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Let G/H be a contractible homogeneous Sasaki manifold. A compact locally
homogeneous aspherical Sasaki manifold Γ

∖
G/H is by definition a quotient of

G/H by a discrete uniform subgroup Γ ≤ G. We show that a compact locally
homogeneous aspherical Sasaki manifold is always quasi-regular, that is, Γ

∖
G/H

is an S1-Seifert bundle over a locally homogeneous aspherical Kähler orbifold. We 
discuss the structure of the isometry group Isom (G/H) for a Sasaki metric of G/H
in relation with the pseudo-Hermitian group Psh (G/H) for the Sasaki structure
of G/H. We show that a Sasaki Lie group G, when Γ

∖
G is a compact locally

homogeneous aspherical Sasaki manifold, is either the universal covering group of 
SL(2, R) or a modification of a Heisenberg nilpotent Lie group with its natural 
Sasaki structure. We also show that any compact regular aspherical Sasaki manifold 
with solvable fundamental group is finitely covered by a Heisenberg manifold and 
its Sasaki structure may be deformed to a locally homogeneous one. In addition, we 
classify all aspherical Sasaki homogeneous spaces for semisimple Lie groups.

1. Introduction

Let M be a smooth contact manifold with contact form ω. Suppose that there exists a complex structure
J on the contact bundle ker ω and that the Levi form dω ◦ J is a positive definite Hermitian form. Then 
{ω, J} is called a pseudo-Hermitian structure on M and {ker ω, J} is a CR-structure as well. The pair {ω, J}
assigns a Riemannian metric g to M , where

g = ω · ω + dω ◦ J. (1.1)

There are two typical, closely related, Lie groups on (M, {ω, J}). The group of pseudo-Hermitian transfor-
mations of M is denoted by
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Psh (M) = {h ∈ Diff (M) | h∗ω = ω, h∗ ◦ J = J ◦ h∗ on ker ω}.

As usual Isom (M) denotes the isometry group of (M, g). Obviously

Psh (M) ≤ Isom (M) .

Assume that the Reeb field A for ω generates a one-parameter group T of holomorphic transformations on 
a CR-manifold (M, {ker ω, J}), that is,

T ≤ Psh (M) .

Then (M, {ω, J}) is said to be a standard pseudo-Hermitian manifold. In this case, the vector field A is a 
Killing field of unit length with respect to g, and the Riemannian manifold (M, g) is also called a Sasaki 
manifold equipped with Sasaki metric g and structure field A. If A is a complete vector field with a global 
flow T which acts freely and properly on M , (M, {g, A}) is said to be a regular Sasaki manifold. Note that 
the Sasaki metric structure (M, {g, A}) determines the standard pseudo-Hermitian structure (M, {ω, J})
uniquely.

The pseudo-Hermitian group Psh (M) and isometry group Isom (M) of a Sasaki manifold are closely 
related. Since the Reeb vector field A is determined by ω alone, we have

h∗A = A , for all h ∈ Psh (M) .

Therefore, the Reeb flow T belongs to the center of Psh (M), that is,

Psh (M) = CPsh (M)(T ) . (1.2)

Similarly, if CIsom (M)(T ) denotes the centralizer of T in Isom (M), using (1.1),

Psh (M) = CIsom (M)(T )

follows easily, as well.
In general, the group Isom (M) acts on the set of Sasaki structures {g, A} with fixed metric g. Further-

more, if (M, g) is not isometrically covered by a round sphere, the set of Sasaki structures with metric g
either consists of two elements {A, −A}, or M is a three-Sasaki manifold, admitting three linear independent 
Sasaki structures for g. In the latter case, M is compact with finite fundamental group. For these results, 
see [26,20,27]. Thus, unless M is compact with finite fundamental group, a complete Sasaki manifold always 
satisfies

Isom (M) = Psh± (M) = {h ∈ Isom (M) | h∗A = ±A} .

Call a Sasaki manifold M a homogeneous Sasaki manifold if Psh (M) acts transitively on M . Accordingly, 
a homogeneous space G/H is called a homogeneous Sasaki manifold if G/H is a Sasaki manifold and the 
action of G factors over Psh (G/H). Note that any homogeneous Sasaki manifold is also a regular Sasaki 
manifold.

1.1. Locally homogeneous aspherical Sasaki manifolds

In the following we shall usually assume that G acts effectively on G/H and thereby identify G with a 
closed subgroup of Psh (G/H) whenever suitable.
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A locally homogeneous Sasaki manifold is a quotient space

M = Γ
∖

G/H

of a homogeneous Sasaki manifold G/H by a discrete subgroup Γ of G. The manifold M is called aspherical
if its universal cover X is contractible. In this paper we take up the structure of compact locally homogeneous 
aspherical Sasaki manifolds M .

Setting the stage for the main structure result on compact locally homogeneous aspherical Sasaki mani-
folds, we note the following facts:

Let X = G/H be a homogeneous Sasaki manifold. Then the Reeb flow T on X is isomorphic to the 
real line R or the circle group S1 and it is acting freely and properly on X. Moreover, the homogeneous 
pseudo-Hermitian structure on X induces a unique homogeneous Kähler structure on the quotient manifold

W = X/T

such that the projection map X → W is a principal bundle projection which is pseudo-Hermitian (that 
is, X → W is horizontally holomorphic and horizontally isometric). With this structure the homogeneous 
Kähler manifold W will be called the Kähler quotient of X.

There is a well established theory of homogeneous Kähler manifolds and of the structure of their isometry 
groups [12]. As a cornerstone of the present paper we use this theory to develop the structure of compact 
locally homogeneous Sasaki manifolds. Recall that a Lie group is called unimodular if its Haar measure 
is biinvariant. Any Lie group G which admits a uniform lattice Γ is unimodular. Thus, in our context, 
homogeneous Sasaki spaces and Kähler manifolds of unimodular Lie groups are of particular importance. 
The structure theory of such spaces already plays a major role in the papers [1,16]. As a starting point of 
the present work we refine and also detail the approach therein to study contractible homogeneous Sasaki 
spaces of unimodular Lie groups and their corresponding Kähler quotients.

1.1.1. Structure of locally homogeneous aspherical Sasaki manifolds
Let us first introduce some additional notation. For any Kähler manifold W , we denote Isom ±

h (W )
the subgroup of Isom (W ) that consists of isometries which are either holomorphic or anti-holomorphic. 
Furthermore, Isom h(W ) denotes the subgroup of holomorphic (or Kähler-) isometries of W .

The main structure result on locally homogeneous aspherical Sasaki manifolds and their isometry groups 
is stated in the following two results:

Theorem 1. Let X = G/H be a contractible homogeneous Sasaki manifold of a unimodular Lie group G. 
Then the following hold:

(1) The Kähler quotient W of X is a product of a unitary space Ck with a bounded symmetric domain D.
(2) The Reeb flow T is isomorphic to the real line and it is a normal subgroup of Isom (X). There exists 

an induced homomorphism

φ : Isom (X) → Isom ±
h (W ) ,

which is onto and maps Psh (X) onto Isom h(W ) with kernel T .
(3) There exists an anti pseudo-Hermitian involution τ of X such that

Isom (G/H) = Psh± (G/H) = Psh (G/H) � 〈τ〉 .
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(4) The identity component of the pseudo-Hermitian group of X satisfies

Psh (G/H)0 = Isom (G/H)0 = (N � U(k)) · S ,

where N is a 2k + 1-dimensional Heisenberg Lie group and S is a normal semisimple Lie subgroup 
which covers the identity component

S0 = Isom (D)0

of the isometry group of the symmetric bounded domain D. Moreover, S has infinite cyclic center Λ, 
and

S ∩ N = S ∩ T = Λ .

Building on Theorem 1 we can deduce:

Corollary 1. Let M = Γ
∖

G/H be a compact locally homogeneous aspherical Sasaki manifold. Then the coset 
space Γ

∖
G/H admits an S1-bundle over a locally homogeneous aspherical Kähler orbifold

S1 −−−−→ Γ
∖

G/H −−−−→ φ(Γ)
∖

W , (1.3)

in which S1 induces the Reeb field. In particular, the Sasaki manifold M is quasi-regular.

Remark 1.1. The bundle in (1.3) is called a Seifert fibering. Here, some finite covering space Γ0
∖

G/H, 
with Γ0 ≤ Γ a finite index subgroup, is a non-trivial S1-bundle over a Kähler manifold φ(Γ0)

∖
W . Note, in 

addition, that for any Sasaki manifold M = Γ
∖

G/H as above, Psh (Γ
∖

G/H)0 contains the flow of the Reeb 
field. This flow is a compact one-parameter group S1 acting almost freely on M and it is giving rise to the 
bundle (1.3). Moreover, since the Sasaki structure on M arises from a connection form, the Kähler class of 
φ(Γ0)

∖
W represents the characteristic class of the circle bundle.

We further remark:

(5) When the anti-holomorphic isometry τ of X from Theorem 1 normalizes Γ, we get Isom (Γ
∖

G/H) =
Psh (Γ

∖
G/H) � Z2, otherwise we have Isom (Γ

∖
G/H) = Psh (Γ

∖
G/H).

Let N denote the 2n + 1-dimensional Heisenberg group with its natural Sasaki metric. Using (5) above 
we also get:

(6) There exists a compact locally homogeneous aspherical Riemannian manifold

M = π\N ,

whose metric is locally a Sasaki metric (that is, it is induced from the left-invariant Sasaki metric on N ). 
But M with metric g is not a Sasaki manifold itself.

1.1.2. The case of solvable fundamental group
We suppose that the fundamental group of the compact aspherical manifold M is virtually solvable. In 

this case, if M supports a locally homogeneous Sasaki structure, then Theorem 1 implies that M is finitely 
covered by a Heisenberg manifold
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Δ \ N ,

where Δ ≤ N is a uniform discrete subgroup of N . Moreover, M is a non-trivial circle bundle over a compact 
flat Kähler manifold, which in turn is finitely covered by a complex torus Ck/Λ. As a matter of fact, any
compact aspherical Kähler manifold is biholomorphic to a flat Kähler manifold (see [4, Theorem 0.2] and 
the references therein). As a consequence, any regular Sasaki manifold M is of the above type as well, and 
it admits a locally homogeneous Sasaki structure:

Corollary 2. Let M be a regular compact aspherical Sasaki manifold with virtually solvable fundamental 
group. Then the following hold:

(1) The manifold M is a circle bundle over a Kähler manifold that is biholomorphic to a flat Kähler 
manifold.

(2) A finite cover of M is diffeomorphic to a Heisenberg manifold.

Moreover, the Sasaki structure on M can be deformed (via regular Sasaki structures) to a locally homogeneous 
Sasaki structure.

1.2. Contractible Sasaki Lie groups and compact quotients

We call a Lie group G a Sasaki group if it admits a left-invariant Sasaki structure. Equivalently, G acts 
simply transitively by pseudo-Hermitian transformations on a Sasaki manifold X.

A prominent example of a Sasaki Lie group is the 2n + 1-dimensional Heisenberg Lie group N . The Lie 
group N arises as a non-trivial central extension of the form

R → N → Cn ,

and a natural Sasaki structure on N is obtained by a left-invariant connection form which is associated to 
this central extension.

More generally, we shall introduce a family of simply connected 2n + 1-dimensional solvable Sasaki Lie 
groups

N (k, l) , k + l = n,

called Heisenberg modifications. These groups are deformations of N in N � T k, where T k ≤ U(n) is a 
compact torus (cf. Definition 7.7).

Another noteworthy contractible Lie group which is Sasaki is

˜SL(2, R) ,

the universal covering group of SL(2, R). Indeed, take any left-invariant metric g on ˜SL(2, R) with the addi-
tional property that g is also right-invariant by the one-parameter subgroup ˜SO(2, R). Then the Riemannian 
submersion map

˜SL(2, R) → ˜SL(2, R)
/

˜SO(2, R) = H1
C

is defined and it is a principal bundle with group ˜SO(2, R) = R over a Riemannian homogeneous space H1
C of 

constant negative curvature. The metric g defines a unique left-invariant connection form ω, which satisfies 

5

ht
tp
://
do
c.
re
ro
.c
h



(1.1) and has the property that the Reeb field is left-invariant and tangent to the subgroup ˜SO(2, R). The 
isomorphism classes of Sasaki structures thus obtained are parametrized by the curvature of the base.

In general, a simply connected unimodular Lie group that admits a left-invariant Sasaki structure is 
isomorphic to either of the Lie groups SU(2), N or the universal covering group of SL(2, R), see [16, 
Theorem 4] and also [8, Theorem 5]. (In [1, Theorem 2.1] a more precise statement is obtained by describing 
left-invariant Sasaki structures up to a modification process.)

