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We introduce a notion of differential of a Sobolev map between 
metric spaces. The differential is given in the framework of 
tangent and cotangent modules of metric measure spaces, 
developed by the first author. We prove that our notion 
is consistent with Kirchheim’s metric differential when the 
source is a Euclidean space, and with the abstract differential 
provided by the first author when the target is R. We 
also show compatibility with the concept of co-local weak 
differential introduced by Convent and Van Schaftingen.
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1. Introduction and main results

Background and setting The concept of real valued Sobolev functions defined on a 
metric measure space (X, dX, mX) is by now well understood. Given an exponent p ∈
[1, ∞) the space of functions f : X → R having ‘distributional differential in Lp(X) in 
a suitable sense’ is denoted by Sp(X). To each f ∈ Sp(X) one associates the function 
|Df | ∈ Lp(X), called minimal weak upper gradient, which in the smooth setting coincides 
with the modulus of the distributional differential (see [6] and [18], [4]).

Inspired by the work of Weaver [20], in [9] the first author built the theory of 
Lp-normed modules and gave a notion of differential df for maps f ∈ Sp(X) in that 
framework: by definition, df is an element of the so called cotangent Lp-normed module
Lp(T ∗X) and has the property that its pointwise norm coincides mX-a.e. with |Df |. We 
remark that the linear structure of the space Sp(X), a consequence of the fact that the 
target space R is a vector space, plays a key role in the construction.

We now turn to the case of metric-valued Sobolev maps. Let (X, dX, mX) be a metric 
measure space as before and let (Y, dY) be a metric space which shall be assumed to be 
complete and separable. We shall also fix p = 2 for simplicity. There are various possible 
definitions of the concept of Sobolev maps from X to Y; here we shall work with the one 
based on post-composition (see [13] for historical remarks): we say that f ∈ S2(X; Y)
provided there is G ∈ L2(X) such that for any ϕ : Y → R Lipschitz we have ϕ ◦f ∈ S2(X)
with

|D(ϕ ◦ f)| ≤ Lip(ϕ)G mX − a.e.

The least such G is then denoted |Df | and called the minimal weak upper gradient of 
the map f . Notice that since Y has no linear structure, the set S2(X; Y) is not a vector 
space in general.

The question we address in this paper is the following: in analogy with the fact that 
‘behind’ the minimal weak upper gradient |Df | of a real-valued Sobolev map there is 
an abstract differential df , does there exist a notion of differential for a metric-valued 
Sobolev map?

Before turning to the (positive) answer to this question, let us motivate our interest 
in the problem, which goes beyond the mere desire of generalization. In the celebrated 
paper [7], Eells and Sampson proved Lipschitz regularity for harmonic maps between 
Riemannian manifolds when the target N has non-positive curvature and is simply con-
nected, and the Lipschitz estimate is given in terms of a lower Ricci curvature bound and 
an upper dimension bound on the source manifold M . A key point in their proof is the 
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establishment of the now-called Bochner-Eells-Sampson formula for maps f : M → N

which we shall write as

Δ |df |2
2 ≥ ∇f(Δf) + K|df |2, (1.1)

where |df | is the Hilbert-Schmidt norm of the differential of f and K ∈ R is a lower 
bound for the Ricci curvature of M (let us remain vague about the meaning of ∇f(Δf)). 
A direct consequence of (1.1) is that if f is harmonic, then

Δ |df |2
2 ≥ K|df |2. (1.2)

This bound and Moser’s iteration technique are sufficient to show that |df | is locally 
bounded from above in the domain of definition of f , thus showing the local Lipschitz 
regularity of f (the upper dimension bound for M enters into play in the constants 
appearing in Moser’s argument).

Since the Lipschitz regularity of harmonic functions does not depend on the smooth-
ness of M and N but only in the stated curvature bounds, it is natural to ask whether 
the same results hold assuming only the appropriate curvature bounds on the source and 
target space, without any reference to smoothness. Efforts in this direction have been 
made by Gromov-Schoen in [12], by Korevaar-Shoen in [15] and by Zhang-Zhu in [21]. 
The most general result is in [21], where the authors consider the case of source spaces 
which are finite-dimensional Alexandrov spaces with (sectional) curvature bounded from 
below and targets which are CAT(0) spaces. Still, given Eells-Sampson’s result the nat-
ural synthetic setting appears to be that of maps from a RCD(K, N) space to a CAT(0)
space; as of today, this appears to be out of reach. Let us remark that in none of these 3 
papers has inequality (1.1) been written down explicitly; in [15] and [21] “only” a form 
of (1.2) for harmonic maps has been established (in [12] the argument was different and 
based on Almgren’s frequency function).

The present manuscript aims at being a first step in the direction of obtaining (1.1) for 
maps from RCD spaces to CAT(0) ones (see also [11]): if successful, this research project 
easily implies the desired Lipschitz regularity for harmonic maps and at the same time 
improves the understanding of the subject even in previously studied non-smooth set-
tings. The overall program is definitely ambitious, but we believe that even intermediate 
steps like the current manuscript have an intrinsic interest: see in particular the ‘review’ 
of Kirchheim’s notion of metric differential in Section 4.3.

The very first step to tackle in order to write down (1.1) is to understand what “df” 
is. As stated, this is our goal in this manuscript. Let us informally describe the key 
concept in this work (the precise definitions will be given in Sections 2 and 3).

Differential of Sobolev maps Given a Sobolev map u ∈ S2(X; Y) between a metric 
measure space (X, dX, m) and a complete separable metric space (Y, dY), we consider the 
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metric measure space (Y, dY, μ), where μ := u∗(|Du|2m). Then we define the differential 
du of u as an operator

du : L0(TX) → (u∗L0
μ(T ∗Y))∗

satisfying

〈u∗df,du(V )〉 = V (d(f ◦ u)) m-a.e. (1.3)

for every f ∈ S2(Y, dY, μ) and V ∈ L0(TX) (Definition 3.4).
The particular choice of measure μ is important: it ensures that for f ∈ S2(Y, dY, μ)

the pullback function u∗f := f ◦ u belongs to S2(X, dX, m) with

|D(f ◦ u)| ≤ |Df | ◦ u |Du|, (1.4)

see Proposition 3.3 for the precise formulation. Once this is established, the differential 
of u can be defined by taking the appropriate adjoint of the map df �→ d(f ◦ u), as in 
(1.3). Let us emphasise that on the right hand side of the crucial bound (1.4) there is 
the product of two ‘weak’ objects: this makes the inequality non-trivial.

Once the definition is given we verify that it is compatible, and thus generalizes, 
previously existing notions of differentials in the non-smooth setting. All our discussion 
is made for the Sobolev exponent p = 2, but obvious modifications generalise all the 
results to the case p ∈ (1, ∞).

2. Preliminaries

To keep the presentation short we assume the reader is familiar with the concept 
of Sobolev functions on a metric measure space ([6], [18], [4], [3]) and with that of 
L0-normed modules and differentials of real valued Sobolev maps ([9], [8]).

Here we only recall those concepts we shall use most frequently. Let us fix a complete, 
separable metric space (X, dX) and a non-negative and non-zero Radon measure m giving 
finite mass to bounded sets. We shall denote by Lip(f) the (global) Lipschitz constant 
of a function, by LIP(X), LIPbs(X), LIPbd(X) the space of Lipschitz functions, Lipschitz 
functions with bounded support, and functions which are Lipschitz on bounded sets, 
respectively. We also denote by lipa(f) : X → [0, ∞] the asymptotic Lipschitz constant, 
defined by

lipa(f)(x) := lim
y,z→x

|f(y) − f(z)|
dX(y, z) if x is not isolated, 0 otherwise.

