmprint recognition. Attempting palmprint recognition on
this dataset might be, however, an extremely challenging task due to the poor
lighting conditions of the RGB data in many sequences.

7.1.1 Acquisition device

The vast majority of biometric datasets for hand geometry recognition provide
data from expensive devices and constrained acquisition environment. Such so-
lutions are rather hard or even impossible to deploy in industrial applications.
This dataset is aimed to be more practical and is supposed to provide data from af-
fordable easy-to-deploy devices and close-to-real environments. Evaluating new
methods on such datasets will provide a better indication of the deployment po-
tential of the proposed algorithms in real-world applications.

In particular, this dataset has been collected using Intel RealSense SR-300
RGB-D camera [Zabatani et al., 2019], which is based on structured light technol-
ogy (see Section 2.3.1). This technology provides a cost-performance trade-off
that is desirable with low-cost range scanners. The sensor is known for satisfying

1https://handgeometry.nnaisense.com



93 7.1 NNHand RGB-D: Hand RGB-D Sequence Dataset

reconstruction results while sacrificing some robustness against diverse lighting
conditions (e.g. direct sunlight hinders the reconstruction by destroying the in-
frared pattern projected into the scene). The RealSense SR-300 allows capturing
RGB-D video sequences with a depth resolution of 640×480 accompanied by the
RGB stream at a resolution up to 1920×1080. With its framerate of 30fps at the
maximum resolution, it is well suitable for recording RGB-D video sequences.
The minimum distance for a successful data acquisition is approximately 0.25m,
which also speaks in its favor while scanning human hands.

7.1.2 Video sequences

Storing video sequences of human hands performing gestures instead of just im-
ages allows to evaluate pose-agnostic hand shape recognition as the hand can be
viewed in different poses. It also makes the dataset inter-disciplinary, because it
gives the possibility to use it for evaluation of hand pose estimation systems.

There are three types of gestures that each participant is asked to perform
repeatedly, four times in particular. Between the gestures, the participants are
asked to remove their hands from the scene and re-enter. This naturally forces
them to re-introduce the hand in the scene each time and provides more diverse
and realistic samples.

The recorded video sequences are depicted in Figure 7.1. More examples of
the described sequences can be found on the project website2 together with a
more detailed description of the dataset.

7.1.3 Applications of the dataset

Capturing of RGB-D video sequences instead of static images gives the possibil-
ity to utilize the dataset for evaluation of new methods on real world data in
different areas of research. Moreover, inspired by Afifi [2019], the additional in-
formation such as age and gender that is stored for each subject allows investigat-
ing the possibility of gender and/or age recognition based on three-dimensional
hand shape as well.

Hand shape recognition The main purpose of the dataset is to serve as a new
evaluation benchmark for three-dimensional hand shape recognition based on
a low-cost three-dimensional sensor. Three different RGB-D video sequences
are being captured. The dataset, therefore, allows to experiment with non-rigid

2https://handgeometry.nnaisense.com
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Figure 7.1. The three sequences (one in each row) recorded for each subject
in the dataset. The first sequence is sliding hand vertically into the scene with
open palm and removing it again, repeatedly. In the second sequence, rotation
of the hand is added when the hand is upright. In the last sequence, user closes
and reopens the fist while the hand is upright.

three-dimensional shape recognition as well as attempting to perform recogni-
tion viewing the hand from both palm and the dorsal side of the hand.

Palmprint recognition Each video sequence contains the RGB information as
well. This means that one can attempt to perform palmprint image recognition
on this dataset. However, it should be noted that the illumination conditions
are often suboptimal (see Figure 7.2) which makes palmprint recognition on this
dataset a rather challenging task.

Figure 7.2. The poor quality of the palmprint images in the NNHand RGB-D
dataset.
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Age and gender recognition The gender and age together with three-dimensional
hand shape have not been recorded previously. They are provided in our dataset
as additional details for each subject, which opens the door to the investigation
of gender and age estimation of people from the three-dimensional shape of their
hand.

Hand pose estimation Even though this dataset does not provide annotations of
the hand pose, it can still be used as an additional test benchmark for qualitative
evaluation of the hand pose estimation methods, in addition to the recently pub-
lished hand pose estimation datasets [Tzionas et al., 2016; Kulon et al., 2020].

7.1.4 Examples

Figure 7.3 displays some examples of the data stored in the dataset. In particular,
it emphasizes the fact that both palm side and dorsal side of the hand is available,
together with different poses of the hand.



96 7.1 NNHand RGB-D: Hand RGB-D Sequence Dataset

Figure 7.3. Each row is a sample taken from one of the RGB-D sequences in
the dataset. Left-to-right are shown the color image, the depth map and the
corresponding point cloud.
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7.2 Hand Recognition using Geometric Deep Learning

The state-of-the-art methods in three-dimensional biometric hand recognition
presented earlier in Section 2.3 show that only classical hand-crafted approaches
have been used in the past. The existing solutions are mostly based on the dif-
ferential geometry of surfaces and analysis of different parts of the hand surface
separately, e.g. separate fingers, palm, etc. By the nature of these methods, they
are not robust against changes in pose and therefore a good alignment of the
hand is required to achieve good performance. This calls for sophisticated pre-
processing of the range scans involving extraction of different parts of the hand
or estimating its orientation. Undesirably, the quality of the pre-processing has
a significant direct impact on recognition performance.

