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Community division in complex networks has become one of the hot topics in the ¯eld of

network science. Most of the methods developed based on network topology ignore the dy-
namic characteristics underlying the structure. By exploring the di®usion process in the

network based on random walk, this paper sums up the general rule with temporal char-

acteristics as a temporary local balancing strategy which can be used in the community
division. The strategy divides the network into di®erent communities according to the du-

ration of a stable local balancing state in the di®usion process. The longer the duration, the

more stable the structure of the community in that state. Applying the strategy to computer-

generated and real-world networks, respectively, it is proved that these temporary local
balancing states existing in the di®usion process can reveal the internal community structure

of the network. In addition, the modular structure appears at di®erent time scales of di®usion

process, similar to the hierarchical organization, and also provides a new perspective for

multiscale network community detection.
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1. Introduction

Complex network is an abstract manifestation of the relationship between various

entities in nature, so as to facilitate people to study a series of laws and principles

related to nature. With the increasing trend of globalization, it can be found in many

contexts. Twitter, for instance, is a large online virtual interaction system that

includes hundreds of millions of users.1 Amazon, a global chain of shopping site, is

based on a business-to-business operation that provides a new model for the devel-

opment of social networks.2 As the phenomena of small-world3 and scale-free4

existing in complex networks are uncovered, network science theory has become

an inter-discipline across physics, computer science and sociology, as well as

engineering.5–11

Along with lots of researches focused on the properties of the network topology,

the most interesting is the community structure.12–15 In reality, a large number of

complex networks have been unveiled with community modules, that is, the con-

nections between the nodes within the community are more intensive than those

among communities. An important feature of the community is its potential struc-

tural functional units, which play an important role in the link prediction and node

classi¯cation. Community detection is to establish an algorithm model which con-

forms to the objective fact to excavate the hidden modules in the network. Although

this is interesting, it is a remarkably challenging and sensitive task. A broad extent of

di®erent methods have been developed, but the most widely used at present is the

modularity maximization, which classi¯es the communities that get higher modu-

larity scores as a basic criterion. Unfortunately, calculating modularity maximization

over all partitions in an exhaustive way has been proved to be an NP-hard problem.16

Using the maximum likelihood similarity17 based on statistical inference to solve this

problem is also a computationally hard one. So, a series of heuristic algorithms that

maintain the polynomial time are introduced to seek the approximate maximiza-

tion such as greedy algorithms,18–20 extremal optimization21,22 and evolutionary

algorithms.23

Because of the dynamic nature of the network topology, its structure shows dif-

ferent local or global characteristics at di®erent time scales.24,25 Many e®orts have

been paid to understand the dynamic process that occurs in the underlying network.

Earlier, Arenas et al. studied the relationship between dynamic time scales and

topological scales in complex networks,26 which illustrates that synchronization can

detect community structures at di®erent topological scales. Following that, the

synchronized clusters in modular networks are depicted by similar nodes that are

shown by a series of works,27–30 and the result can be used to guide the detection of

underlying communities. Besides, based on spin dynamics, the Hamiltonian features

of the ferromagnetic and antiferromagnetic interactions were introduced to dy-

namically divide the community.31 Based on di®usion dynamics, random walk, a

method based on information theory, is widely used to dynamically analyze the

network community structure.14,32 For example, in the popular method Walktrap,
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the similarity of nodes i and j used to detect the community structure is calculated

based on the probability of randomly walking from i to j at a ¯xed number of steps.33

Lambiotte et al. also introduced a systematic dynamical framework to analyze some

of the stability of mass function in community detection based on random walk.34

In this paper, considering that communities can be identi¯ed by running dy-

namical processes of random walk (i.e. di®usion process) on the network, we have

established a dynamic temporary balancing strategy to detect the communities in

the network, which also makes up for the lack of dynamic performance of the above-

mentioned algorithms. Through the detailed analysis of the whole dynamic pro-

cesses of random walk on the network, we notice that in the temporary local stable

state, it is not completely attenuated to the next state. That is, there will be an

intermittent stagnation in the di®usion process, which is closely related to the

number of communities in the network. These dynamic processes of random walk

correspond to the local duration of the relatively stable state of the network during

the di®usion, that is, di®erent time intervals will exhibit di®erent network struc-

ture changes. These changes determine the current community division of the

network at di®erent topological scales. Therefore, it can be used as an evaluation

criterion for multiscale community division in the di®usion process. Also, the dy-

namic processes of random walk, in turn, reversely re°ect the di®usion of infor-

mation transfer among di®erent communities. It is a very natural and easy transfer

process within the network and is related to the initial topology of the network.

