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Abstract

We explore the flow behavior of concentrated emulsions for which the viscosity of the continuous phase can be significantly varied by 
changing the temperature. The exponents obtained by fitting the shear rate-dependent stress with the popular Herschel–Bulkley (HB) 
model display a systematic dependence on the viscosity of the continuous phase, revealing that viscous dissipation via the 
suspending fluid cannot be neglected in the description of the flow behavior of soft glassy systems. We thus propose a simple 
constitutive equation that accounts for three distinct dissipation mechanisms: elastic, plastic, and viscous dissipation. This three 
component model describes the flow behavior of soft glassy materials as accurately as the HB model, albeit maintaining a clear physical 
insight into the dissipation processes at work. 

I. INTRODUCTION

A wide range of complex fluids of industrial and funda-
mental interest are classified as yield stress fluids [1,2]. Such
fluids are solids when at rest but flow when the shear stress
applied exceeds a certain threshold value, the yield stress.
One of the approaches to characterize their flow behavior
consists in measuring the strain rate-dependent stress, a
flow curve.

The simplest model describing the flow curve of a yield
stress fluid is the Bingham model [3],

σ ¼ σy þ ηbg � _γ, (1)

where _γ is the strain rate, σ is the shear stress required to
maintain a constant strain rate, σy is the dynamic yield stress,
and ηbg is a viscosity that is related to the viscosity of the
continuous phase. The Bingham description implies that the
stress at any strain rate is determined by a combination of
two mechanisms that we refer to as elastic and viscous dissi-
pation. Though dissipative processes are generally defined as
viscous, we here refer to elastic dissipation as a process in
which elastic energy is dissipated each time the local strain
exceeds a critical strain. This process solely depends on
strain and not on strain rate, such that the stress is strain rate
independent. Correspondingly, we refer to viscous dissipa-
tion, when the stress increases linearly with _γ. Clearly,
within the Bingham model, elastic dissipation dominates at

low shear rates, while viscous dissipation dominates at high
shear rates.

However, yield stress fluids rarely behave as Bingham
fluids. In particular, for concentrated colloidal systems classi-
fied as soft glassy materials, dissipation via plastic rearrange-
ments must be accounted for. To do this, Hebraud and
Lequeux [4] proposed a mode coupling model, in which
local rearrangements are triggered when the local stress
exceeds the yield stress, whereupon the stress is redistributed
in the surrounding structural elements increasing the proba-
bility of new rearrangements to occur; this leads to a strain
rate-dependent dissipation mechanism here referred to as
plastic dissipation. Bocquet et al. [5] implemented this
approach, proposing the kinetic elastoplastic model for the
flow of soft glassy materials,

σ ¼ σy þ A � _γ1/2, (2)

where A can be expressed as A ¼ σy � t1/2k with tk a character-
istic time of the order of the stress relaxation time [6]. In con-
trast to the Bingham model, the stress increases here as the
square root of the strain rate at high strain rates. Such square
root dependence is also predicted in models considering
viscous friction between the particles [7] or interparticle
lubrication forces inducing particle deformations [8] as being
at the origin of a shear rate-dependent stress in soft glassy
materials. Indeed, Eq. (2) describes an important number of
these materials [8–12]. Nevertheless, the majority of yield
stress fluids exhibit a strain rate-dependent stress in the high
shear limit that is neither linear nor square root dependent.
An intermediate power law behavior is often observed [13–18].
Such discrepancy is so common that it has become customary
to describe flow curves empirically with the Herschel–Bulkley
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(HB) equation [19,20],

σ ¼ σy þ K � _γn, (3)

in which neither the prefactor K nor the power law exponent
n have a clear physical meaning. Despite this limitation, the
HB equation remains widely used, not only in application
but also in academic research.

In this contribution, we propose to replace the HB descrip-
tion by a constitutive equation that is essentially a simple
combination of Eqs. (1) and (2),

σ ¼ σy þ σy � _γ
_γc

� �1/2

þ ηbg � _γ: (4)

The basic consideration for this three component model (TC
model) is that stress dissipation in sheared soft glassy materials
is determined by a combination of elastic, plastic, and viscous
dissipation, and we provide experimental evidence that a devi-
ation from Eq. (2) naturally occurs when viscous dissipation
via the continuous phase becomes important within the limited
range of shear rates accessible in experiments.