Following the trends of the last decade (see Chapter 3), it seems very ap-
pealing to take advantage of deep neural networks to learn good features for
three-dimensional hand recognition automatically. However, the data typically
acquired by a range scanner are in the form of a point cloud. Applying deep
neural networks to point clouds has been a great challenge for years. There have
been attempts to solve the problem by using e.g. voxel grids [Maturana and
Scherer, 2015], but only some more recent works [Qi et al., 2016, 2017; Shen
et al., 2017; Wang et al., 2019; Deng et al., 2018] have really shown how to
perform convolution-like operations on clouds of points as noted in Chapter 3.
Some of the most notable approaches are PointNet [Qi et al., 2016, 2017] and
Dynamic Graph CNN by Wang et al. [2019], which have defined new state-of-
the-art performance on many benchmarks ranging from object classification to
semantic scene segmentation.

It is very appealing to adapt such methods also in biometrics when dealing
with point clouds. However, a big challenge of using deep learning in biometric
applications remains the lack of training data, which is discussed next.

7.2.1 Challenge of training samples

Lack of training samples for deep neural network-based systems is a typical prob-
lem in biometrics. The data is often personal and therefore complicated to col-
lect, even more so to distribute. In particular, the datasets available for three-
dimensional hand recognition are clearly not of a sufficient size that would allow
reliable training of a deep neural network.

The new dataset from Section 7.1 does not come to rescue either. With its
currently limited size of 79 subjects, it might not span the space of possible hand
shapes well. Moreover, the dataset is released strictly for academic use, in order
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to demonstrate the potential of newly developed algorithms. Being bound by
the dataset license, any model trained on this new dataset cannot be employed
in practical commercial scenarios. It is, therefore, desirable to seek more inde-
pendent ways of training deep learning models in biometrics.

It has been already shown in Chapter 5 that one can overcome such limi-
tation by using synthetic training data. An essential building element of such
an approach is a good synthetic data generator. Recent developments in hand
pose estimation have provided us with a very convenient deformable model of
three-dimensional hands called MANO [Romero et al., 2017], which is publicly
available. It allows generating hands of arbitrary shapes in arbitrary poses. The
generated hand sample is controlled by two sets of parameters. First are the
so-called shape parameters S ⊆ R10 that define the overall size of the hand and
lengths and thickness of the fingers. The second group of parameters are the pose
parameters P ⊆ R12, where the first 9 parameters define the hand pose in terms
of non-rigid deformations (e.g. bending fingers, etc.) and the last 3 parameters
define the orientation of the whole hand in the three-dimensional space.

(a) (b)

Figure 7.4. Clustering of points for the synthetic samples using the skeleton
joints into semantically meaningful parts. (a) The original point cloud; (b) Result
of clustering the point cloud.

One can use the pre-trained MANO hand model to generate a theoretically
unlimited amount of three-dimensional hands controlling their shape and pose
via s ∈ S and p ∈ P . Such three-dimensional models can be easily reprojected
into range data. This is very suitable for training a person identification system
since the parameters of the MANO model were estimated from real world data.
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Each subject in the dataset will be represented by its shape parameters s. Those
are allowed to vary only slightly for the same individual, but also have to vary
noticeably for different individuals. Many samples for the same individual can be
generated either with an arbitrary pose by randomly varying the pose parameters
p or in a constant pose by keeping p fixed.

Synthetic training dataset For training of all models presented in this chapter, a
synthetic dataset of 200 subjects with 50 samples per subject has been generated
using the MANO model. This yields a total of 10000 training samples, a number
that would be rather difficult to collect from real individuals, especially for com-
mercial purposes. Each sample in the dataset is stored as a three-dimensional
point cloud together with positions of the skeleton joints and the parameter vec-
tors s ∈ S and p ∈ P that were used to generate it. The skeleton joints can be
used to generate an approximate semantic segmentation of the hand surface into
clusters, as shown in Figure 7.4. Additionally, each sample has a label assigning
it to a particular subject.

7.2.2 PointNet++ baseline

As the first baseline method for the new dataset NNHand RGB-D, a PointNet++ [Qi
et al., 2017] architecture, the successor of the famous PointNet by Qi et al.
[2016], has been used. PointNet++ builds a multi-level grouping of points. At
each level, always larger local regions are being abstracted along the hierarchy
via sampling and grouping operations. This hierarchical sampling and grouping
operation allows capturing local details better, as opposed to traditional Point-
Net, which uses only a single max-pooling operation over the whole point set for
information aggregation.

The centerpiece of PointNet++ architecture is so-called Set Abstraction (SA)
layer, which does sampling and grouping of points followed by PointConv [Qi
et al., 2017] operation, which is internally a Multilayer Perceptron (MLP) oper-
ating on a set of points. SA module typically has three parameters. The sampling
ratio r, the neighborhood radius ρ and the MLP subnetwork, which we can spec-
ify as MLP(m, n, . . .), where m, n, . . . are the number of parameters of each layer of
the MLP. A sequence of SA modules is then followed by Global Aggregation (GA)
module, which is just an MLP followed by global max-pooling operation. To re-
duce the dimensionality of the output and increase the capacity of the network,
the GA module is usually followed by another MLP, which produces the final
output.
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In the above terms, we can define the baseline PointNet architecture as fol-
lows. It has two SA modules. The first SA module has r = 0.5,ρ = 0.2 and
MLP(3,64, 64,128). It is followed by second SA module with r = 0.25,ρ = 0.4
and MLP(3+128,128, 128,256). The output of the second SA module is forked
into two parallel branches. The first branch is supposed to output the shape pa-
rameters s ∈ S . It is composed by a GA module with MLP(3+256,256, 512,1024)
followed by another MLP subblock defined as MLP(1024,512, 256,10). The sec-
ond branch, instead, is outputting the pose parameters p ∈ P and is composed
of a GA module with MLP(3 + 256, 256,512, 1024) whose output is fed to an
MLP module MLP(1024,512, 256,12). The described architecture is depicted
graphically in Figure 7.5.

