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The importance of circadian biology has rarely been considered in pre-clinical studies, and even more when
translating to the bedside. Circadian biology is becoming a critical factor for improving drug efficacy and di-
minishing drug toxicity. Indeed, there is emerging evidence showing that some drugs are more effective at
nighttime than daytime, whereas for others it is the opposite. This suggests that the biology of the target
cell will determine how an organ will respond to a drug at a specific time of the day, thus modulating phar-
macodynamics. Thus, it is now time that circadian factors become an integral part of translational research.

Introduction
Differential Day/Night Outcomes in Humans

While the past two decades have witnessed a transformation in

the understanding of the molecular underpinnings of biological

clocks in model organisms, the bridge between circadian mech-

anisms and clinical studies remains incomplete. Reaching

across the divide between molecular and clinical systems re-

quires integration of circadian biology elements in medical prac-

tice (Bass and Lazar, 2016). For instance, a number of studies

demonstrated that heart attacks occur more frequently during

themorning hours, a finding that may be explained by vulnerabil-

ities to day/night fluctuations in cardiovascular events such as

circadian variation in blood pressure and heart rate (for review,

see Thosar et al., 2018; day/night fluctuations in thromboembolic

risk, Haus, 2007; arrhythmogenicity, Portaluppi and Hermida,

2007; inflammation, Winter et al., 2018). Cardiovascular system

challenges, such as cardiac surgery, provoke myocardial injury

in a predictive way, and it turns out that injury severity is highly

influenced by the time of day. Specifically, there is significantly

lower risk when the surgery is performed in the afternoon

compared to the morning (Montaigne et al., 2018). A similar ef-

fect was reported in rodents. Interestingly, the day/night fluctua-

tion in rodent cardiac injury is not present in animals with a dis-

rupted cardiomyocyte clock (Durgan et al., 2010). Furthermore,

in the hospital environment, these processes are disrupted by

enforced continuous activity throughout the day and night,

including maintained lighting, wakening for medication, delivery

of parenteral nutrition at night (in the opposite phase from the

daily appetite and digestive cycle), and delivery of medication

out of synchrony with drug-metabolizing enzyme expression.

Each of these events represents conflict between internal and

external timing. Similarly, staying up late at night and/or reading

with blue light-emitting screens may desynchronize intrinsic

circadian cycles with the natural light-dark cycle (Chang et al.,

2015; Chinoy et al., 2018). The short list of circadian pathology

signs includes emergencies that present at specific times of

day, such as nocturnal asthma (Burioka et al., 2010) and glucose

peak at dawn (Campbell et al., 1985). Evidence also suggests

there is circadian control of cognition (Chellappa et al., 2018),

memory performance (Kwapis et al., 2018), andmood (McClung,

2013), and a decline in the coherence of rhythmic processesmay

be a hallmark of age-related neurodegenerative disease (Musiek

and Holtzman, 2016). Further, both clinical studies and cross-

sectional evidence correlate shift work in human subjects with
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the heightened risk of disease, including metabolic, cardiovas-

cular, inflammatory, and neoplastic disorders (Buxton et al.,

2012; R€uger and Scheer, 2009; Wang et al., 2011). While shift

work also results in confounding non-circadian effects like

increased stress, eating, and smoking, these factors are also

known consequences of fragmented sleep and sleep depriva-

tion. These examples emphasize the exciting opportunity now

available to apply an understanding of molecular timekeeping

to human health.

Depression was one of the first diseases associated with

circadian clock malfunction, observed as profound sleep distur-

bances and early morning awakenings (Gresham et al., 1965;

Zung et al., 1964). This phenomenon is due to rhythm dysfunc-

tion: a disturbed sleep-wake cycle is the main symptom of major

depression, and sleep disturbances are, in turn, a major risk fac-

tor for developing depression and other mood disorders. For

instance, patients who suffer from seasonal affective disorder

(SAD), a mood disorder that correlates with the extremely short-

ened daily light period during the winter season, have altered

levels of the dark-phase hormone melatonin and exhibit an

altered circadian cycle. SAD symptoms may be alleviated by

chronobiological therapy, such as bright light and melatonin

(Lewy et al., 2006). In fact, more or less all of the successful

mood disorder treatments seem to affect circadian rhythms,

and it appears as if rhythm stabilization, or even resetting the in-

ternal time, is helpful, if not essential, for therapeutic benefit. In

modern societies, 80%of the world’s population is now exposed

to light during the night (Falchi et al., 2016; Straif et al., 2007), and

20% of European and 29% of US employees engage in rotating

shift work, actions that make them prone to rhythm disorders

and disease. Thus, our circadian clocks appear crucial for health,

and while many researchers studied circadian rhythms initially

from a fundamental scientific perspective, we have been sur-

prised—overwhelmed even—by the strong involvement of clock

malfunction in a number of diseases. Consequently, circadian

rhythm research has becomemore than a model area for biolog-

ical research; it will also impact future clinical research, substan-

tially and perhaps dramatically.

Oxaliplatin: How Chronobiology Cracked the Timing

Riddle

Drug development includes defining a recommended dose for a

potential new compound, based on themajority of subjects, irre-

spective of timing, sex, age, lifestyle, or comorbidities. In this re-

gard, pharmaceutical companies have long tried to improve the

translational path from animal work to humans by increasing the

success rate of phase I, II, and III trials. However, numerous

drugs continue to fail in these trials despite optimal pharmacoki-

netics/pharmacodynamics (PK/PD), target specificity, tissue

availability, and careful patient group selection (Cook et al.,

2014; Morgan et al., 2018). Indeed, unanticipated or over-

whelming adverse effects represent severe limitations, and

both result in drug attrition (Waring et al., 2015) and post-market-

ing withdrawal of otherwise effective medications (Zhang et al.,

2012). For example, the toxicities of new agents sometimes

outweigh the slight benefits in efficacy at a population level,

thus making these new treatments too costly for the healthcare

system. As a result, medication safety represents a crucial chal-

lenge that needs to be prioritized and addressed with new con-

cepts and methods. While there are many factors that could

contribute to the failures in translating drug treatments from ro-

dent studies to humans (e.g., length of ovulatory cycles, low

LDL cholesterol, or lifespan), circadian factors might also be

involved in such failures. Do pre-clinical studies in nocturnal

animals not test the drugs at the optimal time of day to simulate

human biology? Conversely, does testing in humans not take

timing into account, either insufficiently or not at all?

