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Abstract

Human-robot interaction (HRI) is an active area of research and an essential com-
ponent for the effective integration of mobile robots in everyday environments.
In this PhD work, we studied, designed, implemented, and experimentally vali-
dated new efficient interaction modalities between humans and robots that share
the same workspace. The core of the work revolves around deictic (pointing)
gestures—a skill that humans develop at an early age and use throughout their
lives to reference other people, animals, objects, and locations in the surrounding
space. To use pointing to control robots, gestures have to be correctly perceived
and interpreted by the system. This requires one to model human kinematics and
perception, estimate pointed directions and locations using external or wearable
sensors, localize robots and humans with respect to each other, and timely pro-
vide feedback to let users correct for any inaccuracies in the interaction process.

Our main contributions to state of the art lie at the intersection of related
topics in psychology, human-robot and human-computer interaction research.
In particular, we designed, implemented, and experimentally validated in real-
world user studies:

1. a pointing-based relative localization method and its application to robot
identification and engagement;

2. an approach for pointing-based control of robots on 2D plane and robots
freely moving in 3D space;

3. efficient interaction feedback modalities based on robot motion, lights, and
sounds.
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Chapter 1

Introduction

Figure 1.1. The user controls a miniature drone (Bitcraze Crazyflie 2.0) with
pointing gestures acquired with a wearable IMU sensor (Mbientlab MetaMo-
tionR+) placed on the user’s wrist.

Human-robot interaction (HRI) is a large field that covers many areas of hu-
man knowledge. It lies at the intersection of robotics, cognitive sciences, and
computer sciences. It involves analysis of human-human interactions, human
and robotic perception, design of hardware and software systems.

The interaction between humans involves multiple modalities, such as speech,
gestures, facial expressions, gaze, and physical contacts. In human-robot inter-
action, it is common to differentiate interaction as physical (pHRI) and cognitive

1
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(cHRI). An overview of these fields are given, respectively, by Bicchi et al. [2]
and Breazeal et al. [6]. pHRI involves physical contacts between the agents, and
thus, studies interaction forces and control stability, dominance distribution in
multi-agent setups, haptic feedback, etc. A typical example of physical human-
robot interaction would be the exoskeletons (‘wearable robots’) which augment
the force of a wearer either to enhance their natural abilities or for rehabilita-
tion purposes. In contrast, cHRI deals with a higher-level interaction, where the
agents only exchange information, but not forces. The information in the cog-
nitive interaction case can be conveyed in the form of concepts, e.g. directions,
locations, and common objects (‘a can of soda’). This PhD work focuses on cHRI
and thus will further refer to it simply as HRI.

In the past years, a considerable amount of robotics research has been de-
voted to gesture-based human-robot interaction. The two types of gestures gen-
erally considered are hand and arm gestures. While hand gestures are usually
associated with iconic commands or emblems, pantomimes and sign language,
arm gestures are more often associated with pointing or deictic gestures [52; 72].
Because pointing requires to move both the arm and the hand (the index finger
is extended and the arm is straight), many works that use the term hand gestures
presume the use of arm gestures as well and thus both notions are often used
interchangeably.

Depending on the type of interaction and the type of information to be com-
municated to a robot the gestures can be either static or dynamic, could accom-
pany speech or can be used on their own. For example, periodic dynamic ges-
tures, like arm or hand waving, could be used to attract a robot’s attention [53];
pointing gestures could provide a context for the speech commands by linking
deictic pronouns, e.g. ‘that’ and ‘there’, to a spatial entity, such that a cumber-
some utterance like ‘Go three meters forward, then five meters to the left’, can
be simply replaced by ‘Go there’ and the pointing gesture.

Pointing to entities or positions in an environment is a skill acquired within
the first year of human life [9] and an effective device that humans use all the
time. Thus, pointing is of particular interest to the robotics community: it allows
the human user to intuitively communicate locations and other spatial notions to
robots. Some of the tasks that can be efficiently solved with pointing gestures are
pick-and-place [33], object and area labeling [79], teaching by demonstration
[73], point-to-goal [84], and assessment of the joint attention [8].

In this work, we are looking for efficient ways to interact with robots using
pointing gestures. We focus on point-to-goal applications for mobile flying and
ground robots: the user points at a location in 3D space and the robot moves
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there using its on-board intelligence. This interaction pattern suits well many
applications: it can be used for transporting goods with cargo robots in ware-
houses, indicating parking spots for autonomous vehicles, specifying areas of
interest for inspection drones, indicating a precise landing spot for a delivery
drone, or even for calling a cleaning robot to wipe a spill on the floor.

Research problem

A typical approach to human-robot interaction using gestures would be to equip
the robot with a computer vision sensor, e.g. a stereo vision or a structured
light camera. In this case, the robot has to actively look for a human in the
environment, track them, try to recognize if they want to initiate the interaction,
and then wait for commands to follow. Once the command is issued the robot
may need to look away from the user to perform the given task, and therefore
will not being able to receive new commands anymore.

We follow an alternative approach that does not require the robot’s atten-
tion. It is based on the use of compact wearable inertial measurement units
(IMUs) that provide an accurate estimation of their own orientation with respect
to an arbitrary absolute reference frame. This type of sensors is ubiquitous and
nowadays present in almost all modern smartphones, smartwatches, and fitness
trackers. One or multiple IMUs are placed on the user’s arm or held in the hand
and provide the direct measurements of the arm’s pose. The necessary compu-
tations are then performed on a device worn by the user, e.g. a smartphone or
a smartwatch, such that the robot receives only high-level commands. The com-
mands are communicated to the robot via a wireless link and do not require a
robot’s visual attention.

Both sensing approaches have their pros and cons. Although vision-based
methods operate within a limited field of view and range, they allow the system
to gather reacher information about the user’s posture, e.g., they can capture po-
sitions of all visible human joints at once without adding new sensors. Moreover,
the robot-centric vision systems estimate positions of the joints directly in the
robot’s coordinate frame, and thus, require no additional localization of the user
relative to the robot. On the other hand, robot-centric vision poses an essential
problem for gestures aimed directly at the robot or locations very close by: the
arm axis gets nearly perpendicular to the image plane and makes it impossible to
estimate the pointed direction accurately. This peculiarity makes pointing-based
robot selection and continuous position control problematic.

On the contrary, inertia-based sensing does not rely on the direct line of sight
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and is suitable for a broader range of environmental conditions. It demands less
computational power; however, because inertial sensors estimate accurately only
rotation, it is necessary to use human body kinematics to calculate joint positions.
In turn, it requires the re-localization of the human every time they move away
from their initial position. In this work, we propose and demonstrate several
efficient ways to deal with these limitations.

Regardless of the approach used to sense gestures, there are several research
challenges one needs to address to successfully implement an efficient human-
robot interaction system based on pointing.

Human perception. The way people point at objects, places, and other people
depends on the context, social and physiological peculiarities of an individual:
for example, if a person intends to pinpoint a small object, an object far away,
or a single object that cannot be unambiguously identified among other similar
objects, then the person is likely to point with a straight arm using the index
finger; on the contrary, if the object is big and close by, the person may point
with the entire hand and the arm bent at the elbow.

To better understand how pointing gestures can be captured by sensors and
how can we infer pointed locations and directions from this data, we study the
works in experimental psychology. We then choose a human pointing model that
would allow us to map a set of input parameters to a pointed location or object.
The input parameters could be: a human posture, i.e. relative positions of the
human limbs; visual perception peculiarities of an individual, e.g. handedness
and eye dominance; cognition; context and environment, e.g. size of a pointed
object and a distance to it.

We report a state of the art in psychology and human-robot interaction re-
search in Chapter 2.

Estimation of pointed directions and locations. Because it is not always possi-
ble (or practical) to capture all input parameters of human pointing models us-
ing a specific technology, e.g. wearable inertial or computer vision sensors, it is
necessary to derive appropriate approximated models. This strand of research,
therefore, deals with practical implementations of human pointing models in
human-robot interaction systems. Once the pointed direction is found we need
to relate it to an object or location in the surrounding environment, for example
by intersecting a pointing ray with a 3D model of the workspace.

In Chapter 3 we define the human pointing model used in our research—
eye-finger model. We formally define its parameters and kinematic relations it is
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based on. Then, we discuss the ways to find a pointed location in the surrounding
environment. Finally, we describe our main contribution to this field: a practical
approach to defining 3D target locations for robots freely moving in 3D space. We
validate that approach for a quadrotor control in a user study.

Relative localization. Pointing gestures inherently define locations in the user’s
local frame which might be unknown to a robot. Hence, it is necessary to define a
common reference frame between the user and a robot. In other words, the user
has to be localized with respect to the robot. This research direction considers
various localization techniques appropriate for human-robot co-localization.

In Chapter 4 we consider several practical approaches to the problem of rel-
ative human-robot localization. We formally define the necessary coordinate
transformation relations and show how each of the proposed methods allows
acquiring the coordinate transformation between a user and a robot. Our main

contribution is a motion-based localization method that relies on human percep-
tion: the user points at a moving robot and keeps following it with their arm
for a few seconds; the system compares motions of the robot and the user and
estimates a relative coordinate transformation between the two.

Robot selection and identification is required whenever an operator has to
deal with more than one robot, or more generally when the number of operators
is not equal to the number of robots. Even when there are a single operator and
a single robot, there is a question: how would the operator start an interaction?
We study various practical solutions to these problems that are based on push-
buttons, voice control, and gesture recognition.

In Chapter 5 we show various ways to engage a robot and a user. In particular,
we demonstrate how our relative localization method described in Chapter 4 can
be efficiently used to solve this problem.

Efficient interaction feedback. In the process of human-robot interaction, the
user gives commands to a robot and needs to be sure they are received and
understood as intended. The interaction feedback plays an important role in this
process and allows both humans and robots to immediately correct their actions.

In Chapter 6 we discuss various ways to improve the interaction performance
using appropriate feedback.

During this work, we also attempted to come up with realistic implementations
of interfaces being designed. For this, we searched the most suitable technologies
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Figure 1.2. Thesis overview: Chapter 3 describes the human pointing model
adopted in this work and estimation of pointed locations in 3D space; Chap-
ter 4 presents various localization techniques and our method of relative lo-
calization from motion; Chapter 5 discusses robot selection and identification
methods, including the one based on our relative localization approach; Chap-
ter 6 demonstrates various types of feedback: a continuous real-time feedback
provided by the robot motion itself, colored lights, and a haptic feedback on a
wearable sensor.

that are available on the market today or anticipated to appear in the near future.
To validate the usability of the resulting interfaces we conducted qualitative and
quantitative user studies.

Finally, in Chapter 7 we draw conclusions, discuss limitations of the proposed
methods and ways to improve them.

A graphical overview of our core research contributions is presented in Fig-
ure 1.2.
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Contributions

In this section, the author summarizes his personal contributions to state of the
art. These contributions span the Chapters 3–6 where they are described in de-
tail.

Chapter 3: Estimation of Pointed Locations The author proposes a simplified
human pointing model that uses a single inertial measurement unit (IMU) to
estimate pointed locations both in 2D and 3D space. The main contribution of
this chapter is a pragmatic method to specify targets in free 3D space that re-
solves an inherent ambiguity of pointing—mapping of a two-parameter pointing
ray to a three-parameter target location. The author proposes to use a set of
well-defined virtual workspace surfaces to constrain the robot’s motion. In par-
ticular, for improved legibility of the system’s state, the author proposes surfaces
of two shapes: a vertical cylinder centered at a user’s location and a horizontal
plane. Each shape is defined to pass through a current robot position: this way,
knowing the type of selected workspace shape and seeing the robot, the user can
easily visualize the workspace surface and predict the trajectory of the robot. The
method is validated in a user study.

Publications The idea to use wearable inertial sensors to estimate pointed
locations was first exploited in a workshop paper [25] and further used in a
conference paper [24]. In these works, we started with a sophisticated wear-
able system that included two IMUs: on the upper arm and on the forearm.
The pointed locations in these works were estimated as an intersection of the
pointing ray (shoulder-finger pointing model) with the ground plane. The main
problem of such setups was different drift rates of the two IMUs that resulted in
a distorted kinematics chain and the need for re-initialization of the system. The
next iteration of the system was simplified to use a single IMU on the upper arm
for pointing reconstruction, while the second IMU was used for the detection of
pointing events. The author compared the performance of the developed point-
ing interface against a joystick interface in a drone landing task in [28; 30]. The
method to define the robot’s locations on a 2D horizontal plane was described in
detail in [29], while the method to define positions in free 3D space is presented
in [32]. In both cases, to estimate pointed direction we used the eye-finger point-
ing model.

Chapter 4: Relative Localization The author considers, implements, and vali-
dates several practical relative localization methods between a user and robots:
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(1) using a global reference frame, (2) using fiducial markers installed on each
robot and a camera on the user’s forearm, (3) using a predefined heading (point-
ing at robot from its back), and (4) localization from motion—the main contri-
bution of this chapter to the state of the art. The method (4) requires the user
to point at and keep following a moving robot for a few seconds: the system is
then able to estimate a relative coordinate transformation between the user and
the robot.

Publications We used the method of a global reference frame in our first
work (workshop paper) in [25]. We then presented the idea of using fiducial
markers in a conference paper in [24], and further studied its accuracy in a work-
shop paper in [26]. Finally, in [27] we presented our main contribution of this
chapter—relative localization from motion.

Chapter 5: Robot Selection and Identification In this chapter the author de-
signed and implemented several robot selection methods. In particular, a combi-
nation of speech utterances and pointing gestures were used for the selection of
individual and groups of robots, e.g. “You and another 2!”. In this case, pointed
locations are compared with known coordinates of available robots and used for
their identification, while the speech is used as a selection trigger. Because cloud-
based speech recognition services that we were using introduced a significant lag
into the interaction process and were difficult to scale, we studied alternative se-
lection methods. The author implemented a method based on fiducial markers
with unique identifiers that allowed to instantaneously determine a robot the
user was pointing at and therefore trigger selection. The main contribution of
this chapter to state of the art is a robot identification and selection method based
on relative localization from motion approach that is described in Chapter 4: as-
suming several robots are moving on unique trajectories, the user points at one
of them and keeps following it for a few seconds, the system then compares rel-
ative localization residual errors and selects a robot whose trajectory yields the
lowest error.

Publications We presented the speech-based selection method in the work-
shop paper [25] and further elaborated it in a conference paper [24]. The lat-
ter paper also describes the robot selection method based on fiducial markers.
In collaborative work with Broggini et al. [7] we proposed and implemented a
method that uses a 1D convolutional neural network to detect pointing events:
once the pointing gesture is detected, robot identification can proceed by com-
paring a pointed-at location with robots’ positions. The main contribution of this
chapter—robot identification method using the relative localization from motion
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approach—was presented in a conference paper [27].

Chapter 6: Efficient Interaction Feedback Throughout this PhD work the au-
thor aimed at improving the usability of proposed methods by providing ade-
quate feedback to the user. In this chapter, the author describes various types
of feedback: voice, lights, vibrations, and robot motion itself. The main con-
tribution of this chapter to the state of the art is a user study on the effects of
continuous visual feedback during the pointing process. We show that a con-
tinuous control of the robot’s position allows the user to timely correct for any
inaccuracies induced by a simplified human pointing model and a drift of wear-
able inertial sensors.

Publications We designed and implemented a system with voice feedback
in [24] where it is used for acknowledgment of user’s commands. In the same
paper, we also used colored lights installed on robots to show when a robot is
selected. In [31; 30] we programmed a drone to “jump” in the air to show it
has been engaged with the user. In [29] we describe our main contribution to
the state of the art—a user study that shows the importance of real time visual
feedback on pointing accuracy.
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Chapter 2

Literature Review

Since pointing gestures are such a compelling solution to many human-computer
and human-robot interaction problems, significant research efforts have been
devoted to this topic.

Modern human-robot interaction developed mainly from the teleoperated ro-
botics and the human-computer interaction fields. Arguably, one of the most fa-
mous and pioneering works in human-computer interaction is “Put-that-there”
by Bolt [5]. In that work the MIT Architecture Machine Group’s “Media room”
was staged to perform multi-modal interactions where the user should have used
speech commands in conjunction with pointing gestures to manipulate virtual
objects on a screen1. Bolt argues that this way the virtual interface is implicitly
merged into the real world and creates a continuous real-space interaction envi-
ronment. Moreover, the speech commands supported by pointing gestures can
be significantly simplified by replacing the object’s and location’s names with the
pronouns like ‘that’ and ‘there’. In this case, Bolt argues, the user even do not
have to know what the object is or how it is called.