II. MATERIALS AND METHODS

As an experimental system, we use concentrated oil-in-
water emulsions that are made of mineral oil (Viscosity refer-
ence standard, Paragon Scientific) and an aqueous solution
of linear alkylbenzene sulfonate, LAS (P&G Chemicals).
The LAS concentration used in the continuous phase of our
emulsions is 11 wt. %; at this concentration, the LAS surfac-
tant self assembles into entangled wormlike micelles [21],
exhibiting a viscosity ηsol that strongly depends on the tem-
perature, as shown in Fig. 7 in Appendix A. For the majority
of our experiments, we use emulsions made of an oil with
viscosity of 6 Pa s at 25 °C. For an experiment exploring the
stress response of emulsions at higher shear rates, we use an
emulsion made of oil with a viscosity of 1.4 Pa s at 25 °C.

With the more viscous oil, we produce in a first step an
emulsion with 85 wt. % oil content (∼86 vol. %) using a
planetary centrifugal mixer (Thinky Mixer ARE310) at
2000 rpm for 3 min. This emulsion is then diluted to obtain a
second emulsion with 75 wt. % oil content (∼76 vol. %).
With the lower viscous oil, we prepare a 75 wt. % oil content
(∼76 vol. %) using the same mixing protocol as above, but
without dilution. The emulsion droplets are polydisperse,
with sizes ranging from 1 to 10 μm independent of the oil
viscosity, and they are stable against coalescence for at least
one week at 25 °C. The presence of the wormlike micelles is
likely to induce some depletion attraction between the droplets.
However, within the temperature range of 20–40 °C investi-
gated, the LAS surfactant remains in an entangled wormlike
micellar state, such that we can presume that the local blob
structure and thus the depletion effect do not significantly
change in our experiments (see Fig. 8 in Appendix A).

Rheological characterization is performed with a DHR3
rheometer (TA Instruments, New Castle, Delaware). For the
emulsions produced with the more viscous oil, we use a cone
and plate geometry (cone angle 1° and diameter 60 mm) and
control the temperature with Peltier elements. Flow curves

are measured by decreasing the strain rate from 100 to 0.1 s−1

in logarithmic steps, and the measurements are performed at
T = 20, 30, and 40 °C. Within the range of shear rates investi-
gated, the LAS solution exhibit Newtonian behavior for the
three temperatures of interest, with viscosity decreasing as
temperature increases, as shown in Fig. 9 in Appendix A.
For the emulsion produced with less viscous oil, we
perform an additional experiment using an anodized alumi-
num Couette geometry with roughness of ∼5 μm, control-
ling the temperature with a Peltier. The range of shear rates
investigated is here extended to _γ ¼ 1000/s, and the mea-
surement is performed at T = 40 °C, which warrants that the
LAS response remains Newtonian over the entire range of
shear rates investigated (see Fig. 9).

Least-square fits of the shear rate-dependent stress
are performed using a standard Levenberg–Marquardt
algorithm to find the set of parameters that minimizes
χ2 ¼PN

i [σmeas
i � σmodel

i (v)]
2
/ϵ2i , with σmeas

i being the mea-
sured stress and σmodel

i (v) being the model estimation, v is
the set of free parameters of the model considered, and ϵi
is the estimated uncertainty of the data. For all fits, we
assumed the uncertainty to be 5% of the measured stress.
The two models considered in this paper have the same
number of free parameters, such that χ2 can be used as a reli-
able metric for the comparison of the fit quality of both
models. For a more intuitive assessment of the confidence
interval of the estimated parameters, we also report the standard
error for the fitted parameters calculated from the covariance
matrix. All the analysis were performed using the Python based
LMFIT library documented at https://lmfit.github.io/lmfit-py.