An illustration of how ignorance of timing effects could lead to

abandoning a useful drug is provided by oxaliplatin. It has

become one of the main drugs against colorectal cancer world-

wide, despite its development being halted for excessive toxic-

ities in a phase I clinical trial by a leading pharmaceutical

company (Rhone-Poulenc-Rorer, France; (Extra et al., 1990).

The drug was sold to a just-created pharmaceutical group (De-

biopharm, Switzerland), which aimed at establishing oxaliplatin

safety and efficacy through chronopharmacology. Circadian

toxicity and efficacy studies in mice (Granda et al., 2002) guided

the design of clinical chronotherapy trials in patients with meta-

static colorectal cancer (reviewed in (Lévi, 2001). The safety of

the drug was established following its administration as a circa-

dian chronomodulated infusionwith peak delivery rate at 16:00 in

phase I (Caussanel et al., 1990) and II (Levi et al., 1993) clinical

trials. The first demonstration of its clinical efficacy in colorectal

cancer was provided in a large phase II clinical trial using chrono-

modulated delivery (Lévi et al., 1992), a finding that was later

confirmed in randomized phase III trials (Lévi et al., 1997).

Consequently, the integration of chronopharmacology that

accompanied the entire drug development process helped mini-

mize adverse effects and maximize therapeutic efficacy through

the identification of optimally timed drug delivery. Although to

our knowledge this case is the only well-documented example

of a misleading clinical trial linked to the lack of consideration

of circadian aspects, the prior failure is an outstanding example

that underscores the urgency for pre-clinical and clinical re-

searchers to take circadian time into consideration along the

clinical phases of the development of new drugs, as well as for

clinical tests of novel treatments.

The Clock System
Evolutionary Conservation and Relevance to Physiology

Deciphering the molecular core clock mechanism in the fruit fly

led to the 2017 Nobel Prize in Physiology or Medicine awarded

to Michael Young, Michael Rosbash, and Jeffrey Hall. This

mechanism is fundamentally conserved within the animal

kingdom (Allada et al., 2001; Rosbash, 2009; Takahashi, 2017;

Young and Kay, 2001), although in mammals many clock com-

ponents are present in multiple copies, a fact that increases

the complexity and redundancy of the system (Clayton et al.,

2001). The PERIOD protein (PER) appears to have the same

structure and function in the core circadian clock of all animals,

although its function in response to adaptions of the core clock

to environmental signals varies among species (Albrecht, 2007;

Partch et al., 2014; Sandrelli et al., 2008). In spite of small differ-

ences between fruit flies and mice in the cytoplasmic and gated

nuclear entry of PER proteins (Curtin et al., 1995; Shafer et al.,

2002), the basic molecular mechanism that generates rhythms

is highly similar in all examined animals. Moreover, this timing

mechanism is active in specialized brain areas (e.g., the acces-

sory medulla [AME] in the fruit fly and the suprachiasmatic
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nucleus [SCN] of the mammalian hypothalamus) that have close

anatomical and functional connections to the optic system (light

input) and hormonal system (systemic output; (Helfrich-Förster,

2004, 2009). The master clocks in insects and mammals have

a neuromodulatory function and employ a wide variety of neuro-

peptides as signaling molecules (Maywood et al., 2011; Yoshii

et al., 2009). Both insect andmammalianmaster clocks influence

behavioral rhythms and connect to peripheral clocks via a com-

bination of humoral factors and the peripheral autonomic ner-

vous system.

In mammals, the relationship between the SCN and periph-

eral organs is well established. In order to adjust its rhythm,

the SCN receives information from the retina where intrinsically

photoreceptive retinal ganglion cells (ipRGCs) relay photic sig-

nals to the SCN via retinohypothalamic fibers (Hannibal and

Fahrenkrug, 2002; Hattar et al., 2002). The SCN communicates

with the other clocks through autonomic innervation and, to a

second degree, through the regulation of systemic cues such

as body temperature, hormonal signaling, and feeding

(Mohawk et al., 2012). The SCN directly influences behavioral

and peripheral rhythms through neuropeptides (Cheng et al.,

2002; Loh et al., 2011), but it also controls peripheral clocks

indirectly via the autonomic innervation. For instance, the

SCN influences glucose homeostasis in the liver or glucocorti-

coid secretion by the adrenal glands via the paraventricular nu-

cleus (Ishida et al., 2005; Kalsbeek et al., 2004). Furthermore,

clocks from the heart, kidney, pancreas, lung, and thyroid

glands are also controlled by autonomic nervous connections.

In contrast, feeding and body temperature rhythms, modulated

by rest and activity cycles, are additional zeitgebers that entrain

the liver, pancreas, heart, and kidneys (Buhr et al., 2010; Dibner

et al., 2010).

The identification of clock genes, and the cellular processes

instructed by those genes, confidently explains how individual

neurons can act as autonomous oscillators. While the ability of

individual neurons to oscillate with circadian periodicities is

now well established (Herzog et al., 1998; Welsh et al., 1995),

in the recent past it was almost unimaginable that this phenom-

enon would be the case, given the long time constants involved.