Then we define:
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Definition 2.1 (The Sobolev class S2(X)). We say that f ∈ S2(X) provided there is a 
function G ∈ L2(m) and a sequence (fn) ⊂ LIPbd(X) converging to f in L0(m) such that 
(lipa(fn)) weakly converges to G in L2(m).

With respect to the approach in [4], [3] here the difference is in the topology used in 
the relaxation procedure. The fact that our approach is equivalent to the one in [4], [3]
follows from the L0-stability of weak upper gradients granted by the approach via test 
plans in conjunction with a cut-off argument.

For f ∈ S2(X) we recall that there is a minimal, in the m-a.e. sense, non-negative 
function G ∈ L2(m) for which the situation in Definition 2.1 occurs. Such G is denoted 
|Df | and called minimal weak upper gradient. It is then easy to check that:

∀f ∈ S2(X) there is (fn) ⊂ LIPbd(X)m − a.e. converging to f such that

lipa(fn) → |Df | in L2(m). (2.1)

From the minimal weak upper gradients one can ‘extract’ a notion of differential:

Theorem 2.2 (Cotangent module and differential). With the above notation and assump-
tions, there is a unique (up to unique isomorphism) couple (L0(T ∗X), d) with L0(T ∗X)
being a L0(m) normed module, d : S2(X) → L0(T ∗X) linear and such that: |df | = |Df |
m-a.e. for every f ∈ S2(X) and {df : f ∈ S2(X)} generates L0(T ∗X).

When we want to emphasise the role of the chosen measure, we shall write 
(L0

m(T ∗X), dm) in place of (L0(T ∗X), d). Among the various properties of the differential, 
we shall frequently use its locality:

df = dg m − a.e. on {f = g}, ∀f, g ∈ S2(X).

Let us now recall few facts about pullback of modules:

Theorem 2.3 (Pullback). Let (X, dX, mX), (Y, dY, mY) be metric measure spaces as above, 
u : X → Y such that u∗mX � mY and M an L0(mY)-normed module. Then 
there is a unique (up to unique isomorphism) couple (u∗M , [u∗]) such that u∗M is 
a L0(mX)-normed module and [u∗] : M → u∗M is linear, continuous and such that 
|[u∗v]| = |v| ◦ u mX-a.e. for every v ∈ M and {[u∗v] : v ∈ M } generates u∗M .

The module u∗M is called the pullback module and [u∗] the pullback map. It can be 
directly checked by the uniqueness part of Theorem 2.3 that

if u∗mX � mY then u∗L0(mY) ∼ L0(mX) via the map [u∗f ] �→ f ◦ u. (2.2)

The pullback has the following universal property, which we shall frequently use:
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Proposition 2.4 (Universal property of the pullback). With the same notation and 
assumptions as in Theorem 2.3 above, let V ⊂ M a generating subspace, N a 
L0(mX)-normed module and T : V → N a linear map such that |T (v)| ≤ f |v| ◦ u

mX-a.e. ∀v ∈ V for some f ∈ L0(mX). Then there exists a unique L0(mX)-linear and 
continuous map T̃ : u∗M → N such that T̃ ([u∗v]) = T (v) for every v ∈ V and this map 
satisfies

|T̃ (w)| ≤ f |w| mX − a.e. ∀w ∈ u∗M . (2.3)

In particular, if T : M1 → M2 is a L0(mY)-linear and continuous map satisfying |T (v)| ≤
g|v| mY-a.e. ∀v ∈ M1, for some g ∈ L0(mY), applying the above to the map M1 � v �→
[u∗T (v)] ∈ u∗M2 we deduce that there exists a unique L0(mX)-linear and continuous 
map u∗T : u∗M1 → u∗M2 making the diagram

M1 M2

u∗M1 u∗M2

T

[u∗] [u∗]

u∗T

commute and such map satisfies

|u∗T (w)| ≤ g ◦ u|w| mX − a.e. ∀w ∈ u∗M1. (2.4)

These properties of pullbacks have been studied in [9], [8] for maps satisfying u∗mX ≤
CmY, but if one is only interested in L0-modules the theorems above are easily seen to 
hold with small modifications.

Finally, let us present a simple construction that we shall frequently use. Let E ⊂ X
be Borel, put ν := m|E and let M be a L0(ν)-normed module. To such a module we can 

canonically associate a L0(m)-normed module, called extension of M and denoted by 
Ext(M ), in the following way. First of all we notice that we have a natural projection/re-
striction operator proj : L0(m) → L0(ν) given by passage to the quotient up to equality 
ν-a.e. and a natural ‘extension’ operator ext : L0(ν) → L0(m) which sends f ∈ L0(ν) to 
the function equal to f m-a.e. on E and to 0 on X \ E. Then for a generic L0(ν)-normed 
module M we put Ext(M ) := M as a set, multiplication of v ∈ Ext(M ) by f ∈ L0(m)
is defined as proj(f)v ∈ M = Ext(M ) and the pointwise norm as ext(|v|) ∈ L0(m). We 
shall denote by ext : M → Ext(M ) the identity map and notice that in a rather trivial 
way we have

Ext(M ∗) ∼ Ext(M )∗ via the coupling ext(L)
(
ext(v)

)
:= ext(L(v)). (2.5)

In what follows we shall always implicitly make this identification.
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3. Differential of metric-valued Sobolev maps

Throughout this manuscript (X, dX, m) will always denote a complete separable metric 
space endowed with a non-negative and non-zero Radon measure which is finite on 
bounded sets; (Y, dY) denotes a complete separable metric space.

Definition 3.1 (Metric valued Sobolev map). The set S2(X, Y) is the collection of all Borel 
maps u : X → Y for which there is G ∈ L2(X, m), G ≥ 0 such that for any f ∈ LIP(Y)
it holds f ◦ u ∈ S2(X) and

|d(f ◦ u)| ≤ Lip(f)G m − a.e. (3.1)

The least, in the m-a.e. sense, function G for which the above holds will be denoted |Du|.

Notice that for u ∈ S2(X, Y) the class of G ∈ L2(X) for which (3.1) holds is a closed 
lattice, hence a m-a.e. minimal one exists and the definition of |Du| is well posed.

Our study of functions in S2(X, Y) begins with the following basic lemma:

Lemma 3.2. Let u ∈ S2(X, Y) and f ∈ LIP(Y). Then f ◦ u ∈ S2(X) with

|d(f ◦ u)| ≤ lipa(f) ◦ u |Du| m − a.e. (3.2)

Proof. Let (yn) ⊂ Y be countable and dense and for r ∈ Q, r > 0, let fr,n ∈ LIP(Y)
be a McShane extension of f |Br(yn)

, i.e. a Lipschitz map defined on the whole Y which 

coincides with f on Br(yn) and such that Lip(fr,n) = Lip(f |Br(yn)
). Then from (3.1)

and the locality of the differential we see that

|d(f ◦ u)| ≤ Lip(f |Br(yn)
)|Du| m − a.e. on u−1(Br(yn)).

Since for every y ∈ Y we have lipa(f)(y) = inf Lip(f |Br(yn)
), where the inf is taken 

among all n, r such that y ∈ Br(yn), the conclusion follows. �
Let us fix u ∈ S2(X, Y) and equip the target space Y with the finite Radon measure

μ := u∗(|Du|2m).