Through testing experiments on computer-generated and real-world networks, it is

con¯rmed that this temporary balancing strategy is able to achieve a relatively

stable and non-attenuating zone (i.e. intermittent stagnation) in the di®usion

process, and thus detect the presence of the community. Moreover, because the

multiscale community structure is detected in the di®usion process, it can e®ec-

tively avoid the problem of resolution in the modularity maximization and improve

the accuracy of community division.35

The remainder of this paper is organized as follows. In Sec. 2, the concept of

random walk algorithm and its application in community detection are introduced.

On this basis, in Sec. 3, the temporary local balancing strategy is described and some

usage-oriented performance is brie°y discussed. The experimental results of bench-

mark tests for computer-generated networks and real-world networks are presented

and compared in Sec. 4. Finally, we conclude the work in Sec. 5.

2. Random Walk in Community Detection

Random walk dynamics is one of the most developed methods in community de-

tection. Assuming that a community has a high internal edge density and can be

clearly distinguished from other communities, the random walker would be trapped

in the community for a stable time duration until it ¯nds a path to move out of the

community. In order to better understand the random walk in the network, let us

¯rst introduce the principle of the current °ow in the electrical circuits.
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First, we place the unit resistor on each edge of the network of interest to build the

circuit. The unit current is injected into the circuit as the initial node at s, and it is

retrieved at the target node t, as shown in Fig. 1. The voltage of node i in the network

is represented by Vi and can be measured according to any convenient relative node.

According to Kirchho®'s Law of current conservation,36 the current entering or

leaving a node in the circuit is zero, which indicates its voltage satisfying the fol-

lowing equation: X
j

AijðVi � VjÞ ¼ �is � �it; ð1Þ

where �ij is the Kronecker factor, Aij (for all i) is an element of the adjacency matrix

and its form can be expressed as

Aij ¼ 1; if node i and j are connected;

0; otherwise:

�
ð2Þ

As
P

j Aij ¼ ki, where ki is the degree of node i, Eq. (1) can be rewritten as a

matrix

ðD � AÞ � V ¼ s; ð3Þ
where D is a diagonal matrix with Dii ¼ ki, and the injected vector s has elements

si ¼
þ1; i ¼ s;

0; otherwise;

�1; i ¼ t:

8<
: ð4Þ

It can be seen from Eq. (3) that because the Laplace matrix D �A is singular, it

cannot be inverted directly to obtain V. As the voltage here is arbitrary within an

additive constant, the vector V ¼ ð1; 1; 1; . . .Þ is always an eigenvector with eigen-

value zero. The decision item on the left side of Eq. (3) is the product form, so the

result is always zero. In physics, this means that the electric current in the circuit is

conserved, and mathematically, it suggests that for given N equations, there is at

least one that is super°uous, so it has no e®ect on the solution. The solution to ¯x the

Fig. 1. (Color online) The schematic diagram of the current °ow in an electrical circuit. As discussed in

the main text, the edges in the circuit network have been replaced by a consistent unit resistor, and the
unit current is injected into the circuit at the start node s and discharged at the target node t. According to

Kirchho®'s law of conservation of currents, the current in or out of a node in a circuit is zero. Therefore, in

the case of a known resistance, it is easy to calculate the voltage between two neighboring nodes.
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problem is also very simple. To remove one from the N equation, we can get the

inverted matrix. Therefore, according to the voltage measured relative to a certain

node �, the corresponding �th equation can be removed, which implies removing the