Moreover, according to a recent finding, even astrocyte clocks in

the SCN can drive circadian rhythmicity of SCN neurons (Bran-

caccio et al., 2019). Although individual neurons possess this

remarkable autonomous capability, the field has come to recog-

nize that the timing of physiology and behavior is the outcome of

autonomous oscillators that work together within and among tis-

sues in synchronized multi-oscillator ensembles. Intriguingly,

communication among clock cells leads to new properties at

the network or tissue level. For example, synchronization among

central clock neurons leads to the ability to encode and store day

length, which provides information about the seasons, a major

task of clocks in many organisms (Hastings et al., 2018; Hel-

frich-Förster, 2009; VanderLeest et al., 2007). This ability is not

present at the single-neuron level. Further, the central clock in

mammals is under the influence of both the external milieu—

mostly light—and the internal milieu, and it integrates signals

from other brain areas as well as from peripheral organs. These

signals all change the properties of the central clocks in impor-

tant ways, and the signals provide not only adaptability, but

also robustness and precision.

The identification of the central molecular clock mechanism

provided the foundational ‘‘building blocks’’ that now allow an

understanding of how molecular feedback loops within individ-

ual neurons interact with similar mechanisms in other neurons.

This information creates a neuronal network with both properties

of the fundamental molecular oscillators and properties that

emerge from interactions with other neurons (Hastings et al.,

2018; Helfrich-Förster, 2009; VanderLeest et al., 2007). Clearly,

understanding biological timing at multiple levels of molecular,

cellular, and neural organization will be extremely salient for

translation of circadian biology to humans.

Translational Challenges
For practical reasons and workday organization, researchers

typically perform experiments during the daytime, but this design

creates unique difficulties when using laboratory rodents. The

most critical difference is oft-cited and obvious: mice and rats

are nocturnal. In fact, the National Association for Biomedical

Research in the US reports that mice and rats represent 95%

of all laboratory animals used for research. While mice and rats

are nocturnal and have a high metabolic rate and increased

behavioral activity and wakefulness during the night, humans

are diurnal and have their active period during the day. The

main problem is related to the fact that the majority of re-

searchers who use rodents perform their experiments during

the daytime, which corresponds to nighttime in humans, when

drugs are not usually administered. These fundamental biolog-

ical differences between nocturnal rodents and humans may

pose a challenge when trying to translate pre-clinical research

results to humans. As a result, the meaningful translation of

pre-clinical data to humans may be partly missed.

Daytime Experiments in Rodents Are Different from

Human Daytime

Given the strong time dependency exhibited by most behavioral

and metabolic tests, such as learning (Chaudhury and Colwell,

2002) or glucose tolerance tests (la Fleur et al., 2001), such var-

iations are important to consider for the design of experimental

protocols. However, the differences are in at least two respects

subtler and more difficult to evaluate. First, rodents are poly-

phasic sleepers: although sleep is mostly consolidated into the

daytime, a rodent will show frequent short bouts of sleep and

waking during the night as well as the day in a way that has no

human equivalent (Simasko andMukherjee, 2009). The circadian

system and the sleep homeostasis are tightly connected but are

two separately driven systems in which the circadian drive for

wakefulness is uniquely timed to the increasing homeostatic

sleep drive in order to consolidate a 24 h rhythm in sleep and

wakefulness (Dijk and Czeisler, 1994). Thus, effects of ‘‘sleep

pressure’’ are much harder to evaluate, in spite of the high con-

servation of bothmolecular and synaptic aspects of sleep.More-

over, perhaps due to the normal frequency of sleep, a 4-h period

of enforced wakefulness represents a major perturbation equiv-

alent to much longer periods of sleep deprivation in a human be-

ing. Second, rodent metabolism is tuned to frequent eating,

which makes prolonged fasting an unnatural experience. Thus,

typical conditions of food deprivation represent mild starvation,

and a single day of fasting can result in up to 20% loss in body

weight (Dohm et al., 1983). Similarly, small changes in tempera-

ture create large changes in food consumption behavior. For
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example, mice kept at 33�C ate 50% less than those kept at

20�C, and mice kept at 11�C ate 37% more (Bronson, 1987).

Overall, performing experiments during the animal’s sleep phase

can have major consequences on their physiology and the ability

to translate the findings to humans.

Nocturnal versus Diurnal Circadian Systems

Recently, the ancestral activity patterns of Mammalia were re-

constructed. The data indicate that mammals went through a

nocturnal bottleneck due to a temporal partitioning between

early mammals (night activity) and dinosaurs (day activity) during

the Mesozoic Era (Maor et al., 2017). Diurnality (day activity)

appeared in mammals with the extinction of dinosaurs in the

Cenozoic Era. With this change, several adaptations appeared

in diurnal mammals to optimize their physiology to the inverted

rest-activity cycle. Theoretically, three different types of adapta-

tions were possible. First, the molecular clock could be changed

so that it runs with the opposite phase in diurnal compared to

nocturnal animals. Second, the input sensors could be changed

such that they affect the molecular clock mechanism in opposite

ways, and third, the interpretation of the clock signal could be

opposite, which would lead to appropriate regulation of physio-

logical pathways.

Deoxyglucose uptake experiments revealed that in the SCN,

the rhythm of metabolic activity is similar in both nocturnal and

diurnal animals (Schwartz et al., 1983). At the molecular level,

the expression of clock genes shows the same phase in diurnal

and nocturnal SCN, and their light-dependent synchronization is

comparable (Mrosovsky et al., 2001). Interestingly, the behav-

ioral response to light perceived at night is similar in nocturnal

and diurnal animals as well. They respond with a delay of clock

phase in response to light during the early part of the dark phase,

whereas clock phase is advanced if light is perceived during the

late portion of the dark phase (Mahoney et al., 2001). This finding

indicates that the SCN clock ticks in a similar manner regardless

of the activity preference of the species: there is a universal

connection to solar time. However, in SCN neurons, rhythmicity

of putative clock target factors displays opposite phases in

diurnal and nocturnal animals, as exemplified by transforming

growth factor alpha (TGFa; Tournier et al., 2007). Interestingly,

brain clock gene expression outside the SCN (Vosko et al.,

2009) and in peripheral tissues (Mure et al., 2018) displays

roughly opposite phases. Additionally, hormones (glucocorti-

coids, leptin, and ghrelin) andmetabolites (glucose and free fatty

acids) show opposite cycling phases in diurnal and nocturnal ro-

dents (Kumar Jha et al., 2015), results that suggest the difference

between nocturnal and diurnal animals may lie downstream of

the SCN.