Big PointNet++ A second version with more parameters has been evaluated
in parallel. This model has a bigger subnetwork for the shape regression. In par-
ticular, the GA module is equipped with MLP(3+256, 256,512, 1024×21)whose
output is fed to an MLP module MLP(1024× 21, 1024×21

12 , 1024×21
24 , 10× 21, 10).

Figure 7.5. t PointNet++ architecture used as a baseline method.

Training. The model is trained on the synthetic dataset presented in Section 7.2.1.
In particular, the optimization problem is posed as a regression over the shape
and pose parameters s ∈ S and p ∈ P feeding a three-dimensional point cloud
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as an input. It is defined using the following objective function for a batch of
M ∈ N samples:

E = ES +λEP (7.1)

where ES is the MSE loss for the regression of the shape parameters

ES =
1
M

M−1
∑

m=0

|ŝm − sm|2, (7.2)

EP is the MSE loss for the regression of the pose parameters

EP =
1
M

M−1
∑

m=0

|p̂m − pm|2, (7.3)

and λ is a hyperparameter weighting the importance of regressing the pose pa-
rameters p with respect to the shape parameters s.

7.2.3 Dynamic Graph CNN baseline (DGCNN)

Another baseline method that was evaluated on the NNHand RGB-D dataset is
the Dynamic Graph CNN (DGCNN) by Wang et al. [2019]. Opposed to Point-
Net, DGCNN is able to exploit the local geometric structures better by construct-
ing a local neighborhood graph and applying convolution-like operations on it.
The graph is constructed dynamically in each layer of DGCNN using k-Nearest
Neighbors search to determine the neighborhood of each point. This allows for
non-local propagation of the information along the point cloud.

The main building block of DGCNNs is the EdgeConv module [Wang et al.,
2019], which computes the graph dynamically at every layer of the network and
performs the convolution-like operation based on an MLP. EdgeConv module has
three parameters: the MLP used internally, the number of neighbors for the KNN
search k and the type of the local aggregation performed in each neighborhood
ag gr, which is most often mean or max.

Borrowing some terminology from the previous subsection, we can define the
baseline DGCNN architecture as follows. The model starts with two EdgeConv
modules, both with k = 10 and max aggregation type. The first module has
MLP(3+3,64, 64,128) and the latter one MLP(128+128,256). Outputs of both
EdgeConv modules are concatenated and passed forward. The model is then
forked into two branches, one regressing the pose parameters p ∈ P and the
other one the shape parameters s ∈ S of the input point cloud. The first branch
is composed of a GA module with MLP(128+256,1024) followed by another MLP
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subblock defined as MLP(1024,512, 256,12). The second branch is almost the
same, with only one difference. The final MLP block’s output is 10-dimensional as
it outputs the shape parameters s. For more details, the architecture is depicted
in Figure 7.6.

Big DGCNN A second version with more parameters has been evaluated in
parallel. This model has a bigger subnetwork for the shape regression. In partic-
ular, the GA module is equipped with MLP(128+ 256,1024× 21) whose output
is fed to an MLP module MLP(1024× 21, 1024×21

12 , 1024×21
24 , 10× 21,10).

Figure 7.6. DGCNN architecture used as a baseline method.

Training. The model is trained on the synthetic dataset presented in Section 7.2.1.
As for the PointNet++ baseline, also here the optimization problem is defined as
a regression over the shape and pose parameters s ∈ S ,p ∈ P feeding a three-
dimensional point cloud as an input. The objective is the same as in Equation 7.1.
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7.2.4 Learning to cluster hand point clouds

The human hand is a complex and highly non-rigid surface. Moreover, RGB-D
scans are often noisy. Matching noisy samples of hands using a global descriptor
seems very challenging. An easier task would be to rather aim at describing the
hand surface divided into semantically meaningful parts. These parts can be pre-
defined based on human anatomy, for example by looking at the skeletal structure
of the hand. Such clustered description (see Figure 7.7) retains more information
and should be robust against noise and, possibly non-rigid, transformations.

Figure 7.7. The difference between global and clustered pooling of the N
input feature points. Global pooling creates a single new descriptor for the whole
hand shape, while clustered pooling creates a new descriptor for each of the C
semantically meaningful clusters.

To this end, inspired by the differentiable graph pooling [Ying et al., 2018;
Cangea et al., 2018; Bianchi et al., 2019], the Global Pooling Module in the shape
regression sub-network of architecture from Section 7.2.3 is replaced with a
novel module called Clustered Pooling Module (see Figure 7.7), which is described
next.
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Clustered Pooling Module It allows to dynamically learn a clustering function
l : RF → RC , which produces cluster assignment probability vector c ∈ RN×C into
C ∈ N clusters for a vector of N ∈ N feature points x ∈ RN×F as

c= softmax(l(x)). (7.4)

To get the clustered representation, the input feature points x ∈ RN×F further un-
dergo a non-linear transformation defined as f : RF → RF ′ and are subsequently
aggregated into the C clusters as:

x f = f (x), (7.5)

x̂=
cT x f

D
, (7.6)

where the division represents a Hadamard division, D ∈ RC×F ′ is a matrix with

identical columns, where each column is defined as
�∑N

i=1 ci

�T
∈ RC×1 and x̂ ∈

RC×F ′ is the pooled representation of the transformed input x f ∈ RF ′ . The novel
clustered DGCNN architecture which we call Cluster DGCNN is schematically de-
picted in Figure 7.8.

