Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km² scale

ARTICLE INFO

Keywords:
Permafrost map
Ground temperatures
Frozen ground
Permafrost
Remote sensing
Cryosphere
Essential climate variable

ABSTRACT

Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2°C when compared to permafrost borehole data. The modelled permafrost area (MAGT < 0°C) covers 13.9 × 10^6 km^2 (ca. 15% of the exposed land area), which is within the range or slightly below the average of previous estimates. The sum of all pixels having isolated patches, sporadic, discontinuous or continuous permafrost (permafrost probability > 0) is around 21 × 10^6 km^2 (22% of exposed land area), which is approximately 2 × 10^6 km^2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests.

1. Introduction

Permafrost is a subsurface phenomenon that underlies a significant part of the land and sea in the Northern Hemisphere (Brown et al., 1997; Rachold et al., 2007). Permafrost stores large amounts of organic carbon (Hugelius et al., 2014), affects the stability of bedrock and
unconsolidated sediments, and impacts the costs and methods used for infrastructure development (Nelson et al., 2001; Gruber and Haeberli, 2009; Kääb, 2008; Hjort et al., 2018). Terrestrial permafrost monitoring is coordinated within the Global Terrestrial Network for Permafrost (GTN-P; Biskaborn et al., 2015), where ground temperatures are measured in > 1000 boreholes, but only at discrete points. Extrapolating these observations to larger regions is hampered by the considerable spatial variability of the ground thermal regime and an uneven distribution of sites that results in extensive unsampled areas (Biskaborn et al., 2015, 2019).

Despite its global significance, there is still no method to reliably detect the occurrence and extent of permafrost at medium to high spatial resolutions and at a global scale. While the occurrence of permafrost cannot be directly detected using remote sensing, satellite data can be used in characterizing permafrost extent and detecting changes indirectly using two different approaches (Westermann et al., 2015c): (1) remote identification and mapping of surface landforms that indicate the existence of permafrost, and (2) remote sensing of physical variables that relate to thermal subsurface conditions.

The first approach is usually restricted to local areas where permafrost landforms are evident so it cannot easily be applied globally. The second approach includes detection of the freeze-thaw state of the surface using passive microwave sensors (Kimball et al., 2001; Park et al., 2016; Kim et al., 2017; Xu et al., 2018; Kroisleitner et al., 2018) and modelling of permafrost using air or land surface temperatures (LST). Remotely sensed LSTs cannot be employed directly because of the insulating effect of the winter snow cover (e.g. Hachem et al., 2009) and the thermal offset between annual average LST and annual average ground temperatures caused by differing thermal conductivities of the active layer when frozen and thawed (Goodrich, 1978). However, permafrost models with varying complexity can be employed to relate LST to the ground thermal regime (Marchenko et al., 2009; Westermann et al., 2017).

The first comprehensive Northern Hemisphere permafrost extent map was compiled by Brown et al. (1997), based on national and regional maps and expert knowledge from different time periods and sources. This International Permafrost Association (IPA) map still represents the current state-of-the-art despite its inconsistencies for different countries/regions and its limited spatial resolution. Several model approaches relating permafrost occurrence to surface meteorological parameters have been developed at regional scales (Boeckli et al., 2012; Jafarov et al., 2012; Nicolsky et al., 2017; Westermann et al., 2017). A first high-resolution (30 arc-second) estimate of the global permafrost zonation by Gruber (2012) demonstrated the potential for global permafrost mapping using simple semi-empirical schemes in combination with downscaled climate reanalysis data. Chadburn et al. (2017) extended this method and used climate model prediction outputs to estimate permafrost loss as a function of future atmospheric warming. Aalto et al. (2018) used statistical modelling to estimate current and future circum-Arctic ground temperatures at the depth of zero annual amplitude (ZAA) and active layer thicknesses.

High-resolution maps (up to 1 km²) have been successfully produced using the TTOP (temperature at the top of permafrost) model for individual regions and countries. The model calculates mean annual ground temperature (MAGT) at the top of the permafrost based on mean annual air temperature (MAAT) and uses semi-empirical adjustment factors for the effects of snow cover and the thermal offset (Smith and Riseborough, 1996). The approach uses only a small number of input parameters and has been successfully employed at regional and continental scales for Canada (Smith and Riseborough, 2002; Way and Lewkowicz, 2016, 2018), Scandinavia (Gisnås et al., 2017) and China (Zou et al., 2017). These studies use regional datasets as input and parameter tuning to optimize model performance. For the North Atlantic region, Westermann et al. (2015a) employed globally available remotely-sensed satellite LST and reanalysis data as inputs to a TTOP model to estimate permafrost probability and ground temperatures at a continental scale. To date, there has been no global modelling effort that is primarily based on observed LST and that can generate both permafrost temperature and permafrost zonation maps.