There is, however, evidence that diurnal and nocturnal mam-

mals differ in the input pathways to the clock. For example, the

diurnal species Tupaia (tree shrew) displays arrhythmic activity

patterns under constant darkness conditions (Meijer et al.,

1990), whereas nocturnal mice show rhythmic, free-running ac-

tivity with a period slightly less than 24 h under these same con-

ditions. Under constant bright light conditions, however, the

situation is inverted: nocturnal rodents can become arrhythmic,

whereas the diurnal Tupaia displays robust, rhythmic, and free-

running activity (Meijer et al., 1990). The acute light response is

also qualitatively different (Meijer et al., 1990). Taken together

with their similar core clock phases, the difference between

diurnal and nocturnal species may be at the cellular and

neuronal network level rather than the genetic level. Evidence

for anatomical adaptation to diurnality comes from the observa-

tion that in diurnal animals, classical photoreceptors play a

more important role in the light response than in nocturnal

animals (van Diepen et al., 2013). Older studies revealed that

the ratio between light-suppressed and light-activated cells dif-

fers between diurnal and nocturnal animals (Meijer et al., 1989),

results that suggest the light-input mechanism is not identical.

This observation is consistent with the finding described above

that constant light and darkness do not have the same effect

on activity patterns in animals that occupy opposing temporal

niches. Taken together, it appears that adaptation to diurnality

may also include pathways upstream of the SCN. It also needs

to be mentioned that the light sensitivity for phase entrainment

is much higher in nocturnal animals.

The observations described above are largely consistent with

a recent study that systematically analyzed the diurnal transcrip-

tome in neural and peripheral tissues of the baboon (Papio

anubis; Mure et al., 2018). Comparison between the diurnal ba-

boon and the nocturnal mouse revealed that, with the exception

of the SCN, the peak phase of most clock genes is opposite be-

tween comparable tissues. Since common cycling clock target

genes in peripheral tissues of baboon andmouse did not consis-

tently show an opposite expression pattern (Mure et al., 2018), it

is unlikely that there is a single nocturnal-diurnal ‘‘switch’’ down-

stream of the SCN. Indeed, in all mammalian species, indepen-

dent of nocturnal or diurnal activity, the pineal gland secretes

melatonin exclusively at night (Pévet, 2003). This phenomenon

suggests that in peripheral tissues, temporal organization is

diverse and may be autonomous. The dominance of feeding-

fasting cycles on the clock phase entrainment of peripheral or-

gans (but not the SCN) in mice and rats (Damiola et al., 2000;

Stokkan et al., 2001), and probably also in humans, suggests

that time of food uptake is a main synchronizer in peripheral or-

gans. Insulin signaling drives the synthesis of the clock protein

PER to entrain circadian rhythms with feeding time (Crosby

et al., 2019). This may explain the opposite cycling of peripheral

oscillators observed between nocturnal and diurnal species,

because feeding times are following activity patterns. Although

clock rhythms in the SCN are comparable in both nocturnal

and diurnal species, the peripheral oscillators are not. However,

all species maintain a constant phase relationship between the

SCN and peripheral organs in order to organize body physiology

in a temporal manner. As mentioned above, the rodent SCN in-

tegrates the light entrainment into the autonomous molecular

and electrical oscillations, which in turn are relayed to the body

via neural and humoral pathways. Whereas glucocorticoids

communicate SCN signals to peripheral clocks, feeding signals

can entrain peripheral clocks without SCN influence (Damiola

et al., 2000), which appears to use insulin and IGF-1 as major

signaling pathways (Crosby et al., 2019). Hence, model organ-

isms for developing treatments of clock-related diseases in hu-

mans may be useful, taking into consideration the opposite

phase relationship between the SCN and peripheral clocks in

nocturnal species compared to diurnal species.

Circadian Pharmacokinetics

Not only will the experimental manipulations performed during

rodent sleep time affect their translation to humans, but
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administration of drugs at different times of the day can also lead

to various outcomes due to variations in pharmacokinetics. Drug

pharmacokinetics are governed by its physicochemical charac-

teristics and absorption, distribution, metabolism, and excretion

(ADME) properties. The potential circadian modulation of phar-

macokinetics, chronopharmacokinetics, was reviewed as early

as the 1980s (see Reinberg and Smolensky, 1982), and it exam-

ined the chronobiological regulation of factors involved in

different aspects of ADME. Such interactions range from the

macroscopic impact of activity and feeding cycles on factors

such as gastric emptying and blood-flow rate on drug absorption

and distribution, to circadian regulation of expression levels of

enzymes and transporters involved in metabolism and excretion

of xenobiotics such as drugs (Erkekoglu and Baydar, 2012).

The ADME properties of all drugs can be subject to large circa-

dian variations, as shown for hundreds of compounds in labora-

tory rodents and humans (Levi and Schibler, 2007). To some

degree, they are affected by circadian rest-activity patterns

such as meal timing, the general sleep-wake cycle, and physical

activity, all of which modulate blood pressure and flow. The de-

gree of impact depends not only on the routes of administration

and excretion, but also on circadian modulation of gastric pH

and gastrointestinal motility, both of which influence drug ab-

sorption. Blood flow and capillary perfusion, by contrast, impact

drug absorption from the gastrointestinal tract, distribution to tis-

sues and target organs, and even excretion through glomerular

filtration rate in the kidneys (Ballesta et al., 2017; Dallmann

et al., 2014, 2016). Recent research demonstrated that xenobi-

otic efflux by the blood-brain barrier is also under circadian regu-

lation, which could influence the response to drug treatments

that target the brain (Zhang et al., 2018).