�th row of D � A. Considering V� ¼ 0, the �th column can also be removed, so that

an ðN � 1Þ � ðN � 1Þ matrix can be represented as D� � A�. Then according to

Eq. (3), we ¯nd

V ¼ ðD� � A�Þ�1 � s: ð5Þ
By de¯nition, the voltage of the removed node � is zero. When performing the

matrix representation, it is considered to re-add a �th row and column, and set its

value to zero, which gives a new result matrix T. Then, combined with Eq. (4), for

source node s and target node t, the voltage at node i is given by

V
ðstÞ
i ¼ Tis � Tit: ð6Þ

The current °ow through the ith node can be calculated by half the sum of the

absolute values of the current °ow along the edge incident on that node

I
ðstÞ
i ¼ 1

2

X
j

AjjV ðstÞ
i � V

ðstÞ
j j;

¼ 1

2

X
j

AijjTis � Tit � Tjs þ Tjtj; ði 6¼ s; tÞ: ð7Þ

It is worth noting that Eq. (7) has no e®ect on the source node and the target node

(the situation must consider the current injection and removal conditions), but these

nodes have an exact current one unit, I
ðstÞ
s ¼ I

ðstÞ
t ¼ 1. If the traditional method is

followed that does not include the ending node of the path, then both currents equal

to zero instead of one. Here, only the case of one component in the network is

described. For other cases, this process will be repeated for each component in the

network. The model of the current °ow seems intuitive and reasonable. The current

will °ow from the source node along all the paths to the target node, but it will

choose a shorter path for the °ow than the long path because the short path will

generally have less resistance than the long path. However, there is no more su±cient

reason to prove that the current °ow in an electric circuit has anything to do with

processes in nonpower networks, for instance, the social network. Although the

principle of the current °ow cannot be fully extended to large-scale nonpower net-

works, the current °ow is similar to the random walk dynamics in the network, so,

next, we will explore more friendly and intuitive random walks to various networks.

The aforementioned principle of the current °ow is only used as a comparison of

principles to facilitate us to better understand the random walk. The random walker

is analogous to the current °ow from the source node in the circuit. With a certain

resistance, the voltage between the two endpoints determines the magnitude of the

passed current. The greater the current, the closer the connection between the two

endpoints. In other words, the higher the similarity between the two nodes in the
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network, the greater the probability that the random walker will enter the com-

munity where the node is located. Therefore, with the notion of current °ow in

mind, it will become more natural when the principle of random walk dynamics is

introduced.

Given a network G, we de¯ne a dynamic process of random walk on G, in which a

walker moves from one node to another along the edges of the network. Suppose that

K ¼ fKt; t � 0g represents the current location of the walker, and PfKt ¼ j; 1 �
j � ng represents the probability that the walker will reach node j after t steps. And
PfKtjK0;K1; . . . ;Kt�1g ¼ PfKtjKt�1g When t > 0. It means that the next state of

the walker depends entirely on its previous state, which is called the Markov prob-

ability attribute.37 Therefore, the dynamic process of random walk is a discrete

Markov chain, and its state space is Z. Noting that PfKt ¼ jjKt�1¼ig ¼ pij, soKt is

homogeneous, where pij is the transition probability from node i to j. According

to Eq. (2), the adjacency matrix of the network G can be expressed as A ¼ ðaijÞn�n,

we ¯nd

pij ¼ aijP
rair

: ð8Þ

For the aforementioned dynamic process, the position of source node s is speci¯ed.

Let � l
sðiÞ represent the probability that the walker starts from the node s through l

steps and eventually reach an arbitrary target node i, then we can estimate itera-

tively by

� l
sðiÞ ¼
Xn
r¼1

�1�r
s ðrÞ � pri; ð9Þ

� l
s is the l step transition probability distribution. The sum of the probability of

reaching all the nodes from the source node s is one. When l ¼ 0, which means that

the walker has been stuck in node s, so �0
sðsÞ ¼ 1 and �0

sðiÞ ¼ 1 for each s 6¼ i.

For a community, the connection density of its internal edge is much higher than

that between them. When selecting an appropriate step l, a random walker can

choose more paths from the source node s within l steps to reach the community

where a node i is located. In contrast, the probability of a walker escaping from its

current community is reduced. In other words, there are obstacles to the random

walker in the path of escaping from the existing community and reaching the other

community. Therefore, in a broad sense, this condition satis¯es Eq. (10) when l is

appropriate

8i2Cs
8j2Cs

: � l
sðiÞ > � l

sðjÞ; ð10Þ
where Cs denotes the community where the node s is assigned. Although Eq. (10)

describes a situation in which a node is unable to escape from the current community

because of some special reasons, it is another way of stating that the community is

very attractive to this node. This is consistent with the fact that nodes with similar
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attributes are divided into the same community. Therefore, the random walk

dynamics depicted above is suitable for most networks.