Training. Similarly to the baselines, this model is trained on the synthetic dataset
presented in Section 7.2.1. The optimization problem is posed as a regression
over the shape and pose parameters s ∈ S and p ∈ P , and simultaneous classi-
fication of the point clusters while feeding a three-dimensional point cloud as an
input. It is defined using the following objective function for a batch of M ∈ N
samples:

E = ES +λ1EP +λ2Eclust , (7.7)

where ES and EP are described by the Equation 7.1. Eclust is a cross-entropy loss
which enforces the classification of points into correct clusters. It is defined as:

Eclust =
1
M

M−1
∑

m=0

−log

�

exp(cym
m )

∑

j exp(c j
m)

�

, (7.8)

where cn is the vector of cluster probabilities for points in a point cloud and
y are the cluster labels of these points. Hyperparameter λ1 is weighting the
importance of regressing the pose parameters p ∈ P with respect to the shape
parameters s ∈ S and λ2 is a hyperparameter weighting the importance of the
cluster classification loss.
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Figure 7.8. Improved DGCNN architecture with hand point clustering. The
Global Pooling Layer in Shape Regression Network is replaced with our novel
Clustered Pooling Layer.

7.3 Experiments

All models presented in this section have been extensively tested on the newly
collected dataset NNHand RGB-D in order to provide baseline results. The ex-
periments are designed so to highlight the possible usage of the dataset as well
as point out some relevant challenges that come along the way. The new dataset
consists of video sequences and therefore requires some pre-processing in order
to obtain RGB-D frames that the baseline evaluation has been done on. Exper-
iments with both All-To-All matching as well as splitting the database into ref-
erence and probe subsets and performing Reference-Probe matching have been
conducted.

For matching, we consider the per-cluster shape parameters as the output
feature vector in case of our novel Cluster DGCNN. There are 21 different clusters
which results in a vector of 210 dimensions. For a fair comparison, in case of
PointNet++ and DGCNN baselines, which both perform a global pooling, we take
the output of the layer before the last in the shape regression network as the
feature vector, which has 256-dimensions. Different metrics have been tried for
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computing the distance, where the L1 metric has shown to be the most suitable
one.

In addition, we evaluate the proposed baselines on the current standard bench-
mark in the field, which is the Hong Kong Polytechnic University Contact Free
3D/2D Hand Images database3 [Kanhangad et al., 2009, 2011], referred to as
HKPolyU v1 and HKPolyU v2 database further in the text.

HKPolyU v1 database. A dataset of 177 subjects containing in total 1770 RGB-
D samples that were acquired with high precision Minolta Vivid 910 range scan-
ner. Each subject has been scanned in two sessions in different time periods,
obtaining 5 samples per session. The precision of the data is enough to perform
both 3D hand geometry and 3D palmprint recognition.

HKPolyU v2 database. A dataset of 114 subjects with a total of 570 RGB-D
samples that were acquired using the Minolta Vivid 910 range scanner. Each
subject has been scanned 5 times, each time presenting his hand on different
global orientation. Besides, the precision of the data is enough to perform both
3D hand geometry and 3D palmprint recognition.

7.3.1 Data pre-processing

A dataset of fixed RGB-D frames has been sampled from the video sequences.
For each subject, sequence number 1 has been taken and 10 samples have been
acquired while the hand is held straight up with the fingers extended and palm
facing the camera. The dataset currently contains 79 subjects, which gives a total
of 790 samples. Similarly, sequence number 2 has been used to obtain a second
set of 790 samples. For reproducibility of this evaluation, the acquired subset of
RGB-D frames is stored together with the original NNHand RGB-D dataset.

Each frame captured from the video sequences undergoes several pre-processing
steps. First, the background is removed using the depth information. Subse-
quently, to avoid problems with objects or other parts of the body appearing in
the frames, a mask keeping only the central area of each frame is applied (see
Figure 7.9). Next, an OpenPose-based [Cao et al., 2017] single RGB image hand
pose estimator4 is used to estimate the hand keypoints. Thanks to the one-to-one
mapping between RGB and depth information, this allows to filter out the unde-

3https://www4.comp.polyu.edu.hk/ csajaykr/myhome/databaser equest/3dhand/Hand3D.htm
4https://github.com/erezposner/HandKeyPointDetector
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sired part of the hand below the wrist in the whole RGB-D frame. Step-by-step
preprocessing of a random frame is depicted in Figure 7.9.

In the pre-processed subset, each sample is stored in two files. The first file
is the pre-processed colored point cloud stored in PLY format. The second file
is then additional information for the point cloud, namely the color and depth
frame the point cloud was taken from together with the detected hand keypoints.

Figure 7.9. Each depth sample in the dataset undergoes the following pre-
processing steps before it is saved as a point cloud.

Point cloud pre-processing. The hand point cloud extracted from the pre-processed
depth image further undergoes the following pre-processing steps before feature
extraction and matching takes places. First, each point cloud is subsampled using
Furthest Point Sampling (FPS) [Eldar, 1992; Eldar et al., 1997] to 4096 points.
Consequently, each sample is aligned to a reference hand point cloud using the
Iterative Closest Point (ICP) [Zhang, 1994] algorithm.

7.3.2 All-To-All matching

In this experiment, each feature vector is taken and its distance to feature vectors
of all other samples in the dataset is computed. The sample with the shortest
distance is taken as the matching class. The performance is shown in terms of
Top-1 accuracy and EER in Table 7.1. The ROC curve for this experiment is shown
in Figure 7.10.
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Table 7.1. All-To-All matching performance of presented methods on different
datasetes in terms of Top-1 accuracy and EER.