In the following sections we study the related works from experimental psy-
chology, haptics, human-computer and human-robot interaction fields. We fol-
low the same order of the research topics that we defined in the introduction, in
Chapter 1.

2.1 Human perception

Deictic gestures, and in particular pointing to entities or locations in environ-
ment, is an innate and a specific to human species skill [9]. Pointing is effective

1https://www.media.mit.edu/speech/videos/Putthatthere_1981_edited_full.mov
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means of communication and interaction that humans use all the time. It has a
dialogic nature in that it requires a joint attention of the interacting people on
the object of pointing. Butterworth studied the development of pointing compre-
hension and production in babies and indicates that canonical pointing2 emerges
by the end of the first year of life. However, at this age infants’ abilities to un-
derstand what object is being pointed at are somewhat limited: babies generally
fixate on targets only if the latter have salient features, such as when the objects
are in motion. By the 18 months babies are able to localize the target without
additional cues. Butterworth argues that it become possible thanks to eventual
development of joint visual attention when babies are able to extrapolate the
adult’s head, gaze or pointing arm direction.

B

A

Figure 2.1. Pointing misinter-
pretation. Subject believes to
point at A, while observers in-
terpret she/he points at B. Figure
has been adapted from the orig-
inal work of [36].

The ability to understand pointed locations
is even limited in adults. Herbort and Kunde
experimentally shown that locations meant by
a pointer are different from that are inter-
preted by an observer [36]: one group of sub-
jects (pointers) was asked to pointing at ticks
on a vertical ruler, while the goal of the other
group (observers) was to guess these pointed
locations. The experiment has shown that
most of the observers were indicating positions
higher than they were meant by the pointers
(Figure 2.1). Herbort and Kunde explain this
phenomenon by the difference in geometrical
rules that guide the production and interpretation of pointing gestures. While in
the pointing production subjects tend to keep pointing finger close to the line of
sight—but avoid occluding the target—observers interpret the pointing direction
by extrapolating the long axis of the pointing arm.

Works in psychology research on pointing gestures show that the tip of the
index finger of a pointing arm tend to lie close to the line of sight between the
human and the object being pointed at when pointing with a straight arm [76;
36]. The human perception model based on this observation is often referred to
as the eye-finger model. The ‘eye’ in this model is meant to be a dominant eye3

of an individual. Khan and Crawford shown that the ocular dominance is not a
static concept and depends on the relative position of the eyes with respect to
the object they are looking at [43]. The pointing with a straight arm is typical

2A gesture with index finger and arm extended, palm down, other fingers curled.
3Ocular dominance is the tendency of a brain to prefer visual input from one eye to the other

[43].



13 2.1 Human perception

when the pointed target is far away or when the person is trying to be precise.
However, when the targets are relatively close, people tend to bend the arm at
the elbow [44]. In this case, the eye-finger model does not work anymore and
the pointing is better described by the elbow-finger model [44].

In robotic applications of distal pointing we are primarily interested in de-
termining target locations the user wants to indicate; therefore, this work will
further focus on pointing production. To understand the extent of the application
of pointing gestures we are also interested in intrinsic limitations of human mo-
tor control that sets the lower bound of pointing accuracy and the time necessary
to perform a pointing gesture.

Motor control of the arm relies on two major senses: proprioception4 and
vision [22]. One of the early works on pointing production by Taylor and Mc-
Closkey shown that vision plays an important role in this process and dominates
proprioception [76]. The authors compared the pointing of blindfolded subjects
with those using vision and found that in the former case the pointing direction
coincides with the shoulder-finger line; however, if the subjects were pointing
first using vision and then were blindfolded the influence of visual perception
remained for some time and influenced the pointing direction [76]. The differ-
ence between visually-monitored pointing and the blindfolded one was also later
confirmed by Wnuczko and Kennedy, where the authors shown that the pointing
guided by vision results in higher arm elevations as compared to the one guided
only by proprioception [83].

Research in neurophysiology shows that vision is likely to be used as a source
of information for generating spatial plans for movements towards visual tar-
gets within an extrinsic coordinate system, while proprioception is crucial for
implementing these kinematic plans by transforming them into control forces of
individual muscles [67]. According to the estimations of Sober and Sabes the
first stage of motor control planning is dominated by visual information (80%),
whereas the second stage relies mostly on proprioception (70%) [70]. These two
stages loosely resemble an approach often used in robotics; there, a high-level
trajectory planning in Cartesian-space is followed by the trajectory execution in
joint-space using inverse dynamics of the robot.

According to Tan et al. the upper bound of human force control bandwidth is
about 20 Hz [75], at the same time intrinsic involuntary oscillations (tremor) of
the pointing hand have two dominant frequency peaks at 2–4 Hz and 8–12 Hz
[54]. Morrison and Keogh analyzed tremor frequencies in a pointing task with

4Proprioception is the perception of positions and movements of the body segments in relation
to each other without the aid of vision, touch, or the organs of equilibrium [4].
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and without precise visual feedback and found that the tremor oscillations ampli-
tude significantly increase when the subjects are asked to point at a small target
(angular width of 0.42�) using a laser dot [54].

The inherent accuracy of the human arm was studied by Tan et al., they mea-
sured the arm joints angle resolution for shoulder, elbow, and wrist, and found
that proximal joints are more accurate than distal ones. While the average an-
gle resolution of the shoulder is 0.8�, the average resolution of an index finger
(MetaCarpalPhalangeal joint) is much larger and equals to 2.5�. Interestingly,
the resolution of the joints increase not just the faster they move, but also if the
movements are active (voluntary) as compared to the case when they are moved
by external apparatus [40].

There is also a distance limit at which humans with normal eyesight can per-
ceive remote targets, e.g. robots. According to Nancel et al. the angular size of a
target should be more than 10 =

�
1

60�
�
⇡ 0.017� [57]. That means that the max-

imum distance at which the operator of a typical drone (circumference 30 cm)
could see it is 1 km. Taking into account the challenging background of outdoor
environments this number probably will be much smaller. As can be seen, the
visual acuity is one magnitude better than the resolution of the pointing arm.
However, these numbers give the upper bound distance at which a direct line of
sight interaction can occur.

2.2 Estimation of pointed locations

The human perception models defined in psychology research do not put any
constraints on the input parameters; however, in the engineering applications,
not all the input parameters are possible (or practical) to acquire. This research
area, therefore, attempts to approximate comprehensive human perception mod-
els with simplified models based on application constraints.

The estimation of pointed locations can be split into two sub-tasks: (1) esti-
mation of the direction of pointing (usually in the form of a ray), and (2) estima-
tion of the intersection of the pointing ray with the environment.

2.2.1 Pointed directions

In HCI and HRI research the two classes of pointing direction estimation methods
can be distinguished: head-rooted and arm-rooted. The head-rooted techniques
consider a pointing ray that originates somewhere within the head: from a dom-
inant eye [64], cyclops eye [49], or head centroid [58; 80]. Arm-rooted methods
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assume the ray originates from a point laying on the pointing arm: at shoulder,
elbow [58; 15; 48; 44], wrist [33] or index-finger [48]. The pointing direction
is then defined by the second point, sometimes called direction point, that lies on
the arm. For the head-rooted methods, this point is either a centroid of the hand
or a tip of the index finger, while for the arm-rooted techniques the second point
can be at the elbow, at the wrist or hand, or at the tip of the index finger.

In HCI these methods are often referred to as ray casting or ray pointing
techniques. The main applications of pointing in HCI field are the interaction
with graphical user interfaces (GUIs) on very large displays [5; 41; 12], 3D im-
mersive environments [63], and recently interaction with smart environments
[50; 18; 64; 42]. The most popular pointing techniques in HCI are: a laser
pointer [41] and an image plane manipulation [63; 41]. The laser pointer tech-
nique refers to any handheld device that can report its orientation which is then
used for determining the pointing ray. Among these types of devices are com-
mercially available controllers such as Nintendo Wiimote, HTC Vive Controller,
and Oculus Touch. The last two are specifically designed for interaction with
virtual reality (VR) environments. The image plane manipulation is an approach
to manipulate distant objects as if they are within arm’s reach5. Essentially this
type of technique is directly related to the eye-finger pointing model because it
also uses one’s line of sight to indicate an object.

Based on combinations of the root and direction points, the taxonomy of the
pointing models includes head-hand, eye-finger, shoulder-elbow (upper arm),
elbow-wrist (forearm), elbow-hand, and index-finger models.

2.2.2 Pointed locations

Once the pointed direction in the form of a ray is found a pointed location can
be estimated as an intersection of the pointing ray with the environment. While
a 3D model of a virtual environment is known in advance, a model of a real
environment has to be acquired by some means, for example with computer
vision sensors.

In HCI the problem of finding an intersection point is often circumvented
by means of relative pointing techniques with additional visual feedback (i.e. a
cursor on the screen). This type of interface is resembling a computer mouse
and does not require the intersection point. Although relative pointing can be
quite efficient it requires the system to use motion indexing (or ‘clutching’) in
order to map the range of motion of the physical device to the workspace of

5A good illustration: when people pretend on a photo to hold the Sun between their fingers.
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the environment. For example, when the computer mouse reaches the border
of a tabletop the user has to disengage the mouse by lifting it above the surface
and then reposition the device in the physical environment. On the contrary,
absolute pointing devices map the entire physical range of motion to the entire
workspace; this technique, however, requires the system to know the coordinate
transformation between the user (or pointing device) and the screen.

In HRI, instead of a cursor or elements of a GUI, the user needs to control a
robot in the real environment, for example, to reposition it or change its config-
uration. Therefore, for this to work, we have to establish a common reference
frame between the user (and subsequently the pointing device) and the robot.

2.2.3 Pointing correction

While dealing with continuous space of possible pointed targets, the accuracy of
pointing gestures may have a significant impact on the interaction performance
and cannot be neglected. The simplified models (as compared to the actual hu-
man perception models) reduce the accuracy of the estimated locations and di-
rections and has to be carefully assessed. There are three main sources of errors
that contribute to the final accuracy: (1) intrinsic characteristics of human per-
ception and motor skills, (2) inaccuracies of gesture interpretation model, and
(3) external measurement errors. The first error is characterized as the repeata-
bility of pointing gestures, i.e. how well can a human point at the same target
over and over again. The second error is defined as a difference between the es-
timated target location and the location human intended to point at. Finally, the
external measurement errors are those induced by misplacement of the sensors,
their noise, etc.

These errors can be reduced by means of additional visual feedback, similar to
the cursor on a screen [5], a better gesture interpretation model, and a thorough
sensor calibration. However, perhaps a more practical approach is to learn a
pointing model directly from the observations. Droeschel et al. utilized Gaussian
Process Regression (GPR) to train function approximator that maps human body
features extracted from a time-of-flight depth image data to a pointing direction
[15]. Authors compared the accuracy of their GPR-based model with the trivial
line-based models, i.e. head-hand, elbow-hand and shoulder-hand, and shown
significant improvement in the pointing accuracy: 0.17 m vs. 0.39 m (head-
hand model) average distance error. One of the important conclusions made
by Droeschel et al. is that the trivial line-based methods can be inadequate for
certain ranges of target directions: while the GPR-based model produced evenly
distributed errors, the line-based models shown significant bias at certain targets.
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A work by Mayer et al. follows a similar approach, but instead, they use user-,
pose-, and distance-independent quadratic polynomial to correct systematic dis-
placements of pointing gestures [48].

2.3 Relative Localization

An important aspect of absolute pointing gestures is the necessity of a common
point of reference between the human and the robot. The gestures are captured
in the sensor’s coordinate frame, but eventually, have to be interpreted by the
robot in its own frame. In the case of external sensing, the sensors are often
installed directly on the robot and thus the frame transformation is not neces-
sary, i.e. acquired gestures are already in the robot’s frame. However, wearable
sensors, e.g. IMUs, report the data in an arbitrary inertial frame and the mea-
surements have to be converted first to the human’s frame and then to the robot’s
frame.

Localization is an essential part of any robotic system: it is used for relating
a robot pose to a working environment, objects in it, or other agents (including
humans). Localization of a rigid body, such as a robot, in 3D space, assumes the
knowledge of its full 6D pose: three translations and three rotations with respect
to x-, y-, and z-axes. Some methods allow one to acquire the entire pose, while
other methods could only provide partial information, e.g. a 3D position or a 3D
orientation. In general, all localization methods can be grouped into direct and
indirect methods.

2.3.1 Direct methods

Direct methods assume that the position of one agent is estimated directly with
respect to another agent, using, e.g., triangulation or multilateration of a radio
[81], optical, or sound signal [68].

These also include vision-based methods, such as localization using passive
[19; 21] and active [17] markers, known geometry, or other visual features of
the agent [20]. For example, when it is a human to be localized, features like
natural skin color [58], face [55], or even legs [62] can be used.

An interesting example of the partial direct localization is a method imple-
mented in a commercial toy robot BB-8 by Sphero [71]. The robot is able to
move on a horizontal flat surface and is controlled by a wearable bracelet-like
interface fitted with an IMU to provide velocity commands: the user can perform
a push-like gesture with their arm along a given direction to move the robot. Be-
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cause the robot is bound to a horizontal plane and control in velocity space, it
requires localization of only one degree of freedom—a relative heading between
the human and the robot, i.e. a relative rotation around z-axis. When the user
initiates the localization procedure, a single light on an LED ring on the robot
circumference turns on: at this point, the user can control which LED is illumi-
nated on the ring by twisting their wrist. Once the user aligns the illuminated
LED with the pointed direction, they press a button to complete the calibration
procedure. Now, the heading of the user’s arm as measured by the IMU can be
converted into the robot’s frame.

2.3.2 Indirect methods

These methods assume the two agents are localized with respect to a common
reference frame and thus a coordinate transformation can also be recovered be-
tween the agents.

A common reference can be established using geographical coordinates using
a global positioning system (GPS) [16], or using techniques that are suitable
for indoor use, such as optical motion capture systems like Optitrack, or ultra-
wideband (UWB) localization systems [81; 35].

An alternative approach is a co-localization of the agents [69] that individu-
ally perform simultaneous localization and mapping (SLAM) of the same envi-
ronment. By finding correspondences between the maps produced by each robot
it is possible to estimate coordinate transformations between the agents.

In the indirect methods, inertial sensors are used in conjunction with vision
sensors to find better estimates of the egomotion of the system for the SLAM task
[45].

2.4 Robot selection and identification

When there are multiple robots, and possibly multiple operators, that each need
to control their own robot, the system must provide a way to select individual
robots among a group. The ability to select a robot is also useful for a single
robot / single operator case: it allows one to engage with the robot and trigger
the start of an interaction.

Couture-Beil et al. developed a computer vision pipeline that uses an orien-
tation of the user’s face to estimate which robot the user wants to engage with
[14]. Another work from the same research group by Pourmehr et al. extends
that approach with a multi-modal interface based on natural speech where the
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user can engage with individual robots and groups of robots by using indirect
speech references, e.g. “You two! Take off!” [65].

Monajjemi et al. used periodic waving arm gestures to engage with a drone
that flies far away (20–30m), once the robot’s attention is attracted it approaches
the user and waits for another, short distance, commands such as taking a selfie
[53].

Robot selection can also be performed indirectly. Cacace et al. proposed a
system that implicitly selects a robot from a pool of available robots that are
suitable for a particular mission. The availability, in this case, can be determined
based on various parameters, for example, the battery level of a quadrotor [10]
and its capabilities. Wolf et al. shows a simple yet effective way to select robots
within a fixed group by iterating through them using an arm gesture [84].

Pointing gestures are particularly intuitive for the robot selection task. Nagi
et al. used a distributed consensus protocol for a swarm of robots equipped with
vision sensors to estimate which of the robots is being addressed by human point-
ing [56]. Interestingly, a robot that is being pointed at has the worst view of a
pointing hand: in this case, the finger and the hand coalesce and are perceived
as a single blob. That means the closer the robots are in the swarm to each other
the more difficult for them to differentiate which one of them is being pointed
at—a familiar experience we have from our daily lives.

Inertial sensors allow one to have a trivial robot identification system that
is based on a mere comparison of pointed locations with the coordinates of the
robots themselves. However, engaging a robot immediately when such compar-
ison succeeds may be undesirable as an indicated point in the environment may
cross through many other robots before reaching the one intended by the opera-
tor. For this reason, it is necessary to trigger the interaction explicitly, only once
the operator is convinced to select the pointed-at robot.