III. RESULTS AND DISCUSSION

As expected for concentrated emulsions, the flow behavior
of our systems exhibits the features typical of yield stress
fluids [10]. At high shear rates, the stress increases with
increasing shear rate, while the stress is almost shear rate
independent at low shear rates, as shown for the emulsions
produced with the more viscous oil in Fig. 1. However, let us
note that the flow profiles of our emulsions also show a
small decay with decreasing _γ in the low range of _γ, a
feature that we consider a hallmark of slip, or more generally
of nonhomogeneous flow [2,11,22]. Truly remarkable is that
the stress dependence on _γ clearly varies upon changing the
temperature from 20 to 40 °C, which corresponds to a change
in viscosity of the continuous phase by a factor of 23, as
shown in Table I and Fig. 9. To assess the variation in func-
tional form of the flow curves, we fit the data to the HB
model disregarding the data obtained at low _γ, where wall
slip becomes significant. The best fits are reported as solid
black lines in Figs. 1(a) and 1(b), and the fit results σy, K,
and n are shown in Figs. 2(a)–2(c), respectively, and reported
in Table I. The yield stresses are essentially constant upon
changing the temperature, and the consistency factors K vary
only a little. Reflecting the change in the functional develop-
ment of the stress with _γ, we find that n systematically
decreases with increasing temperature, i.e., decreasing the
viscosity of the continuous phase.
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Such variation in the HB exponent is indicative of the
importance of viscous dissipation in contributing to the strain
rate-dependent stress. Indeed, within the framework of elasto-
plastic models, this contribution is neglected. Equation (2)
accounts for elastic and plastic dissipation only, predicting an
HB exponent of 0.5, which is the exponent we find when the
viscosity of the continuous phase becomes small enough.
However, a square root dependence of the stress on strain
rate implies that the stress would eventually drop below the
viscous stress generated by the continuous phase at large
enough shear rates. As this is unphysical, we consider that it
will depend on the range of strain rates investigated whether
viscous dissipation must be accounted for or not. Within this

context, an apparent increase of the HB exponent above 0.5
simply reflects that the range of strain rates investigated
covers the range at which the stress contributions due to viscous
dissipation via the continuous phase becomes important.

To further explore this conjecture, we perform an addi-
tional experiment using the 75 wt. % oil in LAS emulsion
produced with less viscous oil. The experiment is performed
at 40 °C where the 11% LAS continuous phase exhibits a
shear rate-independent viscosity up to _γ ¼ 1000/s, as shown
in Appendix A. To minimize slip, we use a roughened
Couette cell, and we measure the shear rate-dependent stress
over a range of _γ ¼ 0:1�1000/s in several increasing and
decreasing shear rate ramps using different integration times.
As shown in Fig. 3, the results obtained are essentially inde-
pendent of the way the experiment is performed. Fitting the
data with the HB model in the same range of shear rates used
in Fig. 1, _γ ¼ 1�100/s, yields an HB exponent of n ¼ 0:56
similar to the equivalent system used for the experiments
shown in Fig. 1 (75 wt. % at 40 °C: n ¼ 0:54). By contrast,
the fit over the data range of _γ ¼ 1�1000/s yields an HB
exponent of n ¼ 0:64, similar to that obtained by fitting the
data range of _γ ¼ 1�100/s of the equivalent emulsion with a
23 times larger background viscosity (75 wt. % at 20 °C:
n ¼ 0:63). Clearly, the increase of n solely reflects the extent
at which the stress generated by shearing the continuous
phase contributes to the overall stress within a given range of
shear rates; increasing the range of shear rates considered
to larger shear rates or increasing the viscosity of the continu-
ous phase are thereby equivalent, leading to an increase in n.
From a fitting point of view, the free exponent n of the HB
model is a useful feature that allows maintaining a good fit
quality for any given range of shear rate investigated. From a
physical point of view, however, it denotes that the parame-
ters extracted from the HB model are not physically mean-
ingful nor do they correctly predict the behavior extrapolated
beyond the shear rate range investigated. This strong limita-
tion calls for alternative descriptions of the shear rate-
dependent stress of yield stress fluids.

We here propose to combine Eqs. (1) and (2) and to use
the TC model defined by Eq. (4) for the description of the
flow behavior of glassy materials. In contrast to the HB
model, this model maintains a clear physical interpretation of
the fit parameters and naturally identifies the three distinct

FIG. 1. (a) Flow curves obtained for the 75 wt. % oil emulsions produced
with the 6 Pa s oil. The measurements are performed at 20 (circles), 30
(squares), and 40 °C (triangle). Solid black lines denote the best fits to the
HB model; the dashed red lines correspond to the best fits to the TC model.
The fitted data range is here restricted to _γ . 1/s, excluding the data indi-
cated by open symbols for which slip becomes important. (b) Same as (a)
for the 85 wt. % oil emulsion.