Method
NNHand RGB-D HKPolyU v1 HKPolyU v2

Top-1 [%] EER [%] Top-1 [%] EER [%] Top-1 [%] EER [%]

PointNet++ 53.42 47.19 30.40 34.28 9.12 37.55
Big PointNet++ 48.35 34.79 40.62 38.51 17.72 44.24

DGCNN 76.20 21.70 84.63 19.03 39.12 27.40
Big DGCNN 73.54 22.05 73.79 19.66 29.30 27.62

Cluster DGCNN 98.23 14.45 99.27 7.92 59.65 25.08
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Figure 7.10. All-To-All matching ROC curves (tradeoff between acceptance
and rejection rates) of the presented methods on different datasets.

The baseline performance is set by the results obtained using PointNet++ and
DGCNN methods. First, increasing the number of parameters of the Shape Re-
gression Network does not help and could be attributed to overfitting due to use of
an over-parametrized model, which results in a drop in performance during test
time. Second, our novel Cluster DGCNN outperforms both baselines by a margin
and sets new state-of-the-art on the NNHand RGB-D dataset as well as HKPolyU
v1 and v2 standard benchmarks. The original works presenting HKPolyU datasets
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do not perform this experiment and we, therefore, cannot compare to them di-
rectly.

7.3.3 Reference-Probe matching

A very popular way of evaluating biometric algorithms on diverse datasets is per-
forming so-called reference - probe matching, where the dataset is split into two
parts, one is the reference (i.e. the database) and the rest is the probe (i.e. the
samples one wants to identify). Different splitting strategies have been applied
depending on the dataset at hand.

For the HKPolyU v1 dataset, the splitting strategy proposed by Kanhangad
et al. [2009] is followed, choosing the 5 samples from the first session as the
reference and the 5 samples from the second session as the probe for each user.

In case of HKPolyU v2, we use the splitting strategy used in Kanhangad et al.
[2011], where 1 sample is chosen as probe and all the other 4 as reference.
This process is repeated 5 times, always picking different sample as the probe to
produce the genuine and impostor scores for the generation of the ROC curve
and computation of the EER.

NNHand RGB-D database has 10 samples per user from sequence 1 and an-
other 10 samples from sequence 2. For each user, the 10 samples from sequence
1 are selected as the reference and the other 10 samples from sequence 2 are left
as the probe.

Results for all datasets obtained using different methods are summarized in
Table 7.2 in terms of Top-1 accuracy and EER. The ROC curves are then presented
in Figure 7.11.

Table 7.2. Reference-probe matching performance of presented methods on
different datasets in terms of Top-1 accuracy and EER.

Method
NNHand RGB-D HKPolyU v1 HKPolyU v2

Top-1 [%] EER [%] Top-1 [%] EER [%] Top-1 [%] EER [%]

PointNet++ 24.05 39.08 17.29 33.14 12.10 35.39
Big PointNet++ 18.86 40.54 22.37 34.72 13.68 37.70

DGCNN 24.56 24.31 54.24 16.79 42.98 16.58
Big DGCNN 28.48 23.45 45.54 15.83 31.92 19.53

Cluster DGCNN 62.28 13.75 85.65 7.26 69.82 10.48
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Figure 7.11. Reference-probe matching ROC curves (tradeoff between accep-
tance and rejection rates) of the presented methods on different datasets.

The baseline performance is again represented by results on PointNet++ and
DGCNN methods. As in the All-To-All case, also for the reference-probe matching
the new state-of-the-art on NNHand RGB-D dataset is set by our novel Cluster
DGCNN, which superates both baselines by a margin.

On the HKPolyU v1 dataset, comparing to results of Kanhangad et al. [2009],
our method performs on-par, with Equal Error Rate (EER) higher by a few per-
cent. This is accounted to the fact, that as opposed to Kanhangad et al. [2009],
which analyzes HKPolyU samples in full resolution, here the evaluation is done on
subsampled point clouds of only 4096 points per model. In case of the HKPolyU
v2 dataset, we can compare to the results presented by Kanhangad et al. [2011],
where we outperform their method in terms of EER by a margin of 7% (which is
an improvement of 60% compared to their EER of 17.2%). This further supports
the high potential of our novel method.

7.3.4 Semantic segmentation analysis

Our method (which we call Cluster DGCNN), besides others, outputs the semantic
segmentation of the point cloud into parts, which the network was enforced to
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learn during training by the cluster assignment loss (see Equation 7.7) using the
cluster annotations provided with the synthetic training samples (see Figure 7.4).

There is no ground truth segmentation for the testing data, we, however,
provide a qualitative evaluation in Figure 7.12, which supports that the Cluster
DGCNN has learnt to segment the point cloud in a meaningful way. Aggregat-
ing information inside each cluster, therefore, provides a meaningful piece-wise
representation of the point cloud.

One should notice that due to the presence of noise in the input point clouds,
the segmentation is prone to produce some outliers in the finger regions (see
Figure 7.12). Influence of such inconsistencies on the final descriptor is reduced
by averaging feature vectors in each semantic region in order to produce the
global segment descriptor.

7.4 Discussion

A new dataset of RGB-D sequences of human hands, NNHand RGB-D, has been
presented. Each participant performs several predefined hand gestures in front
of the camera. This allows analyzing the surface of the hand from both palm
and dorsal side, as well as different positions. To the best of our knowledge, it is
the first dataset of this kind acquired mainly for biometric purposes. It opens the
door to new research in three-dimensional hand shape biometrics, in particular
non-rigid identity matching as well as matching from dynamic RGB-D sequence.