Among the ways to detect pointing events are fixed time delays [33; 13],
using a hand gesture of the other (non-pointing) arm [38; 78], or detecting the
phase of a pointing arm gesture [58; 15; 61; 7].

Using two wearable sensors setup Broggini et al. trained a 1D convolutional
neural network (CNN) to predict the probability of an arm gesture to be a point-
ing gesture [7]. Once the probability passes an arbitrary threshold the gesture is
considered to be pointing and the system can engage the robot and the operator.



20 2.5 Efficient interaction feedback

2.5 Efficient interaction feedback
A feedback signal is an important element of human-robot interaction as it allows
both humans and robots to immediately correct their actions.

There are various ways robots could communicate their state to a user: sounds
and speech, lights and graphical displays. The state could also be encoded in the
robot’s behaviour by adjusting its trajectories.

Feedback sounds and lights are used by many commercial mobile robots. For
example, the Parrot Bebop 2 drone would play a distinctive sound pattern and
blink its light after a collision, which signifies the system has to be restarted. A
toy robot StarWars BB-8 uses the light on its LED-ring during the adjustment of
the relative heading between the robot and the wrist controller ForceBand worn
by the user; the ForceBand would also play various sounds when it recognizes
appropriate control gestures.

For their simplicity lights are also a popular choice in the HRI research. Szafir
et al. used a circular strip of light-emitting diodes (LEDs) on the circumference
of the drone to study the ways of communicating motion directions to the user.
The authors tested four feedback patterns, namely: blinker—a metaphor of car
turning signal; beacon—searchlight of a lighthouse; thruster—a metaphor of the
flames from the engine of an aircraft; gaze—represent two stripes of lights and
mimic eyes. The survey among participants shown that the gaze and blinker
metaphors have the best ability to communicate the robot’s motion intentions
[74].

Monajjemi et al. installed an RGB LED strip on the front side of the drone to
communicate its intent to the user. The drone is able to detect a waving user,
approach them, and follow hand gesture commands, e.g. take a photo (selfie)
of the user. The drone is able to communicate such states as search, approach,
being lost, camera timer countdown, etc. [53].

Cauchard et al. studied the ways a drone can communicate its state through
emotions that are encoded by changing the drone’s speed, altitude, and orienta-
tion. For example, the drone would fly low and slow to show it is exhausted, i.e.
the battery level is low [11].



Chapter 3

Estimation of Pointed Locations

Human pointing is not a trivial concept and as has been shown in related psychol-
ogy research depends on many complex parameters, e.g. eye dominance. Not all
of these parameters are technically easy or even possible to capture to estimate
pointed locations. Therefore, it is necessary to find a reasonable approximation
of the true human pointing model that is both sufficiently precise and practical
to implement for robotics tasks.

This chapter describes the main concepts related to a human pointing model
adopted in our research. We start by formally defining the human kinematics
model and coordinate transformations that constitute it. We then define the
pointing ray associated with the chosen pointing model and show how we obtain
it from readings of a wearable inertial sensor placed on the user’s arm.

Finally, we describe the estimation of pointed locations based on these models
and one of the main contributions of the present research to the state of the art—
estimation of pointed locations in free 3D space and its validation in a user study.

Estimation of pointed locations requires finding a pointed direction in the
form of a ray and intersecting that ray with objects or surfaces in a given en-
vironment. The mathematical notion of the ray is important as it constrains
intersections in a forward direction only. Estimated locations are relative to the
user and depend on the user’s posture.

3.1 Pointed directions

In our work we use the eye-finger pointing model that is defined by two 3D points:
a midpoint between the eyes (often called a “cyclops eye”) and a tip of the index
finger. We estimate the positions of these points through a minimalistic kinemat-
ics model of the human body with only two dynamic parameters—arm’s pitch

21
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Twh

Ths

Tse

po

pd

Ts f

{H}

Figure 3.1. Minimalistic kinematics model of the human body adopted in this
work. The red-green-blue triads show local coordinate frames that constitute the
kinematics chain rooted at the human frame {H}.

and yaw. In this model we make the following assumptions:

• The user stands upright and points with a straight arm;

• The eyes and the shoulder are vertically aligned, the distances from the
ground to the shoulder (Lhs), from the shoulder to the eyes (Lse) and to
the fingertip (Ls f ) are known and fixed.

The visualization of this model is presented in Figure 3.1.
We define the pointing ray r as a half-line originating at the operator’s eyes at

point po and passing through the tip of the pointing finger at point pd (direction
point). Equivalently, this pointing ray can be defined as a vector with orientation
!o originating at point po:

r = (!o; po) (3.1)

In the arm-rooted pointing models, the orientation !o can be directly mea-
sured with an inertial sensor worn on the arm; however, in our case, the ori-
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entation of the arm does not coincide with the pointed direction and has to be
calculated using human body kinematics model mentioned above.

We define the coordinate transformation tree as depicted in Figure 3.1, which
is rooted at the user’s feet. Twh represents a transformation that defines human
position and orientation in an arbitrary world frame {W}, i.e. it is the coordinate
transformation that brings one from the world frame to the human frame {H}1.
Similarly, Ths is a transformation from the human feet to the shoulder, Tse is a
transformation from the shoulder to the eyes, and Ts f is a transformation from
the shoulder to the fingertip. These transformations represent homogeneous co-
ordinate transformation matrices but can be also viewed as a combination of pure
rotation and pure translation operations. For clarity we use the latter represen-
tation and define a transformation as T = (!; t), where ! is a rotation matrix,
and t = [t x , t y , tz] is a translation vector.

For clarity, in this section, we assume that human is located at the world’s
origin and therefore Twh = I is the identity transformation.

We now parametrize individual transformations via predefined human body
length parameters:

Ths = (I ; [0,0, Lhs]) (3.2)

Tse = (I ; [0,0, Lse]) (3.3)

Ts f =
�
!I MU ; [Ls f , 0, 0]

�
(3.4)

where I is the identity rotation and !I MU is the rotation measured by the IMU
on the user’s arm.

Using the above transformations, we define the positions of the fingertip pd

(ray direction point) and the eyes po (ray origin point) in the human frame {H}:

po = ThsTse0 (3.5)

pd = ThsTs f 0 (3.6)

where 0= [0, 0,0] is the zero vector, i.e. the origin point.
Next, we define the direction vector v that connects the eyes and the fingertip

and consequently find the orientation !o of the pointing ray r:

v = pd � po (3.7)

(3.8)

1In this notation the first subscript defines a parent reference frame and the second defines a
child frame. Therefore the inversed transformation of Twh is Thw.
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We now derive the yaw!yaw and pitch!pitch rotations of the direction vector
v:

!yaw = RPY
Å

0;0; arctan
vy

vx

ã
(3.9)

vnewx
=!yawex (3.10)

!pitch = RPY
✓

0; arctan
�vz

v · vnewx

; 0

◆
(3.11)

where RPY (rol l; pitch; yaw) is a function that maps roll, pitch, and yaw angles
to a rotation matrix; ex = [1, 0,0] is the x-axis basis vector, vnewx

is an interme-
diary unit vector along the x-axis of the coordinate frame defined by !yaw.

Finally, we can define the rotation of the pointing ray as a matrix product of
the two rotations:

!o =!yaw!pitch (3.12)

Note that we ignore the roll rotation, i.e. the rotation around the user’s wrist,
as it does not influence the pointed-at location in our model.

An important drawback of the proposed simplified implementation is an in-
creased tangential pointing error. For example, assuming the user is pointing
straight in front of them, such that the yaw of the pointing ray !yaw = 0�; as-
suming the user’s arm length Ls f = 0.69m (shoulder to finger) and the shoulder
length Lns = 0.18m (neck to shoulder), then the pointing arm heading (yaw)
angle in this case is:

!yaw = arccos
0.18
0.69
⇡ 15.1� (3.13)

That means the tangential pointing error at the distance of 2.0m equals 0.53m.
Later, in Chapter 6, we show that this seemingly large error can be neglected

if a user is provided with real time visual feedback, such as a motion of the robot
itself.

3.2 Pointed locations

3.2.1 Environment surface and objects

Now that we found the pointing ray r, we need to intersect it with the environ-
ment to find the location the user is referring to. In its simplest, the environment
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po

pd

pt {H}

r

Figure 3.2. Finding pointed location pt as an intersection of the pointing ray r
with the ground plane. The green arrow represents the target pose of a robot at
location pt .

represents a flat world free of obstacles and is defined by a single horizontal
plane at the ground level (Figure 3.2). This is a fair assumption for many practi-
cal applications, such as navigation of ground robots or landing flying robots at
precise locations on flat terrain.

We define the pointed (target) location pt as:

pt = r \ S (3.14)

where S is a surface the pointing ray r is intersected with.
Note that the full pose of a rigid body, such as a robot, in 3D space is defined

by six degrees of freedom: three translations and three rotations with respect to
x-, y-, and z-axes. In our model we explicitly define only the target position of
a robot, while the target orientation (yaw angle) is set implicitly along a pointed
direction, i.e. equals to !yaw.

For more complex environments and tasks, e.g. navigation on rough terrain
or manipulating objects, a 3D model of the surrounding world must exist. Such a
model can be created with various sensors including Light Detection and Ranging
(LIDAR) devices and depth cameras that many field ground and flying robots are
often equipped with. An intersection of the pointing ray r with such a surface
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may result in multiple points, in this case, the one closest to the operator must
be considered as the intended target point pt:

pt = arg min
p2 r\S

kp� pok (3.15)

3.2.2 Free 3D space

Although the flat world model can be efficiently used to guide flying robots at
fixed heights, it essentially allows one to control independently only two degrees
of freedom, i.e. along x- and y-axes (with z-axis pointing up); however, one
would ultimately expect a control interface for a flying robot to provide a ca-
pability to change the altitude as well, or more generally—define a 3D target
position in free space.

The problem that arises from this requirement is that it is impossible to un-
ambiguously define pt from the pointing ray r as the target location may lie
anywhere along the ray and there is no surface to intersect with. For instance,
consider the case in which the operator is pointing at the robot that flies a few
centimeters above the ground and one meter in front of them. The operator
then adjusts their pointing stance by slightly increasing the elevation of their
arm. Does this mean that the robot should move farther from the user while
staying at the same height, or that it should move up?

We approach this problem by introducing a set of virtual workspace surfaces
that constrain the robot motion. We let the operator switch between these work-
space surfaces to enable robot control in the entire 3D space.

Workspace shapes

We now describe four possible shapes for workspace surfaces: cylinder, hori-
zontal plane, sphere, and vertical plane (Figure 3.3). The first three shapes are
defined as a one-parameter family of surfaces. When the user switches to the
shape, the free parameter is set in such a way that the surface passes through
the current position probot of the robot. The vertical plane shape requires to set
an additional parameter: plane orientation around z-axis.

Cylinder Scylinder with a vertical axis passing through the user’s head (po) (Fig-
ure 3.3a); the cylinder radius is the free parameter. This option allows the op-
erator to control the robot’s vertical position without limitations, never affecting
the horizontal distance to the operator.
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(a) Cylinder (b) Horizontal plane

(c) Sphere (d) Vertical plane

Figure 3.3. The variety of workspace shapes implemented in this work.
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Horizontal plane Sh-plane with the distance from the ground plane as the free
parameter (Figure 3.3b). This workspace serves a similar role to the ground
plane that humans have life-long experience with: it is a natural choice for indi-
cating locations and an intuitive tool to control the robot’s position on that plane
but does not allow height control.

Sphere Ssphere centered at the user’s head (po); the sphere radius is the free
parameter (Figure 3.3c). Operating in this workspace roughly corresponds to
the user holding a rod in their hand, with the robot affixed at its extremity.

Vertical plane Sv-plane parallel to z-axis and perpendicular to horizontal projec-
tion of the line connecting the user’s head (po) and the robot probot (Figure 3.3d);
this shape therefore has two free parameters: rotation around z-axis and the dis-
tance. This option allows one to change the robot’s height without limitations
and move it on a straight line with respect to the ground. This modality loosely
resembles image plane object manipulation.

To achieve intuitive interaction, an operator should always have a clear idea
of the workspace the robot is operating in; if the workspace shape is known, the
robot position itself uniquely defines the workspace surface S. For example, if the
workspace shape is Sh-plane, the user can expect that the robot will keep its cur-
rent vertical position; if the workspace shape is Scylinder, one can easily visualize
the user-centered cylinder passing through the robot; with the workspace set to
Ssphere the user can predict the robot to keep constant distance to their head. In
turn, if S is known, the user can always predict pt given r.

On the contrary, the vertical plane shape Sv-plane is a more complex concept
and demands additional cognitive effort from the user: initially, the surface is
set to pass through the robot and is oriented perpendicular to a horizontal pro-
jection of user–robot line, once the robot moves this line rotates but the plane
keeps its configuration—now the plane orientation is an implicit state the user
should remember. In the following discussion we keep Sv-plane for the sake of
completeness, but overall consider it a suboptimal choice.

Workspace switching

Further, we considered the case when the user can switch between multiple
shapes described above. To minimize the complexity of the system, we limit
the user to toggle between two possible shapes; properly choosing these allows
one to reach any position in 3D space.
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Among the possible choices, hScylinder, Sspherei and hSv-plane, Sspherei pairs are dis-
carded as they prevent controlling the robot’s horizontal position independently
from its height. For example, if the initial position is close to the user’s feet,
reaching a point a few meters away can only be executed through a convoluted
operation: choosing the cylindrical or vertical plane shape, raising the robot to
the arbitrary height, then switching to a spherical shape and lowering the robot
again while it gains distance.

Similarly, hSh-plane, Sspherei does not allow independent control of the robot’s
vertical position, which is something one would expect. Reaching a point at
a considerable height in this model requires one to fly the robot farther than
necessary using the plane shape, then switch to the sphere to gain height while
reducing distance.

We, therefore, determine to allow the user to toggle only between Sh-plane

and Scylinder workspace shapes. The possible switching sequence is shown in
Figure 3.4: the user starts moving the robot on a cylindrical surface and then
switches to a horizontal plane (Figure 3.4a–c).

Although hSv-plane, Sh-planei combination is a reasonable alternative, the verti-
cal plane Sv-plane has important limitation as compared to Scylinder: the orientation
of the plane is set at the moment the workspace is switched and the user has to
remember its configuration or re-setup it every time they want to change hor-
izontal movement direction. Unlike Sh-plane shape that is always parallel to the
ground and easy to visualize, Sv-plane has no such environment reference. For
this reasons we reject Sv-plane and hSv-plane, Sh-planei combination as overly complex
and non intuitive. Note that using vertical planes parallel to one of the walls of
a rectangular room or any indoor environment with a few clearly defined ver-
tical planes would be a good alternative, but requires some knowledge of the
environment.

3.3 Implementation

3.3.1 Gesture sensing

We implemented the system using an inexpensive wearable IMU (Mbientlab Meta-
WearR+ [51]) that has a form-factor of a wrist smartwatch (Figure 3.5, right).
The device is equipped with a three degrees of freedom (3-DoF) accelerometer,
3-DoF gyroscope, and 3-DoF magnetometer. The onboard firmware runs the nec-
essary sensor fusion algorithms in real time and outputs an accurate estimation of
the device’s absolute 3D-orientation in an arbitrary fixed reference frame whose
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a) c)b) d)

po

!o

pt

Scylinder Sh-plane

po

!o

pt

po

!o

pt Sh-plane

r r
r

Figure 3.4. Interaction using workspace shapes: a) User guides the drone in the
primary workspace Scylinder; b) User switches to the secondary shape by pressing
a button; c) User guides the drone in secondary workspace Sh-plane; d) User is
forbidden to switch the workspace to Sh-plane when the drone flies close to the
eyes height, in this case, the pointing ray is almost parallel to the surface and
makes it very difficult to accurately control the drone.

z-axis points up. The device also features a microswitch button, a light-emitting
diode (LED) light, and a vibration motor. The data is streamed to the host PC
with approx. 50 Hz rate via a Bluetooth Low-Energy (Bluetooth 4.0) link.

The acquired orientation is used within the head-finger pointing model (de-
scribed in Section 3.1) to recover r, which is then intersected with the active
workspace surface S to define the pointed-to location.

3.3.2 Workspace switching

We define Scylinder as the primary workspace shape (Figure 3.4a), i.e., the one that
is active by default; Sh-plane is considered a secondary shape (Figure 3.4b), i.e.,
one that user can switch to upon request (Figure 3.4c).