TABLE I. Summary of the results obtained from the fits of the flow curves shown in Fig. 1, using, respectively, the HB equation and the TC model; χ2

values are indicated as a metric for the goodness of the fit and the standard error as an estimate for the confidence interval of the parameter estimation.
Additionally, we report the viscosity of the LAS solution used as the dispersing medium ηsol.

HB TC

Oil
(wt. %)

T

(°C)
ηsol
(Pa s)

σy
(Pa)

K

(Pa sn) n χ2
σy
(Pa)

_γc
(s−1)

ηbg
(Pa s)

σy/ηbg
(s−1) χ2

75 20 0.69 6.3 ± 0.1 5.4 ± 0.1 0.63 ± 0.01 4.30 × 10−4 4.6 ± 0.1 0.49 ± 0.02 0.41 ± 0.01 4.6 1.01 × 10−4

75 30 0.12 6.4 ± 0.2 4.3 ± 0.2 0.60 ± 0.01 2.88 × 10−3 5.3 ± 0.1 1.0 ± 0.1 0.17 ± 0.01 5.3 1.18 × 10−3

75 40 0.03 6.0 ± 0.2 4.1 ± 0.2 0.54 ± 0.01 2.27 × 10−3 5.6 ± 0.1 1.6 ± 0.1 0.06 ± 0.01 5.6 1.75 × 10−3

85 20 0.69 11.8 ± 0.3 10.4 ± 0.2 0.60 ± 0.01 4.01 × 10−4 9.3 ± 0.1 0.58 ± 0.02 0.54 ± 0.01 9.3 6.80 × 10−5

85 30 0.12 12.1 ± 0.3 7.4 ± 0.2 0.58 ± 0.01 1.51 × 10−3 10.5 ± 0.1 1.5 ± 0.1 0.23 ± 0.01 10.5 4.04 × 10−4

85 40 0.03 11.5 ± 0.2 7.0 ± 0.2 0.52 ± 0.01 8.85 × 10−4 11.2 ± 0.1 2.3 ± 0.1 0.05 ± 0.01 11.1 5.91 × 10−4
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stages of flow depicted in Fig. 4. At low shear rates, elastic
straining determines the stress, while plastic dissipation
becomes important at intermediate shear rates. The transition
between the two can be understood on the basis of local rear-
rangements that occur every time the local strain exceeds a
critical strain γc. Each strain-induced rearrangement leads to

FIG. 2. (a) Yield stresses obtained by fitting the data in Fig. 1 with the HB and TC model. (b) Parameter K obtained from the HB fits. (c) Exponents n
obtained from the HB fits. (d) Critical shear rates obtained from the TC fits. (e) Background viscosities obtained from the TC fits compared to the viscosities of
the 11 wt. % LAS solution.

FIG. 3. Flow curve obtained at 40 °C for 75 wt. % oil emulsion produced
using the less viscous oil. Denoting the good reproducibility of the measure-
ment, the data obtained by using, respectively, 2 and 4 min integration times
per point and by applying increasing and decreasing shear rate ramps super-
impose. Solid green lines denote the best fits to the averaged stress values to
the HB model; the dashed red lines denote the best fits to the TC model. (a)
The data used for the fits are limited to 1–100/s. (b) The data used for the
fits are limited 1–1000/s. Insets: residuals expressed as relative deviation of
the fit values from the true values; solid green lines correspond to the residu-
als obtained with the HB fits and the dashed red lines to those obtained with
the TC fits. The shaded range indicates the range of extrapolated fit values.

FIG. 4. Schematic representation of the TC model describing the flow curve
of a typical soft glassy material. The three straight lines represent the three
contributions to the stress dissipation: the elastic component is denoted by a
horizontal dotted red line, the plastic contribution is denoted by a green
dashed-dotted line and scales with _γ1/2, and the viscous contribution is
denoted by a blue dashed line and scales linearly with _γ. The black curve
represents the flow curve as the sum of the three components. The intersec-
tion between the lines denoting the elastic and plastic contributions corre-
sponds to _γc. The intersection between the lines denoting the elastic and
viscous contributions corresponds trivially to σy/ηbg. The labels on the top
identify the three stages dominated by elastic, plastic, and viscous dissipa-
tion, respectively.
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a stress field that persists for the time 1/ _γc it takes to dissipate
the elastic energy. For _γ , _γc, enough time is given between
rearrangements for complete stress relaxation. By contrast,
for _γ . _γc, multiple rearrangements occur before complete

stress relaxation is achieved, such that the stress fields gener-
ated by the rearrangements never fully relax, which leads to
more rearrangements [6,23] resulting in additional dissipa-
tion. The stress dissipation rate is then dependent on the