Together with the dataset, a transfer learning approach for three-dimensional
hand shape feature extraction, which is based on geometric deep learning princi-
ples, is presented. It is shown how to use synthetic data to train models which are
shown to generalize well on real data during testing. Several baseline methods
are presented together with our novel approach, which builds upon the DGCNN
model and learns semantic segmentation of the hand surface into parts. Such
segmentation describes the hand surface in a very structured way. We show
its efficiency both on current standard benchmark HKPolyU as well as NNHand
RGB-D dataset on which it sets the new state-of-the-art.

This is however only the first step in exploiting the possibilities of the NNHand
RGB-D dataset. The frames used during the experiments in this chapter were
captured in a rather good position, the hand being upright and palm facing the
camera. There is more such as fully non-rigid hand matching and matching from
RGB-D video sequences, which both remain open problems.
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(a) (b)

(c) (d)

Figure 7.12. Clustering of points computed by Clustered DGCNN for a real
sample. One can notice some classification errors around some of the fingers
due to high level of noise in the input data. (a,c) The original point cloud; (b,d)
Result of clustering the point cloud.



Chapter 8

Conclusions

This work brings the state-of-the-art methods from deep learning for computer
vision into three-dimensional hand-geometry biometrics and opens new possi-
bilities of advancing the field. Chapter 2 provides an introduction into hand
geometry biometrics and some related biometric modalities. Chapter 3 presents
the advances in computer vision and machine learning that motivated this work.
Utilizing this inspiration, Chapters 4-7 present novel methods to improve hand
geometry biometrics, either directly or via fusion with other hand-based biomet-
ric modalities. After a short review of what has been presented thus far, this
chapter concludes by proposing possible future directions.

Biometric fusion

Hand geometry biometrics often analyze data which provide not only hand-shape
information but also the texture of the hand surface. A natural extension of
hand-geometry-based systems is, therefore, the analysis of palmprint or, if visible,
fingerprint information.

Discriminative index CNN’s. [Svoboda et al., 2016] These are an alternative
to handcrafted palmprint-feature extractors that allow learning the optimal fea-
tures to describe a palmprint using a metric-learning approach. We replace the
traditional Siamese loss, taking into account the desire to separate genuine and
impostor score distributions during matching. These distributions are typically
modelled statistically as two normal distributions, and the aim is to minimize
their overlap, facilitated by the discriminative index optimization.

We experimentally show the advantage of using d-prime loss over Siamese
loss. Evaluations on standard benchmarks for palmprint biometrics show the
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superiority of our approach in terms of Receiver Operating Curve (ROC) and the
Equal Error Rate (EER) scores. We compute the discriminative index for our
solution, beating that of the baseline, which is expected since we derive our loss
based on that quantity.

Additionally, we propagate the computed feature vectors back through the
network in order to analyze what they represent. We show that each element
of the output feature vector activates for a different combination of palm lines
or wrinkles of the hand. Altogether, the output feature vector can, therefore, be
considered a global representation of the hand palm lines and wrinkles.

Latent fingerprint autoencoders. [Svoboda et al., 2017] Performing identifi-
cation from poorly-visible, partial fingerprints is a highly challenging task. A
representative example of this class of fingerprints are latent impressions lifted
from surfaces, for example, at crime scenes. State-of-the-art approaches in the
field design robust feature extractors or matching techniques, which aim to be
resilient to many missing minutiae points.

We take a different approach that operates solely as a pre-processing stage
and allows for subsequent reuse of existing feature-extraction and matching tech-
niques. Inspired by the performance of convolutional autoencoders and genera-
tive models in image processing, we employ a convolutional autoencoder to “fill
in” the missing pieces of a partial fingerprint. We train the network using a care-
fully designed set of losses which enforces the model to preserve the consistency
of the original ridgelines.

To overcome the challenge of missing training data, a synthetic dataset of la-
tent fingerprints is generated using open-source fingerprint generators. We show
how to efficiently train the model on synthetic data and perform a successful
transfer on real-world samples afterwards.

Our fingerprint enhancement technique allows the existing feature extrac-
tion and matching methods to reach state-of-the-art performance on the standard
benchmarks IIIT-Delhi Latent Fingerprint and IIIT-Delhi MOLF datasets on both
latent-to-latent and latent-to-sensor matching tasks. Subsequently, the finger-
prints enhanced using this novel approach are analyzed using the NIST Finger-
print Image Quality tool, which confirms that they are, indeed, of better quality.

Hand geometry biometrics

In addition to proposing improvements related to biometric fusion, we devote
ourselves to improving the hand-geometry analysis itself. Inspired by the current
state-of-the-art in deep learning for 3D shape analysis and hand pose estimation,
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we propose a novel approach to 3D hand-geometry processing for biometric ap-
plications. Furthermore, we provide a novel dataset to test our method on.

NNHand RGB-D dataset. The available biometric datasets for 3D hand shape
recognition are not very suitable for our application. Namely, HK PolyU v1 and
v2 both provide very high precision range scans with restricted environmental
conditions during capture.

We, therefore, resort to collecting our own dataset [Svoboda et al., 2020b] of
hand-range scans using an off-the-shelf 3D camera Intel RealSense SR-300. The
dataset currently contains 79 subjects and three short RGB-D video sequences
per subject. In each sequence, the user is performing a pre-defined hand gesture
several times repeatedly.

Collecting dataset of video sequences with different hand gestures for many
identities opens the door to a variety of new research directions in hand geometry
recognition. Besides palm or dorsal side facing hand samples, one can think of
fully non-rigid hand shape recognition from an arbitrary pose or recognition from
a video sequence instead of static frames.