Notice that for f ∈ L0(Y, μ) the function f ◦u is not well-defined up to equality m-a.e. in 
the sense that if f = f̃ μ-a.e., then not necessarily f ◦ u = f̃ ◦ u m-a.e. Still, we certainly 
have f ◦u = f̃ ◦u m-a.e. on {|Du| > 0} and for this reason we have f ◦u |Du| = f̃ ◦u |Du|
m-a.e., i.e. the map f �→ f ◦ u |Du| is well defined from L0(Y, μ) to L0(X, m). Then the 
identity 

∫ ∣∣f ◦ u |Du|∣∣2 dm =
∫ |f |2 dμ shows that

L2(Y, μ) � f �→ f ◦ u |Du| ∈ L2(X,m) is linear and continuous. (3.3)
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We now turn to our key basic result about pullback of Sobolev functions:

Proposition 3.3. Let u ∈ S2(X, Y), put μ := u∗(|Du|2m) and let f ∈ S2(Y, dY, μ). Then 
there is g ∈ S2(X) such that g = f ◦ u m-a.e. on {|Du| > 0} and

|dg| ≤ |dμf | ◦ u|Du| m − a.e. (3.4)

More precisely, there is g ∈ S2(X) and a sequence (fn) ⊂ LIPbd(Y) such that

fn → f μ − a.e. lipa(fn) → |dμf | in L2(μ),
fn ◦ u → g m − a.e. lipa(fn) ◦ u|Du| → |dμf | ◦ u|Du| in L2(m). (3.5)

Proof. Up to a truncation and diagonalization argument we can assume that f ∈
L∞(Y, μ). Then let (fn) ⊂ LIPbd(Y) be as in (2.1) for f and observe that since f is 
bounded, by truncation we can assume the fn’s to be uniformly bounded. Thus the first 
two convergences in (3.5) hold and, taking (3.3) into account we see that also the last in 
(3.5) holds. Now observe that if we can prove that (fn ◦ u) has a limit m-a.e., call it g, 
then (3.4) would follow from Lemma 3.2 above, (3.3) and the closure of the differential.

Let B ⊂ X be bounded and Borel. The functions fn ◦ u are equibounded and m(B) <
∞, hence (fn ◦ u) is bounded in L2(B, m|B). Thus by passing to an appropriate - not 
relabeled - sequence of convex combinations (which do not affect the already proven 
convergences in (3.5)) we obtain that (fn ◦ u) has a strong limit in L2(B, m|B). Thus a 
subsequence converges m-a.e. on B and by considering a sequence (Bk) of bounded sets 
such that X = ∪kBk, by a diagonalization argument we conclude the proof. �

Let us notice that since μ is a finite measure on Y we have LIP(Y) ⊂ S2(Y, dY, μ). 
Also,

for f ∈ LIP(Y) and g ∈ S2(X) as in Proposition 3.3 we have d(f ◦ u) = dg. (3.6)

Indeed, the locality of the differential gives d(f ◦ u) = dg on {|Du| > 0} and the bounds 
(3.2) and (3.4) give |d(f ◦ u)| = |dg| = 0 m-a.e. on {|Du| = 0}.

Observe that for ν := m|{|Du|>0} we have u∗ν � μ, thus u∗L0
μ(T ∗Y) is a well de-

fined L0(ν)-normed module. Recalling the ‘extension’ functor introduced at the end of 
Section 2, our definition of du is:

Definition 3.4. The differential du of u ∈ S2(X, Y) is the operator

du : L0(TX) → Ext
(
(u∗L0

μ(T ∗Y))∗
)

given as follows. For v ∈ L0(TX), the object du(v) ∈ Ext
(
(u∗L0

μ(T ∗Y))∗
)
is charac-

terized by the property: for every f ∈ S2(Y, dY, μ) and every g ∈ S2(X, dX, m) as in 
Proposition 3.3 we have
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ext
(
[u∗dμf ]

)(
du(v)

)
= dg(v) m − a.e. (3.7)

We now verify that this is a good definition and check the very basic properties:

Proposition 3.5 (Well posedness of the definition). The differential du(v) of u in Defini-
tion 3.4 is well-defined and the map du : L0(TX) → Ext

(
(u∗L0

μ(T ∗Y))∗
)

is L0(m)-linear 
and continuous. Moreover, it holds that

|du| = |Du| m − a.e. (3.8)

Proof. Let f ∈ S2(Y, dY, μ) and observe that if g, g′ ∈ S2(X, dX, m) both satisfy the 
properties listed in Proposition 3.3 then the locality of the differential and the bound 
(3.4) show that dg = dg′. Hence the right hand side of (3.7) depends only on f, u, v. 
Then notice that again the bound (3.4) gives

∣∣ext([u∗dμf ]
)(
du(v)

)∣∣ (3.7)= |dg(v)| ≤ |dg| |v|
(3.4)
≤ |dμf |◦u|Du| |v| = ∣∣ext([u∗dμf ]

)∣∣|Du| |v|

and thus the arbitrariness of f ∈ S2(Y, dY, μ), Proposition 2.4 and property (2.5) ensure 
that du(v) is a well defined element of 

(
Ext(u∗L0

μ(T ∗Y))
)∗ ∼ Ext

(
(u∗L0

μ(T ∗Y))∗
)
, as 

desired, with

|du(v)| ≤ |Du| |v|. (3.9)

The fact that du(v) is L0(m)-linear in v is trivial and the bound (3.9) gives both continu-
ity and the inequality ≤ in (3.8). To get the other inequality let f : Y → R be 1-Lipschitz 
and notice that since μ(Y) < ∞ we also have f ∈ S2(Y, dY, μ). Since u ∈ S2(X, Y) we 
have f ◦ u ∈ S2(X) and can find v ∈ L0(TX) such that

|v| = 1 and d(f ◦ u)(v) = |d(f ◦ u)| m-a.e. (3.10)

(the existence of such v follows by Banach-Alaoglu’s theorem, see [9, Corollary 1.2.16]). 
Moreover, let g ∈ S2(X) be as in Proposition 3.3 and notice that

|d(f ◦ u)| (3.10)= |d(f ◦ u)(v)| (3.6)= |dg(v)|
(3.7)=

∣∣ext([u∗dμf ]
)(
du(v)

)∣∣ ≤ ∣∣ext([u∗dμf ]
)∣∣ |du| |v|

(3.10)= |dμf | ◦ u |du| ≤ |du|,

having used the fact that f is 1-Lipschitz in the last step. By the arbitrariness of f and 
the very definition of |Du| given in Definition 3.1, this establishes ≥ in (3.8). �
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4. Consistency with previously known notions

4.1. The case Y = R

In this section we assume Y = R and prove that once a few natural identifications are 
taken into account, the newly defined differential du : L0(TX) → Ext

(
u∗L0

μ(T ∗R)
)∗ is 

‘the same’ as the one defined by Theorem 2.2, which for the moment we shall denote by 
du ∈ L0(T ∗X).

To start with, let us observe that directly from the definitions and the chain rule

d(f ◦ u) = f ′ ◦ u du m − a.e. ∀u ∈ S2(X), f ∈ C1 ∩ LIP(R) (4.1)

(see [8, Corollary 2.2.8]), we have that the class S2(X, Y) coincides with S2(X) when 
Y = R and that the two notions of minimal weak upper gradients coincide.