As an application of our methods we explicitly state the classification of contractible unimodular Sasaki 
Lie groups as follows:

Theorem 2. Let G be a unimodular contractible Sasaki Lie group. Then as a Sasaki Lie group G is isomorphic 

to either N (k, l) or ˜SL(2, R) with one of the left invariant Sasaki structures as introduced above. (That is, 
G admits a pseudo-Hermitian isomorphism to either N (k, l) or ˜SL(2, R) with a standard Sasaki structure.)

Remark 1.2. As introduced above the family of all Sasaki Lie groups N (k, l) is in one to one correspondence 
with the set of isomorphism classes of flat Kähler Lie groups. Compare Section 7.2.2. For a discussion of 
the structure of flat Kähler Lie groups, see for example [13] or [3].

Remark 1.3. When dropping the assumption of contractibility, the compact group SU(2) appears as another 
unimodular Sasaki Lie group. This group is fibering over the projective line P1C, and the example is dual 
to the Sasaki Lie group ˜SL(2, R). The two groups are known to be the only simply connected semisimple 
Lie groups which admit a left-invariant Sasaki structure, cf. [8, Theorem 5].

Any Lie group G which admits a discrete uniform subgroup Δ must be unimodular, and if such G admits 
the structure of a Sasaki Lie group then the quotient manifold

Δ
∖

G

inherits the structure of a compact locally homogeneous Sasaki manifold.
Thus, combining Theorem 2 with Corollary 1 we obtain:

Corollary 3. Every compact locally homogeneous aspherical Sasaki manifold which is of the form

Δ \G

is either a Seifert manifold, which is an S1-bundle over a hyperbolic two-orbifold, or it is a Seifert manifold 
which is an S1-bundle over a flat Kähler manifold (which is a complex torus bundle over a complex torus).

1.3. Sasaki homogeneous spaces of semisimple Lie groups

Here we consider the question which semisimple Lie groups act transitively by pseudo-Hermitian transfor-
mations on a contractible (or, more generally, aspherical) Sasaki manifold. The classification of such groups 
and of the corresponding homogeneous spaces is contained in Theorem 3 following below.

Let D be a bounded symmetric domain, equipped with its natural Bergman Riemannian metric. Then 
its isometry group

S0 = Isom (D)0

is a semisimple Lie group which is called a group of Hermitian type, and
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D = S0/K0

is a Riemannian symmetric space with respect to this metric, and a homogeneous Kähler manifold, as well. 
Moreover, K0 is a maximal compact subgroup of S0.

Theorem 3. For any symmetric bounded domain D = S0/K0, there exists a unique semisimple Lie group S
with infinite cyclic center, which is covering S0, and gives rise to a contractible Sasaki homogeneous space

XS = S/K

with Kähler quotient D. Moreover, any contractible homogeneous Sasaki manifold of a semisimple Lie group 
is of this type.

Addendum: In the theorem, K is a maximal compact subgroup of S, and S ≤ Psh (XS) is acting faithfully 
on XS . The Kähler quotient D is a homogeneous Kähler manifold whose complex structure is biholomorphic 
to a bounded symmetric domain. It carries an invariant symmetric Kähler Riemannian metric, which is 
unique up to scaling on irreducible factors of the homogeneous space D.

As a consequence of Theorem 3 any Lie group of Hermitian type acts as a transitive group of isometries 
on an aspherical Sasaki space:

Corollary 4. For any semisimple Lie group S0 of Hermitian type, there exists a unique Sasaki homogeneous 
space

Y = S0/K1 ,

where Y is a circle bundle over the symmetric bounded domain D = S0/K0.

Note that, in Theorem 3 and Corollary 4 the Sasaki structure on X, respectively Y , is unique up to the 
choice of an S0-invariant (and also symmetric) Kähler metric on D.

The paper is organized as follows. Starting in Section 2, we collect and explain some useful basic facts on 
regular Sasaki manifolds, including the Boothby-Wang fibration and the join construction.

In Section 3 we discuss the lifting of Kähler isometries and the role of gauge transformations in the 
Boothby-Wang fibration of a contractible Sasaki manifold.

We use these facts to show that every contractible homogeneous Kähler manifold determines a unique
contractible homogeneous Sasaki manifold. Also the associated presentations of a homogeneous Sasaki man-
ifold by transitive groups of pseudo-Hermitian transformation are discussed in Section 4.

Section 5 is devoted to the study of homogeneous contractible Kähler manifolds of unimodular Lie groups. 
Their classification is derived from the Dorfmeister-Nakajima fundamental holomorphic fiber bundle of a 
homogeneous Kähler manifold.

The structure of locally homogeneous aspherical Sasaki manifolds is picked up in Section 6. We establish 
in Corollary 1 that a compact locally homogeneous aspherical Sasaki manifold is always quasi-regular over 
a compact orbifold which is modeled on a homogeneous contractible Kähler manifold. The relevant global 
results are summarized in Theorem 1 and its proof. We also give the proof of Corollary 2 in Section 6.4.1, 
see in particular Proposition 6.10.

In Section 7 we turn our interest to the classification problem for global model spaces of locally homo-
geneous Sasaki manifolds: in particular, we classify contractible Sasaki Lie groups and contractible Sasaki 
homogeneous spaces of semisimple Lie groups. In the course, we prove Theorem 2 and Theorem 3.

In Section 8 we construct further explicit examples of locally homogeneous aspherical Sasaki manifolds.
Refer to [25], [7], [11] for background on Sasaki metric structures in general.
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2. Preliminaries

Let X = (X, {ω, J}) be a Sasaki manifold with Reeb flow T .

2.1. Regular Sasaki manifolds

The Sasaki manifold X is called regular if the Reeb flow T is complete and T acts freely and properly 
on X. In this situation, either T = R, or T = S1 is a circle group. Moreover,

W = X/T

is a smooth manifold and X is a principal bundle over W with group T .

Example 2.1. Let X = G/H be a homogeneous Sasaki manifold. Then X is regular. (See [8] and Section 4
below.)

For the following, see [8]:

Proposition 2.2 (Boothby-Wang fibration). Let X be a regular Sasaki manifold with Reeb flow T . Then there 
is an associated principal bundle

T → X
q→ W

over a Kähler manifold (W, Ω, J) such that the induced isomorphism

q∗ : ker ω → TW

is holomorphic and the Kähler form on the base is satisfying the equation

q∗Ω = dω . (2.1)

Furthermore, there is a natural induced homomorphism

Psh (X) φ−→ Isom h(W ) (2.2)

with kernel T , which is satisfying q ◦ h̃ = φ(h̃) ◦ q, for all h̃ ∈ Psh (X).

With the above conditions satisfied, we call (W, Ω, J) the Kähler quotient of the regular Sasaki manifold X. 
Also we let

Isomh(W ) = Isom (W, Ω, J)

denote the group of holomorphic isometries of the Kähler quotient W .

Proof of Proposition 2.2. The projection q induces an isomorphism

q∗ : ker ω−→TW

at each point. Since ω is invariant under T , ω induces a well defined 2-form Ω on W such that
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dω(X , Y) = Ω(q∗X , q∗Y) ,

for all horizontal vector fields X , Y ∈ ker ω that are horizontal lifts. As

ιA dω = 0 ,

it follows that dω = q∗Ω and so dΩ = 0. Since the Reeb flow T is holomorphic on ker ω, using J on ker ω, 
q∗ induces a well defined almost complex structure Ĵ on W such that Ω is Ĵ-invariant. Since J is integrable 
(that is, [T 1,0, T 1,0] ⊆ T 1,0 for the eigenvalue decomposition ker ω ⊗ C = T 1,0 ⊕ T 0,1), Ĵ becomes a complex 
structure on W . Hence Ω is a Kähler form on the complex manifold (W, Ĵ). To simplify notation, from now 
on, the same symbol J is used for the complex structure on W , for which we require that q is a holomorphic 
map on ker ω, that is, the induced isomorphism q∗ : ker ω → TW satisfies q∗ ◦ J = J ◦ q∗.

Since it is commuting with the principal bundle action of T , which is arising from the Reeb flow, each 
holomorphic isometry

h̃ ∈ Psh (X) = CPsh (X)(T )

induces a diffeomorphism h : W → W , such that the diagram

X
h̃−−−−→ X

q

⏐⏐� q

⏐⏐�
W

h−−−−→ W

(2.3)

is commutative. (We briefly verify that h∗Ω = Ω and h∗ ◦ J = J ◦ h∗ on W : Indeed, as h̃∗d ω = d ω, it 
follows by (2.1) that q∗(h∗Ω) = h̃∗q∗Ω = q∗Ω. This shows h∗Ω = Ω. Since q∗J̃ = J q∗ on ker ω, using (2.3) it 
follows h∗J q∗(Y) = h∗q∗J̃(Y) = q∗h̃∗J̃(Y) = q∗J̃ h̃∗(Y) = J h∗q∗(Y), for all vector fields Y ∈ ker ω, which 
are horizontal lifts for a vector field on W . So h∗ ◦ J = J ◦ h∗ on W .) Thus h is a holomorphic isometry 
of W .

Further any lift h̃ ∈ Psh (X) of h is unique up to composition with an element of the Reeb flow: Indeed, 
suppose that h = idW . Since T acts transitively on the fibers, after composition with an element of T , we 
may assume that there exists a fixed point x ∈ X for h̃. Moreover, since h̃∗A = A, the differential of h̃ at 
x is the identity of TxX. Now every isometry h̃ of the Riemannian manifold X is determined by its one-jet 
at one point x. Hence, ker φ = T . �
2.2. Holomorphic and anti-holomorphic isometries

For any Sasaki manifold X with Reeb field A, we briefly recall the interaction of

Psh± (X) = {h ∈ Isom (X) | h∗A = ±A}

with the pseudo-Hermitian structure of X. For any pseudo-Hermitian structure {ω, J}, the structure 
{−ω, −J} is called the conjugate structure. Then the group of isometries Psh± (X) permutes the pseudo-
Hermitian structure of X and its conjugate:

Lemma 2.3 (Sasaki isometries). Let X be any Sasaki manifold and let h ∈ Isom (X) satisfy h∗A = ±A, 
where A is the Reeb field of X. Then h∗ω = ±ω and h∗J = ±Jh∗ on ker ω.
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Proof. For any X ∈ ker ω, the equation g(h∗A, h∗X ) = g(A, X ) shows

0 = g(X , A) = ω(X )ω(A) + dω(JX , A) = ω(X )

= g(h∗X , h∗A) = ±g(h∗X , A) = ±ω(h∗X ) .

In particular, h∗ maps ker ω onto itself. As

h∗ω(A + X ) = ω(±A) = ±ω(A + X ),

we deduce that h∗ω = ±ω. Next for any X , Y ∈ ker ω,

dω(JX , Y) = g(X , Y) = g(h∗X , h∗Y) = dω(Jh∗X , h∗Y)

= dω(h∗(h−1
∗ Jh∗)X , h∗Y) = h∗dω((h−1

∗ Jh∗)X , Y)

= ±dω((h−1
∗ Jh∗)X , Y).

By the non-degeneracy of the Levi form dω ◦ J it follows that

h∗J = ±Jh∗ on ker ω. � (2.4)

2.3. Join of regular Sasaki manifolds

We describe in detail a natural procedure which explicitly constructs a new Sasaki manifold from a pair 
of given regular Sasaki manifolds. This corresponds to a variant of the join construction as is discussed 
in [10] for the compact case. In our context we apply the join in the construction of homogeneous Sasaki 
manifolds.

2.3.1. Sasaki immersions
Let X, Y be regular Sasaki manifolds with pseudo-Hermitian structures {ω, J}, {η, I}, respectively. Also, 

let A, B denote the respective Reeb vector fields on X, Y . An immersion of manifolds

ι : Y → X

such that

i) the Reeb vectorfield A is tangent to the image ι(Y ) ⊆ X and
ii) the tangent bundle of ι(Y ) satisfies J Tι(Y ) ⊆ Tι(Y )

is called a Sasaki immersion if

iii) {η, I} = ι∗{ω, J}

is satisfied. That is, for a Sasaki immersion, {η, I} is obtained by pullback of {ω, J}. Let q : X → W and 
p : Y → V denote the respective Kähler quotients. Then the Sasaki immersion ι induces a unique Kählerian 
immersion

j : V → W ,

such that j ◦ p = q ◦ ι. Note also that j determines the Sasaki immersion ι uniquely up to composition with 
an element of the Reeb flow T .
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2.3.2. The join construction and Sasaki immersions
Let

(Xi, {ωi, Ji}) , i = 1, 2 ,

be regular Sasaki manifolds with Reeb flows

Ti = {φi,t}t∈R .