TABLE II. Summary of the results obtained from the fits of the flow curve shown in Fig. 3, using, respectively, the HB equation and the TC model; the
reduced χ2 values are indicated as a metric for the goodness of the fit and the standard error as an estimate for the confidence interval of the parameter
estimation. Additionally, we report the viscosity of the LAS solution used as dispersing medium ηsol.

HB TC

Oil
(wt. %)

_γmax

(s−1)
ηsol
(Pa s)

σy
(Pa)

K

(Pa sn) n χ2
σy
(Pa)

_γc
(s−1)

ηbg
(Pa s) χ2

75 100 0.03 4.1 ± 0.1 2.1 ± 0.1 0.56 ± 0.01 8.58 × 10−4 3.8 ± 0.1 2.6 ± 0.1 0.043 ± 0.001 1.92 × 10−4

75 1000 0.03 5.0 ± 0.1 1.5 ± 0.1 0.64 ± 0.01 3.09 × 10−2 3.9 ± 0.1 3.1 ± 0.1 0.056 ± 0.001 1.52 × 10−3

FIG. 5. Master curves based on the TC model. The solid lines through the data in the main graphs correspond to 1þ ( _γ/ _γc)
0:5. (a) Master curve of the data

obtained for the oil in LAS emulsions shown in Fig. 1. Deviations of the TC model are observed within the range of shear rates where slip becomes important
(data denoted as empty symbols). (b) Master curve of the data reprinted from Mason et al. [10,28]. The background viscosity is fixed to ηbg ¼ 0:01 Pa s for all
volume fractions. Top left inset: Same data as in the main graph unscaled. Black solid curves are best fits to the HB model; red dashed curves are best fits to
the TC model. Bottom right inset: HB exponents as a function of oil volume fraction.
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shear rate and is dominated by plastic dissipation predicted to
scale as _γ1/2 [5]. Let us note that somewhat different exponents
have been recently predicted, which may require further refine-
ment of the second term in Eq. (4) [24]. In any case, the TC
model entails that at high enough strain rates the viscous regime
is reached; stress dissipation is here dominated by shear across
the continuous phase and scales linearly with _γ.

This model successfully accounts for the flow behavior of
our emulsions. Indeed, the TC fits, denoted as red dashed lines
in Fig. 1, describe the experimental data as accurately as the fits
obtained with the HB model. Distinctions between the two
functional forms become apparent at higher shear rates, where

the HB fits display power law scaling of n while the TC fits
approach linear scaling. This linear scaling yields values of ηbg
that are of the order of the solvent viscosity ηsol, exhibiting
similar temperature dependences, as shown in Fig. 2(e). Such
agreement corroborates the TC model and denotes that the HB
model is prone to mix up distinct scaling behaviors.

Let us note that the fit quality of the TC model is generally
better than that of the HB model, as denoted by the lower χ2

values listed in Tables I and II. More importantly, TC fits
obtained over a limited range of shear rates reasonably describe
data outside this range, while this is not the case with HB fits,
as shown by the residuals in the insets of Fig. 3. However, in

FIG. 6. Master curves based on, respectively, the TC model (a) and the HB model (b). The data shown include the data presented in this study and data from
published works: Dekker et al. [26], concentrated emulsions; Petekidis et al. [15], hard spheres; Ghosh et al. [17], microgel suspensions; and Mason et al. [28],
monodisperse emulsions. The solid black lines through the data corresponds to 1þ ( _γ/ _γc)

0:5.
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our understanding, it is not the enhanced fit quality that
demarks the advantages of the TC model over the HB model; it
is rather that the three fit parameters of the TC model are physi-
cally meaningful, while the free exponent n and the consistency
factor K of the HB model are simply fit parameters.