The operator switches between the two shapes using a single spring-loaded
trigger button on a joystick (Logitech F710); the other joystick buttons and con-
trols are ignored in our experiments. When the trigger is in its default position
(not pressed), the primary workspace is used; keeping the trigger pressed uses
the secondary workspace. This specific choice is crucial for usability, for two
reasons.

First, mapping the explicit state of the button to the chosen workspace shape—
an important state of the system—ensures that the operator is kept aware of the
system state (the user must consciously keep the button pressed). On the con-
trary, toggling the active workspace once the button is released, would make the
state implicit (the one the user cannot directly observe).

Second, the trigger functions as a dead man’s handle and ensures a fail-safe
behaviour by switching the active workspace to the primary (cylinder) config-
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Figure 3.5. The hardware used in the experiments: (left) Bitcraze Crazyflie 2.0
quadrotor with retro-reflective markers for motion capture system; (right) Mbi-
entlab MetaWearR+ IMU bracelet.

uration when the trigger is released. Since the cylinder workspace is centered
around the user, it is impossible for the robot to collide with them because of
a control mistake. For this reason, the system may also refuse to switch to the
secondary workspace if it is considered unsafe: for example, when the drone is
flying at the height of user’s eyes and the pointing ray is almost parallel to the
horizontal plane; in this case, small changes in the arm elevation would result
in very large displacements of the pointed location. We prevent switching to the
secondary workspace if the elevation angle of the drone with respect to the user’s
head is within ±5� from the horizontal direction (see Figure 3.4d). Whenever a
requested switch to the secondary workspace is refused, the joystick vibrates to
make sure the operator is notified; an alternative approach would be to mechan-
ically block the trigger button when it is unsafe to use it.

3.4 Experiments

We conducted an experimental study that evaluates the efficiency of the proposed
3D-control method against conventional joystick control.

Experiments take place in a room with a safety net of roughly 6x6 meters
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T1

T2

T3

Figure 3.6. An overview of the experimental environment during one of the
sessions. The targets {T1, T2, T3} (LED beacons) are placed at the wheel hubs
that are located at different heights.

size, outfitted with a commercial optical motion capture system (12 Optitrack
PRIME17-W cameras). The Optitrack data is streamed to the Robot Operating
System (ROS) with a 30 Hz rate.

We use a miniature quadrotor Bitcraze Crazyflie 2.0 [3] tracked through a
rigid-body marker (Figure 3.5, left) to perform closed-loop velocity and position
control. We also track the location of the user’s head through a rigid-body marker
attached to a hat. The coordinate transformation between the human and the
robot is therefore known at any moment in time.

We configure the kinematic parameters of the human body before the inter-
action starts: we set the height of the user’s shoulder, the position of the head
with respect to the shoulder, and the length of the user’s arm. That allows us to
minimize the pointing model errors and thus reduce the displacement between
the pointed and the real position of the robot.

We recruited 10 participants (male, mean age 31.1, sd = 5.0) with com-
puter science background, whose goal was to fly the miniature quadrotor over
a set of three flat stationary wireless LED beacons (in-house hardware based on
Adafruit nRF52 Feather Bluetooth LE board with a ring of 24 RGB NeoPixel LEDs)
placed at different predefined heights at known locations (Figure 3.6).

For each subject we recorded two sessions: one, using the pointing interface
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(IMU-equipped bracelet on the wrist of their dominant arm); and another, using
joystick control (Logitech F710). The order of the sessions was assigned to each
subject at random. Each session consisted of three runs. During each run, a
subject was asked to stand at predefined locations 1–3 and to fly the quadrotor
between given targets. The following high-level description of the task was given
to participants: “once a target gets illuminated, fly the drone above it”.

All subjects reported to be proficient or expert joystick users and had little
or no previous experience with the proposed pointing interface. Short “dry run”
sessions were performed for all the users to familiarize them with the interfaces
and the task.

The experimental session with the pointing interface proceeds as follows:

1. The operator enters the flying arena and stands at the location 1, the
quadrotor lies on the floor at the center of the room.

2. The operator presses once the switch on the bracelet to take off the drone,
and the second time to initiate the interaction.

3. The operator then points at the drone and holds his arm still for 3 seconds.

4. The bracelet vibrates, the drone makes a small “jump” to show that it is
now attached to the operator; the workspace is initialized with the primary
surface (cylinder).

5. One of the targets lights up in blue.

6. The operator directs the robot to the target, while when necessary switches
the active workspace to the secondary surface (horizontal plane); once
within the confirmation zone (10 cm from target’s center in a horizontal
plane and 20 cm in along z-axis), the target turns yellow and a timer is
triggered.

7. To clear the target the subject must keep the robot within the confirmation
zone for 2 seconds. Then, the target shortly turns green and switches off; if
the robot leaves the confirmation zone before the two seconds expire, the
target turns blue and the timer is reset.

8. Once a target is cleared, the next target lights up in blue: steps 5–7 are
repeated.

9. Once all targets are cleared, the operator directs the quadrotor to the land-
ing spot and lands it there by holding their arm still for 3 seconds.
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10. The operator moves to the next numbered location and the steps 2–9 are
repeated until all three runs are completed.

The procedure for experiments with the joystick is similar but omits steps 3
and 4 of the above sequence (selection of the quadrotor and switching of the
workspace surfaces), which are specific to the pointing interface. The joystick
control works in drone egocentric frame and thus before acquiring the first target,
the operator adjusts the drone’s heading to their liking; we further exclude this
trajectory segment from our analysis for both interfaces.

3.4.1 Data collection

To assess the performance of the system, we collected the ground truth positions
of the participants and the quadrotor, and the times of state transition events of
the targets. In our analysis, we ignore parts of the trajectories from the moment
the operator takes control till the moment the first target is cleared and from
the moment the last target is cleared till the landing as they do not represent the
actual task. We split the resulting trajectories into three segments. Each segment
represents a part of the trajectory between two targets. This yields a total of 90
segments for each modality (pointing, joystick), i.e. three segments per run per
operator per location.

We collect the data with a standard ROS tool rosbag and analyze it offline
using Python.

To compare the performance of the two interfaces we use the time-to-target
and the trajectory length metrics, which are applied per segment of the flight
path.

3.5 Results
In Figure 3.7 we report an evolution of the distance to target in time; the com-
parison of means on the right plot shows that the performance of both interfaces
is very similar. These results also confirm our previous finding for a similar 2D
task [29].

To find exact differences in the performance of the two interfaces, we further
analyze relative lengths of trajectories flown with each interface. This measure
is calculated as a ratio between the length of a segment flown and the length of
an ideal trajectory, i.e. a straight distance between corresponding targets. The
closer the relative length to 1.0, the better the performance of a given interface.
Figure 3.8 shows these data on a 2D plot, where median relative lengths for
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Figure 3.7. Analysis of the evolution in time of the distance to the target, for
each trajectory flown; each trajectory is represented as a line; t = 0 on the plot
corresponds to the t0 time of each trajectory. Left: joystick interface (N = 90).
Center: pointing interface (N = 90). Right: average over all trajectories for each
interface.

pointing and joystick interfaces define the x and y coordinates of black dots and
their mean values define blue crosses. The relative length of trajectories flown
with pointing is shorter than the one for the joystick interface.

In Table 3.1, we present a detailed comparison of median and mean trajec-
tory lengths (relative to a straight line) and median and mean times to target
for the two interfaces. For each subject (rows) we report the median and mean
performance over all segments, for each of the two control modalities (columns).
Since the samples are matched, i.e. we can compare the performance of the same
subject on both control modalities, the hypothesis that pointing yields better per-
formance than joystick—lower length or duration—can be assessed for statistical
significance using a paired difference test. Because the sample size is small and
the population cannot be assumed to be normally distributed [47], we use the
Wilcoxon signed-rank test [82] as an alternative to the paired Student’s t-test.
We found that pointing yields shorter trajectories (p < 0.05) than joystick; the
impact of the control mode on trajectory duration is not statistically significant,
even though the median duration is slightly better for pointing (14.4 s) than for
Joystick (15.4 s).

3.5.1 Discussion

The shorter lengths obtained with the pointing interface can be explained by
smoother trajectories. In fact, visual comparison of trajectory segments per-
formed with the joystick (Figure 3.9) and the pointing (Figure 3.10) shows that
joystick trajectories are comprised of multiple orthogonal pieces in both vertical



36 3.5 Results

1.0 1.5 2.0 2.5 3.0
JOYSTICK trajectory length

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

PO
IN

TI
N

G
tr

aj
ec

to
ry

le
ng

th

POINTING is better

JOYSTICK is better

sa
me pe

rfo
rm

an
ce

median

mean for a subject

[r
el

at
iv

e
to

st
ra

ig
ht

lin
e]

[relative to straight line]

Figure 3.8. Relative lengths of the trajectories flown with the pointing and the
joystick interface, normalized by straight distances between targets. The black
dots and the blue crosses represent median and mean values respectively for
each user (Nu = 10). The error bars represent 25-th to 75-th percentile.
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Figure 3.9. Visualization of two segments of a trajectory performed with the
joystick. The short cylinders represent the targets and the tall thin cylinder rep-
resents the user.
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Table 3.1. Performance per subject (median and mean over all segments)

Trajectory length,

[relative to straight line] Duration, [s]

Subject JOYSTICK POINTING JOYSTICK POINTING

med mean med mean med mean med mean
1 1.72 1.92 1.53 1.95 11.6 12.7 10.4 14.9
2 1.57 1.46 1.72 1.81 16.8 18.2 16.5 18.1

3 2.00 2.08 2.08 2.15 13.3 13.9 11.5 12.7

4 2.48 2.70 1.84 1.92 25.8 26.2 15.7 15.9

5 2.47 2.73 1.81 1.74 19.8 18.6 14.8 16.4

6 1.40 1.52 1.21 1.33 14.4 14.8 11.9 11.8

7 2.41 2.44 2.08 2.34 15.6 16.0 22.2 21.8
8 1.56 1.55 2.09 2.21 10.2 10.7 11.8 14.1
9 1.86 2.00 1.65 1.91 11.1 12.3 14.9 15.5
10 2.04 2.19 1.55 1.67 15.6 15.4 14.0 15.2

The better result of the two interfaces is shown in bold.
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Figure 3.10. Visualization of two segments of a trajectory performed by pointing.
The green segment is performed with using the cylinder workspace, while the
red one using the horizontal plane workspace. The short cylinders represent the
targets and the tall thin cylinder represents the user.
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and horizontal planes, while for the pointing that is true only for vertical seg-
ments. On the other hand, the time to target metric did not show statistically
significant improvement. This could be due to several reasons.

First, with the pointing interface the operator directly indicates the target
position, meaning that low-level trajectory execution (e.g. deceleration when
approaching the target) is performed automatically and more efficiently. On the
contrary, with the joystick interface operators give commands in velocity space
and have to plan the trajectory themselves. This leads to a sub-optimal control
and results in longer trajectories.

Second, quadrotor control with pointing requires more attention from the
operator because they cannot “pause” the interaction: once they are attached
to the drone they should be careful with the movements of their pointing arm
as it immediately translates into the movements of the robot. On the contrary,
joystick interface allows to leave the controls at any moment—the drone will just
stop and hover. Our intuition is that these differences lead to different strategies
adopted by the participants: with pointing they tend to be precise and slow, while
with joystick more aggressive, resulting in trial-and-error approach with fast and
less precise commands.

In their informal feedback, subjects praised the pointing interface for its ease
of use and engagement; however, some of them also mentioned it was more
stressful because they could not just “leave the controls” (which is instead pos-
sible with the joystick) which resulted in arm fatigue during long sessions. One
subject mentioned he prefers the joystick interface for such a precise control
task, but would prefer pointing for more coarse control tasks. Our intuition is
that this preference could be related to an increased arm tremor that subjects
typically experience in precise pointing tasks [49] and that in turn may affect
their confidence and the stress level.

Using this feedback, we identify two problems: 1) inability to disengage from
the robot; 2) arm fatigue. The first problem can be solved by introducing addi-
tional “clutch” that would engage control only while a button is held down, i.e.
a drag&drop concept. The second problem can be partially solved by the same
strategy, which would allow users to rest. More generally, the system can be
improved by allowing users to move around while controlling the robot. We
implemented this by equipping the operator with a visual odometry sensor. We
discuss this option in detail in Chapter 4 (Section 4.5). This also allows users to
walk closer to the target position, which yields increased control accuracy and
lower arm fatigue as the required arm elevation is reduced.
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3.6 Conclusions
In this chapter, we defined a human pointing model: a mapping between the
user’s stance and the pointed-at location in the environment. We first estimate
a pointed direction in the form of a ray using a single IMU sensor, and then
intersect this ray with an environment to estimate the pointed-at location. Our
main contribution is a method that allows one to estimate such locations even
in free 3D space, for example, when controlling a quadrotor. In a user study,
we show that the proposed method compares favorably with a baseline joystick
control interface.



40 3.6 Conclusions



Chapter 4

Relative Localization

In the previous chapter, we have described a human pointing model that allows
one to estimate pointed directions and locations using a single inertial sensor
worn on the user’s arm. This model inherently defines estimated pointed direc-
tions and locations in the human frame of reference. The relation between that
frame and the frame of a robot may not be known and has to be established be-
fore the interaction can proceed; in other words, we need to localize the human
with respect to the robot.

In this chapter, we describe several localization approaches that we used in
our work and validate them experimentally. We start with a trivial absolute local-
ization method using a global reference frame, we then describe a relative local-
ization method based on fiducial markers, and finally—our main contribution—a
relative localization from motion.

4.1 Global reference frame

A global reference frame or a world frame {W} is an arbitrary frame that is
common to all the interacting agents—robots and humans. When the positions
(more generally 6D poses) of a robot and a human are known in the world frame,
finding a relative coordinate transformation between the two frames is trivial:

Trh = T�1
wr Twh (4.1)

where Twh is a coordinate transformation from the world frame {W} to the hu-
man frame {H}, Twr is a transformation from the world frame to the robot frame
{R}, and Trh is the resulting transformation from the robot to the human frame.

41
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Consequently, to find a pointed location pt expressed in the human reference
frame in the frame of reference of the robot:

p{R}t = Trhp{H}t (4.2)

Localizing agents within the global reference frame outdoors can be partially
done employing a global navigation satellite system (GNSS), for example, GPS.
Such localization allows one to directly retrieve relative positions of the agents
but does not provide relative heading. This problem can be tackled with hybrid
approaches, where the heading of each agent is estimated with respect to the
global frame using their odometry models. While the presence of odometry sys-
tems is relatively common in robots, they are not easily available for humans. In
this case, an electronic compass (magnetometer) worn by the user can be used
to estimate their heading with respect to the heading estimated by the compass
of a robot. Indoors, where the GNSS is not available, motion capture systems or
ultra-wideband (UWB) localization can be used.

In our first work [24] we establish a common reference frame between the
user and multiple ground robots in two steps:

1. The user fixes their heading with respect to a known absolute frame by
pointing along its x-axis of the environment and confirms the heading with
a hand gesture.

2. The user points at one of the robots which has a known position in the
absolute frame of the motion capture system. Since the pointed location
is known in the frame of reference of the user we can then find his/her
location in the absolute frame by linking it to the robot’s location.

The applicability of GNSS is limited indoors and in the areas with high lo-
calization errors, such as in cities with a dense building. On the other hand,
high precision motion capture localization systems are limited to designated in-
door areas because they require various infrastructure (electricity, networking,
scaffolding, etc.).

4.2 Fiducial markers

A more practical solution is to directly acquire the transformation between the
robot’s frame and the frame of reference of the human.
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Figure 4.1. Relative localization using a camera and fiducial markers. (Left) An
RGB-camera is mounted on top of the wearable IMU. (Right) The user points at
one of the robots to select it, the robot, in turn, changes its beacon color.

We installed a 3D fiducial marker on the robot at p{R}m and mounted a camera
on the user’s forearm paired with wearable IMU (Figure 4.1) at p{H}c = Thco,
where Thc is a transformation from the human frame to the camera frame.

Using computer vision algorithm for 3D pose reconstruction1 we can estimate
the coordinate transformation Tcm between the camera and the marker. Since the
dynamic position of the camera is known in the human reference frame we can
acquire the necessary coordinate transformation from the user to the robot:

8
><
>:

p{R}m = Trhp{H}m

p{H}m = Thc Tcm0

p{R}m = Trm0

(4.3)

Trm = TrhThc Tcm (4.4)

Trh = TrmT�1
cm T�1

hc (4.5)

where Thc is a transformation from the human frame {H} to the camera frame,
Trm is a transformation from the robot frame {R} to the marker attached to it,
and 0= [0,0, 0] is the origin point.