For later use it will be convenient to consider the case where the target space is 
a generic Riemannian manifold rather than R. Thus let N be a complete Riemannian 
manifold, dN the distance induced by the metric tensor and fix u ∈ S2(X, N). Also, 
let μ be a non-negative Radon measure on N. We shall denote by L0(N, T ∗N; μ) (resp. 
L0(N, TN; μ)) the L0(μ)-normed module of sections of the cotangent (resp. tangent) 
bundle identified up to equality μ-a.e. (the notation is unusual, but hopefully helps com-
paring these ‘concrete’ notions with the more abstract ones we are discussing here). We 
shall instead denote by L0

μ(T ∗N) (resp. L0
μ(TN)) the cotangent (resp. tangent) module 

associated to the space (N, dN, μ).
The next result has been proved in [10] for the case N = Rd and generalised in [17]

to the manifold case:

Theorem 4.1. Let N be a complete Riemannian manifold and μ be a non-negative 
Radon measure on it. Then there is a unique L0(μ)-linear and continuous map P :
L0(N, T ∗N; μ) → L0

μ(T ∗N) such that

P (Df) = dμf ∀f ∈ C1(N), (4.2)

where Df : N → T ∗N is the differential of f . Its adjoint map ι : L0
μ(TN) → L0(N, TN; μ)

is an isometry. In particular, L0
μ(TN) is separable.

Let now u ∈ S2(X, N), put μ := u∗(|du|2m) and consider the L0(m)-normed module 
Ext(u∗L0

μ(T ∗N)). The separability of L0
μ(TN) provided by Theorem 4.1 above, the char-

acterisation of the dual of the pullback obtained in [8, Theorem 1.6.7] and (2.5) grant 
that

Ext(u∗L0
μ(TN)) ∼ Ext(u∗L0

μ(T ∗N))∗ via the coupling

ext([u∗L])
(
ext([u∗v])

)
:= ext(L(v) ◦ u). (4.3)
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Hence in the present situation we shall think of du as a map from L0(TX) to 
Ext(u∗L0

μ(TN)).
Now put ν := χ{|Du|>0}m as before and consider the L0(ν)-linear and continuous 

operators

u∗P : u∗L0(N, T ∗N;μ) −→ u∗L0
μ(T ∗N),

u∗ι : u∗L0
μ(TN) −→ u∗L0(N, TN;μ)

defined via the universal property of the pullback module given in Proposition 2.4. It is 
then clear that u∗ι is the adjoint of u∗P , thus from (4.2) we see that

[u∗Df ]
(
u∗ι(V )

)
= [u∗dμf ](V ) ν − a.e.

for every V ∈ u∗L0
μ(TN), f ∈ C1(N). (4.4)

Finally, noticing that ext : u∗L0
μ(TN) → Ext(u∗L0

μ(TN)) is invertible, we define I :
Ext(u∗L0

μ(TN)) → Ext(u∗L0(N, TN; μ)) as

I := ext ◦ u∗ι ◦ ext−1. (4.5)

Let us now consider the case N = R. In this case the canonical isomorphism TxR ∼ R

valid for any x ∈ R gives L0(R, T R; μ) ∼ L0(μ). With this identification and recalling 
(2.2) and the very definition of the extension functor we see that the map I takes values 
in L0(m). Then we have:

Theorem 4.2. With the above notation and assumptions we have |du| = |du| m-a.e. and

I(du(v)) = du(v) m − a.e. ∀v ∈ L0(TX). (4.6)

Proof. The identity |du| = |du| follows from (3.8) and the already noticed fact that for 
u ∈ S2(X) = S2(X, R) the two notions of minimal weak upper gradients underlying the 
two spaces coincide.

We turn to (4.6). For f ∈ C1
c (R) let us denote by Df : R → R∗ its differential and by 

f ′ : R → R its derivative. Clearly, up to identifying R and R∗ via the Riesz isomorphism 
these two objects coincide and thus checking first the case h = [u∗g] we easily get that

f ′ ◦ u h = ext[u∗Df ](h) m − a.e.

∀h ∈ Ext
(
u∗L0(μ)

) (2.2)∼ Ext
(
L0(ν)

) ⊂ L0(m). (4.7)

Then for g as in Proposition 3.3 we have
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f ′ ◦ u I(du(v)) (4.7)= ext[u∗Df ] I(du(v)) (4.5),(2.5)= ext
(
[u∗Df ]

(
u∗ι

(
ext−1(du(v))

)))
(4.4)= ext

(
[u∗dμf ]

(
ext−1(du(v))

)) (2.5)= ext([u∗dμf ])(du(v)) (3.7)= dg(v)
(3.6)= d(f ◦ u)(v) (4.1)= f ′ ◦ u du(v).

Since the space {f ′ ◦ u : f ∈ C1
c (R)} generates L0(m), this is sufficient to establish 

(4.6). �
4.2. The case u of bounded deformation

In this section we shall assume that also (Y, dY) carries a non-negative Radon measure 
mY which gives finite mass to bounded sets and study the differential of a map u ∈
S2(X, Y) which is also of bounded deformation. Recall that the latter means that u is 
Lipschitz and for some C > 0 it holds u∗mX ≤ CmY, where we denote mX := m for the 
sake of clarity. For such u it is easy to prove that

f ∈ S2(Y) ⇒ f ◦ u ∈ S2(X) with |d(f ◦ u)| ≤ Lip(u)|df | ◦ u mX − a.e.

Then a notion of differential d̂u : L2(TX) → (
u∗L2

mY(T
∗Y)

)∗ can be defined by the 
formula

[u∗dmYf ](d̂u(v)) := d(f ◦ u)(v) mX − a.e. ∀f ∈ S2(Y, dY,mY), v ∈ L2(TX), (4.8)

see [8, Proposition 2.4.6]. In this section we study the relation between d̂u and du. We 
start noticing that the definition of |Du| trivially gives |Du| ≤ Lip(u) mX-a.e., so we 
have

μ = u∗(|Du|2mX) ≤ Lip2(u)u∗mX ≤ CLip2(u)mY. (4.9)

Also, let us prove the following general statement:

Lemma 4.3. Let μ1, μ2 be two non-negative and non-zero Radon measures on the complete 
space (Y, dY) with μ1 ≤ μ2. Then S2(Y, dY, μ2) ⊂ S2(Y, dY, μ1) and there is a unique 
L0(μ2)-linear and continuous map P : L0

μ2(T
∗Y) → Ext(L0

μ1(T
∗Y)) such that

P (dμ2f) = ext(dμ1f) ∀f ∈ S2(Y, dY, μ2),

and it satisfies |P (ω)| ≤ |ω| μ2-a.e. for every ω ∈ L0
μ2(T

∗Y), where here the ‘extension’ 
operator acts from L0(μ1)- to L0(μ2)- normed modules.

Proof. The assumption μ1 ≤ μ2 ensures that the topologies of L2(μ2), L0(μ2)
are stronger than those of L2(μ1), L0(μ1) respectively. Thus both the inclusion 
S2(Y, dY, μ2) ⊂ S2(Y, dY, μ1) and the bound ext(|dμ1f |) ≤ |dμ2f | μ2-a.e. for every 
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f ∈ S2(Y, dY, μ2) follow from Definition 2.1. To conclude apply, e.g., Proposition 2.4
with u := Identity and T (dμ2f) := ext(dμ1f) ∈ Ext(L0

μ1(T
∗Y)). �

Applying this lemma to the case under consideration we get:

Proposition 4.4. Assume that u : X → Y is of bounded compression. Then with the 
above notation there is a unique L0(mY)-linear and continuous map π : L0

mY(T
∗Y) →

Ext(L0
μ(T ∗Y)) such that π(dmYf) = ext(dμf) for every f ∈ S2(Y, dY, mY) (the extension 

operator being intended from L0(μ)- to L0(mY)- normed modules) and it satisfies |π(ω)| ≤
|ω| mY-a.e. for every ω ∈ L0

mY(T
∗Y).