A full assessment of the fit parameters obtained from the
TC fits goes beyond the scope of this paper. However, let us
note that we can identify two characteristic shear rates: _γc,
denoting the onset of plastic dissipation, and σy/ηbg, denoting
the shear rate where the yield stress equals the stress contri-
bution of the viscous background (see Fig. 4). As shown in
Fig. 2(d) and Table I, _γc increases with temperature but to
a less extent than σy/ηbg. The distance between the two
characteristic shear rates increases as the viscosity decreases
(see Table I). At first approximation, this implies that the
onset of plastic rearrangement is mainly determined by the
packing fraction and to a less extent by the viscosity of
the dispersing medium. We hope that future work will enable
us to fully establish the parameters determining _γc and ηbg,
thereby providing the framework to assess the means of tai-
loring the flow behavior of soft glassy systems.

Within the framework of the TC model, the widely used
scaling of flow curves involving a simple normalization of
the stress and the shear rate to obtain a master curve [25–27]
would be incorrect. Instead, we would need to first subtract
the contribution of the background viscosity before normali-
zation to obtain a master curve, as shown for our data in
Fig. 5(a). This procedure successfully scales a wide range of
previously reported flow curves, where a systematic depen-
dence of the HB exponent on particle volume fraction was
observed. As an example, we show the data obtained by
Mason et al. [10,28] in Fig. 5(b). These authors investigated
the flow behavior of monodisperse emulsions below the
jamming transition and found that the HB exponents system-
atically decreased with increasing particle volume fraction, as
shown in the bottom right inset of Fig. 5(b). Further examples
of such dependence are shown in Appendix B. The origin of
this variation relates again to the limited range of strain rates
investigated in an experiment. More precisely, it depends on
whether the high shear rate limit probed significantly extends
above σy/ηbg. With increasing σy, the range covering _γ .
σy/ηbg decreases, such that the HB fit yields decreasing expo-
nents, as the high shear limit is effectively governed by a
superposition of plastic and viscous dissipation processes,
entailing a square root and a linear dependence of the stress on
shear rates, respectively. To fully validate our approach, we
scale the data shown in the paper and in Appendix B using the
scaling procedure suggested by the TC model. As shown in
Fig. 6(a), this procedure collapses all data onto a single master
curve. The most natural scaling offered by the HB model
would be to normalize, respectively, the stress by σy and the
shear rate by the characteristic shear rate _γcrit, HB ¼ (σy/K)�n.
This normalization, however, fails to collapse the data obtained
at larger shear rates, as shown in Fig. 6(b). This is due to the
variation of n, which is entirely set by the extent of the high
shear rate range explored within an experiment. The high
shear rate range in turn is determined by the viscosity of the
continuous phase, the yield stress, as well as the actual range
of shear rates considered.

IV. CONCLUSION

We have shown experimental evidence that viscous dissipa-
tion via the dispersing medium remains an important contribution
to the shear rate-dependent stress even for concentrated colloidal
systems. This viscous contribution appears to be at the origin of
the variation of the HB exponents observed in a variety of yield
stress fluids [13–18,28]. We thus propose to use a simple consti-
tutive equation that accounts for viscous dissipation, as well as
elastic and plastic dissipation to describe the flow behavior of
yield stress fluids. In fact, Hebraud and Lequeux already denoted
in their original work [4] that soft glassy materials should behave
as Newtonian fluids at large enough _γ, and Tighe et al. pointed
this out in a more recent work [29]. We suppose that the reason
for the persistent use of the HB equation might have been the
lack of an appropriate constitutive equation to use and believe
that the TC model proposed here is a valid option that maintains
the essential physics of the dissipation processes at work. Let us
note that the TC model can be also considered a generalization
of another popular model used to describe the rheology of soft
glassy materials, the Casson model [30],

ffiffiffi
σ

p ¼ ffiffiffiffiffi
σy

p þ
ffiffiffiffiffiffiffiffiffi
ηbg _γ

q
¼. σ

¼ σy þ 2 � (σyηbg _γ)1/2 þ ηbg _γ : (5)