Furthermore, let (Wi, Ωi) denote the Kähler quotients of Xi, and

qi : Xi → Wi

the corresponding Boothby-Wang fibrations. Now consider

T̄ = T1 × T2 = {(φ1,s, φ2,t)}s,t∈R

and define Δ = {(φ1,t, φ2,−t)}t∈R as the diagonal in T̄ . Then put

T = T̄
/

Δ .

Proposition 2.4 (Join of Sasaki manifolds X1 and X2). There exists a unique regular Sasaki manifold

X = X1 ∗ X2

with Reeb flow T and Kähler quotient

q : X1 ∗ X2 → W = (W1 × W2, Ω1 × Ω2) ,

which admits Sasaki immersions ιXi
: Xi → X1 ∗ X2 such that the diagram

Xi X1 ∗ X2

Wi W1 × W2

ιXi

qi q

pri

(2.5)

is commutative (i = 1, 2).

Proof. Observe that, via the product action, T̄ = T1 ×T2 acts properly and freely on X1 ×X2 with quotient 
map

q̄ = q1 × q2 : X1 × X2 → W = W1 × W2 .

Define another quotient map

p : X1 × X2 → X := (X1 × X2)/Δ , (2.6)

and let

q : X → W

be the induced map such that q̄ = q ◦ p.
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Let pri : X1 × X2 → Xi, i = 1, 2, denote the projection maps. Define

ω̄ = pr∗
1 ω1 + pr∗

2 ω2 ,

and consider the Kähler form Ω = Ω1 × Ω2 on W . By construction,

q̄∗ (Ω) = dω̄ .

Next let Āi denote the canonical lifts of the Reeb fields Ai to X1 × X2, where Āi is tangent to the factor 
Xi, respectively. The one-parameter groups generated by these vector fields are contained in the abelian Lie 
group T̄ . In particular, these vector fields are Δ-invariant. Let VΔ denote the one-dimensional distribution 
on X1 × X2, which is spanned by the vector field Ā1 − Ā2. Then VΔ is vertical (tangent to the fibers) with 
respect to the quotient map p in (2.6) induced by the action of Δ. Therefore, both vector fields Āi project 
to the same vector field A on X.

Note that ω̄ is a T̄ -invariant one-form which vanishes on VΔ. Therefore, there exists on X a unique 
induced one form

ω = ω1 ∗ ω2 satisfying p∗ω = ω̄.

In particular, ω satisfies q∗Ω = dω, where Ω = Ω1 × Ω2. It follows that ω is a contact form with Reeb field 
A. The Reeb flow of ω is the one-parameter group

T = T̄ /Δ .

Summarizing the construction, we note that ω is a connection form for the T -principal bundle q : X → W

and it has curvature form Ω.
Let Ji denote the complex structures on ker ωi (canonically extended to tensors on Xi by declaring 

Ji(Ai) = 0). Observe that the kernel of ω coincides with the projection of

ker pr∗
1 ω1 ∩ ker pr∗

2 ω2

to (the tangent bundle of) X. Therefore, J̄ = J1 × J2 goes down to an almost complex structure J on ker ω

such that

q : (X, {ker ω, J}) → (W, J)

is a holomorphic CR-map. Since (W, {Ω, J}) is Kähler and ω a connection form with curvature Ω, the almost 
CR-structure {ker ω, J} is integrable, see [17, Theorem 2]. Since

dω ◦ J = (q∗Ω) ◦ J

is positive, {ω, J} defines a pseudo-Hermitian structure on X. By the construction T acts by holomorphic 
transformations on X. This shows that (X, {ω, J}) is a regular Sasaki manifold with Kähler quotient (W, Ω).

Choose a base point (xo, yo) ∈ X1 × X2 and define immersions ιi : Xi → X, ι1(x) = q(x, yo) and 
ι2(y) = q(xo, y). (Note that all such pairs of maps are equivalent by an element of T .) By the above 
construction, ιi are Sasaki immersions, and, in fact, they determine the Sasaki structure {ω, J} on the 
manifold X1 ∗ X2 uniquely, together with the condition that A is the Reeb field. �

The join of Sasaki manifolds enjoys the following functorial property:
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Proposition 2.5. For any pair of Sasaki immersions τi : Yi → Xi with induced Kähler immersions ji : Vi →
Wi, i = 1, 2, there exists a unique Sasaki immersion

τ = τ1 ∗ τ2 : Y1 ∗ Y2 → X1 ∗ X2

such that the associated diagram

Y1 ∗ Y2 X1 ∗ X2

V1 × V2 W

τ

p q

j1×j2

(2.7)

is commutative and ιXi
◦ τi and τ ◦ ιYi

coincide up to an element of T .

Proof. Since τi are Sasaki immersions, the product map

τ̄ = τ1 × τ2 : Y1 × Y2 → X1 × X2

induces a map

τ1 ∗ τ2 := Y1 ∗ Y2 → X1 ∗ X2

with the required properties. �
This gives:

Corollary 2.6. The join of X1 and X2 defines a natural homomorphism

Psh (X1) × Psh (X2) → Psh (X1 ∗ X2) , (φ1, φ2) 
→ φ1 ∗ φ2

with kernel the diagonal group Δ = {(φ1,t, φ2,−t)}t∈R.

Proof. Indeed, by the construction in Proposition 2.5, φ1 ∗ φ2 ∈ Psh (X) and the above map is a homomor-
phism with kernel Δ. �
We call the group

Psh (X1) ∗ Psh (X2) = (Psh (X1) × Psh (X2))
/

Δ

the join of the groups Psh (Xi). By the above, the join of Psh (Xi) identifies with a subgroup of Psh (X1∗X2).

Corollary 2.7. Let X1 and X2 be homogeneous Sasaki manifolds. Then the join of groups Psh (X1) ∗Psh (X2)
is acting transitively by pseudo-Hermitian transformations on the Sasaki manifold X1 ∗ X2. In particular, 
X1 ∗ X2 is a homogeneous Sasaki manifold.

Proof. The Kähler quotient W1×W2 of X1∗X2 is a homogeneous Kähler manifold for the group G = G1×G2, 
where Gi denotes the Boothby-Wang image of Psh (Xi) in Isom h(Wi). Since G is also the Boothby-Wang 
image of Psh (X1) ∗Psh (X2), and the latter also contains the Reeb-flow T , it follows that Psh (X1) ∗Psh (X2)
acts transitively on X1 ∗ X2. �
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3. Pseudo-Hermitian group Psh (X) of a regular Sasaki manifold with vanishing Kähler class

Suppose that (X, {ω, J}) is a regular Sasaki manifold with Reeb flow T isomorphic to the real line R. 
Then the Boothby-Wang fibration Proposition 2.2 gives a principal bundle

R −−−−→ X
q−−−−→ W

over the Kähler quotient W = (W, Ω, J). Here the group R = {ϕt}t∈R of the principal bundle is generated 
by the Reeb field and the Kähler form on the base is satisfying the equation

q∗Ω = dω . (3.1)

Choose a smooth section s : W → X of q such that the bundle X is equivalent to the trivial bundle by 
a bundle map

f : R × W−→X

which is defined by

f(t, w) = ϕt s(w) .

We thus have the following commutative diagram:

R × W
f−−−−→ X

pr ↘ ↙ q

W

, q ◦ s = idW . (3.2)

Declare a one-form θ on W by putting

θ = s∗ω . (3.3)

Note then that dθ = Ω from (3.1). In particular, the Kähler form Ω on W is exact.
Next extend θ to a translation invariant one-form on R × W by declaring

ω0 = dt + pr∗θ, so that dω0 = pr∗Ω holds. (3.4)

Noting f(0, w) = s(w) = s ◦ pr(0, w), we have

pr∗θ|{0}×W
= ((s ◦ pr)∗ω)|{0}×W

= f∗
|{0}×W

ω.

Since both forms f∗ω and ω0 are translation invariant, we conclude that

f∗ω = ω0 . (3.5)

Then an almost complex structure J̃ on ker ω0 is defined by

pr∗ ◦ J̃ = J ◦ pr∗. (3.6)

By construction, the isomorphism f∗ : ker ω0 → ker ω is holomorphic, that is,
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f∗ ◦ J̃ = J ◦ f∗.

In particular, J̃ is a complex structure on ker ω0. Summarizing the above we obtain:

Proposition 3.1. Identifying the regular Sasaki manifold X with R ×W via f , the pseudo-Hermitian structure 
{ω, J, A} corresponds to {ω0, J̃ , ∂

∂t } on the trivial bundle R × W , where ω0 is defined as in (3.4).

Existence of a compatible regular Sasaki manifold. Conversely, any exact Kähler form

Ω = dθ

on a complex manifold W arises as the curvature form of a connection form ω on the trivial principal bundle

X = R × W .

In fact, such ω with Reeb field A = ∂
∂t is given by (3.4). As a consequence (employing [17, Theorem 2]

to show the integrability of the almost CR-structure {ker ω, J}), there exists on X a pseudo-Hermitian 
structure

{ω, J, A} , (3.7)

which has the Kähler manifold (W, Ω) as its Kähler quotient. We call such a pseudo-Hermitian structure 
compatible with the Kähler manifold (W, Ω).

We remark now that, under a mild assumption on the Kähler manifold W , any compatible pseudo-
Hermitian structure on X is essentially determined uniquely by the Kähler structure on W .

Proposition 3.2. Suppose H1(W, R) = {0}. Then any two pseudo-Hermitian structures {ω, J, A} and 
{ω′, J ′, A} on X, which are compatible with the Kähler manifold (W, Ω), are related by a gauge trans-
formation for the principal bundle q : X → W .

Proof. By the compatibility assumption, we have ω′ − ω = q∗η, for some closed one-form η ∈ Ω1(W ). Since 
H1(W, R) = {0}, there exists a function λ : W → R such η = dλ. In the view of Proposition 3.1, we may 
assume that X = R × W and ω = dt + q∗θ, where dθ = Ω. We define a gauge transformation G for the 
bundle q, by putting

G(t, w) = (t + λ(w), w) .

We then calculate G∗ω = G∗dt + q∗θ = dt + d q∗λ + q∗θ = ω + q∗η = ω′. �
Remark 3.3. For an analogous existence result for Sasaki manifolds in the more elaborate case of circle 
bundles over Hodge manifolds, see [8, Theorem 3], respectively [21].

3.1. Lifting of isometries from the Kähler quotient

We now prove a structure result for the group of holomorphic isometries Psh (X) of X if the Boothby-
Wang fibration has contractible fiber R. That is, let X be a regular Sasaki manifold with Boothby-Wang 
fibration

R → X → W . (3.8)
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As before let

Isomh(W ) = Isom (W, Ω, J)

denote the group of holomorphic isometries of the Kähler quotient W for X.

Proposition 3.4. Assume that the first cohomology of the Kähler quotient W , arising in (3.8), satisfies 
H1(W ) = {0}. Then the Boothby-Wang homomorphism (2.2) defines a natural exact sequence

1 −−−−→ R −−−−→ Psh (X) φ−−−−→ Isom h(W ) −−−−→ 1 . (3.9)

In particular, Psh (X) acts transitively on X if and only if Isom h(W ) acts transitively on W .

Proof. In the view of Proposition 2.2 it is sufficient to show that φ is surjective. Indeed, since H1(W ) = {0}, 
Lemma 3.5 below shows that for any h ∈ Isom h(W ), there exists an isometry h̃ ∈ Psh (X), which is a lift 
of h, that is, φ(h̃) = h. �

Proposition 3.4 is implied by the following basic lifting result for holomorphic and anti-holomorphic 
isometries of the Kähler quotient W :

Lemma 3.5. Assume that H1(W ) = {0}, and let h ∈ Isom (W ) satisfy h∗Ω = μ Ω, where μ ∈ {±1}. Then 
there exists an isometry h̃ ∈ Psh± (X) such that h̃ induces h on W and satisfies h̃∗ω = μ ω. If μ = 1 then 
h̃ ∈ Psh (X).