There are other drug-specific effects that depend on circadian

regulation of xenobiotic detoxification pathways (Zmrzljak and

Rozman, 2012). The expression of phase I and II drug-metabo-

lizing enzyme families, such as CYP450, SULT, UGT, NQI,

EPH, GSTH, and NAT, is regulated by CLOCK/BMAL1, REV-

ERB/ROR, or circadian clock-regulated PARbZip transcription

factors (Gachon et al., 2006; Kang et al., 2007; Tanimura et al.,

2011). CYP450 activity also depends on heme availability, which

is under circadian control because the rate-limiting enzyme in

heme biosynthesis (ALAS1) is driven by the CLOCK paralog

NPAS2 (Froy, 2009). Finally, phase III detoxification through hep-

atobiliary or renal excretion and reabsorption of parent drug or

metabolites is not only affected by perfusion and activity levels,

as described above, but these processes can also bemodulated

through circadian regulation of transporter protein expression

levels, including the ABC/MDR, OAT, OCT, and MRP families

(Gachon and Firsov, 2011). Since these same proteins are

involved in the transport into and out of target tissues and cells

in the organism (Scherrmann, 2009), such circadian regulation

can equally affect the absorption and distribution aspects of

the drug pharmacokinetic profile.

In summary, the impact of circadian modulation on the ADME

properties of (and thus relevance of chronopharmacokinetics for)

the therapeutic effect of a given drug will depend strongly on the

degree to which the compound interacts with transporters dur-

ing the processes of absorption, distribution, and excretion,

and the amount and role of metabolism it undergoes. Conse-

quently, the pharmacokinetics of a given drug may differ de-

pending on the time of the day it is delivered, an aspect that

has not yet been systematically examined in clinical research,

drug development, registration by regulatory agencies, or med-

ical and pharmacy practices. Specific attention should be paid to

drugs with a narrow therapeutic window, or when a strong corre-

lation is found between the pharmacodynamic effect and the

plasma or tissue levels of a drug that acts on a therapeutic target

that is itself under circadian regulation (Bruguerolle and Lemmer,

1993). All of these parameters can profoundly differ in model

organisms.

Treatment Outcome Depends on the Time

of Administration

Drug efficacy may depend not only on drug pharmacokinetics,

but also on the internal status of the clock and clock-regulated

genes, which will in turn determine the sensitivity of target cells

and pathways to the available drug at specific times of the

day. Chronopharmacological approaches to treating diseases

revealed that efficacy is improved, and side effects reduced,

when the administration is appropriately timed. For instance,

levels of antibodies in response to influenza vaccination are

higher in the morning compared to the afternoon (Long et al.,

2016), a phenomenon that could be due to baseline differences

in antibody titers, which vary during the day (Kurupati et al.,

2017). Patients who received a sustained release formulation

of indomethacin for hip or knee osteoarthritis presented a 33%

incidence of adverse events after morning dosing, compared

to 7% after evening dosing. Antalgic and anti-inflammatory

efficacies were most effective following evening dosing in sub-

jects with predominantly nocturnal or morning pain (Levi et al.,

1985). In asthmatic children, a sustained-release preparation

of theophylline (Theo24R) was recommended to be taken in

the evening, based on improved efficacy of standard theophyl-

line preparations dosed at this time of day (Smolensky et al.,

1987). However, in a randomized, double-blind, and placebo-

controlled study, the serum levels of Theo24R exceeded the

toxic threshold of 20 mg/L in the majority of children that took

the medication daily for 6 days at 21:00, as compared to none

when taken at 06:00 (Smolensky et al., 1987). While Theo24R

effectively improved airway functions, there were no statistically

significant differences in drug efficacy according to dosing time

in this study, in contrast to large differences in steady-state phar-

macokinetics (Smolensky et al., 1987). Theo24R later proved to

be too toxic (toxicity symptoms ranging from abdominal pain

to cardiac arrhythmias to seizures) at the recommended evening

intake and was withdrawn from the market (Cooling, 1993;

Journey and Bentley, 2018). In oncology, the chronomodulated

administration of combination chemotherapy with oxaliplatin,

5-fluorouracil, and leucovorin for the treatment of metastatic

colorectal cancer produced severe mucosal toxicities in only

14% of patients as compared to 76% of those who received

‘‘standard’’ infusions at a constant rate for 5 days. This protocol

significantly increased the rate of patients with an objective treat-

ment response from 29% to 51% (Lévi et al., 1997). Ameta-anal-

ysis of three international randomized trials that involved 842

patients with metastatic colorectal cancer further demonstrated

that the three-drug chronotherapy schedule significantly im-

proved overall survival in men, but not women, independent of

all known prognostic factors (Giacchetti et al., 2012). These re-

sults triggered further pre-clinical and clinical studies aimed at
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providing a reliable and real-time metric of the circadian timing

system for personalizing chronotherapeutic strategy and deliv-

ery. Such circadian biomarker assessments are clearly neces-

sary for customizing chronotherapeutics according to the

internal phase of the patient. Moreover, in a pooled analysis of

1,077 cancer patients, cases of circadian disruption were asso-

ciated with significantly worse survival and quality of life, as

compared to robustness, a finding that supports the need to

develop clock-targeted therapies for these patients (Ballesta

et al., 2017).