In this study, we extend and improve the remote sensing approach of Westermann et al. (2015a) and apply a TTOP–based scheme to the entire Northern Hemisphere. Due to its simplicity and small number of required input parameters, the TTOP approach facilitates high-resolution modelling, including a representation of subpixel variability (Westermann et al., 2015a). We compile the first permafrost temperature and zonation map at the circum-Arctic scale with a resolution of 1 km² that includes a statistical representation of subpixel variability of permafrost temperatures based on snow and landcover heterogeneity. Outputs are validated against borehole temperature measurements and are compared to existing regional permafrost maps and other expert knowledge. The results complement existing permafrost zonation maps and observations of ground thermal state.

2. Methods

2.1. The CryoGrid 1 model

For calculation of mean annual ground temperature (MAGT), we use the CryoGrid 1 model (Gisnås et al., 2013), based on the TTOP equilibrium approach (Smith and Riseborough, 1996):

\[
\text{MAGT} = \begin{cases}
\frac{1}{\tau} (n_F\text{FDD} + n_T\text{TDD}) & \text{for } (n_F\text{FDD} + n_T\text{TDD}) \leq 0 \\
\frac{1}{\tau} (n_F\text{FDD} + n_T\text{TDD}) + (n_F\text{FDD} + n_T\text{TDD}) & \text{for } (n_F\text{FDD} + n_T\text{TDD}) > 0
\end{cases}
\]

(1)

Here, FDD and TDD represent freezing and thawing degree days, respectively, of the surface meteorological forcing accumulated over the model period τ (in days). The influence of the seasonal snow cover, vegetation, and ground thermal properties are taken into account by the semi-empirical adjustment factors \(n_F\) (ratio of thermal conductivity of the active layer in thawed and frozen state), \(n_T\) (scaling factor between winter air/surface and ground surface temperature) and \(n_s\) (scaling factor between summer air/surface and ground surface temperature). We use satellite-derived surface (skin) temperature to compute FDD and TDD (Fig. 1, and following section) instead of the air temperature initially used by Smith and Riseborough (1996, 2002) and hence set the thawing \(n_s\)-factor to unity. Spatially distributed datasets based on satellite products and reanalysis are compiled (Fig. 1) for the other parameters and variables (TDD, FDD, \(n_F\), \(n_T\)). The TTOP approach is limited to near-surface permafrost and is unable to simulate relic or sub-sea permafrost.

2.2. TDD and FDD

We compile spatially distributed datasets of TDD and FDD from remotely sensed land surface temperature (LST) products. The Moderate Resolution Imaging Spectroradiometers (MODIS) on board the Terra and Aqua satellites have provided LST measurements at a spatial resolution of 1 km² since 2000 and 2002, respectively. The study period, therefore, starts in 2000 and extends to the end of 2016. We employ the MODIS MOD11A1 and MYD11A1 level 3 product in processing version 6, which contains up to two daytime and two night-time measurements per day (Wan et al., 2002; Wan, 2014).

Extended data gaps in the MODIS LST time series due to cloud cover can result in a systematic cold bias in seasonal averages (Westermann et al., 2012; Soliman et al., 2012; Østby et al., 2014). To prevent this, gaps are filled with near-surface air temperatures from the ERA-interim reanalysis which provides air temperature data throughout the study period at a spatial resolution of 0.75° × 0.75° (Dee et al., 2011). The validity of this gap-filling is supported by the similarity of air and
Downscaling of the ERA-interim reanalysis data to the 1 km² resolution of individual MODIS pixels is accomplished by computing atmospheric lapse rates and the elevation difference between the ERA orography field and the elevation of a 1 km² pixel, similar to the procedure described in Fiddes and Gruber (2014). The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) at 30 arcsec (approximately 1 km²) resolution (Danielson and Gesch, 2011) is employed for the elevation, while the ERA orography field is interpolated to the centre of each MODIS pixel. Atmospheric lapse rates are computed from the near-surface air temperatures and the temperatures at 700 hPa pressure level, again interpolated to 1 km² pixels. For pixels where elevation exceeds the elevation of the 700 hPa pressure level, we successively employ the 500 hPa and 200 hPa pressure levels instead. The downscaled temperatures are then inserted into the gaps in the MODIS LST timeseries and the resulting timeseries is used to generate 8-day average temperatures from which FDD and TDD are finally accumulated for the 2000–2016 study period. Westermann et al. (2017) showed that the cold bias of MODIS LST was significantly reduced after gap-filling, but a residual cold bias of approx. 1 K remained.