Proof. We may assume X = R × W . Define h̃′(t, w) = (t, h(w)) to be the canonical lift of h. Then 
ω′ = μ · (h̃′)∗ω defines another pseudo-Hermitian structure on X which is compatible with (W, Ω). By 
Proposition 3.2, there exists a gauge transformation G : X → X with G∗ ω′ = ω. Therefore,

h̃ = G ◦ h̃′

satisfies h̃∗ω = μ ·ω, and it is an isometric lift of h for the metric g = ω ·ω+dω◦J . It also follows h̃∗A = μA. 
Thus, h̃ ∈ Psh± (X). �
4. Homogeneous Sasaki manifolds

Suppose that the Lie group G acts transitively by pseudo-Hermitian isometries on the Sasaki manifold X. 
Then

X = G/H

is called a homogeneous Sasaki manifold. Since X is also a complete Riemannian manifold with respect to 
the Sasaki metric g, the Reeb field A for X, which is a Killing field for the metric g, is a complete vector 
field. Let

T = {ϕt}t∈R

denote the 1-parameter group on G/H generated by the Reeb field.
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4.1. Natural fibering over homogeneous Kähler manifold

Since T commutes with G, there exists a one-parameter subgroup

A = {at}t∈R ≤ NG(H) (4.1)

such that

ϕt(xH) = xa−1
t H , (4.2)

where NG(H) denotes the normalizer of H in G.

Proposition 4.1. T is a closed subgroup in Psh (G/H). In particular, T is isomorphic to S1 or R, and it is 
acting properly on G/H.

Proof. The Reeb field A is uniquely determined by the equations:

ω(A) = 1, ιAdω = 0.

Let D = {ϕt}t∈R ≤ Psh (G/H) be the closure. As Lgϕt = ϕtLg (for all g ∈ G) from (4.2), every element of 
D commutes with G. Thus every vector field B induced from one-parameter groups in D is left-invariant. 
In particular, ω(B) is constant. By the Cartan formula, it follows ιBdω = 0. If ω(B) �= 0, by uniqueness of 
the Reeb field, B = A up to a constant multiple on G/H. When ω(B) = 0, the non-degeneracy of the Levi 
form dω ◦ J on ker ω implies B = 0 on G/H. This shows D = {ϕt}t∈R. �
Lemma 4.2. T acts freely on G/H.

Proof. If ϕt0(x0H) = x0a
−1
t0 H = x0H, for some x0 ∈ G, then at0 ∈ H and so ϕt0(xH) = xH (for all x ∈ G). 

Since T acts effectively, ϕt0 = 1. �
In particular, any homogeneous Sasaki manifold X = G/H is a regular Sasaki manifold (cf. [8]). Moreover, 

by Proposition 2.2 the Kähler quotient

W = (G/H)
/

T

is a homogeneous Kähler manifold for G. That is, G is acting transitively by holomorphic isometries on W . 
We thus have:

Theorem 4.3 (Boothby-Wang fibration [8]). Every homogeneous Sasaki manifold X = G/H arises as a 
principal T -bundle over a homogeneous Kähler manifold W which takes the form:

T −−−−→ G/H
q−−−−→ W = G/HA . (4.3)

Remark 4.4. If G/H is contractible, so is G/HA, and in this case T ∼= R.

The following existence and uniqueness result for contractible homogeneous Sasaki manifolds is now a 
direct consequence of Section 3:
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Corollary 4.5 (Contractible homogeneous Sasaki manifolds). Let (W, Ω, J) be a homogeneous Kähler manifold 
which is contractible. Then there exists a contractible homogeneous Sasaki manifold (X, {ω, J}) which has 
Kähler quotient (W, Ω, J). Moreover, with these properties, the Boothby-Wang fibration (4.3) for X has fiber 
R, and X is uniquely defined up to a pseudo-Hermitian isometry.

Proof. Indeed, we may choose on the trivial principal bundle X = R × W , the pseudo-Hermitian structure 
(3.7), which has Reeb field A = ∂

∂t and Kähler quotient (W, Ω, J). By Proposition 3.4, (X, {ω, J, A}) is 
a homogeneous Sasaki manifold. Let (X ′, {ω′, J ′, A′}) be another contractible Sasaki manifold which has 
(W, Ω, J) as a Kähler quotient. Then the Boothby-Wang fibration for X ′ has fiber R, and, by Proposition 3.1, 
there exists a pseudo-Hermitian isometry from X ′ to (X, {ω′, J ′, A}). By Proposition 3.2, the latter admits 
a pseudo-Hermitian isometry to (X, {ω, J, A}) which is given by a gauge transformation of the bundle X. 
This implies the claimed uniqueness. �
4.2. Pseudo-Hermitian presentations of W

Let X be a homogeneous Sasaki manifold with group G and W its Kähler quotient. We describe now the 
types of homogeneous presentations

W = G/HA

which can arise in the associated Boothby-Wang fibration (4.3). For this we assume that

G ≤ Psh (X)

is a closed subgroup. In particular, G is acting faithfully on X. With this assumption the stabilizer H is 
always compact, since G is a closed group of isometries for X.

Lemma 4.6. Let Δ denote the kernel of the induced G-action on the Kähler quotient W of X. Then the 
following hold:

(1) H A = H � A decomposes as a semi-direct product.
(2) Δ ≤ HA, and, L̄ = HA

/
Δ is compact.

(3) Δ = T ∩ G, in particular, Δ is central in G.
(4) If A is non-compact then the projection homomorphism πA : HA → A maps Δ injectively to a closed 

subgroup of A.
(5) If A is normal in G then A is central in G.

Proof. Since T acts freely on G/H, we infer from (4.2) that A ∩ H = {1}. This implies that

H A = H � A

is a semi-direct product, proving (1). Let

πA : HA → A

denote the projection homomorphism. Since H is compact, the homomorphism πA is proper. Therefore, 
the image Ḡ of G in Isom (G

/
HA) is closed and acts properly on W = G/HA = Ḡ/L̄. We deduce that 

L̄ = HA
/

Δ is a compact subgroup of Ḡ = G/Δ. Thus, (2) holds.
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Since the homomorphism φ in (2.2) which maps G to Ḡ has kernel T ,

Δ = G ∩ T ,

where the intersection is taken in Psh (X). Recall that T is central in Psh (X). Therefore, Δ is central in 
G. Hence, (3).

Next, consider C = ker πA ∩ Δ = H ∩ Δ. Assuming that A is a vector group, C is the unique maximal 
compact subgroup of Δ. Since Δ is normal in G, so is C. Since C is also a subgroup of H and G/H is 
effective, we deduce that C = {1}. This shows that Δ is isomorphic to the closed subgroup πA(Δ) ≤ A, 
proving (4).

Finally, assume that A is normal in G. Then the left-multiplication orbits of A on G/H coincide with the 
orbits of T . That is, for all g ∈ G:

T · gH = g · AH = A · gH .

In particular, the left-action of A on G/H (which is by pseudo-Hermitian isometries) induces the trivial 
action on the Kähler-quotient W by the fibration sequence (4.3). That is, A ≤ Δ and by (3), A ≤ T . This 
implies that A = T is central in G. �

Two principal cases are arising, according to whether Δ is a continuous group or Δ is a discrete subgroup 
of G. Recall first that either A = S1 or A = R. Then we have:

Case I (Δ = A, T is contained in G). We suppose here that A can be chosen to be a normal subgroup in 
G. By (5) of Lemma 4.6, it follows that the isometries induced by the left-action of A are contained in the 
kernel of the homomorphism φ : Psh (X) → Isom h(W ), which is just T . Since A is a non-trivial connected 
(one-dimensional) group, this implies

T = A = Δ

as subgroups of Psh (X). Then the fibration (4.3) turns into a principal bundle of homogeneous spaces of 
the form

A −−−−→ G/H
q−−−−→ W = (G/A) /H = Ḡ/H̄ , (I)

where H̄ = H and the group Ḡ is described by an exact sequence of groups

1 −−−−→ A = R −−−−→ G
φ−−−−→ Ḡ −−−−→ 1 . (I′)

Case II (A = R, Δ = Z). We are assuming that A ∼= R (for example, if G/H is contractible). By Lemma 4.6
(4), the central subgroup Δ of G is either infinite cyclic (and discrete) or Δ is a closed one-parameter 
subgroup in HA which is projecting surjectively onto A. Since Δ is contained in T , and T is one dimensional, 
we deduce Δ = T , in the latter case. This situation was already described in Case I above.

So for case II, Δ = T ∩ G is infinite cyclic and central in G. Moreover, Δ ≤ HA and by Lemma 4.6
(4) the map πA is projecting Δ injectively onto a discrete lattice Z in A. Denote with Ā the image of A in 
Ḡ = G/Δ. Then the Boothby-Wang fibration (4.3) can be written in the form

A −−−−→ G/H
q−−−−→ W = Ḡ

/
H̄Ā , (II)

where the group Ḡ is described by the exact sequence
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1 −−−−→ Δ = Z −−−−→ G
φ−−−−→ Ḡ −−−−→ 1 . (II′)

Recall also that L̄ = H̄Ā is a compact subgroup of Ḡ, and H̄ is a compact normal subgroup in H̄Ā. 
Therefore, the simply connected one-parameter group A may be chosen in such a way that its quotient Ā is 
a compact circle group, and the intersection H̄ ∩ Ā is finite.

5. Homogeneous Kähler manifolds of unimodular groups

Let W be a homogeneous Kähler manifold. The fundamental conjecture for homogeneous Kähler man-
ifolds (as proved by Dorfmeister and Nakajima [12]) asserts that W is a holomorphic fiber bundle over a 
homogeneous bounded domain D with fiber the product of a flat space Ck with a compact simply connected 
homogeneous Kähler manifold.

Recall that a Lie group G is called unimodular if its Haar measure is biinvariant. Let g denote the Lie 
algebra of G. If G is connected, then G is unimodular if and only if the trace function over the adjoint 
representation of g is zero.

Proposition 5.1. Let W be a contractible homogeneous Kähler manifold that admits a connected unimodular 
subgroup

G ≤ Isom h(W )

which acts transitively on W . Then there exists a symmetric bounded domain D such

W = Ck × D

is a Kähler direct product.

A more general result for arbitrary homogeneous Kähler manifolds of unimodular Lie groups is stated in 
[1, Proposition 4.2] and Proposition 5.1 can be derived as a special case. For clarity and completeness of the 
exposition we give a detailed and self contained proof. The condition that a homogeneous Kähler manifold 
is contractible clarifies the existence of symmetric domain in the product decomposition and also simplifies 
the proof. This result will be used to determine isometry groups in the next section.

Proof of Proposition 5.1. For the proof we require some constructions which are developed in the proof 
of the fundamental conjecture as it is given in [12]. The first main step in the proof of the fundamental 
conjecture is to modify G in order to obtain a suitable connected transitive Lie group Ĝ with particular nice 
properties [12, Theorem 2.1]. By a modification procedure on the level of Lie algebras (as is described in [12, 
§2.4]), we obtain from the Kähler Lie algebra g of G a quasi-normal Kähler Lie algebra ĝ. Moreover, it is 
shown that there exists a connected subgroup Ĝ ≤ Isom h(W ), which has Lie algebra ĝ and acts transitively 
on W . As can be verified directly from [12, §2.4], the modified Lie algebra ĝ preserves unimodularity of g
and also satisfies dim ĝ ≤ dim g.

Therefore, from the beginning, we may assume that the connected unimodular transitive Lie group G
of holomorphic isometries in question has a quasi-normal Lie algebra g. We can also replace G with its 
universal covering group, and we remark that K is connected (W = G/K is simply connected, since we are 
assuming here that W is contractible). With these additional properties in place, according to [12, Theorem 
2.5] combined with [12, §7], the following hold:

(1) There exists a closed connected normal abelian subgroup A of G, such that G = AH is an almost 
semi-direct product.
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(2) There exists a reductive subgroup U ≤ H, with K ≤ U , such that

D = H/U

is a bounded homogeneous domain and

U/K

is compact with finite fundamental group.
(3) Put L = A U . Then L is a closed subgroup of G and the map

W = G/K → G/L = H/U = D

is a holomorphic fiber bundle with fiber L/K = A U/K.

We prove now that, if G is unimodular then H is a unimodular Lie group: For this recall from [12, 
Theorem 2.5] that A is tangent to a Kähler ideal a of the Kähler algebra which belongs to W . (Recall that 
the Kähler algebra for G/K is g together with an alternating two-form ρ which is representing the Kähler 
form on W .) Since K intersects A only trivially, the Kähler ideal a is non-degenerate, that is, the restriction 
ρa of the Kähler form ρ of g to a is non-degenerate. Since a is abelian and ρ is a closed form on g, it follows 
that ρa is invariant by the restriction of the adjoint representation of h (respectively H). In particular, 
this restricted representation of H on a is by unimodular maps. Since G is unimodular, it follows from the 
semi-direct product decomposition G = AH that H is unimodular.