Several large studies highlight the relevance of circadian

timing of treatments for clinical tolerability and/or efficacy in

allergic, rheumatologic, sleep, cardiovascular, and malignant

diseases (Table 1). It is interesting to note that a majority of drugs

(e.g., angiotensin converting-enzyme [ACE] and angiotensin re-

ceptor blockers, calcium channel blockers, and diuretics) show

greater efficacy upon evening administration. In contrast, gluco-

corticoids show the opposite effect, with greater efficacy in the

morning. For instance, standard prednisone treatment for rheu-

matoid arthritis was compared with evening intake of a chrono-

prednisone tablet, which automatically released the drug during

the early morning (04:00 when taken at 20:00); the chrono-

release tablet ameliorated median joint stiffness by 22%, as

compared to 0.4% for standard prednisone therapy (Buttgereit

et al., 2008). This efficacy was replicated in another large, ran-

domized, double-blind, and placebo-controlled study that

showed the efficacy of modified-release prednisone treatment

for rheumatoid arthritis (Buttgereit et al., 2013). Thus, systems

chronopharmacology and circadian biomarker studies are now

shaping chronotherapeutics for chronic diseases in the era of

Table 1. Efficacy of a Morning versus Evening Schedule of Drug Administration

Drug Type Subjects Type of Study

Most Efficacious

Delivery Time Reference

Ramipril ACE inhibitors and

angiotensin receptor

blocker

115 randomized evening Hermida and Ayala, 2009

Olmesartan ACE inhibitors and

angiotensin receptor

blocker

123 randomized evening Hermida et al., 2009

Telmisartan ACE inhibitors and

angiotensin receptor

blocker

215 randomized evening Hermida et al., 2007

Nifedipine calcium channel

blocker

180 randomized evening Hermida et al., 2008b

Torasemide diuretics 113 randomized evening Hermida et al., 2008a

Doxazosin diuretics 111 randomized evening Pickering et al., 1994

Amiodipine/valsartan combinations 203 single/combined evening Hermida et al., 2010

Hydrochlorothyazide/

valsartan

combinations 204 open-label, blinded

end-point

evening Hermida et al., 2011

Simvastatin statins 172 double-blind, placebo-

controlled

evening Saito et al., 1991

Simvastatin statins 132 randomized, double-

blind, placebo-controlled

no difference Kim et al., 2013

Fluvastatin ER statins 197 double-blind, multicenter no difference Scharnagl et al., 2006

Ezetimibe-simvastatin statins 171 randomized, cross-over morning Yoon et al., 2011

Ketprofen analgesics 117 randomized,

double-blind

no difference Perpoint et al., 1994

Aspirin COX inhibitor 290 randomized crossover no difference Bonten et al., 2015

Aspirin COX inhibitor 350 randomized, double-

blind, placebo-controlled

evening Ayala et al., 2013

Prednisone

(for arthritic pain)

corticosteroids 288 randomized,

double-blind

morning Buttgereit et al., 2008

Mometasone

(for asthma)

corticosteroids 268 placebo-controlled no difference Karpel et al., 2005

Tiotropium beta(2)-adrenergic

agonists

121 randomized, double-

blind, placebo-controlled

no difference Calverley et al., 2003

Montelukast leukotriene receptor

antagonist

343 randomized, placebo-

controlled

evening Altman et al., 1998

The table is modified fromDeGeorgi et al., (2013), with permission from Elsevier, and includes studies reported in PubMed until September 2018 using

the term ‘‘chronotherapy.’’ Studies with n > 100 are reported with the drug used and its classification. The number of subjects and the study design are

shown, and the time at which the best efficacy in treatment outcome was observed is reported.
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precision and personalized medicine (Ballesta et al., 2017). It is

interesting to note that the majority of top-selling drugs target

genes whose expression is circadian and who have half-lives

shorter than 6 h. Thus, the timing of administration is critical for

drugs with such short half-lives (Zhang et al., 2014). An example

of a short-lived compound is aspirin, which targets circadian

clock-regulated genes (e.g., PTGS1 or cyclooxygenase-1, alias

COX1), and modulates blood pressure when delivered in low

doses at nighttime (Hermida et al., 2005).

Potential Solutions to Improve Clinical Outcomes in
Drug Trials
Considerations of Time in Pre-clinical Research

As noted above, a key difficulty in translating bench findings to

the clinic results from pre-clinical research performed on ro-

dents. The mismatch between rodent and human phase could

easily be corrected by inverting the light-dark cycle of the rodent,

thereby eliminating the necessity for the scientist to perform ex-

periments during the night. Is the solution to incorporate diurnal

rodents in pre-clinical drug testing? Not necessarily—this design

would not avoid the need for testing drugs at different times of

the day to reveal their respective times of optimal efficacy and

diminished toxicity, since these results may depend not only

on the rhythmicity of drug metabolism and target but also on

the readouts. We strongly advocate that the disease model—

not its diurnality—should be the strongest argument for testing

drugs. Additionally, the number of existing diurnal rodents is

small (e.g., the Mongolian gerbil [Meriones unguiculatus], the

degu [Octodon degus], the African [Nile] grass rat [Arvicanthis ni-

loticus], and the antelope ground squirrel [Ammospermophilus

leucurus]), and their value as experimental models for drug

development deserves to be explored (Refinetti and Kenagy,

2018). An easier and more natural approach would be to reverse

or alter light-dark cycles in the normal rodent (mouse and rat)

housing environment, in order to perform the experimental

work during the day without phase-related artifacts. For

instance, turning off lights from 10:00 to 20:00 would allow ani-

mal caretakers to perform their husbandry tasks in light in the

morning, while the animal experimentation could take place in

darkness (Hawkins and Golledge, 2018). A number of tests

demonstrated greater behavioral and cognitive performance at

nighttime (Roedel et al., 2006). For instance, tonic pain sensitivity

in rodents is greatest during daytime (Perissin et al., 2000), a

finding that could have implications for drug efficacy being mis-

interpreted or completely missed solely due to the rhythmicity of

the readout. One could also use commercially available isolated

housing cabinets with independent light-dark cycles, or gener-

alize autonomic animal chronobiologic facilities where light-

dark schedules are programmable in time (Tampellini et al.,

1998). There are obvious animal-facility management implica-

tions to such approaches, in order to avoid accidental light

contamination (e.g., from corridors) or noise that could entrain

the animal’s rhythm. Lamps with light spectra to which rodents

have reduced sensitivity (e.g., red or red-orange light and

narrow-wave-length sodium vapor lamps) can entrain rodents

(Peirson et al., 2018). Night-vision goggles or cameras could pro-

vide the means of performing experiments in darkness. Another

solution would be to use automated systems to collect data at

nighttime in the absence of human interventions.