Moreover, for any f ∈ S2(Y, dY, mY) and g ∈ S2(X) as in Proposition 3.3 we have

dg = d(f ◦ u). (4.10)

Proof. The first part of the statement follows from Lemma 4.3 and (4.9). To prove (4.10)
notice that thanks to the locality of the differential we know that (4.10) holds mX-a.e. 
on {|Du| > 0}, while (3.4) shows that dg = 0 mX-a.e. on {|Du| = 0}, hence to conclude 
it is sufficient to prove that |d(f ◦ u)| = 0 mX-a.e. on {|Du| = 0}. To see this, let (fn) ⊂
LIPbd(Y) be such that (fn), (lipa(fn)) converge to f, |dmYf | mY-a.e. and in L2(mY)
respectively. Then the assumption u∗mX ≤ CmY grants that (fn ◦ u), 

(
lipa(fn) ◦ u

)
converge to f ◦ u, |dmYf | ◦ u mX-a.e. and in L2(mX) respectively. Hence passing to the 
limit in (3.2) we conclude that |d(f ◦ u)| = 0 mX-a.e. on {|Du| = 0}, as desired. �

It is readily verified that the map sending [u∗ext(ω)] to ext([u∗ω]) is an isomorphism 
from u∗Ext(L0

μ(T ∗Y)) to Ext(u∗L0
μ(T ∗Y)), hence from Proposition 4.4 above and the 

universal property of the pullback stated in Proposition 2.4 we see that there is a unique 
L0(mX)-linear and continuous map u∗π : u∗L0

mY(T
∗Y) → Ext(u∗L0

μ(T ∗Y)) such that

u∗π([u∗dmYf ]) = ext[u∗dμf ] ∀f ∈ S2(Y, dY,mY) (4.11)

and such map satisfies

|u∗π(ω)| ≤ |ω| mX − a.e. ∀ω ∈ u∗L0
mY(T

∗Y). (4.12)

Then denoting by (u∗π)∗ :
(
Ext(u∗L0

μ(T ∗Y))
)∗ → (

u∗L0
mY(T

∗Y)
)∗ the adjoint of u∗π

we have:

Theorem 4.5. With the above notation and assumptions we have

d̂u(v) = (u∗π)∗
(
du(v)

) ∀v ∈ L0(TX) (4.13)

and
∣∣d̂u(v)

∣∣ ≤ ∣∣du(v)
∣∣ mX-a.e. on X ∀v ∈ L0(TX). (4.14)

13

ht
tp
://
do
c.
re
ro
.c
h



Proof. Let f ∈ S2(Y, dY, mY) and notice that

[u∗dmYf ](d̂u(v)) (4.8)= d(f ◦ u)(v) (4.10)= dg(v) (3.7)= ext[u∗dμf ](du(v))
(4.11)= (u∗π)([u∗dmYf ])(du(v)).

Since elements of the form [u∗dmYf ] generate u∗L0
mY(T

∗Y), this is sufficient to prove 
(4.13). Now observe that by duality (4.12) yields |(u∗π)∗(V )| ≤ |V | mX-a.e. for every 
V ∈ (

Ext(u∗L2
μ(T ∗Y))

)∗, hence (4.14) follows from (4.13). �
Equality in (4.14) can be obtained under appropriate assumptions on either X or Y:

Proposition 4.6. Suppose that either W 1,2(X, dX, mX) or W 1,2(Y, dY, μ) is reflexive. Then
∣∣d̂u(v)

∣∣ = ∣∣du(v)
∣∣ holds mX-a.e. for every v ∈ L0(TX).

Proof. W 1,2(X, dX, m) is reflexive. By inequality (4.14) and a density argument to con-
clude it is sufficient to show that for any f ∈ L∞ ∩ S2(Y, dY, μ), g ∈ S2(X) as in 
Proposition 3.3 and v ∈ L∞(TX) with bounded support it holds

dg(v) ≤ |dμf | ◦ u|d̂u(v)| m − a.e. (4.15)

Let us observe that (4.14) and the very definition of |du| give |d̂u(v)| ≤ |du(v)| ≤ |du||v|
m-a.e., hence the m-a.e. value of G ◦ u|d̂u(v)| is independent on the μ-a.e. representative 
of G, and the right hand side of (4.15) is well defined m-a.e. (and equal to 0 m-a.e. on 
{|du| = 0}). The trivial bound

∫
|G|2 ◦ u|d̂u(v)|2 dm ≤

∫
|G|2 ◦ u|du|2|v|2 dm ≤ ‖|v|‖2∞

∫
|G|2 du∗(|du|2m)

shows that

L2(Y, μ) � G �→ G ◦ u|d̂u(v)| ∈ L2(X,m) is linear and continuous. (4.16)

Now fix f, v as in (4.15), let η ∈ LIP(X) be identically 1 on the support of v and with 
bounded support, (fn) ⊂ LIPbd(Y) be as in (2.1) for the space (Y, dY, μ) and notice that 
since we assumed f to be bounded, up to a truncation argument we can assume the fn’s 
to be equibounded. Thus the functions fn ◦ u are equibounded as well and taking into 
account the Leibniz rule we see that ηfn ◦ u ∈ W 1,2(X, dX, m) with equibounded norm. 
Since we assumed such space to be reflexive, up to pass to a non-relabeled subsequence 
we can assume that (ηfn ◦ u)n has a W 1,2-weak limit and it is then clear that such limit 
is ηg. Thus we have that (d(ηfn ◦ u))n converges to d(ηg) weakly in L2(T ∗X) and, by 
the choices of v, η, this implies that (d(fn ◦ u)(v))n weakly converges to dg(v) in L2(X). 
Now notice that
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d(fn ◦ u)(v) = [u∗dmYfn](d̂u(v)) ≤ |dmYfn| ◦ u|d̂u(v)| ≤ lipa(fn) ◦ u|d̂u(v)|.

This, (4.16) and the choice of (fn) give that the rightmost side of the estimate above 
converges to the right hand side of (4.15) in L2(X). This concludes the argument.

W 1,2(Y, dY, μ) is reflexive. According to [1, Proposition 7.6] and its proof, in this case 
for any f ∈ W 1,2(Y, dY, μ) we can find (fn) ⊂ LIPbs(Y) ⊂ W 1,2(Y, dY, mY) converging 
to f in W 1,2(Y, dY, μ) and such that lipa(fn) → |dμf | in L2(μ). The definitions of du, ̂du

give

ext[u∗dμfn](du(v)) (3.6)= d(fn ◦ u)(v)

= [u∗dmYfn](d̂u(v)) ≤ |d̂u(v)| |dmYfn| ◦ u ≤ |d̂u(v)|lipa(fn) ◦ u

and since the construction also ensures that [u∗dμfn] → [u∗dμf ] as n → ∞, by passing 
to the limit we get that

ext([u∗dμf ])(du(v)) ≤ |d̂u(v)| |dμf | ◦ u = |d̂u(v)| |ext([u∗dμf ])|, m − a.e.

By the arbitrariness of f ∈ W 1,2(Y, dY, μ), this is sufficient to conclude the proof. �
4.3. The case X = Rd and u Lipschitz

In this section we assume that our source space X is (Rd, dEucl, Ld) and that the map 
u ∈ S2(Rd, Y) is also Lipschitz. In this case Kirchheim proved in [14] that for Ld-a.e. 
x ∈ Rd there is a seminorm md(u, x) on Rd such that:

for Ld-a.e. x we have md(u, x)(v) = lim
t↓0

dY
(
u(x + tv), u(x)

)
t

for every v ∈ Rd,

where it is part of the claim the fact that the limit in the right hand side exists for 
Ld-a.e. x.