Let K1 denote the maximal compact normal subgroup of H. Then the group H ′ = H/K1 is unimodular. 
Moreover H ′ acts faithfully and transitively on D = H/K = H ′/K ′, K ′ = K/K1. Hence, the bounded 
domain D has a transitive faithful unimodular group H ′ of isometries. By results of Hano [13, Theorem III, 
IV], H ′ must be semisimple and D is a symmetric bounded domain. We also conclude that there exists a 
semisimple subgroup S ≤ G, which is of non-compact type, such that H = K1S is an almost direct product 
and the homomorphism S → H ′ is a covering with finite kernel.

Contractibility of W further implies U = K. Therefore, in this case, the holomorphic bundle in (3) is of 
the form

G/K → D = H/K ,

with fiber A = Ck, and D is a symmetric bounded domain.
Finally the direct product decomposition follows: Note also that K1 acts faithfully on Ck by Kähler 

isometries, and that S acts trivially on A, since it is of non-compact type. It follows that S is a normal 
subgroup of G. Therefore its tangent algebra must be orthogonal to A with respect to ρ. Since the Kähler 
algebra g belonging to G is describing W , we conclude that there is an orthogonal product decomposition 
W = Ck × D. �

We also obtain:

Corollary 5.2. Suppose that W is a contractible homogeneous Kähler manifold, and that there exists a discrete 
uniform subgroup in Isom h(W ). Then W is Kähler isometric to Ck × D, where D is a symmetric bounded 
domain.

The following is obtained in the proof of Proposition 5.1:
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Corollary 5.3. Assume that W is a homogeneous Kähler manifold which admits a transitive unimodular 
group G. Then there exists a symmetric bounded domain D such that W is a holomorphic fiber bundle over 
D with fiber the product of a flat space Ck with a compact simply connected homogeneous Kähler manifold. 
Moreover, Isom h(W )0 contains a covering group of the identity component of the holomorphic isometry 
group of D.

Proof. In fact, in the proof of Proposition 5.1 it is established that D is symmetric with a semisimple 
transitive group S contained in the quasi normal modification Ḡ of G. It is also clear that S is normal in 
Ḡ, and it is the maximal semisimple subgroup of non-compact type in Ḡ (in fact, in Isom h(W )0), and S is 
covering Isom h(D)0. �

We recall that any symmetric bounded domain D admits an involutive anti-holomorphic isometry:

Proposition 5.4 (Isometry group of symmetric bounded domain). Let D be a symmetric bounded domain 
with Kähler structure (Ω, J). If D is irreducible then

Isom (D) = Isom ±
h (D) .

Moreover, for any D there exists an element τ̄ ∈ Isom (D) such that

τ̄2 = 1, τ̄∗Ω = −Ω, τ̄∗J = −Jτ̄∗.

For the fact that every isometry of an irreducible bounded symmetric domain is either holomorphic or 
anti-holomorphic, see e.g. [18, Ch. VIII, Ex. B4]. For the existence of the anti-holomorphic involution τ̄ , 
recall first that the metric on any symmetric bounded domain D is analytic (see [18]). Then the following 
holds:

Proposition 5.5. Let W be a simply connected Kähler manifold with analytic Kähler metric. Then there 
exists an anti-holomorphic involutive isometry τ̄ of W .

Proof. Since W is a complex manifold and the Kähler metric is Hermitian with respect to the complex 
structure, there exist local complex coordinates for W such that the metric can be written as

g0 = 2
∑
α,β

gαβ̄dzαdz̄β ,

where gαβ̄ is a Hermitian matrix, so that gαβ̄ = gβᾱ. In particular, the Kähler form Ω0 is obtained as 
Ω0 = −2i 

∑
α,β

gαβ̄dzα ∧ dz̄β .

Let τ0 : Cn→Cn be the complex conjugation map, that is,

τ0(z1, z2, . . . , zn) = (z̄1, z̄2, . . . , z̄n).

Then τ0 satisfies τ∗
0 Ω0 = −Ω0, τ0∗JC = −JCτ0∗. In particular, τ0 defines a local anti-holomorphic isometry 

of W .
Since W is simply connected, we may use analytic continuation to extend τ0 to an analytic map τ̄ :

W → W . By the analyticity assumptions, τ̄ is an anti-holomorphic map and it is preserving the Kähler 
metric. Also it follows τ̄2 = idW by the local rigidity of analytic maps. Therefore, τ̄ is an involutive isometry 
of W . �
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Remark 5.6. Note that the holomorphic isometry group Isom h(D) has finitely many connected components. 
Interestingly, even if D is irreducible Isom h(D) is not necessarily connected [18, Ch. X, Ex. 8].

6. Locally homogeneous aspherical Sasaki manifolds

In this section X denotes a regular contractible Sasaki manifold.

6.1. Homogeneous Sasaki manifolds for unimodular groups

Since X is regular with Reeb flow isomorphic to the real line, Proposition 3.4 implies that the Reeb 
fibering

R → X
q−→ W

gives rise to an exact sequence of groups

1 → R → Psh (X) φ−→ Isom h(W ) → 1 , (6.1)

where W is the Kähler quotient of X.

Proposition 6.1. Let X be a homogeneous Sasaki manifold such that its Kähler quotient W is contractible. 
Suppose further that X admits a connected transitive unimodular subgroup

G ≤ Psh (X) .

Then the following hold:

(1) W = Ck × D is the Kähler product of a flat space with a symmetric bounded domain D.
(2) If the Reeb flow of X is isomorphic to R, then the pullback of

Ck � U(k) ≤ Isom h(W )

along the exact sequence (6.1) is a normal subgroup

N � U(k) ≤ Psh (X) ,

where N is a 2k + 1-dimensional Heisenberg Lie group.

Proof. As the Reeb flow T is central in Psh (X)0, the associated Boothby-Wang homomorphism φ as in 
(6.1) maps the unimodular group G to

Ḡ = φ(G) ≤ Isom h(W ) .

Since also Ḡ is unimodular and transitive on the contractible Kähler manifold W , Proposition 5.1 states 
that W = Ck × D, where D is a symmetric bounded domain. This proves (1). It also follows that

Isom h(W ) =
(
Ck � U(k)

) × Isom h(D) .

We may thus pull back the factor Ck �U(k) by φ in the exact sequence (6.1). As pullback we obtain the 
subgroup N � U(k) ≤ Psh (X), where N is the preimage of the translation group Ck.
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Assuming T = R, we note that N is a central extension of the Reeb flow R by the abelian Lie group 
Ck. We prove now that N is a 2k + 1-dimensional Heisenberg Lie group by showing that its Lie algebra 
n has one-dimensional center: Since N acts faithfully as a transformation group on X, we may identify n
with a subalgebra of pseudo-Hermitian Killing vector fields on X. This subalgebra contains the Reeb field 
A (tangent to the central one-parameter group T = R) in its center. Now, since N is the pullback of Ck, 
given any two vector fields X , Y ∈ n, we have

[X , Y] = ω([X , Y])A .

Using Lemma 6.2 below, we observe

q∗Ω (X , Y) = dω(X , Y) = ω([X , Y]) .

Since (Ck, Ω) is Kähler, it follows that dω defines a non-degenerate two-form on n/〈A〉. This shows that the 
Lie algebra n has one-dimensional center A. Therefore the Lie group N has one-dimensional center. So N
is a Heisenberg group of dimension 2k + 1. �

A vector field on X with flow in Psh (X) will be called a pseudo-Hermitian vector field. The set of 
pseudo-Hermitian vector fields forms a subalgebra of the Lie algebra of Killing vector fields for the Sasaki 
metric g.

Lemma 6.2. Let X , Y be any two pseudo-Hermitian Killing vector fields on the Sasaki manifold X. Then

q∗Ω (X , Y) = dω(X , Y) = ω([X , Y]) .

Proof. Since the flow of X preserves the contact form ω, we have

LX ω = 0 .

(Here, LX denotes the Lie derivative with respect to X .) That is,

LX ω(Z) − ω([X , Z]) = 0,

for all vector fields Z on X. We compute

0 = LX ω(Y) − ω([X , Y]) − LY ω(X ) + ω([Y, X ])

= LX ω(Y) − LY ω(X ) − ω([X , Y]) + ω([Y, X ])

= dω(X , Y) − ω([X , Y]) . �
Let X be a contractible homogeneous Sasaki manifold with Kähler quotient W = Ck × D, where D is a 

symmetric bounded domain. Then

Isom h(W ) =
(
Ck � U(k)

) × Isom h(D) . (6.2)

Note further that Isom h(D)0 = S0 is the identity component of the holomorphic isometry group of a 
Hermitian symmetric space

D = S0/H0

of non-compact type. In particular, S0 is semisimple of non-compact type [18, Ch. VIII, §7] and without 
center. Therefore (6.2) also gives:
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Proposition 6.3. Psh (X) has finitely many connected components and

Psh (X)/ Psh (X)0 = Isom h(D)/ Isom h(D)0 .

We add:

Proposition 6.4 (Sasaki automorphism group). There exists a semisimple Lie group S of non-compact type, 
whose center Λ is infinite cyclic, and a 2k+1 dimensional Heisenberg groups N , such that there is an almost 
direct product decomposition

Psh (X)0 = (N � U(k)) · S .

Moreover, the Reeb flow T of X is the center of N and

T ∩ S = (N � U(k)) ∩ S = Λ (∼= Z).

Proof. For the homogeneous Sasaki manifold X, the exact sequence of groups (6.1) associated to the Reeb 
fibering for X induces a central extension

1 → T → (N � U(k)) · S
φ→ (Ck � U(k)) × S0 → 1 , (6.3)

where the Reeb flow T = R maps to the center of N . Here

S ≤ Psh (X)0

is a semisimple normal subgroup of non-compact type, which is covering S0 under φ. In particular, since S
is a normal subgroup of Psh (X)0, it commutes with N � U(k). (Note also that U(k) acts faithfully on N
and maps to a maximal compact subgroup of Aut(N ).)

The kernel Λ of the covering S → S0 is

ker φ ∩ S = R ∩ S = (N � U(k)) ∩ S .

Moreover, Λ is the center of S, since S0 has trivial center. We claim that Λ is an infinite cyclic discrete 
subgroup and, in particular, it is a uniform subgroup in T . Indeed, in the light of Corollary 4.5, there exists 
a unique contractible homogeneous Sasaki manifold X1 with Kähler quotient Ck, and similarly a unique 
homogeneous Sasaki manifold X2 with Kähler quotient D. Let Ti ≤ Psh (Xi) denote the Reeb flow of Xi. 
Then (see Section 2.3, Corollary 2.7) the join X1∗X2 is a homogeneous Sasaki manifold with Kähler quotient 
Ck × D. According to the above, Psh (X1) = N � U(k), and by Proposition 6.9 below Psh (X2)0 = T2 · S, 
where S is a closed semisimple Lie subgroup covering S0 with infinite cyclic kernel Λ = Z(S), T2 ∩ S = Λ. 
It follows that Psh (X)0 = Psh (X1) ∗ Psh (X2)0 has the claimed properties. �
6.2. Application to locally homogeneous Sasaki manifolds

We consider a compact aspherical Sasaki manifold of the form

M = Γ \X ,

where X is a contractible Sasaki manifold and Γ is a torsion free discrete subgroup contained in Psh (X). 
If X is a homogeneous Sasaki manifold then M is called a locally homogenous Sasaki manifold.
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Theorem 6.5. Suppose that X is a contractible homogeneous Sasaki manifold and that X admits a discrete 
subgroup of isometries with

Γ \X

compact. Then:

(1) The Kähler quotient of X is a Kähler product

W = Ck × D

of a flat space Ck with a symmetric bounded domain D.
(2) Let T denote the Reeb flow of X. Then Γ ∩ T is a discrete uniform subgroup of T (in particular, Γ ∩ T

is isomorphic to Z).
(3) Let φ : Psh (X) → Isom h(W ) be the Boothby-Wang homomorphism in (6.1). Then the subgroup

φ(Γ) ≤ Isom h(W )

is discrete and uniform.

Corollary 6.6. Let M = X/Γ be a compact locally homogeneous Sasaki manifold. Then M is a Sasaki 
manifold with compact Reeb flow T = S1. Moreover, a finite covering space of M is a regular Sasaki 
manifold.

Remark 6.7. Certain linear flows on the sphere give rise to irregular compact Sasaki manifolds, cf. [11, 
Chapters 2, 7].

For the preparation of the proof of Theorem 6.5 we shall recall some standard facts about:

Levi decomposition and uniform lattices. In general a connected Lie group G admits a Levi decomposition

G = R · S ,

where R is the solvable radical of G and S is a semisimple subgroup. Let K denote the maximal compact 
and connected normal subgroup of S, then put S0 = G/(RK). Note that S0 is semisimple of non-compact 
type. We will need the following fact (see [28, Chapter 4, Theorem 1.7], for example):

Proposition 6.8. Let Γ be a uniform lattice in G. Then the intersection (RK) ∩ Γ is a uniform lattice in RK. 
In particular, in the associated exact sequence

1 −−−−→ RK −−−−→ G ν−−−−→ S0 −−−−→ 1, (6.4)

the image ν(Γ) is a uniform lattice in the semisimple Lie group S0.