Improving Therapeutics by Targeting the Clock System

While controlling the animal’s diurnal cycle and considering the

time of the day in pre-clinical drug treatments, another way of

improving therapeutic outcome is to target the clock system. A

recent analysis by Zhang, Lahens, and colleagues showed that

disease genes are highly enriched for circadian regulation

(Zhang et al., 2014). Many, but not all, of these clock-regulated

genes are mutated in diseases such as Alzheimer’s disease,

schizophrenia, and Down syndrome and are involved in neuro-

degeneration. Other circadian-related diseases include obesity,

type 2 diabetes, and cancer. Aging causes circadian transcrip-

tome reprogramming, which is differentially regulated in organs

(Sato et al., 2017). Given that circadian clocks regulate most

human physiology (Skarke et al., 2017), where half of all human

protein-coding genes are clock regulated (including drug trans-

porters, metabolizing enzymes, and targets; Ruben et al.,

2018), the clock system has received renewed interest as a phar-

macological target. Multiple pilot small-molecule screens identi-

fied circadian clock-modifying compounds (e.g., He et al., 2016;

Hirota et al., 2012; Solt et al., 2012) that are under investigation

for wide-ranging indications including cancer, neurodegenera-

tion, endocrinology, and asthma. Moreover, an ever-increasing

number of studies postulate distinct and elegant mechanisms

by which the molecular clockwork can modulate drug metabo-

lizing enzymes, transporters, and targets (Anafi et al., 2014;

Pizarro et al., 2013; Zhang et al., 2014). For short-acting

molecules, these mechanisms could be exploited to improve

the therapeutic index and balance between toxicity and efficacy.

However, the pathways to translational application of this

knowledge remain unclear. We envision multiple possibilities

beyond conventional chronopharmacology per se.

Targeted Clock Suppression or Enhancement. Given that the

basic circadian mechanism is a feedback loop of transcrip-

tional/translational activation and repression, any suppression

of circadian clock function essentially blocks the mechanism to-

ward one extreme or the other. For example, in wound healing,

Bmal1 deletion (the ‘‘positive limb’’ in themolecular clock) results

in hyperkeratosis and insufficient cell proliferation, while Per2

deletion (the ‘‘negative limb’’) results in hyperproliferation of

fibroblasts and keratinocytes but insufficient keratin and

collagen secretion (Kowalska et al., 2013). Thus, it is possible

that transient clock suppression by targeting one or the other

limb could be useful to push a normal circadian process toward

a therapeutically useful extreme. On the other hand, enhancing

the circadian rhythm may offer an elegant ‘‘do no harm’’ mecha-

nism for therapies including cancer (Iurisci et al., 2006; Kiessling

et al., 2017). For example, in one study, disrupted circadian clock

function led to a progression from non-alcoholic fatty liver

disease (NAFLD) to fibrosis and cancer (Kettner et al., 2016).

This change occurred on its own and was even enhanced by

genetic disruption of clock genes. Recent literature points to

clock system disruption as causal in neurodegeneration

(Hastings and Goedert, 2013; Musiek et al., 2018). It stands to

reason that improving clock function, e.g., through enhancing

BMAL1/CLOCK or inhibiting REV-ERBa activity, could improve

outcomes. In support of this hypothesis, a recent study from

Montaigne et al. reported that the incidence of major adverse

cardiac events was lower in patients who undergo cardiac sur-

gery in the afternoon compared to the morning. Consistent
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with a greater expression of REV-ERBa in the human myocar-

dium in the morning, deletion of REV-ERBa function or its

blockade using a selective antagonist (SR8278) at the sleep-

to-wake transition protects mice from myocardial injury (Mon-

taigne et al., 2018).

Leveraging Circadian Regulation. As pre-clinical researchers

discover new mechanisms by which the circadian clock modu-

lates physiology, each of thesemechanisms provides a potential

intervention point for therapy. For example, circadian clock pro-

teins interact in many different ways to control drug metabolism

and transport. Anafi et al. showed that a mechanistic under-

standing of drug transport enables design and hypothesis

testing to improve the therapeutic index (Anafi et al., 2017).

GLUT2, a solute carrier and drug transporter, is clock-regulated

in mice and humans with high amplitude. Timing the administra-

tion of streptozocin, a chemotherapeutic agent and GLUT2 sub-

strate, early in the wake phase dramatically decreases its

toxicity, as evidenced by reduced weight loss in comparison to

administration early, in the inactive phase. Recently, researchers

reported a robust clock machinery in the peripheral auditory sys-

tem that is associated with greater vulnerability of mice to a noise

trauma delivered during the active compared to the inactive

phase (Meltser et al., 2014). The improved recovery from the

noise exposure during the inactive phase was associated with

the ability of the cochlea to increaseBdnf expression in response

to noise, a phenomenon that did not occur during the active

phase. Interestingly, BDNF is circadian in the brain, where it

peaks during the active phase (Marosi and Mattson, 2014), as

well as in the cochlea (Basinou et al., 2017). Treatment with an

agonist of the BDNF receptor TrkB, namely di-hydroxyflavone

(DHF), effectively protects hearing in mice from noise trauma

when delivered at night, but not during the day (Meltser et al.,

2014). If the compound had not been tested during nighttime,

the efficacy of this molecule would have been missed, and the

fundamental relevance of circadian mechanisms and TrkB

signaling in the treatment of hearing disorders would have

been ignored. Winter et al. found that myeloid cell recruitment

to atherosclerotic lesions in mice oscillates with a peak at the

onset of daytime, a process regulated by the rhythmic release

of myeloid cell-derived CCL2 (Winter et al., 2018). However,

myeloid cell adhesion to microvascular beds peaks at the onset

of nighttime. Treatment at nighttime with RS102895, a CCR2

antagonist, reduces atherosclerotic lesion formation, whereas

daytime treatment is not effective (Winter et al., 2018). Hundreds

of other drug-metabolizing enzymes, transporters, and drug tar-

gets are also clock-regulated, many with high amplitude. This

knowledge could be leveraged to improve the action of existing

drugs, but also incorporated into trials of new drug candidates.