1Via ar_track_alvar package of the Robot Operating System (ROS).



44 4.2 Fiducial markers

x y

x

y

x

y

odom1

odomN

odomi

x

y

markerN ! odomN

markeri ! odomi

marker1! odom1

human

markeri ! human

Figure 4.2. Relative localization for multiple robots using fiducial markers.
Checker boxes depict markers; colored dashed arcs constitute the coordinate
transformation tree with the arrows pointing to corresponding parent frames;
blue arcs are the robots’ individual transformation trees rooted in their odom-
etry frames; red arcs are the transformations acquired during the localization
process and rooted in the human frame. The long-dashed curves are the robots’
traveled paths.

4.2.1 Application to multiple robots

The approach naturally extends to multiple robot setups. When there are several
robots nearby, the user can individually localize them by pointing the camera at
each of their markers. In this case, all the robots will become a part of the same
coordinate transformation tree rooted at the human frame {H}. It allows the
system not only to acquire relative transformations between the human and the
robots but also to localize the robots relative to each other. After that, the robots
need to keep updating their positions in their local frame, e.g., an odometry
frame. We briefly show the described process in Figure 4.2.

4.2.2 Experiments

To proof the viability of the proposed relative localization method, we designed
an experiment where a user was required to repeatedly select a robot and indicate
a given target location. The locations are placed on a floor in a 5x5 grid pattern
with 1.2m spacing, making the farthest locations to be approx. 6.8m away. Out
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of the 25 locations one was reserved for the human and one for the robot. We
considered the robot location a target as well, which allowed us to collect 24
data points per trial. Also, for the ease of pointing, each location was marked
with a small plastic ball (�3.5cm) and a paper label with the location number.
The user was instructed to point with a straight arm.

To initiate a trial and proceed through a set of actions in the experiment user
had to press a single button on the game controller. With every button press the
system generates voice feedback with a status or instruction and proceeds in the
following way:

1. With the first button press the system initializes a random permutation of
the 24 targets and informs the user accordingly voice feedback: “Initial-
ized”.

2. Then, with every consecutive button press the system picks the next target
location from the list and instructs the user: “Localize the robot, then point
to target N”, where N is the target number. At this stage, the user points
at the robot to localize it and the robot changes its LED-beacon color for
confirmation. The estimated robot pose is utilized to create a coordinate
frame transformation tree which is then published to the ROS network
using tf. We denote the estimated robot frame as {R}⇤.

3. The user points at the given target and presses the button again. System
replies: “Recording... Done”. The estimated pointed location p{H}t is con-
verted to the robot’s local frame using the estimated frame {R}⇤. The result-
ing point p{R}t is stored in the output dataset along with the target number.

4. The sequence 2–3 repeats until the list of targets is exhausted.

5. At the end of a session the system informs the user: “That’s it. Thank you!’

4.2.3 Metrics

To assess the accuracy of the estimated pointed locations, we convert the points
p{R}t back to the human frame {H}, but using the true pose/frame {R} of the
robot: x {H} = T�1

rh p{R}t , where x {H} is the location where the robot would have
arrived using estimated frame {R}⇤ and estimated pointed location p{R}t , and Trh

is the true transformation matrix from {H} to {R}.
We compare the estimated target location x {H} with the true target location

t{H} and report three position errors. For the clarity we further drop the {H}
superscript:
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Figure 4.3. Distribution of the euclidean position errors "e (blue dots and bars)
on a map of the experimental environment. Large black dots represent the tar-
gets, the numbers are the target labels, and the star is the location of the human.
The robot is located at target 9 and oriented towards target 4.
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Figure 4.4. Scatter plots of the position errors.

• Euclidean distance: "e = kx � tk

• Radial distance: "r = |⇢x �⇢t |

• Tangential distance: "t = |↵x �↵t |⇢t

Where ⇢x , ↵x and ⇢t , ↵t are the polar coordinates of x and t, accordingly,
with respect to the origin at {H}.

4.2.4 Results

We analyzed the errors of the proposed relative localization technique in the
controlled indoor environment and found the maximum position error in the
navigation task to be 1.4m at the distance of 6.8m [26].
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Following the described procedures we performed two trials and calculated
the errors. The position errors are presented in Figure 4.4, while the distribution
of the euclidean position errors on a map of the experimental environment is
depicted in Figure 4.3.

As can be seen from the plot, the errors grow with a distance giving the max-
imum position error ("e) of approx. 1.4m at 6.8m distance. The errors grow
non-linearly and at the half of the maximum distance are almost three times
smaller than the maximum reported error, giving approx. 50cm offset from the
target position.

A slight asymmetry of the errors along the rows of targets 1, 2, 3, 4 and 10,
15, 20, 25 is probably associated with the simplified model of human body we
have used, i.e. we considered the shoulder is fixed, while in practice the user
could have turned his torso differently for these two sets of targets.

This approach works relatively well in indoor environments but will have all
the problems of computer vision systems in varying light conditions outdoors.

4.3 Predefined heading

The major problem of finding the relative localization between the user and a
robot is to fix their relative heading. The distance from the human to the robot
can be easily found through a pointing gesture given the fact that the user points
at the robot. In certain cases, however, we can assume the heading is already de-
fined by asking the user to always start the interaction from the robot’s back. We
applied this approach in several experimental studies and it showed its feasibility
[28].

4.4 Localization from motion

Another more sophisticated approach, that does not require any additional hard-
ware, is to perform relative localization from the motion of the robot and the
synchronized with it the motion of the arm that points at the robot [27].

The system works in the following way. In the first phase, the operator points
at the robot they want to interact with, to “select” it (Figure 4.5, left). The act of
pointing at something (or an explicit input such as a button press or voice com-
mand) triggers the beginning of the second phase, which is marked by a clear
feedback (e.g. the operator’s bracelet vibrates or emits a sound, the robot lights
up with a specific color): in this phase, the robot moves on some trajectory, while
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Figure 4.5. (Left) The user triggers interaction. (Center) All nearby robots start
moving along different paths, and the operator keeps pointing at the desired
robot. (Right) After a few seconds, the system identifies the target robot and
reconstructs the transformation between the robot and the user; then the inter-
action can continue in an application-dependent way, e.g. landing at a precise
spot.

the operator points and follows it with their arm (Figure 4.5, center). After a few
seconds, the system is able to estimate the relative localization between the op-
erator and the robot by comparing the operator’s arm movements—known in
the operator’s reference frame—and the corresponding motion of the robot esti-
mated in the robot’s odometry frame (Figure 4.5, right). Another feedback marks
the end of the second phase. This approach also handles multi-robot systems: in
this context, one additional problem is to determine which robot the user wants
to interact with. In case multiple robots are in range, phase two is triggered for
all robots simultaneously; crucially, each robot now follows a trajectory with a
different shape; the system can then simultaneously determine which robot the
operator was pointing to, and its relative pose with respect to the operator.

We conducted a series of experiments to assess the accuracy of the proposed
method: the user was following the procedure described above to localize the
drone which then was commanded by the system to land at the user’s origin. By
comparing the position the user was standing at with the position the drone was
landing at we estimated the average distance between the two locations being
less than 40 cm2.

2See the video here: https://youtu.be/VaQ3aZBf_uE

https://youtu.be/VaQ3aZBf_uE
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4.4.1 Formal definition

We use the same head-finger human pointing model that we previously defined
in Chapter 3.

Similarly to the previous definitions, the robot’s reference frame {R} is an
arbitrary and fixed reference frame in which the robot knows its position; in
practice, it is useful to assume it to be the robot odometry frame, however, our
model does not require it. This frame can equivalently be replaced with the world
frame {W}.

Our goal is to estimate the pose (position and orientation) of the robot’s frame
{R} in the reference frame of the operator {H}, i.e. the coordinate transformation
Thr . To do that the operator points at the moving robot and keeps following it
with a pointing gesture for a short period of time ⌧. We collect the pointing rays
r {H}i in the reference frame {H} and corresponding robot’s positions P {R}i in the
frame {R}, after which a coordinate transformation T ⇤hr between the two frames
is estimated using an optimization procedure.

Given a finite set R of N pointing rays r {H}i , defined in the frame of reference
of the operator {H}:

R = {r {H}1 , . . . , r {H}N },
for each r {H}i we consider the corresponding robot position P {R}i defined in the
frame of reference of the robot {R}, and thus define a set of pairs C :

C = {
�
r {H}1 , P {R}1

�
, . . . ,
�
r {H}N , P {R}N

�
},

We expect that the points P {R}i lay close to their corresponding rays r {H}i .
For a given estimate T of the transformation, we can convert the robot posi-

tions P {R}i defined in the robot frame into the operator frame, i.e. P {H}i = T P {R}i .
Using these points we define a new ray q{H}i that shares the origin with the ray
r {H}i , but passes through the point P {H}i .

Now, we can define the error function ✓ for a set of pairs C :

✓ (T,C ) = 1
N

NX

i=1

‹(r {H}i , q{H}i ) (4.6)

where ‹(· · · ) 2 [0;⇡] represents the unsigned angle between the directions of
two rays. The error function ✓ (T,C ) is therefore 0 iff all points lie on the re-
spective ray, and > 0 otherwise.

We search for the coordinate frame transformation T ⇤hr between the operator
frame {H} and the robot frame {R} that minimizes this error function, i.e. that
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minimizes the average unsigned angle between all the pairs of vectors r {H}i and
q{H}i .

T ⇤hr = argmin
T

✓ (T,C ) (4.7)

The residual error ✓ ⇤ = min✓ (T ⇤hr ,C ) indicates how well the transformed
robot positions fit the corresponding rays.

Interaction length The number of data points N in this model is defined by
the interaction time ⌧ (in seconds) and the data acquisition frequency f (in Hz),
such that N = ⌧ · f . We assume all the sensors of the system are synchronized
to this common frequency. In Section 4.4.4, we test the influence of ⌧ on the
resulting error.

Constraints on the transformation We express the transformation T ⇤hr as a com-
position of translation and rotation, where the translation is defined as a three-
dimensional vector t =

⇥
t x , t y , tz

⇤
and the rotation as � =

⇥
�x ,�y ,�z

⇤
. We fur-

ther simplify the model by ignoring rotations around x- (roll) and y-axis (pitch).
This is a fair assumption for our application since the z-axes of the operator and
the robot coincide and correspond to the opposite direction of the gravity vector
estimated by their IMUs.

The optimization problem is now reduced to that of finding a four-dimensional
vector:

⇢ =
⇥
t x , t y , tz,�z

⇤
(4.8)

4.4.2 Implementation

Similar to other experiments in our work, we equipped the operator with a wear-
able inertial sensor on their forearm (in this particular implementation we used
Myo Armband [77]). We placed an additional sensor on their upper arm to detect
discrete pointing events.

A single sensor on the forearm is fed to head-finger pointing model that was
described in Chapter 3, while the data from both sensors serve as an input to the
pointing detector [7] that is used for triggering the start of the robot motion.

We assume that the robot and the operator are networked and the robot is
able to track its position with a reasonable accuracy in some fixed reference frame
{R}, e.g. its odometry frame.
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The proposed system requires no fixed infrastructure and can be used both
indoors and outdoors.

First, we acquire 3D orientation data from a pair of inertial sensors, and cal-
culate arm poses and their respective pointing rays r {H}i in the frame of reference
of the operator. At the same time, we acquire robot positions P {R}i in its refer-
ence frame and synchronize them with corresponding pointing rays in order to
build the set C = {

�
r {H}i , P {R}i

�
}. In practice, the set is implemented as a buffer of

size N . It is starting to fill in when the interaction sequence is triggered by the
user, otherwise the data is dropped. Once the buffer is full we pass the set to the
optimization procedure.

The nonlinear optimization problem (Eq. 4.7) is solved with the quasi-Newton
method of Broyden, Fletcher, Goldfarb, and Shanno [59] as implemented in the
optimize.minimize function from the SciPy library [39], with default param-
eters. As the initial guess, we use ⇢0 = [0,0, 0,0], i.e., we consider the robot
frame coinciding with the user frame.

We base our implementation on the Robot Operating System (ROS) [66]
framework, where we synchronize and process all streams of data.

The transformation retrieved with the optimization procedure is then pub-
lished to the ROS tf -tree.

4.4.3 Experimental setup

We implemented our system in an indoor flying arena of approximately 6⇥ 6 m
size. The arena is equipped with the Optitrack motion capture (MOCAP) system,
which is capable of tracking objects in 3D space with up to 200 Hz rate.

As the target robotic platform, we used a commercial drone Parrot Bebop 23.
We equipped it and the operator with markers to acquire the ground truth for
our experiments.

Data collection

We acquired data in several sessions. In each session, the drone repeatedly fol-
lowed a predetermined closed trajectory without interruption; in each session,
the user was standing at a predefined position and was instructed to continuously
point at the drone with a straight arm. To start the session, the operator had to
point at the drone and press and hold a button on a joypad. We recorded five
such sessions, three of which were performed on a triangular trajectory and two

3This model has been discontinued in 2018.
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Figure 4.6. Experimental setup for data collection (ground truth): two trajecto-
ries (circular and triangular) are represented by thin orange and blue lines, the
operator positions for each of the five sessions are represented by the circular
and triangular markers. Labels identify the respective sessions in Figure 4.8.

on a circular one. On average each full session lasted 50 s. A single loop of the
circular and triangular trajectories took approximately 12 s and 7 s, respectively.

Each session resulted in: 1) a set C of pointing rays r {H}i obtained from IMU
data and corresponding robot positions P {R}i recorded by the motion capture sys-
tem; 2) the set of ground truth operator positions U = {Ugt

1 , . . . , Ugt
N } recorded

by the motion capture system. Samples of a single loop of the trajectories, and
the operator positions in each session are depicted in Figure 4.6.

We then analyze this data to evaluate the performance of the algorithm under
different conditions and settings.

Odometry error model

Our approach relies on the robot’s odometry to estimate the trajectory in the
robot’s frame. For our experiments, we acquired the ground truth trajectory
Pgt

1 , · · · , Pgt
N using the motion capture system, then we perturbed it to simulate the

trajectory that the robot’s odometry would yield in different operating conditions.
In particular, we consider a simple synthetic model for the errors of a vi-

sual odometry (VO) pipeline which we pessimistically assume to never perform
relocalization: the estimated trajectory therefore accumulates errors and drifts
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Figure 4.7. Simulated odometry estimates of the drone trajectories: (blue/solid)
perfect (� = 0), i.e. ground truth; (orange/dashed) good (� = 0.001); (green/dot-
dashed) bad (� = 0.005), (red/dotted) terrible (� = 0.015).

away from the real one. This is implemented as follows. We consider the se-
quence of ground truth positions sampled at 30 Hz; we define Pvo

1 = 0 (i.e. the
origin of the robot’s odometry frame), then iteratively compute Pvo

i = Pvo
i�1 +

(Pgt
i � Pgt

i�1) + ✏, with ✏ ⇠ N3(0, diag(�,�,�)). We test four scenarios: � =
{0,0.001, 0.005,0.015}, corresponding respectively to ideal, good, bad, and ter-
rible odometry performance.

The effects of such transformation on a sample trajectory are visualized in
Figure 4.7; quantitative data averaged on a large number of simulations are re-
ported in Table 4.1. In this table, for example, we observe that, on average over
all experiments, a 10-second trajectory is 5.19 m long, and has an extent (far-
thest distance between any two points) of 1.38 m. The good (� = 0.001) and
bad (� = 0.005) VO models yield a maximum deviation from the ground truth
trajectory of 0.03 and 0.17 m respectively, which correspond to 2% and 12% of
the trajectory extent.
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Trajectory
length [m]

Trajectory
extent [m] Mean VO error [m] for � = Max VO error [m] for � =

0.0 0.001 0.005 0.015 0.0 0.001 0.005 0.015
Trajectory
duration [s]

0.5 0.25 0.24 0.0 0.00 0.02 0.07 0.0 0.01 0.04 0.11
1.0 0.51 0.48 0.0 0.01 0.03 0.08 0.0 0.01 0.05 0.14
2.0 1.03 0.86 0.0 0.01 0.04 0.11 0.0 0.01 0.07 0.20
3.0 1.54 1.11 0.0 0.01 0.05 0.15 0.0 0.02 0.09 0.26
5.0 2.58 1.33 0.0 0.01 0.06 0.19 0.0 0.02 0.11 0.33
10.0 5.19 1.38 0.0 0.02 0.10 0.29 0.0 0.03 0.17 0.51
20.0 10.36 1.41 0.0 0.02 0.12 0.37 0.0 0.05 0.23 0.70

Table 4.1. Trajectory estimation errors due to the visual odometry model. For each trajectory duration (row), we
report the average over all experiments of the following measures (all in meters): the ground truth trajectory length
and extent (i.e. the distance between its two farthest points); the mean and maximum error due to visual odometry
for � = {0, 0.001,0.005, 0.015}.
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4.4.4 Quantitative evaluation

Using the data acquired as described above, we run the following experiments.
One experiment is defined by three parameters: session, trajectory duration

⌧, VO noise�. To run one experiment, we extract a random segment of the trajec-
tory from the defined session, with the required duration ⌧; then, we corrupt the
measured robot trajectory using the VO error model described in Section 4.4.3
with the specified VO noise value �. This yields a set of ray-point pairs, whose
cardinality depends on the duration of the trajectory. The nonlinear minimiza-
tion procedure (Eq. 4.7) is then executed using such input data, which returns
an estimated transform T ⇤hr .