3. Temporary Local Balancing Strategy

In the dynamic di®usion process, if there are high edge density distributions within

the community in a network, the walkers will stay within the community for quite

some time before the next state. Assuming that in time t, the walker moves randomly

from node i to its neighbor node j, combining with Eq. (8), we can modify the

transition probability pij to be

d�iðtÞ
dt

¼ ��
X
j

LT
ij�jðtÞ; ð11Þ

where �iðtÞ (1 � i � n) is the probability that walker stays at nodes i at time t, and �

is a rate control parameter of di®usion process. Here, L is the normalized Laplacian

matrix in the form of L ¼ I � D�1A, where D is a diagonal matrix like Eq. (3) and I

is the identity matrix.

When the di®usion process in Eq. (11) reaches a local balancing state at a certain

time (that is, the probability that the random walker continuously passes through

the nodes i and j equals the probability that the random walker continuously passes

the nodes j and i), the so-called detailed balance condition (i.e. the basis of tem-

porary local balancing strategy) is obtained.39 Under this condition, for any node, the

di®usion process will positively shift toward a local balancing state as time evolves.

Instead of only studying the ¯nal equilibrium, we consider the entire di®usion process

(i.e. the whole dynamic processes of random walk). According to the detailed balance

condition, the di®usion process satis¯es the principle of node priority with high

cohesion, and then considers the nodes with low cohesion. In order to determine how

close two nodes i and j are under the detailed balancing condition at time t, the

measure cijðtÞ is given by

cijðtÞ ¼ �iðtÞP
jAij

� �jðtÞP
iAij

� �
: ð12Þ

The right side of Eq. (12) illustrates the average over di®erent implementations of

the di®usion process that randomly selects the start node. In the testing experiments,

if a pair of nodes i and j satisfy the detailed balance condition, then cij should be less

than a given threshold (depending on the speci¯c experimental environment). We

can infer that, compared with the ¯nal balancing state, the di®usion processes cor-

responding to a group of nodes satisfy the detailed balance condition. By using

Eq. (12), it is possible to track the di®erent temporary local balancing states in the

di®usion process which in turn represent the number of communities.

In order to illustrate the temporary local balancing strategy more clearly, the

dynamic di®usion process based on the H13-4 network is analyzed in Fig. 2. The
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computer-generated (or synthetic) H13-4 network contains two prede¯ned hierar-

chies, the ¯rst level consists of four communities of 64 nodes and the second level

consists of 16 communities of 16 nodes.26 The average degree of node is

zin1 þ zin2 þ zout ¼ 18, where zin1 and zin2 represent the internal degree of node at the

¯rst and second level, respectively, zout indicates the external degree of node (e.g. for

H13-4 network, zin1 ¼ 13, zin2 ¼ 4 and zout ¼ 1). According to Eq. (12), the two

(a) (b)

(c) (d)

Fig. 2. (Color online) The veri¯cation of the temporary local balancing strategy by the dynamic di®usion

process based on the H13-4 networks, (a) the matrix cijðtÞ at two temporary local balancing states, which
clearly shows that the H14-3 network is divided into two hierarchical levels and at each level the number of

detected communities is 4 and 16; (b) the number of communities detected by the temporary local

balancing strategy, which suggests that it is possible to determine whether the state transfer can be a new

candidate for the number of communities by the temporary local balancing states in di®erent transient
states. The controlled trial is performed based on the randomized H13-4 network trough randomly shuf-

°ing the edges for weakening the community structure, (c) the matrix cijðtÞ at temporary initial and ¯nal
balancing states, which clearly shows that the division satisfying the detailed balance condition is not

clearly seen, (d) there is no local balancing states and the number of communities quickly changes from 256
to 1. Note that in the testing experiments, the rate control parameter of di®usion process is set � ¼ 0:03,

and the threshold for cijðtÞ is set with 1� 10�3. The value of each cijðtÞ is the average over 1000 reali-
zations of the di®usion process on a randomly selected start node.