Remark in addition the following: As the subgroup ν(Γ) ≤ S0 is discrete and uniform, and since S0 has 
no compact normal connected subgroup, the image of ν(Γ) is a Zariski dense subgroup in the adjoint form 
of S0 (by Borel’s density theorem, cf. [24]). Consider any connected closed subgroup G of S0, which contains 
ν(Γ). Then G is uniform and Zariski-dense. This implies that G = S0.

Now we are ready for the

26

ht
tp
://
do
c.
re
ro
.c
h



Proof of Theorem 6.5. Note that Γ0 = Γ ∩ Psh (X)0 is a discrete uniform subgroup of Psh (X)0 (compare 
[5, Lemma 2.3]). The existence of a lattice subgroup implies that Psh (X)0 is a unimodular Lie group, see 
e.g. [24, 1.9 Remark]. By Proposition 6.1, W = Ck × D, where D is a symmetric bounded domain and

Isom h(W ) =
(
Ck � U(k)

) × Isom h(D) .

Since S0 = Isom h(D)0 is semisimple of non-compact type, we can apply Proposition 6.8 to Psh (X)0, to 
yield that the intersection Γ ∩ (N �U(k)) is discrete uniform in N �U(k). Then the Auslander-Bieberbach 
theorem [2] shows that, a fortiori, Γ ∩ N is uniform in N . As R is the center of the Heisenberg group N , 
Γ ∩ R is also uniform in R (cf. [24, Chapter II]). In particular, in the light of (6.4), this implies that φ(Γ) is 
a discrete uniform subgroup of Isom h(W ). �
6.3. Sasaki homogeneous spaces over symmetric bounded domains

We assume now that the Kähler quotient of X is a symmetric bounded domain D. Let

S0 = Isom h(D)0

be the identity component of the group of holomorphic isometries of D, and

φ : Psh (X)0 → S0

the Boothby-Wang homomorphism. Recall that S0 is semisimple of non-compact type with trivial center. 
Moreover, we can write

D = S0/K0 ,

where K0 is a maximal compact subgroup of S0.
We prove that X is a Sasaki homogeneous space of a semisimple Lie group:

Proposition 6.9. There exists a semisimple closed normal subgroup

S ≤ Psh (X)0

such that the restricted Boothby-Wang map

φ : S → S0

is a covering with infinite cyclic kernel Λ, where Λ is the center of S. In particular, if T = R denotes the 
Reeb flow on X, then

Psh (X)0 = S · R, with S ∩ R = Λ ( ∼= Z) .

Moreover, the subgroup S of Psh (X) acts transitively on X.

Proof. Put G = Psh (X)0. Then G satisfies the exact sequence

1 −−−−→ T = R −−−−→ G
φ−−−−→ S0 −−−−→ 1 ,
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where the Reeb flow T is a central subgroup of G. By the Levi-decomposition theorem, the above exact 
sequence splits and

G = T · S ,

where S is a covering group of S0 under φ. Note that S is a normal subgroup of G, and ker φ ∩ S = T ∩ S =
Z(S) is the center of S, and a torsion-free abelian group.

Assume that T ∩ S = {1}. In particular S = S0 and G = T × S0. Then K0 is also a maximal compact 
subgroup of G. Choose xo ∈ X such that K0 x0 = x0. Then S0 · x0 = S0/K0 and it follows that

X = R × S0/K0 .

Moreover, the Boothby-Wang fibering q : X → D corresponds to the projection onto the second factor. 
Let ω0 be the contact form of the Sasaki structure on X. By Proposition 3.1 there exists a one-form θ on 
D = S0/K0 such that

ω0 = dt + q∗θ .

Since ω0 is invariant by S = S0, this implies that q∗θ is invariant by S. Therefore also θ is invariant by S0. 
In particular, the two form Ω = dθ is an S0-invariant exact form.

We can now apply a classical result of Koszul to Ω as follows. Let s and k denote the Lie algebras of S0
and K0, respectively. The S0-invariant Kähler form Ω defines a cohomology class in the relative Lie algebra 
cohomology group H2(s, k). Since s is unimodular and k is a reductive subalgebra of s, a result of Koszul [22]
asserts that the cohomology ring H∗(s, k) satisfies Poincaré duality. Since Ω is a non-degenerate two-form, 
the class [Ω] ∈ H2(s, k) is non-zero. This contradicts Ω = dθ, for some S0-invariant form θ on S0/K0. We 
conclude that T ∩ S = {1} is not possible.

Therefore, we have that ker φ ∩S = T ∩S = Λ is isomorphic to Zk, k ≥ 1. Since Λ is the center of S, there 
exists a closed k-dimensional subgroup B of S, B ∼= Rk, containing Λ, and φ maps B to a toral subgroup 
(S1)k contained in the center of K0, cf. [18, Ch. VI, §1]. Let K be the maximal compact subgroup of S. We 
then have

1 + dim D = dim X ≥ dim S/K = k + dim S0/K0 = k + dim D .

Since k ≥ 1, we deduce k = 1 and X = S/K. Hence, S acts transitively on X. Since Z ∼= ker φ ∩ S is 
an infinite cyclic discrete subgroup of T , it also follows that S is a closed subgroup of Psh (X), see [14, 
Theorem B]. �
6.4. Summary on locally homogeneous Sasaki manifolds

Most of the above is summarized in Theorem 1 in the introduction:

Proof of Theorem 1. Statement (1) about the Kähler quotient W = X/T is established in (1) of Theo-
rem 6.5.

We remark next that the Reeb flow T is normal in Isom (X). Indeed, since X is non-compact there can 
be only two Killing fields {A, −A} which are Sasaki compatible with the metric g on X (cf. [26,20,27]). It 
follows that Isom (X) = Psh± (X). The properties of the homomorphism φ : Isom (X) → Isom±

h (W ) are 
established in Proposition 3.4 and Lemma 3.5, proving (2).

Let τ̄ : W → W be an anti-holomorphic involution (which exists by Proposition 5.4 and Note 7.5). Then 
by Lemma 3.5, there exists an anti pseudo-Hermitian and involutive lift τ : X → X. Now (3) follows.
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Since Isom (X) = Psh± (X), we deduce that Isom (X)0 = Psh (X)0. Therefore part (4) is a consequence 
of Proposition 6.4.

Finally, let Γ
∖

G/H be a locally homogeneous aspherical Sasaki manifold, and X = G/H. Then there is 
the exact sequence:

1 −−−−→ Γ −−−−→ NIsom (X)(Γ) −−−−→ Isom (Γ\X) −−−−→ 1.

Thus the claim (5) (stated below of Theorem 1) follows from (3). �
Proof of Corollary 1. Assume that Γ\X is compact. As usual T denotes the Reeb flow for X. Then by (2) 
of Theorem 6.5, Γ ∩ T is an infinite cyclic group Z. Put

S1 = T
/

(Γ ∩ T ) .

According to (3) of Theorem 6.5, taking the quotient of Γ\X by S1, this induces an S1-bundle over a 
compact locally homogeneous aspherical Kähler orbifold of the form:

S1 −−−−→ Γ
∖

G/H −−−−→ φ(Γ)
∖

W .

Here S1 induces the Reeb field of Γ\X. This S1-bundle is usually referred to as a Seifert fibering (cf. 
[23]). In particular, since Isom h(W ) is a linear Lie group, we can choose a torsionfree finite index normal 
subgroup of φ(Γ). Therefore, some finite cover of Γ

∖
G/H becomes a regular Sasaki manifold. This proves 

Corollary 1. �
6.4.1. Solvable fundamental group

Note (see [4, Theorem 0.2]) that every compact aspherical Kähler manifold N with virtually solvable 
fundamental group Γ is biholomorphic to a flat Kähler manifold Ck/ Γ for some embedding of Γ into 
Ck �U(k) as a discrete uniform subgroup. This shows, that the Kähler manifold N , in fact, admits a locally 
homogeneous (and flat) Kähler structure, with respect to its original complex structure. Based on this result 
we prove now the following (which is also implying Corollary 2 in the introduction):

Proposition 6.10. Let M be a regular compact aspherical Sasaki manifold with virtually solvable fundamental 
group. Then the given Sasaki structure on M can be deformed (via regular Sasaki structures) to a locally 
homogeneous regular Sasaki structure.

Proof. By the Boothby-Wang fibration result for compact regular Sasaki manifolds [8], M is a principal 
circle bundle S1 → M

q→ N over a compact Kähler manifold (N, {Ω, J}). Moreover, the Kähler class 
[Ω] ∈ H2(N, R) is integral and it is the image of the characteristic class c(q) ∈ H2(N, Z) of the bundle. Let 
π denote the fundamental group of M . On the level of fundamental group the circle bundle gives rise to a 
central group extension

1 → Z → π → Γ → 1 (6.5)

such that its extension class in H2(π, Z) ∼= H2(N, Z) also maps to [Ω]. (In this context, the Seifert circle 
bundle M is said to realize the group extension (6.5).)

Since Γ is virtually solvable there exists a biholomorphic diffeomorphism Φ : Ck/ Γ → (N, J). Since 
Λ = Γ ∩Ck is a finite index subgroup of Γ and a lattice in Ck, we can construct an embedding π → N �U(k)
such that Δ = π ∩ N is a uniform discrete subgroup in N , and the embedding induces a compatible map 
of exact sequences from (6.5) to the defining exact sequence of the group Psh (N ) which is of the form
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1 → R → Psh (N ) = N � U(k) → Ck � U(k) . (6.6)

This constructs a locally homogeneous Sasaki structure on the quotient manifold N /
π with Kähler quotient 

Ck/ Γ and another Seifert circle bundle S1 → N /
π → Ck/ Γ which realizes the exact sequence (6.5).

By the rigidity for Seifert fiberings (cf. [23]) there exists an isomorphism of circle bundles Ψ : N /
π → M

which induces the biholomorphic map Φ on the base spaces. This shows that the principal circle bundle 
q : M → N admits a compatible locally homogeneous Sasaki structure (M, {ω′, J ′}) which is modeled on N
and has Kähler quotient (N, {Ω′, J}), where Ω′ is a flat (locally constant) Kähler form on (N, J).

Moreover, by the above remarks [Ω′] = [Ω] ∈ H2(N, R). Hence, we can write Ω′ = Ω +θ, where θ = J∂∂̄ϕ, 
for some potential function ϕ : N → R. (See [6, §11.C] for parametrization of the space of Kähler forms on 
the complex manifold (N, J), which is realizing the given Kähler class [Ω].) We may thus choose a continuous 
path of cohomologous Kähler forms Ωt = Ω + θt, θ0 = 0 and θ1 = θ, that is joining Ω and Ω′, e.g. θt = tθ. 
Since the forms θt are exact, we may lift to a continuous path of one-forms τt ∈ Ω1(N) which is satisfying 
dτt = θt.

Finally, let ω denote the connection form on the given circle bundle q : M → N , which defines the 
given regular Sasaki structure with Kähler quotient (N, {Ω, J}). Then it follows that the connection forms 
ωt = ω + q∗θt give rise to a continuous family of regular Sasaki structures {ωt, Jt} compatible with the 
circle bundle q and with Kähler quotients (N, {Ωt, J}). It follows that (M, {ω1, J1}) and (M, {ω′, J ′}) are 
Sasaki structures over the Kähler quotient (N, {Ω′, J}), with (M, {ω′, J ′}) being locally homogeneous. The 
universal covering space X of M inherits the structure of a principal R-bundle over the unitary space 
Ck with induced Sasaki structures from {ω1, J1} and {ω′, J ′}. The latter one being homogeneous with 
group Psh (X) ∼= Psh (N ). Proposition 3.2 shows that the induced structures on X are equivalent Sasaki 
structures. In particular, both are homogeneous Sasaki structures. This shows that (M, {ω1, J1}) is a locally 
homogeneous Sasaki structure. �
7. Classifications of homogeneous Sasaki spaces

In this section we tackle the classification problems for (1) aspherical Sasaki homogeneous spaces of 
semisimple Lie groups and (2) contractible Sasaki Lie groups up to equivalence.

7.1. Homogeneous Sasaki spaces of semisimple Lie groups

We call a connected semisimple Lie group S0 of non-compact type a Lie group of Hermitian type if it is 
the identity component of the holomorphic isometry group of a symmetric bounded domain D = S0/K0.