Error metric

For a given experiment, we are interested in measuring the error of the estimated
transform T ⇤hr with respect to the true transform between the human and robot
frames.

To quantify this error, we consider the location of the top of the operator’s
head. In the human frame, this point has coordinates (0,0, 1.83) (tailored to the
user), since the human frame {H} is defined to lie at the feet of the operator. In
the robot frame {R}, the ground truth coordinates of the same point are mea-
sured for each session employing the motion capture system, since the operator
wears a hat with a marker. If the reconstructed transformation T ⇤hr was exact,
such ground truth point would be transformed to (0,0, 1.83) when expressed in
the human frame. In the following, we report as an error metric the horizontal
component of the distance between the transformed position of the top of the
head, and the point (0,0, 1.83) in the human frame.

This error metric has an intuitive interpretation: in fact, it corresponds to
the distance from the true operator’s position that a robot would reach if, after
relative localization, it was tasked to move to the estimated operator position
(assuming perfect odometry during such path).

Note that this metric accounts for both the translational and rotational com-
ponent of the error in the reconstructed transformation.

Accuracy results

In Figure 4.8 we report, for each value of � (rows) and each scenario (columns),
the value of the error metric as a function of the duration of the trajectory ⌧
(x-axis of the plot). For each setting of the three parameters, we repeat the
experiment 20 times (replicas), each with a different random sampling of the
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trajectory from the chosen session, and a random realization of the VO noise.
We report the distribution of the error metric in the 20 replicas as a boxplot. The
figure therefore summarizes the results of 3 ⇥ 5 ⇥ 7 ⇥ 20 = 2100 experiments.
We observe the following.

Estimation error decreases with time; this is expected as the number of cor-
respondences increases, which limits the impact of measurement noise and tem-
porary inconsistencies in pointing by the operator; most importantly, longer tra-
jectories have a larger extent, meaning that the localization can become more
accurate as the cone of pointing rays spans a larger angle.

Estimation error heavily depends on the session: in the triangle-s1 session,
where the operator is very close (about 1.2 m, see Figure 4.6) to the robot, we
obtain very accurate estimates (error < 0.25 m) for trajectory durations as short
as 1 second, and 0.5 seconds already yield acceptable results. Longer robot–
operator distances still yield median errors close to 0.25 m but only after 3 or 5
seconds, depending on the scenario.

The approach is very robust to odometry errors: the error metric is only
marginally impacted by a VO noise � = 0.005, which yields significant devia-
tions from the true trajectory (Table 4.1). A large VO noise value (� = 0.015)
still yields a median error below 0.5 meters on all sessions for a 5-second long
trajectory. Interestingly, in triangle sessions, which have a smaller extent than
circle sessions, increasing the trajectory duration over 5 seconds is detrimental
to accuracy, as accumulating odometry errors negatively affect estimation results.
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Figure 4.8. We report one row for each value of the VO noise � 2 {0.001,0.005, 0.015}, and one column for each
session. Each plot reports the distribution (box) of the error metric (y axis) as a function of the duration of the trajectory
(x axis) over 20 replicas. Results for ideal odometry (� = 0) are indistinguishable from for plots with � = 0.001 (first
row) and are therefore not reported.
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Figure 4.9. Implementation of the proposed method in a real-world experiment.

4.4.5 Qualitative evaluation

To show the viability and performance of our method, we set up another real-
world experiment.

First, the operator and the drone are localized using the proposed method,
then the drone turns to the reconstructed position of the operator, flies towards
him, and lands at the position where the operator was standing, i.e. at the ori-
gin of the operator frame {H}. Figure 4.9 illustrates the implemented system,
and the supplementary video4 demonstrates many consecutive iterations of the
procedure.

Figure 4.9 and the supplementary video also demonstrate our relative local-
ization approach integrated with our previously-published system [28], where a
drone is guided to land to the precise spot indicated by the user. In this case, after
the relative localization procedure is completed, pointing rays are interpreted by
the robot in its odometry frame; the robot is controlled in real time to hover over
the intersection of such rays with the ground, and eventually land when the user
points to the same spot for a few seconds.

4https://youtu.be/VaQ3aZBf_uE

https://youtu.be/VaQ3aZBf_uE


59 4.5 Dynamic human position

4.4.6 Comparison to other methods

To the best of our knowledge at the time of writing, there were no other similar
methods that would use the motion of pointing arm to localize the human relative
to a robot. The only similarities we were able to find are related to extrinsic
camera calibration and the perspective-n-points (PnP) problems.

The problem of reconstructing the relative pose of the robot with respect
to the user resembles the two well-known problems in computer vision that
are closely related to each other: reconstructing the pose of an intrinsically-
calibrated [34] camera which observes a known calibration pattern (extrinsic
camera calibration), and; reconstructing the pose of a known object [46] when
observing the image coordinates of some of its points (perspective-n-points). In
both cases, image points can be back-projected as viewing rays in the camera’s
reference frame (analogous to {H}); the 3D points are known in the object frame
(analogous to {R}), and the goal is to reconstruct the transformation between the
two frames.

In this analogy, the intrinsic calibration of the camera relates the measure-
ments (i.e., the image points) to the viewing rays in the camera’s reference frame;
similarly, our pointing model relates the measurements of our sensors to pointing
rays in frame {H}. In computer vision, the 3D points are known in the frame of
the object; in our model, instead, the 3D points are built from the robot’s mo-
tion, in frame {R}. When solving these problems in computer vision, one often
minimizes the average reprojection error over all points, which is analogous to
the way our error function is defined.

4.5 Dynamic human position

Our main motivation to use inertial sensors so far was to perform gesture sensing
‘on-board’ the human to avoid problems of continuous visual attention from the
robot to the user and its limited field of view.

One important limitation of approaches based on inertial sensors, however,
is that relative localization has to be performed every time the user moves to
another location. That means the user cannot move away once it is localized by
the system.

We tackle this problem by equipping the user with a visual-inertial odom-
etry system (VIO, or sometimes simply VO) that estimates its egomotion using
both inertial and vision sensors. The vision part allows the system to compensate
for a drift induced by the inertial part and additionally provide odometry infor-
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mation. This type of sensors is available off-the-shelf as part of many modern
smartphones. Two major mobile operating systems Apple iOS and Google An-
droid are shipped with augmented reality libraries ARKit [1] and ARCore [23]
(respectively) that provide phone’s odometry information out of the box.

Instead of wearing a bracelet, the user holds a smartphone like a TV remote
in the hand of their pointing arm (Figure 4.10). The phone estimates its pose Twp

with respect to an arbitrary world frame {W}. Since the phone’s position p{H}p
on the user’s body is known, we can calculate the coordinate transformation be-
tween the human frame {H} and the world frame {W} using the human pointing
model (Section 3.1). Assuming the phone position pp is equal to the position of
the direction point pd of the pointing model, we can reuse the coordinate trans-
formation chain in Eq. 3.6 and find Twh. First, we convert the direction point p{H}d
from human frame {H} to world frame {W} using the coordinate transformation
Twh:

p{H}d = ThsTs f 0 (4.9)

p{W}d = Twhp{H}d (4.10)

next, assuming pp = pd:

®
p{W}p = Twp0

p{W}p = TwhThsTs f 0
(4.11)

We can now find the coordinate transformation of the human frame in the
world frame:

Twh = TwpT�1
s f T�1

sh (4.12)

4.5.1 Implementation

We implemented a system where the user guides a miniature drone Crazyflie 2.0
parallel to the ground using an off-the-shelf smartphone Apple iPhone 8. The
phone directly connects to the drone using a wireless Bluetooth LE link and con-
trols its flight functions. To acquire the visual-inertial odometry, i.e. the coordi-
nate transformation Twp, we use the standard augmented reality library ARKit [1]
provided by Apple as part of their iPhone’s operating system iOS.
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Figure 4.10. A prototype of the system that uses a commodity smartphone (Ap-
ple iPhone 8) to dynamically track coordinate transformation between the user
and the drone (Crazyflie 2.0).

4.5.2 Public testing

The system has been demonstrated at several public events where the audience
had a chance to try our system.

Overall appreciation was very high and people did not have major issues using
the system. During these trials we made several interesting observations:

• Many young users attempted to use the phone the same way they would
use it in games: e.g. tilting the wrist up to make the drone come closer.
Probably the users were trying to control the velocity of the drone instead
of directly using pointing gestures to specify a position.

• The visual odometry performs poorly when users start to walk and the
phone’s camera is facing directly down. Perhaps, this happens because
most of the camera view is occupied by walking legs and it makes it difficult
for the visual odometry system to choose the right visual features.

• The ability to walk while controlling the drone significantly reduces the
arm’s fatigue as it allows to keep the arm elevation lower by keeping the
drone closer to the user.
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4.6 Conclusions
Relative localization is an essential block of pointing-based human-robot inter-
action, it allows the system to transform pointed positions described in a human
reference frame to a frame of reference of the robot. In this chapter, we described
several practical approaches to this problem and proposed a novel method that
allows one to localize a moving robot with respect to a user that points at it by
comparing the robot’s trajectory and the user’s pointing. This method can also
be used to identify a robot being pointed at among several robots (we describe
this method in detail in Chapter 5).

An important limitation of the methods based only on inertial sensors is an
inability to dynamically track the position of a user, for example, when they walk
away from the initial location. We proposed and implemented a method that
uses a conventional smartphone and a stock visual-inertial odometry library to
solve this task: instead of a bracelet on the wrist, the user holds and points with
a smartphone in their hand. Public testing of the system proved the viability of
the approach.



Chapter 5

Robot Selection and Identification

Robot selection and identification serve as a tool to engage a user with a robot
before they can start the interaction. It allows one to select a robot within a
group and make sure that commands issued by the operator are addressed to
a specific robot. In the previous chapters, we assumed a robot and a user are
already engaged and the interaction is already taking place.

In this chapter, we show various ways to engage a robot and a user. In particu-
lar, we demonstrate how our relative localization method presented in Chapter 4
can be efficiently used to solve this problem.

5.1 Point to select

When the robots and the user are co-localized, a simple pointing at a robot al-
lows us to identify it by comparing the coordinates of the target point pt with
coordinates of all the robots in a group. The robot whose position is the closest
to pt and falls within a threshold, e.g., a radius of the robot’s circumference, is
the one the user is referring to.

However, should we engage the robot immediately after such a check suc-
ceeds? Probably not, as on the way to the desired robot, the pointed location
pt may traverse through other robots before it finally reaches the one the user
needs.

This problem shows that the selection requires a triggering event. We can
generate such an event in multiple ways. One straightforward and robust ap-
proach is to use a push-button: the operator points at the desired robot and
presses a button held in either hand, at this very moment the system identifies
the pointed robot and selects it.

63
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Figure 5.1. Selecting (left) and commanding (right) robots using natural speech
accompanied by pointing gestures.

The main drawback of this approach is that the user needs to hold an addi-
tional controller in their hand.

The speech modality allows us to relax this constraint.

5.1.1 Speech

Using natural speech to command robots is a common and very compelling ap-
proach. We used speech-to-text cloud services1 to convert speech utterances to
text representations and then matched them against templates to extract the
commands and associated data, e.g. robots’ numerical identifiers. The system
can recognize and implements the following commands [24]:

1. “You!” — selects a robot the user is pointing at. These commands can be
used consecutively one after another to cherry-pick individual robots and
add them to a group;

2. “You and another N!”, where N is a positive integer — selects a robot the
user is pointing at and another N closest to it robots;

3. “Number K!”, where K is a numerical ID of a robot — selects the named
robot and implicitly localizes the user that points at it;

1Google Speech and Microsoft Bing Speech APIs.
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4. “Go there!” — tells all selected robots to move to a pointed location;

5. “Go D meters in this direction!”, where D is a positive real number — tells
all selected robots to move a specified distance in a pointed direction.

An example of executing the command 2 (selection) and the command 4
(motion) using natural speech and accompanying pointing gestures are shown
in Figure 5.1.

Apart from typical problems of speech recognition systems, such as failures
in noisy environments and difficulties with non-native accents, the major issue
we experienced with this approach was a large latency of cloud-based services.
Although the latencies were under 1.5 s, such delays were significantly affecting
the user experience and interaction efficiency.

5.1.2 Pointing detection using fixed delays

Another approach that does not require additional handheld controllers is to
detect an event of pointing.

One way to achieve this is to trigger selection events when the pointing arm
does not move for a fixed time. We implemented this modality using a sliding
window technique where we keep the last 1.5 s of the IMU orientation in a first-
in-first-out (FIFO) buffer. With every new sample of orientation received from
the IMU, we calculate the maximum deviation of all samples in the buffer from
its mean value. When the maximum deviation exceeds a certain threshold we
trigger an event.

This technique proved to be one of the most efficient, robust, and easy to
implement, but it suffers from a similar issue as the speech-based solution—
induced latency of interaction.

5.1.3 Pointing detection using neural networks

We as humans clearly distinguish the actual pointing from an abstract gesticula-
tion, but we often understand this from a context, e.g., from a discussion when
a pointing gesture is expected. This context may not be accessible to a computer
system; however, it turns out that such a detection is possible using an IMU data.

Using our wearable IMU setup, Broggini et al. [7] developed a system that
uses two IMU sensors placed on the upper arm and forearm to detect pointing
events. The system accumulates orientation and acceleration data in a FIFO
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buffer and then feeds it to a 1D convolutional neural network (CNN) that pre-
dicts the probability of the current buffer being a pointing gesture. When the
probability exceeds a threshold we trigger an event.

We successfully applied this system in several tasks both for engaging a user
with a robot and to trigger particular behaviours, such as to start the localization
from motion [27] and to perform landing at a precise spot [30].

Although the solution works well it requires two IMU sensors that might be
impractical in many real-life applications.

5.2 Selection by identification

The described above solutions rely on a strong assumption that the robots and
the user are already localized, i.e. the coordinate transformation Thr is known.
This is not always the case: for example, when there are several robots deployed
to perform an autonomous mission and there is a human operator who wants
to take the control of one of these robots, he/she stands somewhere near the
robots, but his/her location is not known yet.

In this case, the selection and identification can be combined with the local-
ization techniques we described in Chapter 4.

5.2.1 Fiducial markers

Fiducial markers simultaneously provide an identity of the robot and its relative
pose with respect to the operator. Once the robot is identified the system can
generate the selection event to engage the user with the robot.

5.2.2 Motion based

Our localization from motion method described in Chapter 4 can be also effi-
ciently used to identify pointed-at robots in multi-robot setups.

If all robots follow a different trajectory and we assume the user is pointing
at one of them, this is easily implemented by solving the minimization problem
separately for each robot and then identifying the target robot is the one which
yields the lowest residual error. A schematic representation of this process was
presented in Figure 4.5.
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Figure 5.2. The success rate in identifying the correct robot among two (see
text). 100 replicas per bar. Error bars represent 90% confidence interval.

Robot identification results

Using the data acquired in Section 4.4 we perform experiments to identify which
of the two robots the operator was pointing at. For each experiment, we sample
a segment of trajectory from one of the five sessions at random (starget), and the
corresponding pointing rays; we also sample an equal-length trajectory segment
from a different session (sother), chosen at random among those with a different
shape than starget (circle if starget is triangle, or the other way around), but we ig-
nore the corresponding rays. We now have one set of rays and two sets of points,
which are both corrupted with VO error with a given � 2 {0.001,0.005, 0.015}.
The two sets of points represent the measured trajectory by two robots: the one
pointed to by the operator, and a different one that the operator was ignoring,
and that was following a differently-shaped trajectory. We solve the minimiza-
tion problem associating the one set of rays with each of the two sets of points
and measure the fraction of experiments in which the residual error ✓ ⇤ is lower
for the target trajectory than for the other trajectory. This corresponds to the
fraction of experiments for which our approach would have identified the cor-
rect robot (the baseline being 50%). In Figure 5.2 we report the corresponding
success rates of the identification.