We now show that such concept is fully compatible with the notion of differential we 
introduced:

Theorem 4.7. Let u : Rd → Y be a Lipschitz map that is also in S2(Rd, Y) and v ∈ Rd ∼
T Rd. Denote by v̄ ∈ L0(TRd) the vector field constantly equal to v. Then

∣∣du(v̄)
∣∣(x) = md(u, x)(v) for Ld-a.e. x ∈ Rd. (4.17)

Proof. ≥ Let (yn)n be countable and dense in u(Rd) ⊂ Y and, for any n ∈ N, put 
fn(·) := dY(·, yn). From the compatibility of the abstract differential with the classical 
distributional notion in the case X = Rd (see [8, Remark 2.2.4]) and Rademacher’s 
theorem we see that
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d(fn ◦ u)(v̄) = lim
h→0

fn ◦ u(· + hv) − fn ◦ u(·)
h

Ld − a.e. (4.18)

For x ∈ Rd let γx : [0, 1] → Y be the Lipschitz curve defined by γx
t := u(x + tv) and put 

gx
n,t := fn ◦ γx

t . By [2, Theorem 1.1.2] and its proof we know that for the metric speed 
|γ̇x

t | it holds |γ̇x
t | = supn ∂tg

x
n,t for every x ∈ Rd and a.e. t, so that taking (4.18) into 

account we obtain

md(u, x + tv)(v) = |γ̇x
t | = sup

n
∂tg

x
n,t = sup

n
d(fn ◦ u)(v̄)(x + tv) Ld − a.e. x, a.e. t.

Hence Fubini’s theorem yields

md(u, ·)(v) = sup
n

d(fn ◦ u)(v̄) (3.6)= sup
n

ext([u∗dμfn])(du(v̄)) ≤ |du(v̄)| Ld − a.e.,

having used the trivial bound |dμfn| ≤ 1 μ-a.e. in the last step.
≤ Let f ∈ S2(Y, dY, μ) be arbitrary and g ∈ S2(X) as in Proposition 3.3. We will 

show that

dg(v) ≤ |dμf | ◦ umd(u, ·)(v) Ld − a.e., (4.19)

which is sufficient to conclude. The bound ≥ in (4.17) that we already proved and the 
same arguments used in studying (4.15) show that the right hand side of (4.19) is well 
defined Ld-a.e. and that

L2(Y, μ) � G �→ G ◦ umd(u, ·)(v) ∈ L2(Rd) is linear and continuous. (4.20)

Now let (fn) ⊂ LIPbd(Y) be as in Proposition 3.3 and notice that for every n ∈ N the 
identity (4.18) yields, for Ld-a.e. x:

|d(fn ◦ u)(v̄)|(x) ≤ lipa(fn)(u(x)) lim
h→0

dY
(
u(x + hv), u(x)

)
|h|

=
(
lipa(fn) ◦ u

)
(x)md(u, x)(v).

By (4.20) and the choice of (fn) we see that the rightmost side of the above converges 
to the right hand side of (4.19) in L2(Rd) and again following the arguments in the first 
part of the proof of Proposition 4.6 (applicable, as W 1,2(Rd) is certainly reflexive) we see 
that 

(
d(fn ◦ u)(v̄)

)
n
converges to dg(v) weakly in L2(Rd). Hence (4.19) is obtained. �

4.4. The case of smooth spaces and co-local weak differential

In this section we assume that the source and target spaces are complete and smooth 
Riemannian manifolds M, N respectively and prove the compatibility of our concept of 
differential with the one introduced in [19]. We stress that also the approach in [19] is 
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based on post-composition; as such, proving compatibility of the two notions amounts to 
a large extent to translate one vocabulary into the other, the more technical part about 
the relation between ‘abstract’ and ‘concrete’ (co)vector fields being already covered by 
Theorem 4.1.

Let us denote by πM : TM → M the canonical projection. Recall that a bundle 
morphism U : TM → TN that covers u : M → N is a map making the diagram

TM TN

M N

U

πM πN

u

commute and linear on fibres. Let us recall the notion of co-local weak differential and 
Sobolev space introduced in [19]:

Definition 4.8. A map u : M → N is said to be co-locally weakly differentiable provided 
for any f ∈ C1

c (N, R) we have that f ◦ u ∈ W 1,1
loc (M). In this case, the co-local weak 

differential Du is the bundle morphism that covers u characterised by the identity

D(f ◦ u)(x) = Dfu(x) ◦ Du(x) VolM − a.e. x ∈ M ∀f ∈ C1
c (N). (4.21)

Finally, Ẇ 1,2(M, N) is the collection of all maps u : M → N co-locally weakly differen-
tiable for which |Du|g∗

M⊗gN ∈ L2(M, VolM).

We refer to [19, Proposition 1.5] for the proof that any co-locally weakly differentiable 
map has a, uniquely defined up to VolM-a.e. equality, co-local weak differential.

It is easy to see that

S2(M,N) = Ẇ 1,2(M,N) and |Du| ≤ |Du|g∗
M⊗gN ≤ k|Du|

VolM − a.e. ∀u ∈ S2(M,N), (4.22)

where k := min{dimM, dimN}. Indeed, if u ∈ S2(M, N), then by definition we have that 
f ◦ u ∈ W 1,2(M) ⊂ W 1,1

loc (M) for every f ∈ C1
c (N). Then for f = (f1, . . . , fk) : N → Rk

we have

|D(f ◦ u)|g∗
M⊗gRk

≤
k∑

j=1
|D(fj ◦ u)|g∗

M⊗gR
=

k∑
j=1

|D(fj ◦ u)|

≤
k∑

j=1
Lip(fj)|Du| ≤ kLip(f)|Du|,

having used the compatibility between the ‘metric’ and ‘classical’ Sobolev spaces in 
the equality. Thus by [19, Proposition 2.2] we conclude that u ∈ Ẇ 1,2(M, N) and that 
|Du|g∗

M⊗gN ≤ k|Du| holds almost everywhere.
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Conversely, let u ∈ Ẇ 1,2(M, N) and for any f ∈ C1
c (N) let f̃ := (f, 0, . . . , 0) : N → Rk. 

Then VolM-a.e. we have

|D(f ◦u)| = |D(f ◦u)|g∗
M⊗gR

= |D(f̃ ◦u)|g∗
M⊗gRk

≤ Lip(f̃)|Du|g∗
M⊗gN = Lip(f)|Du|g∗

M⊗gN .

Now an argument based on the approximation lemma [19, Lemma 2.3] and on the closure 
of (classical) weak differentials shows that the above holds for any f ∈ LIP(N). By 
definition, this proves that u ∈ S2(M, N) and that the bound |Du| ≤ |Du|g∗

M⊗gN holds 
VolM-a.e., concluding the proof of (4.22).

We turn to the statement and proof of the compatibility of the two notions of 
differential. We shall make use of the terminology and results already discussed in Sec-
tion 4.1. In particular, recalling (4.3) we shall think of du(v) as a map from L0(TX)
to Ext(u∗L0

μ(TN)). Also, we shall use the maps P, ι introduced in Theorem 4.1 and the 
map I : Ext(u∗L0

μ(TN)) → Ext(u∗L0(N, TN; μ)) defined in (4.5).
Then we have:

Theorem 4.9. Let M and N be complete Riemannian manifolds, and let u ∈ S2(M, N) =
Ẇ 1,2(M, N).

Then for every v ∈ L0(TM) we have

I(du(v)) = Du(ι(v)) VolM − a.e.