Here, the critical shear rate of the TC model is fixed to
_γc ¼ σy/(4 � ηbg), which reduces the model to two free parame-
ters, significantly limiting its capability to fit experimental flow
curves. This is most probably the reason why this equation is
not as widely used as the HB equation. By contrast, the TC
model maintains a high fitting capability, and we have not
found an example where the TC fit was less accurately describ-
ing an experimental data set than the HB fit. The TC model can
thus fully replace the HB, as well as the Casson and Bingham
model. We expect that future analysis of flow curves using the
TC model will lead to new insights into the yield behavior of
soft glassy systems, in particular with respect to the parameters
governing the transition to plastic dissipation at _γc.
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APPENDIX A: CHARACTERISTICS OF
SUSPENDING MEDIUM

As a suspending medium, we use an aqueous solution of
LAS (P&G Chemicals), at a concentration of 11 wt. %.
At this concentration, the LAS surfactant assembles into
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entangled wormlike micelles, exhibiting a viscosity that
strongly depends on the temperature, as shown in Fig. 7.

Based on the development of the viscosity with LAS con-
centration shown in Fig. 8, we can assume that the 11 wt. %
LAS system used as a suspending medium remains in an entan-
gled wormlike micellar configuration at the temperatures of
T = 20, 30, and 40 °C used in our experiments. The local blob
structure and thus possible depletion effects should therefore
not significantly change in our experiments exploring the effect
of the solvent viscosity on the flow behavior of emulsions.

Within the range of shear rates probed in our experiments,
the 11 wt. % LAS solution can be considered a Newtonian
fluid at the three temperatures of interest, as shown in Fig. 9.
For shear rates exceeding 100/s, however, the typical shear-
thinning behavior of wormlike micelles is observed.

APPENDIX B: SUPPORT FOR THE TC MODEL
FROM THE LITERATURE

As denoted in the main text, the TC model describes
available experimental data as accurately as the HB model.
In particular, it accounts for the systematic dependence of the
HB exponent on volume fraction. To support this statement,
we show in Figs. 10–12 (Tables III–V) a comparison between
TC and HB fits for three sets of data from the literature, cover-
ing suspensions of hard sphere, undeformable colloids just
below random close packing [15] (Fig. 10), emulsions beyond
jamming [26] (Fig. 11), and concentrated microgel systems
with nominal volume fractions below 1 [17] (Fig. 12). In all
cases, there is no statistically relevant difference between TC
and HB fits. The yield stress estimations are virtually the
same, and the HB exponents shown in the insets exhibit a sys-
tematic dependence on particle concentrations. Such depen-
dence has not been explained, and it puts into question
whether the data can be scaled on a single master curve by

FIG. 7. Viscosity of 11 wt. % LAS solution measured at _γ ¼ 1/s as a func-
tion of temperature.

FIG. 8. Viscosity as a function of LAS surfactant concentration for the
three temperatures of interest: circles 20, squares 30, and triangles 40 °C.
The dashed vertical line indicates the concentration 11 wt. % used as sus-
pending medium for our emulsions. The lines through the data are guides
for the eye.

FIG. 9. Viscosity as a function of shear rate for 11 wt. % LAS solution at
the three temperatures of interest, from top to bottom: 20, 30, and 40 °C.
Two different measurement sets are shown: cone and plate geometry up to
100/s (triangles) and Couette geometry extending the shear rate range up to
1000/s (circles).

FIG. 10. Data from [15]. Flow curves obtained for hard sphere suspensions at
effective volume fractions feff as indicated in the figure. HB and TC fits are
denoted as, respectively, black solid and red dashed lines. For all the TC fits, we
fixed the parameter ηbg = 0.5 Pa s. Inset: HB exponent as a function of feff .
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TABLE III. Summary of the results obtained from the fits of the flow curves in Fig. 10 using respectively the HB equation and the TC model.

HB TC

feff

σy
(Pa)

K

(Pa sn) n χ2
σy
(Pa)

_γc
(s−1)

ηbg
(Pa s) χ2

0.62 8.8 ± 0.1 4.5 ± 0.1 0.66 ± 0.01 1.94 × 10−2 8.4 ± 0.1 3.0 ± 0.1 0.5 2.99 × 10−2

0.63 25.1 ± 0.1 11.4 ± 0.2 0.58 ± 0.01 1.15 × 10−2 24.2 ± 0.1 3.9 ± 0.1 0.5 1.48 × 10−2

TABLE IV. Summary of the results obtained from the fits of the flow curves in Fig. 11 using, respectively, the HB equation and the TC model.