We observe that 5 s are sufficient to discriminate the correct robot in the
largest majority of cases, even in case of heavy VO error. In any tested condition,
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10 s are sufficient to yield perfect accuracy. It is surprising that, under reasonable
odometry performance, the system exceeds 80% accuracy already from 2 s, as
such short trajectories are by necessity very simple, almost rectilinear segments.

5.3 Conclusions
In this chapter we discussed several approaches for robot selection and robot
identification: using simple voice commands, fiducial markers, and an extension
of our localization from motion method described in Chapter 4.



Chapter 6

Efficient Interaction Feedback

Feedback plays a fundamental role in control systems, including such natural
systems as the human body; it allows the system to react timely and adapt a
control loop to a changing environment or deficiencies of the system itself. By
providing adequate feedback to the user of a technical system, we can use vast
human abilities to compensate for inaccuracies.

In the literature review in Chapter 2, we have shown that visual feedback, in
particular, plays a significant role in the way people use pointing.

In this chapter, we discuss various types of feedback and its implementation
applied to our experimental setups. Our key insight and contribution are to use
a moving robot itself as visual feedback. Analogous to a mouse cursor on a com-
puter screen, the user adjusts pointing according to the actual position of the
robot and therefore, can compensate for errors. Since it is not practical to use
such feedback with slow-moving robots, e.g., ground vehicles, we propose an-
other solution based on a laser pan-tilt unit that shines a dot on the floor to
provide a similar kind of feedback. We evaluate these solutions in user studies.

6.1 Voice and lights

In the course of our research, we attempted to use various types of feedback
to communicate the state of the system to the user. We started with a text-to-
speech interface and colored lights in [24] using ground robots. The system
would pronounce the ID of a robot when it is selected by the pointing gesture it
would light up with purple color as well. While the speech feedback improved
the user awareness of the system state, compared to the visual feedback it turned
to be inefficient—the long utterances like “Robot number 12 is selected” bear
very little information for the user, but take a lot of time to pronounce, i.e. the
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confirmation that the pointed robot was selected can be done much faster by
lighting up its LED with a certain color. Also, very quickly it became obvious
that audio feedback has limited applicability to the drones because of the high
background audio noise produced by the rotors of the robot. On the other hand,
the visual feedback with LED lights shown to be extremely efficient because it
could be switched on almost instantaneously. This allows us to communicate the
system state to the user immediately and therefore allow them to correct their
action in a timely manner1.

We further exploited these ideas and build a custom LED-ball that we fitted
on a lightweight drone2 [31]. Using the LED allows the system to report various
states and stages of the interaction: during the localization phase the LED is
turned blue; once the user is in control the LED switches to a blinking green color;
when the user about to disengage from the drone the LED dims from yellow to
off state; once the drone is on its own again, the LED turns back to blue.

6.2 Laser pointer paired with camera

In the system with fiducial markers (see Section 4.2) we used a narrow lens on
the camera and therefore it was difficult for the user to aim at the marker if they
started far away from it. In this case, the feedback was given only at the time
the user successfully aimed at the marker (the robot would light up). We paired
the camera with the laser pointer and it proved to be a very efficient yet simple
solution.

6.3 Haptic feedback

Last, but not least important, we implemented haptic feedback through the arm-
bands. We use vibration to notify the user of various events. For example, the
armband would vibrate every second to count down the landing timeout [28].

Recently we have also implemented haptic feedback in a smartphone-based
pointing interface. Modern phones have very few hardware buttons and those
are usually dedicated to specific operating system functions, such as changing the
sound volume, answering a call, etc., and are not available to developers. On the
other hand, touch screens allow one to build versatile graphical user interfaces;

1See the video section “Fast tracking and selection...” (1m 41s) at: https://youtu.be/
FWMCxARQYhY

2See the video demonstration here: https://youtu.be/yafy-HZMk_U

https://youtu.be/FWMCxARQYhY
https://youtu.be/FWMCxARQYhY
https://youtu.be/yafy-HZMk_U
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however, the problem with touch interfaces is that they do not provide any tactile
feedback and make it practically impossible for the user to know if a software
button on the screen was actually pressed or not. It is especially true for our
interface where the user holds a phone in the hand of an outstretched arm—the
phone’s screen is parallel to the arm and at a shallow angle with respect to the
line of sight.

To solve this problem we use the 3D Touch feature of the Apple iPhone 8 and
sharp vibrations provided by Apple Taptic Engine. 3D Touch technology is Apple’s
brand for a force-sensing touch screen technology. It allows one to measure the
relative force with which the user presses on the screen. The Taptic Engine is
a linear vibration actuator that is capable of generating very short and strong
vibrations in response to user actions. We use these technologies to simulate the
feel of a real hardware button, such that it clicks only when the pressing force
exceeds a certain threshold. That allowed us to implement a software button
that has four states:

1. Initial — the user is not interacting with the button;

2. Touched — the user’s finger is on the button, but it is not pressed;

3. Pressed — the button is pressed with force and is being held down;

4. Released — the button was released but the user’s finger is still touching it;

When the button transition from the state Touched to Pressed and from Pressed
to Released, the user feels a click that tells them that the system has changed its
state. What is more, the software implementation of such feature allows us to
block the button to notify the user the state change is not possible or not allowed,
i.e. the button will not give any haptic feedback in this case and the user will
know there is something wrong, e.g. the drone is not connected to the phone.

The button with these states allows the user to engage and interact with the
drone without ever lifting their finger from the phone’s screen.

We implemented an iPhone application to control a nano quadcopter Crazy-
flie 2.0. The user holds the phone as a TV remote with their palm under the
phone and a thumb resting on top of the screen. To start the interaction the
user points at the drone with the phone, presses the screen with force and holds
the finger, the phone generates the haptic click to show the command has been
sent to the drone. The color of the LED ball on the drone changes its color to
blue to signify it is taking off. Once in the air, the LED color changes to green
showing that the user is now in control. From that moment the drone flies wher-
ever the user points to. When the user relaxes the hold, the button releases and
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generates the click, the drone’s LED switches back to blue showing it is now in
hovering mode and does not follow the user’s pointing anymore. The user now
can freely move around without affecting the drone’s position (but have to keep
touching the screen). To engage with the drone again the user has to point at the
flying drone and press on the screen with force, the LED color will change back
to green and the user can start pointing to drive the drone. Whenever the user
feels unsafe or wants to land the drone they just have to lift their finger from the
screen.

We have tested these features “in the wild” with lay users. Contrary to our
expectations it was sometimes quite difficult to convey how the virtual button
interface works. The users had to learn it by trial and error; however, once they
were accustomed to the interface they could control the drone quite efficiently.

Unfortunately, in the latest versions of Apple phones, the 3D Touch feature
was discontinued and we will need to find an alternative interaction pattern.

6.4 Feedback from motion

Although the idea of using the motion of a robot itself as visual feedback is some-
what obvious, it has a significant impact on the performance especially when the
pointing reconstruction itself lacks precision.

Flying robots, such as quadcopters, are quite agile and thus suitable for this
type of feedback. In our work [28; 30] we implemented two types of feedback:
discrete to signify events and continuous feedback to show where the system
thinks the user is pointing at. We used a “jump” for a few centimeters up (dis-
crete feedback) to confirm that the drone has been selected and that it is the user
who controls it now. Once the control has been transferred to the user the drone
would follow their pointing gestures in real-time (continuous feedback), such
that the user can immediately see whether there are any discrepancies between
the intended control and the actual state of the robot. These two feedback tech-
niques proved to be very efficient. The live feedback proved especially useful for
the cases of accumulated IMU errors.

The simplified approach used to reconstruct the pointing ray, and inaccuracies
in the estimation of T ⇤, cause errors in the reconstructed point: in practice, these
errors are adjusted for by the operator as long as we provide real-time visual
feedback.
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Figure 6.1. The scheme of the experimental environment: targets are fixed at the
corners of a square with a 3.6 m edge (one tile is 0.6 m). The human position
is fixed at the center. The sequence is defined by arrows and starts at target 1.

6.4.1 Experiments with fast robots

To assess the viability of this approach we set up an experiment where the users
were required to land a quadcopter (Parrot Bebop 2 [60]) at a given location
using two different interfaces: pointing gestures and a regular joystick.

The scheme of the experimental environment is depicted in Figure 6.1 and
represents a flying arena with four predefined targets. The targets are placed
at the corners of a square with an edge of 3.6 m. The sequence of the targets is
predefined and is shown on the scheme with the arrows. The subjects were asked
to stay in the middle of the arena, however, they were allowed to step aside to
avoid collisions with the drone.

The experimental environment represents a flying arena with four predefined
targets. The targets are placed at the corners of a square with an edge of 3.6 m
and numbered in a clockwise order. The sequence of the targets is predefined as
1–2–4–3–1, i.e. edge segments alternate with diagonal ones. The subjects were
asked to stay in the middle of the arena, however, they were allowed to step
aside to avoid collisions with the drone.

The arena is equipped with the Optitrack motion capture system that provides
precise information about the drone’s position. This information is used, both, to
control the safety margins and to implement autonomous flights. Note, that in
general the robot is localized in an arbitrary frame, e.g. in its odometry frame or,
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as in our case, in the motion capture frame; however, the location of the operator
with respect to robot’s frame is not known until the “Robot identification and pose
reconstruction” step has taken place.

The drone closed-loop controller is built around bebop_autonomy3 ROS-package
and accepts velocity and 6D-pose commands. While the joystick interface gen-
erates velocity commands, the pointing interface supplies the pose commands.

Subjects

Five people between 25 and 36 years old have volunteered to participate in the
experiment. The majority have reported either no experience in piloting RC-
vehicles or a little experience (“tried it a few times”).

We conducted two sessions per person: with the joystick and with the pointing-
based interface, each consisting of three runs. Each run starts and ends at target 1
and therefore provides four segments. This totals to 12 segments per person or
120 target-to-target segments for all the participants for both interfaces. Three
subjects started with the pointing interface and the rest with the joystick.

Before each experimental session, individually for each subject, we conducted
a training session with the same interface that they were given later. Each train-
ing session consisted of two runs.

Two training sessions plus two experimental sessions took approximately
40 minutes per person, including all the explanations, service times (e.g. re-
placing the drone’s battery), etc.

Experimental sequence

At the beginning of each session, the drone is placed at target 1. Once the su-
pervisor starts the session the drone takes off automatically. Once it is airborne
and stable, it aligns itself with the first target of the segment and turns its back to
the user, such that the user’s controls, both, for the joystick and for the gestures,
are aligned, meaning, e.g., that pushing joystick forward would drive the drone
away from the user, in the direction they look to. This way we ensure that the
landing errors are not accumulated over the course of the experiment and that
all the subjects start in equal conditions, both, when controlling the drone with
pointing gestures and with a joystick.

From this moment the drone is ready to interact with the user. Once the user
lands the drone, it will perform the automatic take-off procedure with a delay of

3http://wiki.ros.org/bebop_autonomy

http://wiki.ros.org/bebop_autonomy
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5 seconds from the moment it has been landed. This procedure repeats until the
list of targets is exhausted.

Since the interaction pattern with the joystick and the gesture-based interface
are slightly different we report them separately.

Pointing-based interface The user points at the floor beneath the drone, i.e.
at the crosshair of the target, to select it4. The Myo on the user’s arm vibrates
and the drone ‘jumps’ to signify that it is now being controlled by the user. At
the same time, the control station gives voice feedback through a loudspeaker,
telling the user the next target they should bring the drone to. Immediately after
that, the drone starts to continuously track a newly given location. Once the
user is ready to land the drone, they have to maintain the pointed location for
approximately half a second. The system starts to count down and makes the
upper arm Myo to vibrate every second. The user has about 3s to change their
mind. To adjust the landing position they just have to start moving the arm away
and the countdown will be canceled.

Joystick The behavior of the system in this mode is similar, however, the drone
is selected automatically and performs the same ‘jump’ motion as in pointing-
based interaction mode, meanwhile, the control station gives voice feedback with
the next target number. The user then moves the drone to the required target
and presses the button on the joypad to land the drone.

Performance Metrics

We define a set of performance metrics to compare the performance of two in-
terfaces:

• Landing error. Euclidean distance between the requested landing target Pi

and the actual position pa the drone have landed to: " = |pa � Pi|.

• Time to target. Time that passed from the moment t0 the drone has moved
20cm away from its starting pose till the moment t1 the user gave command
to land it: ⌧= t1 � t0.

• Trajectory length. Line integral of the trajectory curve from the start posi-
tion Pi�1 to the actual landing position pa: ⇢ =

PN
k=1 kpk+1 � pkk, where

4Although the drone can be selected in the air, this brings an additional error to the relative
localization and may deteriorate user experience.
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Figure 6.2. Statistical analysis of the landing error metric (N = 60 for each inter-
face).

pk 2 {p1, ...pN} is a set of all the acquired positions of the drone between
Pi�1 and pa.

We collect the data with a standard ROS tool rosbag and analyze it offline.

Results

Landing Error Figure 6.2 reports the landing error metric. We observe no sta-
tistically significant difference between the results with the two interfaces; we
separately report the error (left pair) and its decomposition in a radial (central
pair) and tangential (right pair) component with respect to the user’s position.
It’s interesting to note how the radial component dominates the error in both in-
terfaces, which is expected since the radial component corresponds to the depth
direction from the user’s perspective: along this direction, the quadrotor’s mis-
alignment with respect to the target is much more difficult to assess visually; the
landing error is dominated by a perception (rather than control) issue.

Time to Target Figure 6.4 (left) reports the time to target metric, separately for
each of the four segments. We observe that the pointing interface yields a better
average performance; the difference is statistically significant under the Student’s
t-test (p < 0.01) for 3 of the 4 segments and the mean over all segments.
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Figure 6.3. Visualization of all trajectories (N = 120) flown with joystick (left)
and pointing (right) interfaces. Fixed human position is denoted by a star. Targets
1–4 are denoted by a thin cross (clockwise from top-left).

Trajectory Length Figure 6.4 (right) reports the trajectory length metric, sep-
arately for each of the four segments. We observe that the pointing interface
consistently yields shorter trajectories than the joystick interface; the difference
is statistically significant under the Student’s t-test (p < 0.01) for all four seg-
ments. On average over all segments, the joystick interface yields a 66% longer
trajectory than the straight distance between the targets; the pointing interface
yields a 33% longer trajectory.

One can also observe this phenomenon in Figures 6.3 and 6.5: the trajecto-
ries flown with the pointing interface are smoother and more direct and tend to
converge faster to the target (Figure 6.6).

6.4.2 Variants for slow robots

Because of relatively low speeds at which ground robots operate, it is impracti-
cal to encode their state through the change in their trajectories. We adapt the
approach of robot motion feedback for slow robots by implementing a variant in
which a laser dot is projected by a robot-mounted laser turret (ScorpionX MX-64
Robot Turret, InterbotiX Labs). The position of the dot on the ground plane is
precisely controlled in the robot frame {R}. This dot takes the role of “a fast-
moving robot” during the whole interaction.

While available for interaction, the robot shines the laser on the floor in its
vicinity (Figure 6.7), continuously tracing some pattern (such as a circle or 8-
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Figure 6.4. Statistical analysis of the time to target (left) and trajectory length
metrics (right) (N = 15 for each interface and segment).
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Figure 6.6. Evolution in time of the distance to the target, for each trajectory
flown: (left) joystick interface (N = 60), (center) pointing interface (N = 60),
(right) average over all trajectories for each interface.

shape). To take control, the operator should follow the laser dot that the robot is
projecting instead of at the robot itself. For triggering, relative localization, and
robot identification, the position of the laser dot takes the role of P{R} for the spe-
cific robot. During real-time feedback, the laser is projected on the reconstructed
point that the user is indicating.

Experiments

We assume that relative localization is obtained exactly and focus instead on
measuring the impact of real-time feedback on the reconstructed pointing loca-
tion.

In all the experiments we collect the data with a standard ROS tool rosbag
and analyze it offline.