Theorem 7.1. Let X be a contractible Sasaki homogeneous space of a semisimple Lie group

S ≤ Psh (X)0 .

Then S has infinite cyclic center and

X = S/K ,

where K is a maximal compact subgroup of S. Moreover, S is covering a Lie group S0 of Hermitian type, 
such that:

(1) The Kähler quotient of X is the symmetric bounded domain

D = S0/K0 .

30

ht
tp
://
do
c.
re
ro
.c
h



(2) There exists a simply connected one parameter subgroup A ≤ S, contained in the centralizer of K, whose 
action on X induces the Reeb flow, and the Boothby-Wang fibration for X is of the form

A → X = S/K → D = X/A = S
/

KA .

(3) If T denotes the Reeb flow for X then

Psh (X)0 = T · S ,

and T ∩ S = Λ is the center of S.

Proof. Given a Sasaki metric on X which is homogeneous for the semisimple group G = S, the Boothby-
Wang presentation of the Kähler quotient W must be of type (II) (cf. Section 4.2). That is, it is of the 
form

A → S/K → W = S
/

KA = S0/K0 .

Moreover, A ≤ S is a one-parameter subgroup centralizing K, and S → S0 is a covering homomorphism 
with infinite cyclic kernel Λ. In particular, W = X/A is contractible and it is a faithful Kähler homogeneous 
space of the semisimple Lie group S0 = S/Λ. By Proposition 5.1, W = D is Kähler isometric to a bounded 
symmetric domain D, and S0 is the identity component of the isometry group of D. In particular, S0 is a 
semisimple Lie group of Hermitian type, and D = S0/K0, where K0 is maximal compact in S0. Moreover, 
S0 has trivial center. Therefore, the center of S coincides with the kernel Λ of S → S0, which is infinite 
cyclic. �

The following complements Theorem 7.1 by showing that any symmetric bounded domain D is the Kähler 
quotient of a contractible Sasaki homogeneous space for a semisimple Lie group S:

Theorem 7.2. For any symmetric bounded domain D = S0/K0, there exists a unique semisimple Lie group 
S with infinite cyclic center, which is covering S0 and gives rise to a contractible Sasaki homogeneous space

XS = S/K

with Kähler quotient D.

Proof. Let X be the unique contractible Sasaki homogeneous space over D, which exists by Corollary 4.5. 
By Proposition 6.9, the maximal normal semisimple subgroup S ≤ Psh (X) is acting transitively on X, and 
it is covering S0 with infinite cyclic kernel. By Theorem 7.1 (3), any transitive semisimple Lie subgroup of 
Psh (X) coincides with S. �

Dividing out the center of S gives rise to a homogeneous Sasaki manifold

Y0 = X
/

Λ

whose Reeb flow is a circle group. This shows that any semisimple Lie group of Hermitian type is actually 
acting transitively on an associated Sasaki homogeneous space:

Corollary 7.3. For any semisimple Lie group S0 of Hermitian type, there exists a unique Sasaki homogeneous 
space
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Y0 = S0/K1

with Kähler quotient D = S0/K0. In this situation, the following hold:

(1) There exists a circle group Ā ≤ K0 such that K0 = Ā × K1 is a maximal compact subgroup of S0.
(2) The Reeb flow T0 for the Sasaki space Y0 is isomorphic to a circle group S1 and

Psh (Y0) ∼= S0 × T0 .

Moreover, every Sasaki homogeneous space with Kähler quotient D is a covering space of Y0.

Proof. Consider the unique contractible Sasaki homogeneous space X over D = S0/K0. Then X = S/K, 
where the semisimple group S admits a covering S → S0 with kernel Λ, the center of S. By part (3) of 
Theorem 7.1, Λ is contained in the Reeb flow T for X. Therefore Λ is acting properly discontinuously and 
freely on X, and Y0 = X/Λ is a homogeneous Sasaki space for S0, which has Reeb flow T0 = T/Λ = S1. 
Since X is the unique simply connected Sasaki homogeneous space with Kähler quotient D, any Sasaki 
homogeneous space over D is a quotient space of X, hence such a homogeneous space is covering Y0. �
7.2. Sasaki Lie groups

A Lie group G is said to be a Sasaki group if G admits a left-invariant Sasaki structure (respectively, 
standard pseudo-Hermitian structure) {ω, J}. Accordingly, any simply transitive pseudo-Hermitian action 
of G on a Sasaki space X determines a unique left-invariant Sasaki structure on G up to isomorphism. Two 
Sasaki Lie groups G and G′ are considered to be equivalent Sasaki Lie groups if there exists an isomorphism 
G → G′ which is a pseudo-Hermitian isometry. Two Sasaki Lie groups acting on X are equivalent if and 
only if they are conjugate subgroups of Psh (X).

7.2.1. Sasaki Heisenberg groups N
Let X be the contractible homogeneous Sasaki manifold over Ck. That is, we assume that the Reeb 

fibering for X is of the form

R → X
q→ Ck .

By (2) of Proposition 6.1, the 2k-dimensional Heisenberg group

N ≤ Psh (X)

is the preimage of the translation subgroup Ck ≤ Isom h(Ck). Moreover, N acts simply transitively on X. 
Therefore, we get that N is a Sasaki Lie group, which as a space is isometric to X by a pseudo-Hermitian 
isometry. We also deduce that

Psh (N ) = Psh (X) = N � U(k)

is a connected Lie group. (Compare also [19], for example.)
We describe the standard Sasaki structure on N more explicitly as follows:

Example 7.4 (Sasaki Heisenberg group N ). Let N = R × Ck be the 2k + 1-dimensional Heisenberg group 
(k ≥ 0). We write the group law on N as

32

ht
tp
://
do
c.
re
ro
.c
h



(t, z)(s, w) = (t + s − Im(tz̄w), z + w). (7.1)

The standard pseudo-Hermitian structure {ω0, J} on N is given by the left-invariant contact one-form

ω0 = dt + Im(tz̄dz) ,

together with a left-invariant complex structure J , defined on ker ω0 by the relation

q∗ ◦ J = JC ◦ q∗ .

Here JC denotes the standard complex structure of Cn, q : N → Cn is the natural projection. Then 
g0 = ω0 · ω0 + dω0 ◦ J is the positive definite Sasaki metric on N .

We calculate the isometry group of the Sasaki group N explicitly as follows:

Note 7.5 (Isometry group of N ). Consider the semidirect product group

Sim(N ) = N � (U(k) × R+) ,

where U(k) × R+ is contained in Aut(N ). The action of (A, λ) ∈ U(k) × R+ on N is given by:

(A, λ) (t, z) = (λ2t, λAz) .

It follows that (A, λ)∗ ω0 = λ2 ω0. In particular, U(k) acts by strict contact transformations and holomor-
phically on the standard pseudo-Hermitian manifold (N , {ω0, J}). That is, U(k) is a subgroup of Psh (N ). 
Next define τ ∈ Aut(N ) by

τ(t, z) = (−t, z̄) . (7.2)

Then τ∗ω0 = −ω0 and J ◦ τ∗ = −τ∗ ◦ J . Thus

〈τ〉 = Z2 ≤ Psh± (N )

is contained in the isometry group of the Sasaki metric g0, but does not belong to Psh (N ). Observe further 
that

U(k) � 〈τ〉

is a maximal compact subgroup of the automorphism group Aut(N ). We deduce:

Psh (N ) = N � U(k) and Isom (N ) = Psh± (N ) = Psh (N ) � Z2 . (7.3)

(Recall also that by [29], the isometry group of any left-invariant Riemannian metric on N is contained in 
the group of affine transformations N � Aut(N ).)

We prove now that the Sasaki Lie group structure on the Heisenberg Lie group N is essentially unique:

Proposition 7.6. Up to isomorphism of Sasaki Lie groups, there is a unique Sasaki structure on the Heisen-
berg Lie group N .
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Proof. Suppose (N , {ω, J}) is a Sasaki Lie group of dimension 2k + 1. In particular, the space X = N
is a contractible homogeneous Sasaki manifold, on which the group N acts simply transitively. Via the 
Boothby-Wang homomorphism, N also acts transitively on the Kähler quotient W = X

/
R. Since N is 

nilpotent, W must be flat (for example by [13]). So W is Kähler isometric to Ck.
Then, as follows from Section 4.2, we must be in the situation Case II, where the Reeb flow T coincides 

with the center of N . Therefore, the Boothby-Wang homomorphism for X maps N to an abelian simply 
transitive subgroup N̄ of isometries of unitary space Ck. We conclude that this image group N̄ is actually 
the translation group Ck, which is the unique abelian simply transitive subgroup of Ck�U(k). Therefore, N
is the normal subgroup of Psh (X) which is the preimage of Ck. Now the Sasaki manifold X is determined 
uniquely by its Kähler quotient Ck (cf. Corollary 4.5) up to a pseudo-Hermitian isometry. By Proposition 6.4, 
N is the nilradical of Psh (X). Therefore, it is uniquely determined and characteristic in Psh (X). Since the 
space X is determined uniquely by Ck, this constructs the left-invariant structure on N uniquely up to a 
pseudo-Hermitian isomorphism of Sasaki Lie groups. �
7.2.2. Heisenberg modifications N (k, l)

We construct a family of simply connected Sasaki Lie groups which are modifications of the Heisenberg 
Sasaki group N introduced in Example 7.4.

Flat Kähler Lie groups. For this, let ρ : Cl → U(k) be a non-trivial homomorphism (k + l = n). Then the 
semidirect product Ck�ρCl embeds in an obvious manner as a simply transitive subgroup

C(k, l) ≤ Cn � U(n)

of the holomorphic isometry group of flat unitary space Cn. Thus C(k, l) is a flat Kähler group, since it is 
acting simply transitively by holomorphic isometries on Cn. (In fact, every flat Kähler Lie group contained 
in Cn � U(n) is conjugate to some C(k, l), compare [13, Theorem II].) Note also that k ≥ 1 and that the 
standard Kähler form of Cn is non-degenerate on Ck.

Heisenberg modifications. Let X be the unique contractible Sasaki homogeneous space over Cn. Consider 
the pull-back N (k, l) of C(k, l) in the central extension which is defining Psh (X) according to Proposi-
tion 6.4:

1 −−−−→ R −−−−→ Psh (X) = N � U(n) p−−−−→ Cn � U(n) −−−−→ 1

|| ∪ ∪
1 −−−−→ R −−−−→ N (k, l) p−−−−→ C(k, l) −−−−→ 1 .

(7.4)

In particular, such N (k, l) is a simply connected solvable Lie group (where N (n, 0) = N is nilpotent). 
Moreover,

N (k, l) ≤ Psh (N ) = N � U(n)

acts simply transitively and by pseudo-Hermitian transformations on the Sasaki manifold X = N . From 
this action, N (k, l) inherits a natural structure as a Sasaki Lie group.

Definition 7.7. Any Sasaki group of the form N (k, l) ≤ Psh (N ) as above is said to be a Heisenberg modifi-
cation (of type (k, l)).
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Remark 7.8. By definition, the groups N (k, l) are defined as preimage of Kähler Lie groups. The proof 
of Proposition 7.6 shows that the classification of groups N (k, l) up to isomorphism of Sasaki Lie groups 
amounts exactly to the classification of Kähler Lie groups C(k, l) up to isomorphism. For a discussion of 
the structure of flat Kähler Lie groups, see for example [3] and [13].

Also we note:

Lemma 7.9. Let X be any contractible Sasaki manifold over a homogeneous Kähler manifold W . If Cn is 
the maximal flat factor of W then the preimage Ñ in Psh (X) of a subgroup

C(k, l) ≤ Cn � U(n)

under the homomorphism φ in the sequence (6.1) is N (k, l).