HB TC

feff

σy
(Pa)

K

(Pa sn) n χ2
σy
(Pa)

_γc
(s−1)

ηbg
(Pa s) χ2

0.68 4.8 ± 0.1 2.0 ± 0.1 0.55 ± 0.01 4.42 × 10−2 4.7 ± 0.1 4.7 ± 0.1 0.037 1.48 × 10−2

0.70 7.6 ± 0.1 3.0 ± 0.1 0.54 ± 0.01 3.44 × 10−2 7.5 ± 0.1 6.3 ± 0.2 0.037 1.70 × 10−2

0.72 10.0 ± 0.1 3.9 ± 0.1 0.52 ± 0.01 2.80 × 10−2 10.0 ± 0.1 7.2 ± 0.2 0.037 2.22 × 10−2

0.74 13.1 ± 0.1 4.8 ± 0.2 0.51 ± 0.01 2.64 × 10−2 13.1 ± 0.1 8.0 ± 0.3 0.037 2.10 × 10−2

0.76 18.1 ± 0.2 6.8 ± 0.2 0.50 ± 0.01 2.22 × 10−2 18.4 ± 0.2 9.1 ± 0.3 0.037 2.91 × 10−2

0.78 23.5 ± 0.3 10.7 ± 0.5 0.46 ± 0.01 3.63 × 10−2 24.9 ± 0.4 9.8 ± 0.7 0.037 1.48 × 10−2

0.80 28.6 ± 0.3 12.7 ± 0.4 0.45 ± 0.01 1.55 × 10−2 30.4 ± 0.5 10.9 ± 0.7 0.037 1.70 × 10−2

TABLE V. Summary of the results obtained from the fits of the flow curves in Fig. 12 using, respectively, the HB equation and the TC model.

HB TC

wt. %
σy
(Pa)

K

(Pa sn) n χ2
σy
(Pa)

_γc
(s−1)

ηbg
(Pa s) χ2

0.4 0.04 ± 0.01 0.05 ± 0.01 0.74 ± 0.03 3.36 × 10−1 0.03 ± 0.01 0.31 ± 0.08 0.01 2.59 × 10−1

0.5 0.17 ± 0.01 0.39 ± 0.02 0.55 ± 0.01 6.93 × 10−2 0.15 ± 0.01 0.16 ± 0.01 0.01 3.84 × 10−2

0.75 1.2 ± 0.1 1.5 ± 0.1 0.48 ± 0.01 1.29 × 10−2 1.3 ± 0.1 0.90 ± 0.06 0.01 2.91 × 10−2

1 3.2 ± 0.1 2.7 ± 0.1 0.47 ± 0.01 3.22 × 10−3 3.3 ± 0.1 2.0 ± 0.1 0.01 1.47 × 10−2

1.25 8.1 ± 0.1 6.7 ± 0.1 0.44 ± 0.01 2.46 × 10−3 9.0 ± 0.2 2.9 ± 0.2 0.01 3.22 × 10−2

FIG. 11. Data from [26]. Flow curves obtained for concentrated emulsions at
effective volume fractions feff as indicated in the figure. HB and TC fits are
denoted as, respectively, black solid and red dashed lines. For all the TC fits, we
fixed the parameter ηbg = 0.037 Pa s. Inset: HB exponent as a function of feff .

FIG. 12. Data from [17]. Flow curves obtained for concentrated microgel
suspensions at weigh fractions as indicated in the figure. HB and TC fits are
denoted as, respectively, black solid and red dashed lines. For all the TC fits,
we fixed the parameter ηbg = 0.01 Pa s. Inset: HB exponent as a function of
polymer weight fraction.
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using a simple normalization of the stress and the shear rate.
By contrast, the TC model explains the dependence of n on
particle volume fraction due to the relative importance of the
plastic and viscous dissipation in the range of shear rates
accessible in experiments. The TC model implies a scaling of
the flow curve, where the stress data are normalized by the
yield stress after subtraction of the contributions due to
viscous dissipation and the shear rate is normalized by _γc, a
characteristic shear rate that relates to the stress relaxation time
of the system. For the data shown in the paper and this
Appendix, the scaling is shown in Fig. 6(a) of the paper.
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