Impact of real-time feedback on pointing accuracy In order to evaluate the
impact of visual feedback on the accuracy of pointed locations, we implemented
an experiment using the laser turret mounted on a fixed platform, that would
provide the feedback accurately. Ten people volunteered to participate in this
study. Each participant wears the IMU-equipped bracelet and has their body
measurements taken to set up the parameters of the system.

Three targets are laid out at known positions as shown in Figure 6.8: with
the user standing at a known relative position to the turret. The user’s heading
is fixed with respect to the turret.

The experiment proceeds using the following sequence, which is advanced by
audio prompts played at known times: 1) the user is asked to relax their pointing
arm and wait for an audio signal; 2) after 5 s the system plays a beep and the
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Figure 6.7. Interaction using pointing gestures with a slow-moving robot
equipped with a laser turret for real-time visual feedback.

user is asked to point at the first target and hold their arm still; during this time,
no feedback is given; 3) after another 5 s and a beep, the user can relax the arm
and wait for another command; 4) after next 5 s, the user is asked to point to
the same target again; now, however, the laser provides real-time feedback by
shining at the pointed location. The procedure is then repeated for another two
targets.

Results

We recorded and analyzed the pointing locations and the timings of the audio
prompts for each participant. The collated trajectories of the pointed locations
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Figure 6.8. Effects of real-time visual feedback on pointing accuracy.

and the evolution of the distance to target are visualized in Figure 6.8. The data
shows that, without feedback, users quickly reach an average distance from the
target of 0.5 m but do not improve any further; this is expected as the system has
intrinsic inaccuracies (for example in the reconstruction of pointing rays r{H})
which the user is unable to see and correct. When the feedback is provided,
distance decreases to almost 0 within 5 seconds.

This demonstrates that real-time feedback (provided with a laser or with the
robot’s own position) is a key component in our approach.

6.5 Conclusions

In this chapter, we considered and implemented various types of feedback neces-
sary for efficient human-in-the-loop control. We used voice, lights, vibrations,
and motion of robots themselves to indicate the current state of the system.
We found that although voice messages could provide information-rich feedback
they introduce a significant delay to the interaction process. On the contrary, us-
ing colored lights installed on robots a state of the system can be communicated
to the user almost instantaneously.

Our main contribution is a systematic study on the effects of visual feedback
on pointing accuracy and its influence on the time necessary to point at a target.
We found that without the visual feedback subjects tend to conclude the pointing
faster but with a larger static error; being provided with the continuous visual
feedback the resulting pointing error converges to almost zero but takes more
time. These findings show that an imprecise pointing estimation and simplified
human pointing models can still be efficiently used for precise pointing tasks
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when a user is provided with continuous visual feedback. We implemented two
types of continuous visual feedback: for fast-moving (flying) and slow-moving
(ground) robots. The fast-moving robots provide feedback with their own mo-
tion, i.e. the robot continuously moves to an estimated pointed location and
therefore the user can timely adjust their pointing to compensate for any errors.
In the case of slow-moving robots, we provide similar feedback with a dot pro-
jected by a pan-tilt laser unit installed on the robot.



Chapter 7

Conclusions

In this work, we have developed an interface for efficient human-robot interac-
tion that is based on pointing gestures—a natural way to communicate direc-
tions, locations, and objects in the user’s proximity to flying and ground robots.
What makes pointing gestures especially powerful, as compared to other inter-
faces, is the way they define targets: pointed directions and locations are always
relative to the user and therefore the cognitive effort to issue commands is min-
imal.

Our approach is based on inertial wearable sensors that in the past few years
have become a commodity and now are present in the vast majority of smart-
watches, fitness trackers, and smartphones. An important property of such sen-
sors is that data acquisition is performed directly on a human body and therefore
does not depend on the robot’s sensing capabilities, does not degrade with dis-
tance, and does not require the robot’s continuous visual attention.

In the course of our work, we have identified and addressed the following
research questions that arose in the context of efficient human-robot interaction
using pointing gestures.

Human pointing model A human pointing model maps the posture of the hu-
man body to a pointed direction that is expressed as a ray. Although human
pointing is a complex concept that relies on many parameters such as interaction
context, e.g. distance to indicated objects and their size, physical peculiarities
of a user (eye and hand dominance, body proportions), it can be approximated
with simplified models and still be efficiently used in many practical tasks. In
Chapter 2 we reported state of the art human pointing models and practical ap-
plications of these models in HRI. The eye-finger model we have adopted in this
work assumes the user is standing upright and points with a straight arm, their
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shoulder and head are vertically aligned and are at known heights. In various
experiments, we have shown that a single inertial sensor on the user’s wrist or
in the hand of their pointing arm is sufficient to control robots on complex 3D
trajectories.

Estimation of pointed locations The act of pointing by itself does not uniquely
identify a pointed location. Using a human pointing model one can define a
ray in 3D space that originates at the operator’s body and extends to infinity
along a given 3D direction: the desired target position might lie anywhere on
the pointing ray. When the desired target location lies on or close to a surface
of the environment, one can simply intersect the pointing ray with that surface
to define the 3D position. For example, when controlling a ground robot on flat
terrain, one can easily find a target location by intersecting the pointing ray with
the ground plane. However, this is not possible if one needs to define a target
position in a free 3D space.

We developed a method that solves this problem and allows one to also de-
fine targets mid-air. This modality is especially useful to control flying robots
whose waypoints may not be bound to the shape of a work environment. The
method relies on a set of virtual workspace surfaces that constrain the motion
of a robot in 3D space and essentially reduce the control space to a 2D case. To
aid the legibility of the system’s state, each virtual surface is initialized to pass
through a current robot’s position: knowing the shape of the surface, the user
can easily visualize and predict the robot’s future position. To switch between
virtual surfaces, we use an additional discrete input—a push-button. We found
that a vertical cylinder and a horizontal plane are the most appropriate shapes
that allow one to define target positions in the entire 3D space. In Chapter 3
we described the method in detail and reported its experimental validation. The
results show that the proposed interaction modality compares favorably with a
baseline joystick interface.

Relative localization Because pointed locations are defined in the frame of ref-
erence of the human they have to be eventually converted to the frame of refer-
ence of the robot. To do that one should know a coordinate transformation be-
tween the two frames. In Chapter 4 we have proposed a method that finds such
a transformation based on the comparison of the mutual motion of the human
and the robot: the user points at the moving robot and keeps following it for a
few seconds; the system accumulates a list of recent robot positions defined in its
odometry frame and corresponding pointing rays defined in the human’s frame;
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using an optimization procedure we then find a coordinate transformation that
describes the match between robot’s positions and pointing rays the best. The
experimental evaluation of the method shows that pointing at a moving robot
for just 3 seconds is enough to determine the relative coordinate transformation
between the user and the robot.

An important drawback of IMU-based pointing reconstruction is an inability
to track the user’s position. In Chapter 4 we have shown that this limitation
can be solved by replacing a wearable inertial sensor on the user’s wrist with a
smartphone equipped with a camera and a visual-inertial odometry system.

Robot selection and identification To start the interaction with a robot the
system needs to know which robot the user is referring to and then engage with
it. In Chapter 5 we proposed to use the relative localization method described
in Chapter 4 to solve this task: we trigger the robot selection whenever the lo-
calization residual error drops below an arbitrary threshold. This method also
naturally extends to multi-user multi-robot setups: the system keeps track of all
the pointing users and moving robots and matches the operator–robot pairs the
motion of which yields minimum residual errors. We discussed this approach
and reported its experimental evaluation in Chapter 5.

Efficient interaction feedback Feedback plays a fundamental role in control
systems and especially crucial for systems with a human in the loop. We have
studied and implemented various feedback types to facilitate a more intuitive
and efficient human-robot interaction. In Chapter 6 we reported results of a user
study that show the influence of visual feedback on the human pointing accuracy
and the time necessary for pointing to converge. We found that continuous visual
feedback allows one to point more accurately and compensate for inaccuracies
induced by the simplified human pointing model and the drift of wearable inertial
sensors, but we also found that such feedback results in longer times necessary to
acquire a target. We implemented two types of continuous visual feedback: (1)
for fast-moving robots, such as quadrotors, we use the robot’s position itself to
indicate the pointed location; (2) for slow-moving ground robots we substitute
the robot motion with a laser dot that continuously follows the pointed location.

7.1 Current limitations and future work

The present work is based on several important assumptions that we discuss
below. We also propose how current limitations can be tackled in future work.
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Human pointing model In Chapter 3 we described an eye-finger pointing model
that we used in this work. Our implementation of this model does not account
for such important parameters as relative orientations between the user’s torso,
head, and pointing arm. The model also assumes the shoulder is aligned with
the line of sight, as if the user is always looking to the side; thus, when it is not
the case, the lateral pointing error may significantly increase.

As we have seen in many experiments where users were provided with live
feedback through the robot’s own motion, compensating for such an error is not
a big problem. However, the live feedback means the user is always attached to
the robot and that results in fatigue that develops within 5–10 minutes, especially
when the robot is far away and the arm’s elevation is high. One solution to this
problem would be to use discrete pointing gestures instead of continuous gestures:
the user needs to indicate only the final target location for the robot to go instead
of specifying an entire trajectory.

Another limitation of the present pointing model is that it assumes the user
is always standing up while interacting with a robot. This may be undesirable in
household environments, for example, when the user sits on a couch and wants
to command their vacuum cleaning robot.

These problems could be addressed by using a more sophisticated kinematics
model of the human body; however, this solution requires more sensors to be
worn by the user which inevitably will induce more errors. In this case, advanced
calibration techniques proposed by Droeschel et al. [15] and Mayer et al. [49]
can be used.

Instrumented human The pipeline we have described in this work relies en-
tirely on an instrumented human, i.e. the user needs to wear inertial sensors
that capture kinematic parameters of their body. On one hand, that means a
passer-by could not engage with the robot; on the other hand, that allows the
system to have refined personal access capabilities. The devices we have used
throughout this research are wireless sensors based on a commodity Bluetooth
Low-Energy (Bluetooth 4.0) technology with industry-proven authentication and
security capabilities. Uninstrumented human-robot interaction is typically based
on computer vision systems that are at the moment cannot be used for user au-
thentication from a distance.

Both visual and inertial sensing have their benefits for pointing-based interac-
tion. Although in this work, we left out the comparison of the two sensing meth-
ods, it would be interesting to see their differences. An experimental study for
the robot-centric vision system can be implemented using the same experimental
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setup that we used in our paper on quadrotor landing [30], where the user was
tasked to move the drone between predetermined positions on the floor. We then
can compare the target location with the actual landing position to estimate the
pointing accuracy of the vision-based interface. However, the peculiarities of the
visual sensing may not allow implementing the same continuous control as used
with the inertia-based interface, and thus, will require to use discrete pointing
instead.

Pointing in 3D The proposed 3D pointing method with virtual workspace sur-
faces (Chapter 3) relies on a strong assumption of continuous real time feed-
back. While this assumption holds for fast-moving robots in close proximity, this
solution unlikely to be convenient for the robots that are far away or that move
slowly. For example, one may need to position a payload using a tower crane at
a construction site. In this case, relying on continuous visual feedback would be
impractical as it will quickly result in arm fatigue.

A possible solution is, again, to use discrete pointing gestures. Alternatively,
one may use pointing gestures in conjunction with an augmented reality head-
up display and a model predictive control system: the user will see a predicted
position of the payload that accounts for its dynamics but compensates the time
necessary to reach the target location. Once the user is satisfied with the target
position, they can commit the motion command.

Human studies Throughout this work, we have conducted multiple experimen-
tal human studies that compare the performance of a baseline control interface
(joystick) with our pointing interface. Although the results show certain advan-
tages of pointing over joystick control, the differences are not as dramatic as one
would intuitively expect. We see two reasons that could have led to these results.
First, the task we chose for our experimental studies, i.e., a precise target acqui-
sition, does not represent the type of task a pointing-based interaction would
benefit the most. Second, the number of subjects who participated in the studies
was not sufficient to highlight the advantages of pointing over the joystick inter-
face. Future work should approach these issues by a more careful experimental
design and more extensive studies on a larger population.

7.2 Beyond robotics

In this work, we have shown how pointing gestures can be efficiently used to
control robots. Since pointing is a very generic interface it could also be effi-
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Figure 7.1. A prototype of the pointing-based smart lights interaction system
using off-the-shelf IKEA Tradfri smart lights [37].

ciently used to control other devices. We explored a possibility to use pointing to
interact with smart lights—a type of lights (bulbs) that can be switched on/off
or dimmed remotely via a wireless network.

A typical way to interact with smart lights requires the user to assign names
to all available devices and then use a given name to access a light’s functionality
with either a mobile application or with a voice assistants like Amazon Alexa.

We built a prototype of a system that allows the user to refer to smart lights
with simple pointing gestures. The interaction proceeds in the following way: the
user points at the light they want to control, the light turns to 30% brightness
showing it is being pointed at; if the user keeps pointing at the light for a few
seconds, the light switches to the maximum brightness and latches in this state;
otherwise, if the user points away before the light latches the state, the light
simply switches off. A prototype of the system is shown in Figure 7.1.

An important advantage of using pointing to control smart appliances is that
one neither needs to remember devices’ names nor to find which switch controls
each appliance: the device is the one the user is pointing at.

Similar to robotics applications, pointing gestures naturally combine with
speech commands. For example, using modern smart home voice assistants, one
could simply point at a light and say: “Alexa, dim that light to 50 per cent!”

Pointing can also be conveniently used to set the level of smart blinds, such
that one could say: “Alexa, lower that blind until here!” instead of “Alexa, set
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kitchen blind 55 per cent closed!”
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Appendix A

Publications

Estimation of pointed locations We first discussed the pointing reconstruction
using inertial sensors in a workshop paper [A1] where we suggested to use two
sensors: one on the upper arm and another on the forearm. To estimate pointed
locations we use the shoulder-finger pointing model and intersect the pointing ray
with the ground plane. We further elaborate on this setup in a conference paper
[A2] and assess the accuracy of the IMU-based arm pose reconstruction using a
motion capture system. Further, we simplify the setup and use a single inertial
sensor to estimate pointed locations (using the head-finger model), where we
assume the user is always pointing with a straight arm [A3; A4]. In a conference
paper [A5] we use a similar setup but with a more compact sensor placed at the
user’s wrist. Finally, in [A6] we consider a problem of specifying locations in free
3D space using virtual workspace surfaces that the user can switch between on
demand.

Relative localization In a conference paper [A2] we propose a relative local-
ization method based on fiducial markers. We further study the applicability of
this method in a workshop paper [A7] where we experimentally quantify local-
ization errors. In a conference paper [A8] we propose, implement, and validate
a novel localization method based on a comparison of the robot’s motion and the
motion of the user’s arm that points at that robot. We further use this method as
an integral part of our human-robot interaction pipeline [A5].

Robot selection and identification In a workshop paper [A1] we implemented
a system where a single robot or a group of robots is selected using a pointing
gesture and an accompanying voice command, we use a trivial coordinate com-
parison to identify the pointed at robots. In a conference paper [A2] we use
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unique fiducial markers on each robot for their identification and a voice inter-
face to trigger selection. Our main contribution to a robot identification and
selection task is presented in a conference paper [A8] where we use a residual
localization error to identify which robot the user was pointing at.

Efficient interaction feedback In a workshop paper [A1]we implemented voice
and visual feedback (colored lights) for a robot selection acknowledgment. As
a part of the relative localization system based on fiducial markers presented in
[A2], we have paired a camera on the user’s wrist with a laser pointer to help
the user to point at the markers. In all our works we also used haptic feed-
back (vibrations) to indicate and acknowledge various system states. Our main
contribution—an experimental study on the effects of continuous visual feedback
on duration and accuracy of pointing—is presented in a conference paper [A5].

Other publications The author also published two videos [A3; A9] and demon-
strated live the implemented pointing-based system for quadrotor control [A10]
at the Human-Robot Interaction conference (HRI). Additionally, the author con-
tributed to [A11; A12] publications.

Awards
The public demonstration [A10] and the video [A9] describing our system re-
ceived the Best Demo and an honorable mention (the Best Video according to
reviewers) awards at the Human-Robot Interaction 2019 (HRI ’19) conference.

Patents
Based on the two research topics presented in this thesis we filed two inter-
national patents. Namely, the patent [A13] describes the relative localization
method that we have presented and evaluated in a conference paper [A8]; and
the patent [A14] describes the control method of devices in 3D space using point-
ing gestures that we evaluated in a drone control task in a conference paper [A6].
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