8

ht
tp
://
do
c.
re
ro
.c
h



temporary local balancing states associated with the di®usion process are shown in

Fig. 2(a). The squares shown along the diagonal indicate a corresponding division

that satis¯es the detailed balance condition, which also conforms to the prede¯ned

hierarchy levels. In Fig. 2(b), we show the dynamic change of the number of com-

munities as time evolves. Obviously, the divisions that satis¯es the detailed balance

condition is actually the community structures at two hierarchical levels obtained in

a transient state. As an experimental contrast, we further study the dynamic dif-

fusion process based on the randomized H13-4 network. Because the hierarchical

community structure is weakened by randomly shu®ling connections of the H13-4

network, the division that satis¯es the detailed balance condition is not clearly seen

in Fig. 2(c). The result is further veri¯ed in Fig. 2(d), in which there are no local

balancing states and the number of communities quickly changes from 256 (each

node is a community) to 1 (all nodes form a community).

The community detection based on temporary local balancing strategy is similar

to the phenomena in the previous work.40 That is, we adjust the network through the

information in the oscillation circuit, so that the states between nodes are consistent.

In addition, the strategy adopted in this paper determines that it can be tested at

multiple scales because di®erent time transients correspond to community structures

at di®erent topological scales. Compared with the method in the previous work,26 the

Laplacian matrix is used to calculate the eigenvectors corresponding to the network

nodes, so the performance is very low in the face of heterogeneous networks. Herein,

the normalized Laplacian matrix is used to e®ectively improve the distribution ho-

mogeneity of the temporary local balancing states, making it more stable and clear

during the transient states in which the community exists.

4. Applications

In this section, we will give some applications for the proposed strategy to test its

feasibility and accuracy. The data used include computer-generated (or synthetic)

networks and real-world networks.

4.1. Synthetic networks

The use of computer-generated networks in testing can e®ectively detect the feasi-

bility of the algorithm because such networks can be con¯gured according to actual

needs. First, similar to the aforementioned H13-4 network, we employ the H15-2

network by adjusting the internal degree of node at two levels (i.e. zin1 ¼ 15, zin2 ¼ 2

and zout ¼ 1). Obviously, the H15-2 network has more modularity in comparison

with the H13-4 network. We perform the dynamic di®usion process based on the

H15-2 network to verify the temporary local balancing strategy for such generalized

stochastic block model.

Like the experimental results in Figs. 2(a) and 2(b), we illustrate the matrix cijðtÞ
at two temporary local balancing states and the number of communities as time
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evolves, as shown in Fig. 3. First, in Fig. 3(a), it can be seen that the H15-2 network

is accurately represented with two hierarchical levels according to cijðtÞ, and the ¯rst
level contains 16 communities, while the second level consists of 4 communities. The

intensity of cijðtÞ at the ¯rst level is stronger than that at the second level, which

implies that the temporary local balancing state at the ¯rst level is much more stable.

Second, in Fig. 3(b), it shows the number of communities as a function of time, which

suggests that the two temporary local balancing states are vividly re°ected in the

di®usion process based on the H15-2 network.

In order to make the network attribute be closer to the reality (i.e. the nodes

have stronger degree heterogeneity), we also consider applying the alternative

LFR model that generates synthetic networks with a power-law degree distribu-

tion and a clear community structure.41 Thus, when compared with the above-

mentioned hierarchical community network, it has much more stringent require-

ments for the proposed algorithm. Herein, when the mixing factor is � ¼ 0:26 (�

control the modularity of network), the synthetic network generated by LFR

model (short of LFR network) includes 1000 nodes that construct 30 communities,

and its average degree is set < k >¼ 20. We also perform the di®usion process

based on the LFR network, and show the experimental results of the matrix cijðtÞ
and the number of communities in Figs. 4(a) and 4(b), respectively. From them,

we can ¯nd these similar results in comparison with those obtained from the

above-mentioned hierarchical community network (i.e. the H14-3 network and

H15-2 network), which verify the temporary local balancing strategy for detecting

the community structure.