Proof. By Proposition 6.1 (2), the pullback of Cn � U(n) ≤ Isom h(W ) to the group Psh (X)0 along the 
exact sequence (6.1) is N �U(n). Therefore, the pullback Ñ of C(k, l) satisfies the defining exact sequence 
(7.4) above. So Ñ = N (k, l). �
Proof of Theorem 2. Let G be a contractible unimodular Sasaki group. As follows from Theorem 4.3, there 
exists a one-parameter subgroup

A ≤ G

such that W = G/A is a homogeneous Kähler manifold for G.
If A is a normal subgroup in G (cf. case (I) of Section 4.2), then

Ḡ = G/A

is a Kähler group acting simply transitively on W , and A is, a fortiori, central in G. Hence, as G is 
unimodular, so is Ḡ = G/A. Therefore, Hano’s theorem [13, Theorem II] implies that W = Cn is a flat 
Kähler space and that

Ḡ = C(k, l) ≤ Cn � U(n)

is a meta-abelian Kähler group. Since G is simply connected, the Reeb flow T for the Sasaki manifold G is 
isomorphic to R. By Lemma 7.9, this implies that, as a Sasaki Lie group,

G = N (k, l) ,

for some k, l, with k + l = n.
We may assume now that A is not normal in G. This is case (II) in Section 4.2. The presentation (II) for 

W is then a fiber bundle of the form

1 −−−−→ A −−−−→ G
q−−−−→ W = Ḡ/Ā −−−−→ 1 ,

where

Ḡ = G/Z ,
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with Z a discrete subgroup in the center of G, and Ḡ is acting faithfully on W . In particular, Ḡ is a 
unimodular group of Kähler isometries acting transitively on the contractible Kähler manifold W . By 
Proposition 6.1,

W = Cn × D,

where D = S0/K0 is a symmetric bounded domain. Therefore,

Ḡ ≤ (Cn � U(n)) × S0,

where S0 = Isom (D)0 is a semisimple Lie group of hermitian type. Projecting Ḡ to S0, with kernel

L = Ḡ ∩ (Cn � U(n)) ,

the image of Ḡ in S0 is a unimodular group, acting transitively on D. By Hano’s theorem, the image of Ḡ
must be semisimple. Therefore it is all of S0. From the Levi-decomposition theorem, we infer that

Ḡ = L · S0

is an almost semi-direct product. Therefore,

dim Ḡ = dim L + dim S0 = dim W + 1 ≤ dim L + (dim S0 − dim K0) + 1 .

This implies dim K0 ≤ 1.
Suppose first that D is non-trivial. Then we have that

D = H1
C

is biholomorphic to the hyperbolic plane, S0 is isomorphic to PSL(2, R) and K0 is a circle group. It follows 
that the above kernel L of the projection Ḡ → S acts simply transitively on the factor Cn of W . Hence, L
is a flat Kähler Lie group, and therefore L = C(k, l). By Lemma 7.9, the preimage of L in Psh (G) under 
the Boothby-Wang homomorphism is a subgroup

N (k, l) ≤ Psh (G) ,

which contains the Reeb flow T in its center. Since G is covering Ḡ, G contains a subgroup

L̃ = N (k, l) ∩ G

as a covering group of L. Therefore,

N (k, l) = T · L̃

is an almost semi-direct product. This is contradicting the fact that the extension class of the exact sequence 
in the bottom row of (7.4) is non-trivial (compare Lemma 6.2). The contradiction implies that the factor 
Cn must be trivial. Thus,

W = D = H1
C

is a Kähler manifold of constant negative curvature. Hence,
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G = ˜SL(2, R)

is the universal covering group of S0 = PSL(2, R) with a standard Sasaki structure over H1
C.

It remains to exclude the case that D is trivial. Suppose we have

W = Cn = Ḡ/Ā .

Since any reductive subgroup of isometries on Cn has a fixed point, the circle group Ā must be a maximal 
reductive subgroup of Ḡ. We deduce that Ḡ is a solvable Lie group with maximal compact subgroup Ā. 
Thus there exists a simply connected solvable normal subgroup Ḡ0 such that

Ḡ = Ḡ0 � Ā

(see e.g. [5, Lemma 2.1]). It follows that Ḡ0 = C(k, l) is a flat Kähler Lie group. As above, this implies that

N (k, l) = T · (G ∩ N (k, l))

is an almost semi-direct product, which is not possible. Hence, the case D is trivial cannot occur, unless A
is normal in G. �
8. Examples

We give further explicit examples of locally homogeneous aspherical Sasaki manifolds.

8.1. Sasaki manifolds modeled over complex hyperbolic spaces

The complex hyperbolic space is described as the homogeneous manifold

Hn
C = PU(n, 1)

/
U(n) = SU(n, 1)

/
S (U(n) × U(1)) .

Consider the following diagram of principal bundle fiberings:

R = Ũ(1) −−−−→ X = Ũ(n, 1)
/

Ũ(n) P̃−−−−→ Hn
C = PU(n, 1)/U(n)

⏐⏐�/
Z

⏐⏐�/
Z ||

S1 = U(1) −−−−→ Y = U(n, 1)
/

U(n) P−−−−→ Hn
C = PU(n, 1)/U(n)

,

where the inclusions of Ũ(n), Ũ(1) arise from the standard embedding

U(n) × U(1) → U(n, 1) .

Remark 8.1. Denoting with π : Ũ(n, 1) → U(n, 1) the universal covering group of U(n, 1), we declare 
connected subgroups

Ũ(n) = π−1(U(n))0 , ˜SU(n, 1) = π−1(SU(n, 1))0 .

Then Ũ(n) is a universal covering group for U(n), and the kernel Z (∼= Z) of the latter covering is contained 
in the center of the group
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Ũ(n, 1) .

This gives rise to the above (non-faithful) homogeneous presentation of the universal covering space X for 
Y in the diagram. It also follows that

Psh (X)0 = Ũ(n, 1)
/Z = ˜SU(n, 1) · Ũ(1) .

A pseudo-Hermitian structure {ω, J} on Y = X
/

Z is obtained as a connection bundle over Hn
C such that 

P ∗Ω = dω, for the Kähler form Ω of Hn
C. Here S1 becomes the Reeb flow for ω on Y , and

Psh (Y )0 = U(n, 1) .

The pseudo-Hermitian structure (ω̃, J) on X is a lift of ω. Note also that

Y = SU(n, 1)
/

SU(n) and X = ˜SU(n, 1)
/

SU(n)

are faithful presentations as homogeneous Sasaki manifolds of simple Lie groups. Taking a torsionfree discrete 
uniform subgroup Γ of SU(n, 1) (such a subgroup exists by [9], for example), gives rise to a regular locally 
homogeneous aspherical Sasaki manifold with Boothby-Wang fibering

S1 −−−−→ Γ
∖

SU(n, 1)
/

SU(n) −−−−→ Q \Hn
C , (8.1)

where Q ≤ PU(n, 1) is a torsionfree discrete uniform subgroup (isomorphic to Γ).

8.2. Join of locally homogeneous Sasaki manifolds

As above let

XC = ˜SU(n, 1)
/

SU(n)

denote the contractible Sasaki homogeneous space over Hn
C. (Compare Section 8.1.) We may take the join 

(see Proposition 2.4) with the Sasaki Heisenberg group N to obtain a contractible homogeneous Sasaki 
manifold:

R −−−−→ X = (N × XHn
C

)
/

Δ q−−−−→ Ck × Hn
C

|| ||
R −−−−→

(
N · ˜SU(n, 1)

) /
SU(n) q−−−−→ Ck × SU(n, 1)

/
S (U(n) × U(1))

A pseudo-Hermitian structure {ω, J} on

N ∗ XHn
C

= (N × XHn
C

)
/

Δ

is obtained as the quotient of ω0 + ω̃, where ω0 is the contact form on N , ω̃ on XHn
C

(see Proposition 2.4). 
Taking a suitable torsionfree discrete uniform subgroup π from

Psh (X)0 = (N � U(k)) ∗ Psh (XHn
C

) = (N � U(k)) · ˜SU(n, 1)

allows to construct a compact locally homogeneous aspherical Sasaki manifold over a product of compact 
Kähler manifolds:

S1 −−−−→ π \(N ∗ XHn
C

) q−−−−→ T k
C × Q\Hn

C .

38

ht
tp
://
do
c.
re
ro
.c
h



8.3. Heisenberg Sasaki manifolds

Recall from the construction in (7.4) that the Sasaki Lie groups

N (k, l)

are contained in the pseudo-Hermitian group Psh (N ) = N � U(k) of the Heisenberg Sasaki group N . 
Therefore, taking quotients of N (k, l) by discrete uniform subgroups gives rise to:

Circle bundles over flat Kähler manifolds. Let Δ be a discrete uniform subgroup of N (k, l). Then

M = Δ\ N (k, l)

is a locally homogeneous N (k, l)-manifold. Since N (k, l) ≤ Psh (N ) acts simply transitively on N , Δ ≤
Psh (N ) acts properly discontinuously as a discrete group of holomorphic isometries on N . Therefore

M = N /
Δ

is also quotient of N as a locally homogeneous manifold modeled on the homogeneous space N . Moreover, 
the proof of Theorem 6.5 part (3), together with the exact sequence (7.4), show that Δ is a central extension 
of p(Δ), where p(Δ) is a uniform lattice in C(k, l). This gives rise to a circle bundle

S1 → Δ\N → p(Δ)\C(k, l) ,

where the Kähler solvmanifold p(Δ)\C(k, l) is a torus bundle over a torus, and it is finitely covered by a 
complex compact torus T n

C = Cn/Λ, Λ isomorphic to Z2n (compare [15]), where the Kähler metric on T n
C

is flat.

8.4. Locally homogeneous manifold π\N which is not Sasaki

We explicitly construct an example of a Riemannian metric which is locally a Sasaki metric but does not 
admit a compatible structure vector field A. (See also (6) in the introduction, following Remark 1.1.)

Example 8.2. Let

Λ = Z × (Zn + iZn) ⊆ N = R × Cn

be the integral lattice in N . Clearly, Λ is a subgroup and τΛ = Λ, where as in (7.2),

τ(t, z) = (−t, z̄).

Next put αs = (0, (s, 0, . . . , 0)), μ = α 1
2
τ and let

π = 〈μ, Λ〉 ≤ N � τ

be the group generated by μ and Λ. Since μ2 = α1 ∈ Λ and μΛμ−1 = Λ, the group π satisfies an exact 
sequence

1→ Λ→ π → Z2 → 1 .

Since μ is of infinite order π must be torsionfree (see Lemma 8.3 below).
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Lemma 8.3. π is torsion-free.

Proof. Recall that every non-trivial element of N has infinite order. Let γ = γ0τ , where γ0 ∈ N . If γ has 
finite order, so has γ2 = γ0γ

τ
0 ∈ N . Thus γ2 = 1 ∈ N . Writing γ0 = (t, w), we have by (7.1) and (7.2) that

γ2 = (t, w) · (−t, w̄) = (−Im(tw̄w̄), w + w̄) = (0, 0) .

That is, γ is a torsion element, if and only if w is purely imaginary. Assuming now that γ ∈ π, we have 
γ0 = λα 1

2
, where λ ∈ Λ is integral. This shows that the vector w for γ0 has a non-trivial real part (in its 

first entry). Hence, γ is not a torsion element. So π is torsionfree, �
Since π is without torsion, the quotient space

π \ N

is a compact infra-nilmanifold. Since π ≤ Isom (N , g0), for the Sasaki metric g0 on N (as in Example 7.4), 
there is an induced Riemannian metric ĝ0 on π\N , which is locally the same as the Sasaki metric g0. But 
(π\N , ̂g0) never admits a compatible Sasaki structure. That is, there exists no pseudo-Hermitian structure 
(η̂, Ĵ ′) on π\N such that ĝ0 = η̂ · η̂ + dη̂ ◦ Ĵ ′:

Lemma 8.4. The infra-nilmanifold (π\N , ̂g0) does not admit any compatible Sasaki structure.

Proof. Suppose (π\N , ̂g0) admits a Sasaki structure (η̂, Ĵ ′) such that ĝ0 = η̂ · η̂ + dη̂ ◦ Ĵ ′. Let η be a lift of 
η̂ to N , for which g0 = η · η + dη ◦ J ′ is a Sasaki metric on N . Moreover,

(1) (η, J ′) is a standard pseudo-Hermitian structure on N .
(2) π ≤ Psh (N , {η, J ′}) ≤ Isom (N , g0) = N � (U(k) � Z2).
(3) With respect to the inclusion in (2), π maps onto Z2.

Let T ′ be the one-parameter group of the Reeb field for η. As T ′ is contained in the isometry group of g0, 
and T ′ is connected, it follows that

T ′ ≤ N � U(k)

by (2). In particular, T ′ normalizes N . Since T is the lift of the Reeb flow on π\N , it centralizes π and 
π ∩ N (also by (2)). Since π ∩ N is discrete uniform in N (by the Auslander-Bieberbach theorem [2]), T ′

centralizes N by the Mal’cev unique extension property. Since T ′ ≤ N �U(k), this implies T ′ = C(N ) = T

is the one-parameter subgroup of the Reeb field for ω0. As π centralizes T , it follows π ≤ N � U(k). This 
contradicts (3). �

Therefore the compact locally homogeneous aspherical manifold π\N admits a locally Sasaki metric but 
it is not a Sasaki manifold. In addition Isom (π\N , ̂g0) is finite, and π\N is an S1-fibered infranil-manifold 
without any S1-action.
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