Proof. Using charts it is easy to see that the L0(μ)-normed module L0(N, TN; μ) is 
generated by {Df : f ∈ C1

c (N)}. It follows that Ext(u∗L0(N, TN; μ)) is generated by 
{ext([u∗Df ]) : f ∈ C1

c (N)} and thus the conclusion follows if we show that for any 
f ∈ C1

c (N) it holds

ext([u∗Df ])
(I(du(v))

)
= ext([u∗Dμf ])

(
Du(ι(v))

)
VolM − a.e. (4.23)

To see this start noticing that

ext([u∗Df ])
(I(du(v))

) (4.5),(2.5)= ext
(
[u∗Df ](u∗ι(ext−1(du(v)))

)
(4.4),(2.5)= ext([u∗dμf ])(du(v)) VolM − a.e.

Now observe that the function f ◦ u belongs to S2(X) and thus, by the locality property 
of minimal weak upper gradients and (3.2), satisfies the conclusion of Proposition 3.3. 
Hence taking into account the very definition of du(v) we obtain

ext([u∗Df ])
(I(du(v))

)
= d(f ◦ u)(v) VolM − a.e. (4.24)

Now put, as usual, ν := χ{|Du|>0}VolM and notice that a direct verification of the 
property stated in Theorem 2.3 shows that the pullback module u∗L0(N, T ∗N; μ) can 
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be identified with the space of (equivalence classes up to ν-a.e. equality of) Borel maps 
ω : M → T ∗N such that ω(x) ∈ T ∗

u(x)N for ν-a.e. x, the corresponding pullback map 
being the right composition with u. With this in mind and recalling the definition of the 
extension functor we get

ext([u∗Df ])(x) =
{

Dfu(x) for VolM − a.e. x ∈ {|Du| > 0},

0 for VolM − a.e. x ∈ {|Du| = 0},

and thus

ext([u∗Df ])
(
Du(ι(v))

)
(x) =

{
Dfu(x)

(
Dux(ι(v)(x))

)
for VolM − a.e. x ∈ {|Du| > 0},

0 for VolM − a.e. x ∈ {|Du| = 0}.

Noticing that (4.22) yields that {|Du| = 0} = {|Du| = 0}, the above gives

ext([u∗Df ])
(
Du(ι(v))

)
(x) = Dfu(x)

(
Dux(ι(v)(x))

)
for VolM − a.e. x ∈ M.

Hence from the definition (4.21) we conclude that

ext([u∗Df ])
(
Du(ι(v))

)
= D(f ◦ u)(ι(v)) VolM − a.e. (4.25)

The claim (4.23) is then a consequence of (4.24), (4.25), (4.2) and the fact that ι is the 
adjoint of P . �
5. Differential of locally Sobolev maps between metric spaces

5.1. Inverse limits of modules

Here we briefly discuss properties of inverse limits in the category of L0(m)-normed 
modules, where morphisms are L0(m)-linear contractions, i.e. maps T : M → N such 
that |T (v)| ≤ |v| m-a.e. We start with:

Proposition 5.1. Let ({Mi}i∈I , {P i
j }i≤j∈I) be an inverse system of L0(m)-normed mod-

ules. Then there exists the inverse limit (M , {P i}i∈I). Moreover, for every family 
I � i �→ vi ∈ Mi such that

P i
j (vj) = vi and ess sup

i∈I
|vi| ∈ L0(m) (5.1)

there is a unique v ∈ M such that vi = P i(v) for every i ∈ I and it satisfies |v| =
ess supi |vi|.
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Proof. The system ({Mi}i∈I , {P i
j }i≤j∈I) is also an inverse system in the category of 

algebraic modules over the ring L0(m) in the sense of [16, Chapter III.§10]. Hence ac-
cording to [16, Chapter III, Theorem 10.2] and its proof there exists the algebraic inverse 
limit (MAlg, P i

Alg) and for every family i �→ vi ∈ Mi there is a unique v ∈ MAlg such 
that P i

Alg(v) = vi for every i ∈ I. Now define |v| for any v ∈ MAlg as

|v| := ess sup
i∈I

|P i
Alg(v)| (5.2)

so that |v| : X → [0, +∞] is the equivalence class of a Borel map up to m-a.e. equality, 
and put

M :=
{

v ∈ MAlg : |v| ∈ L0(m)
}
=

{
v ∈ MAlg : |v| < +∞ m−a.e.

}
, P i := P i

Alg|M .

We claim that (M , P i) is the desired inverse limit. Start by noticing that (5.2) ensures 
that |P i(v)| ≤ |v| m-a.e., i.e. the P i’s are contractions, as required. Let us now check that 
M is a L0(m)-normed module: the only non-trivial thing to verify is that it is complete, 
i.e. that if (vn) is Cauchy in M , then it has a limit. Since the P i’s are contractions, we see 
that n �→ P i(vn) is Cauchy in Mi and thus has a limit vi for every i ∈ I. Passing to the 
limit in the identity P i(vn) = P i

j (P j(vn)) valid for every i ≤ j and using the continuity 
of P i

j we deduce that vi = P i
j (vj), i.e. there is v = (vi)i∈I ∈ MAlg. Since (vn) is Cauchy 

and, trivially, the pointwise norm in M satisfies the triangle inequality, we see that 
(|vn|) has a limit f in L0(m). Then from the bound |vi| = limn |P i(vn)| ≤ limn |vn| =: f

valid for every i ∈ I we deduce |v| ≤ f and thus v ∈ M . Similarly, from |vi − P i(vn)| =
limm |P i(vm) −P i(vn)| ≤ limm |vm −vn| we deduce |v −vn| ≤ limm |vm −vn| and passing 
to the L0(m)-limit in n and using that (vn) is M -Cauchy we conclude that vn → v in 
M , thus proving completeness.

Now the fact that for vi’s as in (5.1) there is a unique v ∈ M projecting on them is 
a trivial consequence of the construction and from this fact the universality property of 
(M , P i) follows. �

It is now easy to check that there exists the inverse limit of a compatible family of 
maps:

Proposition 5.2. Let ({M i}i∈I , {P i
j }i≤j∈I) and ({N i}i∈I , {Qi

j}i≤j∈I) be two inverse sys-
tems of L0(m)-normed modules and (M , P i), (N , Qi) their inverse limits. Also, for every 
i ∈ I let T i : M i → N i be L0(m)-linear and continuous and such that

T i ◦ P i
j = Qi

j ◦ T j ∀i ≤ j ∈ I (5.3)

and so that for some � ∈ L0(m) we have

|T i(vi)| ≤ �|vi| m − a.e. ∀i ∈ I, vi ∈ M i. (5.4)
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Then there exists a unique L0(m)-linear and continuous map T : M → N such that 
Qi ◦ T = T i ◦ P i for every i ∈ I and it satisfies |T (v)| ≤ �|v| m-a.e. for every v ∈ M .

Proof. Let v ∈ M , put wi := T i(P i(v)) ∈ N i and notice that (5.3) yields Qi
j(wj) = wi

and (5.4) that |wi| ≤ �|v| m-a.e. for every i ≤ j ∈ I. Thus Proposition 5.1 above ensures 
that there is a unique T (v) ∈ N such that Qi(T (v)) = wi for every i ∈ I and it satisfies 
|T (v)| ≤ �|v| m-a.e. Since the assignment v �→ T (v) is trivially L0(m)-linear, the proof is 
completed. �
5.2. Locally Sobolev maps and their differential

In this section we come back to the case of general (X, dX, m), (Y, dY) as in Section 3
and study the case of u ∈ S2loc(X, Y), this being the collection of functions u such that 
every x ∈ X has a neighbourhood Ux such that u coincides with some ux ∈ S2(X, Y)
m-a.e. in Ux. Then for u ∈ S2loc(X, Y) the locality of the differential ensures that the 
formula

|Du| := |Dux| m − a.e. on Ux ∀x ∈ X

gives a well-defined function |Du| ∈ L2
loc(X). Here L2

loc(X) denotes the space of locally 
square-integrable functions on X.