(a) (b)

Fig. 3. (Color online) The veri¯cation of the temporary local balancing strategy by the dynamic di®usion

process based on the H15-2 network, (a) the matrix cijðtÞ at two temporary local balancing states, which
clearly shows the prescribed hierarchical community structure of the H15-2 network; (b) the number of

communities as a function of time, which indicates the e®ectiveness of the temporary local balancing

strategy on multiscale community estimation. Note that in the testing experiments, the rate control

parameter is set � ¼ 0:03, and the threshold for cijðtÞ is set with 1� 10�3. The values of each cijðtÞ is the
average over 1000 realizations of the di®usion process at a random selected start node.
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Furthermore, in order to better assess the quality of the detected communities, we

introduce the normalized mutual information (NMI) between the detected com-

munity and the ground truth to evaluate the accuracy of community estimation.14

The higher the score of NMI is, the more accurate is the community estimation.

In Fig. 4(c), we present the scores of NMI as a function of � using the proposed

algorithm and the modularity maximization.17 By increasing �, the modularity

becomes lower and the community structure of synthetic network is blurry, which is

vividly shown in Fig. 4(c). Moreover, when the community structure strength is

higher, both the proposed method and the modularity maximization can obtain an

accurate result. However, when the community structure becomes more and more

blurred, the modularity maximization will degenerate drastically, while the proposed

algorithm can still maintain a high precision.

(a) (b)

(c)

Fig. 4. (Color online) The veri¯cation of the temporary local balancing strategy by the dynamic di®usion

process based on the LFR networks, (a) and (b) uncover the temporary local balancing state in the

di®usion process on the LFR network with � ¼ 0:26, and both of them show that the number of com-
munities in the most stable state is 30 in consist with the ground truth; (c) using NMI as an evaluation

criterion, the proposed algorithm is compared with modularity maximization, of which the experimental

results suggest that proposed algorithm is much more robust. Note that in the testing experiments, the rate

control parameter is set � ¼ 0:01, and the threshold for cijðtÞ is 1� 10�3. The value of each cijðtÞ and the
score of NMI is respectively the average over 1000 realizations of the di®usion process at a random selected

start node.
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4.2. Real-world networks

The feasibility of the temporary local balancing strategy is further validated by the

testing experiment based on these computer-generated networks. It cannot only

improve the accuracy of community detection, but also explore the multiscale

community structure with hierarchical features, such as the H15-2 and H13-4 net-

works. The real-world networks are much di®erent from the random graphs in most

cases, of which the distribution of node degrees is heterogeneous (i.e. the so-called

scale-free feature). We will give its applications in real-world networks that are also

widely used in community structure assessment tests.

Our ¯rst example is based on Zachary's karate club (short of karate network),

which is a network of friendship among 34 members as nodes and 78 edges denote the

friendship between them.42 Due to di®erences in management opinions, the club was

divided into two di®erent groups (or communities). In Fig. 5, we show the com-

munity division detected by the temporary local balancing strategy. More con-

cretely, the di®usion process occurring at di®erent stages can be clearly observed,

where the two most stable temporary local balancing states are labeled as T1 and T2.

T1 and T2 are judged by the duration of the process to be longer than other states,

which indicates that random walkers are more likely to consider the special stages as

a community candidate than other stages. We consider T3 as a candidate for the

community divisions because the duration is second to the T1. According to the

ground truth, the karate network should be accurate in two community divisions.

Also, based on the result according to the modularity maximization, the karate

network can be divided into four communities. Thus, in such cases, it is di±cult to

identify which criterion is better. Perhaps, as the network changes, the members of

the club are rejoined into one community or continue to be divided into more

communities. No matter what, the multiscale community structure is unveiled by

T1, T2 and T3, as shown in Fig. 5(b). It can be seen that the community divisions in

respect to T1, T2 and T3 are distinguished according to the node color.

Another real-world network we investigated is the U.S. college football network

(short of football network) collected in Ref. 42. It contains 115 nodes representing the

college teams and 613 edges between these teams describing the games between pairs

of teams during the regular season in the year 2000. All teams are divided into

12 alliances, and each team is competing more frequently with the team within the

alliance than the team outside. In Fig. 6(a), the adjacency matrix of the football

network is exhibited according to the alliances. It can be seen that the arrangement

along the diagonal directions presents a concentrated trend, which indicates that

there exists a community structure. In Fig. 6(b), the matrix cijðtÞ at the temporary
local balancing state with the longest duration (e.g. T3) is presented. We can see that

the football network is divided into 13 communities, and two of them may be merged