Figure 1. Toward the Use of Chronopharmacology for Precision and Personalized Medicine
The current state of the art indicates that although the impact of circadian rhythms on biological outcomes is acknowledged (e.g., academia and industry aremore
cautious in performing experiments at similar times of the day), minimal attention is given to the powerful impact that circadian mechanisms may have on drug
development. Animal and clinical work show a strong correlation between clock malfunction and disease. However, there are inherent translational challenges in
drug R&D such as the use of rodents (nocturnal animals) tested at daytime, which has a large impact on physiology and thus complicates the translation to
humans. Clinically, there is no emphasis put on the timing of drug administration; rather, the focus is on healthcare logistics and patient convenience. Important
caveats include the fact that drug ADME properties (absorption, distribution, metabolism, and excretion) are controlled by circadian mechanisms leading to
altered bioavailability at different times of the day, and that the circadian status of the pathway targeted by the drug will also impact outcome. Thus, integrating
circadian knowledge on ADME properties and the activity of the targeted pathway will lead to increased efficacy and diminished side effects. Since themajority of
FDA-approved drugs have circadian targets, timing drug delivery could have a large impact on the effectiveness of target activation or inhibition. What solutions
are available to achieve such medical improvements? While the use of diurnal rodents would require decades to develop optimal disease models, using the
acquired knowledge in nocturnal animals would bemore powerful by including shifts in the light cycle or performing experiments during the animal’s active time—
depending on the readout and the physiology tested. Implementing circadian aspects in pre-clinical research will lead to new discoveries that, once applied in
clinical trials (e.g., using chronotype or circadian biomarkers), may improve the impact on human health by optimizing drug efficacy and reducing side effects. The
case of Oxaliplatin is a pioneering example that led to chronomodulated infusion, with maximized treatment efficacy and minimized adverse effects.
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Clock-Independent Modulation of Gene Expression. Finally,

another possibility is to develop therapeutic drugs that target

clock proteins, irrespective of their clock function. Indeed,

comprehensive chromatin immunoprecipitation sequencing

(ChIP-seq) studies suggest that individual clock proteins like

CRY1 and CRY2 might associate with non-circadian promoters

independently of other clock proteins (Koike et al., 2012), and

drugs affecting these clock proteins might therefore exert

entirely clock-independent effects upon transcription of these

genes. Thus, clock protein-targeting drugs could also exert dis-

ease-pertinent clock-independent transcriptional effects.

The Importance of Understanding Circadian Alignment

Conditional mutagenesis has elucidated the contribution of indi-

vidual tissue clocks to homeostasis at different times across the

sleep-wake cycle. When controlled for time of day, nutrient sta-

tus (e.g., fasting or feeding), and developmental age (using

inducible alleles), such studies reveal that local clocks of distinct

organs partition anabolic and catabolic processes to different

times of day (Peek et al., 2013; Perelis et al., 2015). An area

that remains in its infancy is our understanding of how special-

ized pacemaker clock neurons and astrocytes might be linked

within circuits involved in energy balance, sleep, mood, learning,

and memory. As clocks are robust and interconnected, a chal-

lenge has been that perturbation of individual factors in an animal

may lead to compensatory upregulation in a second limb. Ge-

netic strategies must control for such compensatory gene regu-

latory loops. For instance, in experimental design, investigators

may considermonitoring behavioral and physiological endpoints

under free-running conditions, or using cell-based models

including three-dimensional organoids from different tissues

(Yamajuku et al., 2012) that are devoid of the complex nutritional

factors that modulate rhythmicity in an intact animal. Work in eu-

bacteria and plants (Dodd et al., 2005; Ouyang et al., 1998)

demonstrated growth and reproductive advantage when

intrinsic clock time is aligned with the external light-dark cycle.

Advancing the concept of circadian alignment and its effect in

mammalian organisms remains a critical goal in mapping the

role of biological clocks in human health.

Conclusions
There is clear evidence for the involvement of circadian mech-

anisms in diseases, yet there is only sparse recognition of its

importance in pre-clinical and clinical research. This article

has highlighted the hurdles when performing experiments in

nocturnal rodents during their sleep time, and how this exper-

imental design is likely to affect translation to humans. We

advocate a paradigm shift in pre-clinical research using circa-

dian knowledge in order to develop therapeutic interventions

appropriately timed by considering the drug kinetics and the

circadian status of the target and the disease (Figure 1). Chro-

notherapy, which considers the time of day, may significantly

improve clinical trial success and ultimately patient care.

Since sleep-wake cycles are driven by the coupling of the

circadian clock (oscillator) and the sleep homeostat (hourglass

timer) (Guo et al., 2018), sleep-wake cycles (e.g., fragmented

sleep and sleep deprivation) will probably have to be consid-

ered when designing chronotherapeutic regimens. Addition-

ally, a novel approach would be to develop and exploit drugs

that target the clock system. For such knowledge to emerge,

there is a need for greater incentives by funding agencies for

the inclusion of circadian aspects in grant calls. For instance,

circadian-omics may help in creating a phase translation map

that would reveal potential translational hurdles and benefits.

In parallel, pharmaceutical and biotechnology companies

should apply existing circadian knowledge to their drug devel-

opment pipeline. Finally, circadian biology is often not incor-

porated in the curriculum of medical schools, and hence,

circadian education and dissemination among medical practi-

tioners will be important for bridging the gap. It is time to take

time seriously.
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Lévi, F. (2001). Circadian chronotherapy for human cancers. Lancet Oncol. 2,
307–315.

Levi, F., and Schibler, U. (2007). Circadian rhythms: mechanisms and thera-
peutic implications. Annu. Rev. Pharmacol. Toxicol. 47, 593–628.

Levi, F., Le Louarn, C., and Reinberg, A. (1985). Timing optimizes sustained-
release indomethacin treatment of osteoarthritis. Clin. Pharmacol. Ther.
37, 77–84.
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