For this kind of u the measure u∗(|Du|2m) is in general not σ-finite any longer. Hence, 
to define the differential du we need to suitably adapt the definition previously given. 
This is the scope of the current section.

Fix u ∈ S2loc(X, Y). By F(u) we denote the collection of open sets Ω ⊂ X such that ∫
Ω |Du|2 dm < ∞. Since u ∈ S2loc(X, Y) we see that F(u) is a cover of X. We shall 
now build two inverse limits of L0(m)-normed modules indexed over F(u), directed by 
inclusion. For the first define, for Ω ∈ F(u), the measure μΩ on Y as

μΩ := u∗(|Du|2m|Ω).

Thus μΩ is Radon and we can consider the cotangent module L0
μΩ(T

∗Y) of (Y, dY, μΩ)
and its pullback u∗L0

μΩ(T
∗Y) which is a L0(m|Ω∩{|Du|>0})-normed module. Then put 

u∗L0
Ω(T ∗Y) := Ext(u∗L0

μΩ(T
∗Y)), which is L0(m)-normed. Observe that for Ω′ ⊂ Ω ∈

F(u) we have μΩ′ ≤ μΩ and thus Lemma 4.3 provides a canonical ‘projection’ map 
PΩ′
Ω : L0

μΩ(T
∗Y) → Ext(L0

μΩ′ (T ∗Y)). Then we can consider the (extended) pullback map 

u∗PΩ′
Ω : u∗L0

Ω(T ∗Y) → u∗L0
Ω′(T ∗Y) and notice that since PΩ1

Ω2
◦ PΩ2

Ω3
= PΩ1

Ω3
for every 

Ω3 ⊂ Ω2 ⊂ Ω1 ∈ F(u), the functoriality of the pullback grants that (u∗L0
Ω(T ∗Y), u∗PΩ′

Ω )
is an inverse system of L0(m)-normed modules. We then call (u∗L0

u(T ∗Y), PΩ) its inverse 
limit (recall Proposition 5.1).
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Remark 5.3. For every f : Y → R Lipschitz with bounded support we have f ∈
S2(Y, dY, μ) and |dμf | ≤ Lip(f) μ-a.e. for every finite Radon measure μ. Hence there is 
an element ω ∈ u∗L0

u(T ∗Y) such that PΩ(ω) = ext([u∗dμΩf ]) for every Ω ∈ F(u). �

For the second consider, given Ω ⊂ X open, the L0(m|Ω)-normed module L0
m|Ω(T

∗X)
and its extension L0

Ω(T ∗X) := Ext(L0
m|Ω(T

∗X)) which is L0(m)-normed. Since trivially 

for Ω′ ⊂ Ω we have m|Ω′ ≤ m|Ω, Lemma 4.3 grants the existence of canonical (extended) 
‘projection’ maps QΩ′

Ω : L0
Ω(T ∗X) → L0

Ω′(T ∗X) and by construction it is clear that ({
L0
Ω(T ∗X)

}
Ω∈F(u), {QΩ′

Ω }Ω′⊂Ω
)
is an inverse system of L0(m)-normed modules. We then 

have the following non-obvious result:

Lemma 5.4. The inverse limit of 
({

L0
Ω(T ∗X)

}
Ω∈F(u), {QΩ′

Ω }Ω′⊂Ω
)

is 
(
L0(T ∗X),

{QΩ
X}Ω′⊂Ω

)
.

Proof. The fact that QΩ′
Ω ◦ QΩ

X = QΩ′
X for Ω′ ⊂ Ω ∈ F(u) is a direct consequence of 

the definition of the Q’s. For universality, we recall [5, Theorem 4.19] and its proof (in 
particular: the assumption m(X) = 1 plays no role) to get that |QΩ′

Ω (dm|Ωf)| = |dm|Ω′ f |
m-a.e. on Ω′ and that if f ∈ S2(X, dX, m|Ω′) has support at positive distance from X\Ω′, 
then f ∈ S2(X, dX, m|Ω) as well. It easily follows that QΩ′

Ω : L0
Ω(T ∗X) → L0

Ω′(T ∗X) has 
a unique norm-preserving right inverse, call it PΩ

Ω′ . Then if F(u) � Ω �→ ωΩ ∈ L0
Ω(T ∗X)

satisfies QΩ′
Ω (ωΩ) = ωΩ′ for every Ω′ ⊂ Ω ∈ F(u), it is clear that there is a unique 

ω ∈ L0(T ∗X) such that χΩ ω = PX
Ω (ωΩ) for every Ω ∈ F(u) and this is sufficient to 

conclude. �
Let Ω ∈ F(u) and define SΩ : {dμΩf : f ∈ S2(Y, dY, μΩ)} → L0

Ω(T ∗X) by putting

SΩ(dμΩf) := ext(dm|Ωg),

where g is related to f as in Proposition 3.3, here applied to the space (X, dX, m|Ω). In 
particular the bound (3.4) gives

|SΩ(dμΩf)| ≤ χΩ
(|dμΩf | ◦ u|Du|) (5.5)

which is easily seen to ensure that SΩ is well posed (i.e. the value of SΩ depends only 
on dμΩf and not on f). Thus by the universality property of the pullback we see that 
there exists a unique L0(m)-linear and continuous map TΩ : u∗L0

Ω(T ∗Y) → L0
Ω(T ∗X)

such that

TΩ(ext([u∗dμΩf ])) = SΩ(dμΩf) ∀f ∈ S2(Y, dY, μΩ)

and by (5.5) such TΩ satisfies
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|TΩ(ω)| ≤ |Du||ω| m − a.e. ∀ω ∈ u∗L0
Ω(T ∗Y). (5.6)

It is now only a matter of keeping track of the various definitions to check that for every 
Ω′ ⊂ Ω ∈ F(u) it holds

TΩ′(u∗PΩ′
Ω (ω)) = QΩ′

Ω (TΩ(ω)) (5.7)

for every ω ∈ u∗L0
Ω(T ∗Y) of the form ω = ext([u∗dm|Ωf ]) for some f ∈ S2(Y, dY, μΩ). 

Then by L0(m)-linearity and continuity we see that (5.7) holds for every ω ∈ u∗L0
Ω(T ∗Y). 

In light of (5.6), Proposition 5.2 and Lemma 5.4 we have that there is a unique 
L0(m)-linear and continuous map T : u∗L0

u(T ∗Y) → L0(T ∗X) such that

QΩ
X(T (ω)) = TΩ(PΩ(ω)) ∀ω ∈ u∗L0

u(T ∗Y), Ω ∈ F(u).

We can now give the main definition of this section:

Definition 5.5. The differential du : L0(TX) → (u∗L0
u(T ∗Y))∗ is defined as the adjoint 

of T .

Notice that by (5.6) it follows that |T (ω)| ≤ |Du||ω| for every ω ∈ u∗L0
u(T ∗Y). Hence 

by duality we also get that |du(v)| ≤ |Du||v| m-a.e. for every v ∈ L0(TX), i.e. |du| ≤ |Du|
m-a.e. Then arguing as in Proposition 3.5 we can prove that actually |du| = |Du| m-a.e.
Analogously, natural variants of the properties stated in Sections 4.1, 4.2, 4.3 hold for 
this more general notion of differential. We omit the details.

We conclude observing that if u ∈ S2(X, Y) ⊂ S2loc(X, Y), then X ∈ F(u), i.e. the 
directed family F(u) has a maximum. It is then clear that the differential du in the 
sense of Definition 5.5 canonically coincides with the one given by Definition 3.4.
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