(as indicated by the boxes) because the community structure hidden in di®erent

scales is likely to appear at the temporary local balancing state with relatively longer

duration (e.g. T2). Thus, the temporary local balancing strategy has brought
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freedom to multiscale community estimation, and the proper intermediate state

plays a key role on the accuracy of community detection. However, these temporary

local balancing states with the long duration signi¯cantly provide candidates for the

number of communities at multiple scale of the network. The results are con¯rmed

by the number of communities at the temporary local balancing state T1 and T2,

shown in Fig. 6(c). The number of communities may be 13, or it may be 12, because

both T1 and T2 can maintain a longer duration. Because the duration of T1 is a little

longer than T2, implying that the community division is more stable in the T1 than

T2, we thus think that the resulting community structure obtained at T1 corre-

sponds to the best community division.

(a) (b)

(c)

Fig. 6. (Color online) The veri¯cation of the temporary local balancing strategy by the dynamic di®usion

process based on the football network, (a) the adjacency matrix of the football network ranged along the
diagonal direction according to the alliances, which shows a concentrated trend implying the community

structure; (b) matrix cijðtÞ at the temporary local balancing state with the longest duration (e.g. T3),

which indicates that the number of communities is 13; (c) The number of communities at di®erent

temporary local balancing states changes with time, which indicates several more stable states, among
which T1 corresponds to the situation of 13 communities in (b) and T2 corresponds to 12 communities

(merging two communities in the white box). We think that both of them can be considered as a candidate

for the community division, however, according to the duration of the temporary local balancing state, T1

is closer to the ideal community division than T2. Note that in the testing experiments, the rate control
parameter is set � ¼ 0:01, and the threshold for cijðtÞ is 1� 10�3.
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In all, it can be found through the above-mentioned applications based on two

real-world networks that several stable temporary local balancing states emerge

during the dynamic di®usion process on networks with community structure. These

stable states usually reveal the inherent community structure of the underlying

network. Therefore, in the process of practice, we must pay attention to associating

the phenomenon with the causes, and then guide our research in community

detection.

5. Conclusions

In this paper, we have described a temporary local balancing strategy in the dynamic

di®usion process on a network, which takes the temporary local balancing state

appearing in various stages of network di®usion as a candidate for community di-

vision. These stable states are based on di®erent durations of time, which can be

understood as the structural and functional characteristics of the network at dif-

ferent topological scales. The mutual transfer between di®erent states is actually a

process of self-regulation within the network and eventually reaching stability.

However, the transfer of state is not completed in an instant. After practice, it is

found that before it decays to the next state, there will be intermittent stagnation

of varying degrees, which is closely related to the number of communities in the

network.

The dynamic di®usion process is based on random walk on a network, which

similar to the current °ow in the electric circuit, and the mutual attraction between

them is determined by the voltage between adjacent nodes. By studying the di®usion

process of random walk model, we illustrate that the temporary local balancing state

can reveal the potential network community structure. In the testing experiments,

we explore the transient of the whole dynamic processes of random walk compared to

the ¯nal stable state. The purpose is that if there is a strong community structure in

the network, random walkers will be trapped in such a cluster (or community), and

through a continuous cycle, they can get a local temporary balancing state, which

corresponds to the internal structural units with very similar properties.

Applying the temporal local balancing strategy to the computer-generated

network with prede¯ned community structure, we found that it not only recovers

the inherent community structure of the network, but could also further identify

multiscale community structure with hierarchical levels. We also give applications on

the real-world network and ¯nd our strategy to give higher community detection

accuracy. In addition, it also gives more temporary local balancing states as a can-

didate for community detection and can serve as a reference for the ¯nal overall

assessment of the network.

The temporal local balancing strategy of this paper only discusses the situation of

the stable state within the community during the di®usion process, without con-

sidering the mutual in°uence between them. For example, what is the connection

between the presence of two neighboring stable states, and how to set the detection
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thresholds for determining whether a community exists. Nevertheless, our work

provides a new vision for the detection of the number of communities, and can be

extended to more complex networks that contain multiple topological scales. In

addition, in the actual application, we must also consider the comprehensive in°u-

ence of more factors, so that we can get a good community division closer to the

ground-truth.
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