Two baseline methods have been evaluated on the newly collected dataset for
the basic setting: the hand being held upright with the palm facing the camera
and fingers opened. In particular, we have applied two state-of-the-art meth-
ods for 3D point cloud classification PointNet++ and Dynamic Graph CNN. Due
to a lack of training data, we train both models adapting the transfer learning
approach we have used for latent fingerprint autoencoders. The MANO hand
generative model is used in order to generate a synthetic training database of
hands. Each hand is defined by a set of shape and pose parameters. The task of
PointNet++ and DGCNN is to regress these parameters given the 3D point cloud
as input. Features generated from the regressed shape parameters are then used
for matching. DGCNN shows superior compared to PointNet++ in all of our ex-
periments which we address to the fact that it constructs a neighborhood graph
dynamically and is, therefore, able to better exploit local neighborhood relations.

Clustered DGCNN. Describing the whole hand surface globally by a small set
of shape parameters can be rather challenging and too ambiguous for practicality.
We use the skeleton joints provided by the MANO hand model and then cluster
each synthetic hand sample into semantically meaningful parts. Taking the bet-
ter performing DGCNN model and replacing the Global Pooling Layer with our
novel Clustered Pooling Layer [Svoboda et al., 2020b], we leverage the cluster
annotations of the synthetic data in order to train the model to, besides regress-
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ing shape and pose parameters, semantically clustering the hand into parts. This
allows us to generate a set of shape parameters per-cluster and create a piece-
wise descriptor of the input point cloud.

The Clustered DGCNN is evaluated both on NNHand RGB-D dataset, as well
as subsampled point clouds from HK PolyU v1 and HKPolyU v2. It yields competi-
tive results on HK PolyU v1 while setting the new state-of-the-art performance for
NNHand RGB-D and HKPolyU v2 datasets. Results obtained on different datasets
confirm our assumption that piece-wise description of the point-cloud will have
more expressive power than a single global descriptor for the whole hand shape.
Furthermore, to show that our model yields meaningful and consistent semantic
clustering on the real-world datasets as well, despite it was trained on synthetic
data, some qualitative clustering results are provided.

Neural networks robustness

One would likely notice that all the novel methods introduced in this text are
based on deep learning, in particular convolutional neural networks or their
equivalents for graph-structured data. Despite outstanding performance of the
state-of-the-art deep learning approaches on many tasks, convolutional and graph
neural networks have been shown to be unstable, breaking down with a rather
negligible structured noise (adversarial perturbation) added to the input sample.
This poses a direct threat to biometric systems based on such models.

We have therefore devoted some time to studying adversarial perturbations
and how to defend against them. As a result, Peer Regularized Networks (Peer-
Nets) [Svoboda et al., 2019] have been presented. PeerNets extend the existing
models, e.g. LeNet, ResNet, by interleaving convolutional layers with peer reg-
ularization. For each input sample, feature maps are recombined from feature
maps of peer samples obtained from a graph of peers by means of KNN search
during peer regularization.

Robustness of PeerNets has been evaluated using LeNet-5 and ResNet on stan-
dard datasets MNIST, CIFAR-10 and CIFAR-100 defending against various types
of adversarial attacks showing increased robustness. We have performed addi-
tional evaluations to show that PeerNets do not suffer from gradient obfuscation,
which has just recently become a real concern for adversarial attack defenses.
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8.1 Potential future work

The presented state-of-the-art methods and results, together with our new dataset,
open doors to new lines of research:

Palm lines and wrinkle segmentation using d-prime loss.

Palmprint recognition systems based on convolutional neural networks clearly
benefit from utilization of the d-prime loss for model training. Besides utilizing
the output feature vectors directly for identification, one can use them together
with modified backpropagation in order to produce saliency maps. This has been
shown to highlight the palm lines and more prominent palm wrinkles and may
be used to segment them. Palm-line segmentation opens new possibilities for
applying ridge-based or line-based palmprint-recognition methods.

Hand shape recognition from video sequences.

The new NNHand RGB-D dataset is the first biometric dataset for hand shape
recognition to store RGB-D video sequences instead of only static frames. This
gives researchers the opportunity to work on hand-positioning systems, which
could detect the ideal position of the hand before saving a snapshot. Likewise, it
gives way for a potential new branch of hand-geometry recognition from video
sequences, where not only the hand shape but also the behavioral characteristics
of each user can be studied in order to create a stronger imprint of a person’s
identity.

Non-rigid hand shape recognition.

There exists a significant amount of quality research on non-rigid shape match-
ing in the literature. Nevertheless, none have attempted to employ such methods
in biometric hand-geometry recognition. Supposedly, this was due to the lack of
data to evaluate such methods on. Our NNHand RGB-D dataset allows captur-
ing hand snapshots in various poses and therefore removes the hurdle to this
previously-unexplored area of research.

Determining gender and age from the shape of the hand.

Besides assigning an anonymous ID to each subject in the NNHand RGB-D dataset,
we also stored the gender and, where given, the age information. Besides the
plethora of other applications mentioned already in this text, the dataset possibly
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allows investigating whether it is possible to tell the gender and/or the age of an
individual based on the shape of his/her hand.

Genetic traits in hands

In 2014, Claes et al. [2014] have set the first steps in the recovery of human
facial shape from the DNA based on a generative model. Performance of such
generative models can be potentially improved with the recent introduction of
3D mesh convolutional autoencoders applied to 3D face [Ranjan et al., 2018]
and hand [Tretschk et al., 2019; Kulon et al., 2019] reconstruction and gener-
ation. Having a dataset of human hands with DNA information available, one
could investigate the recovery of a hand shape of an individual from their DNA
information.

Image style transfer and inpainting with PeerNets.

PeerNets represent a novel family of neural network architectures interleaving
traditional Euclidean convolutions with graph convolutions in order to drasti-
cally mitigate the effects of adversarial attacks. Such architectures have broad
applications in machine learning, proven by their recent application to arbitrary-
image style transfer [Svoboda et al., 2020a]. Similarly, we believe PeerNets can
be applied to image inpainting and, outside of image processing, might find use
in e.g. transfer learning, biometrics, etc.



Publications during the PhD program

Svoboda, J., Bronstein, M. M. and Drahansky, M. [2015]. Contactless biometric
hand geometry recognition using a low-cost 3d camera, International Confer-
ence on Biometrics (ICB).

Svoboda, J., Masci, J. and Bronstein, M. M. [2016]. Palmprint recognition via
discriminative index learning, International Conference on Pattern Recognition
(ICPR).

Svoboda, J., Monti, F. and Bronstein, M. M. [2017]. Generative convolutional
networks for latent fingerprint reconstruction, International Joint Conference
on Biometrics (IJCB).

Monti, F., Boscaini, D., Masci, J., Rodolà, E., Svoboda, J. and Bronstein, M. M.
[2017]. Geometric deep learning on graphs and manifolds using mixture
model CNNs, Conference on Computer Vision and Pattern Recognition (CVPR).

Svoboda, J., Cashman, T. J. and Fitzgibbon, A. W. [2018]. QRkit: Sparse,
Composable QR Decompositions for Efficient and Stable Solutions to Prob-
lems in Computer Vision, Winter Conference on Applications of Computer Vision
(WACV).

Svoboda, J., Masci, J., Monti, F., Bronstein, M. M. and Guibas, L. J. [2019].
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks, International
Conference on Learning Representations (ICLR).

Svoboda, J., Anoosheh, A., Osendorfer, C. and Masci, J. [2020a]. Two-Stage
Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer,
Conference on Computer Vision and Pattern Recognition (CVPR).

Svoboda, J., Astolfi, P., Boscaini, D., Masci, J. and Bronstein, M. M. [2020b].
Clustered Dynamic Graph CNN for Biometric 3D Hand Shape Recognition, To
be published soon.

119



120 Publications during the PhD program



Bibliography

Abraham, J., Kwan, P. and Gao, J. [2011]. Fingerprint Matching using A Hybrid
Shape and Orientation Descriptor, State of the art in Biometrics, InTech.

Afifi, M. [2019]. 11k hands: gender recognition and biometric identification
using a large dataset of hand images, Multimedia Tools and Applications .

Allegion [2017]. HandKey II, https://us.allegion.com/en/home/products/
\categories/biometrics/schlage-handkeyII.html.

Ansari, A.-H. [2011]. Generation and storage of large synthetic fingerprint
database, Master’s thesis, IISc. M.E. Thesis.

Ariyanto, A., Djamal, E. C. and Ilyas, R. [2018]. Personality identification of
palmprint using convolutional neural networks, 2018 International Symposium
on Advanced Intelligent Informatics (SAIN) pp. 90–95.

Athalye, A., Carlini, N. and Wagner, D. A. [2018]. Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples, Inter-
national Conference on Machine Learning (ICML) .

Atwood, J. and Towsley, D. [2016]. Diffusion-convolutional neural networks,
Annual Conference on Neural Information Processing Systems (NIPS).

Barnes, C., Shechtman, E., Finkelstein, A. and B., G. D. [2009]. PatchMatch:
A randomized correspondence algorithm for structural image editing, ACM
Transactions on Graphics (Proc. SIGGRAPH) 28(3).

Bartunek, J. S., Nilsson, M., Nordberg, J. and Claesson, I. [2006]. Adaptive
fingerprint binarization by frequency domain analysis, Asilomar Conference
on Signals, Systems and Computers, pp. 598–602.

Bensid, K., Samai, D., Laallam, F. Z. and Meraoumia, A. [2018]. Deep learning
feature extraction for multispectral palmprint identification, Journal of Elec-
tronic Imaging 27(3).

121

https://us.allegion.com/en/home/products/\categories/biometrics/schlage-handkeyII.html
https://us.allegion.com/en/home/products/\categories/biometrics/schlage-handkeyII.html


122 Bibliography

Bianchi, F. M., Grattarola, D. and Alippi, C. [2019]. Mincut pooling in graph
neural networks, arXiv preprint arXiv:1907.00481 .

Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bronstein, M. M. and Zafeiriou, S.
[2019]. Neural 3d morphable models: Spiral convolutional networks for
3d shape representation learning and generation, International Conference on
Computer Vision (ICCV) .

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E. and Shah, R. [1993]. Signature
verification using a “siamese” time delay neural network, Annual Conference
on Neural Information Processing Systems (NIPS).

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P. [2017a].
Geometric deep learning: going beyond euclidean data, IEEE Signal Process.
Mag. 34(4): 18–42.

Bronstein, M. M., Bruna, J., Szlam, A., Bresson, X. and LeCun, Y.
[2017b]. Geometric deep learning on graphs and manifolds, http://

geometricdeeplearning.com/slides/NIPS-GDL.pdf. NIPS 2017 Tutorial.

Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. [2014]. Spectral networks and
locally connected networks on graphs, International Conference on Learning
Representations (ICLR) .

Buades, A., Coll, B. and Morel, J.-M. [2005]. A non-local algorithm for image
denoising, Conference on Computer Vision and Pattern Recognition (CVPR).
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