2.3. Snow water equivalent, snow depth and freezing nf-factors

To obtain a spatially distributed dataset of nf-factors, we first generate a 1 km² dataset of mean annual snow depth (MASD) using a simple degree-day model forced by downscaled ERA-interim precipitation and near-surface air temperature fields. Using the GMTED2010 DEM, precipitation is adjusted according to elevation differences between the ERA-Interim surface and the DEM elevation. Altitudinal precipitation gradients can vary considerably between different regions (Körner, 2007), for instance with increases of 10% per 100 m (5% above 1000 m) in the seNorge snow model for Scandinavia (Mohr, 2008), whereas Hevesi et al. (1992) suggests an increase only of 2% per 100 m in drier areas. We use a precipitation increase of 5% per 100 m elevation up to 1000 m above sea level asl, and 2% per 100 m for elevations above 1000 m asl. Snowfall is defined as precipitation at air temperatures below 0 °C, based on the same downscaled ERA-Interim air temperatures employed for gap filling of MODIS LST (see above), while snow melt is computed with a T-index model (Hock, 2003). To facilitate a global application, the range of degree day factors reported in literature (2–12 mm d⁻¹ C⁻¹; Hock, 2003; Senese et al., 2014) is scaled linearly according to a product of sun angle above horizon and day length. The sun angle above the horizon (θₘ, from which also day length is obtained) is calculated as (Karttunen et al., 2016):

\[
\theta_m = 90 - \phi + \left(\frac{23.45 \times \sin \left(\frac{360}{365} \times (284 + \text{DOY}) \right)}{23.45} \right)
\]

(2)

where \(\phi \) denotes latitude and day of the year (DOY). Average snowfall and snowmelt are computed from downscaled ERA-Interim at 1 km² spatial resolution for 12 h periods from which average yearly snow water equivalent (SWE) is accumulated for the study period. To convert SWE to snow depth, an empirical equation for average snow density based on field observations in the Northern Eurasia (Onuchin and Bureinina, 1996) is employed.

\[
P = 0.323 + 0.00045 \ln N - 0.0447 \ln T
\]

(3)

Here, \(P \) denotes the snow density (g cm⁻³), \(N \) the snow cover period in months, \(T \) the mean January temperature (°C) and \(H \) the average snow depth (cm), with \(H = \text{SWE}/P \). The equation is rearranged to yield the average snow density \(P \), so that the MASD can be calculated from SWE and the snow cover period obtained from the T-index model (see above). The mean January air temperature is approximated by the mean January surface temperature obtained from MODIS LST and ERA reanalysis (see above).

Freezing season nf-factors are calculated using the functional relationships in Smith and Riseborough, 2002, Fig. 4) based on MASD and mean annual air temperature (MAAT). This \(n_f \)-factor method was shown to be less biased than using statistical approaches (Way and Lewkowicz, 2018). An ensemble of different values for MASD is considered for each 1 km² grid cell (see “Subpixel Representation” below) to account for subpixel spatial variability in snow depths (e.g. Gisnås et al., 2014). Mean annual surface temperatures from MODIS LST and ERA-Interim are employed as a proxy for MAAT.

2.4. \(r_k \)-factors

The \(r_k \)-factors greatly depend on water and organic contents (Smith and Riseborough, 1996), providing physically-based constraints on their values (cf. Romanovsky and Osterkamp, 1995; Westermann et al.,...
In this study, \(r_k \)-values that are consistent with these constraints are assigned to landcover and soil moisture classes obtained from remote-sensing-derived gridded products.

For tundra regions, a dataset of site surface roughness which has been shown to be a suitable proxy for wetness (period 2002–2012; 500 m resolution, sensor ASAR GM; Widhalm et al., 2016) as well as soil organic carbon content (Bartsch et al., 2016) is used, defining \(n_f \) values for wet, medium wet and dry as 0.25, 0.75, and 0.95, respectively. Outside tundra regions, we use the ESA CCI Landcover product (period 2008–2012, version 1.6.1) with a horizontal resolution of approximately 300 m and with \(r_k \)-factors assigned to different landcover classes (Table 1). These landcover groups are chosen based on classes employed in previous regional TTOP analyses (Gisnås et al., 2017; Way and Lewkowicz, 2016).

<table>
<thead>
<tr>
<th>Landcover class group</th>
<th>(r_k)-factor</th>
<th>CCI Landcover classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare areas</td>
<td>0.95</td>
<td>140, 150, 152, 153, 200, 201, 202</td>
</tr>
<tr>
<td>Grasslands and croplands</td>
<td>0.75</td>
<td>10, 11, 12, 20, 130</td>
</tr>
<tr>
<td>Shrubs</td>
<td>0.8</td>
<td>30, 40, 100, 110, 120, 121, 122</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>0.95</td>
<td>50, 60, 61, 62, 80, 81, 82, 90</td>
</tr>
<tr>
<td>Evergreen forest</td>
<td>0.9</td>
<td>70, 71, 72</td>
</tr>
<tr>
<td>Wetlands</td>
<td>0.55</td>
<td>160, 170, 180</td>
</tr>
<tr>
<td>Urban</td>
<td>0.7</td>
<td>190</td>
</tr>
</tbody>
</table>

The bare-ground landcover class \(r_k \)-factor is set to 0.95 because it often represents mountainous and soil-free locations with low moisture content, similar to a number of surficial deposits used by Gisnås et al. (2017). The \(r_k \)-factors are set to 0.95 and 0.9 for deciduous and evergreen forest, which is similar to Way and Lewkowicz (2018) although lower \(r_k \)-factors values can be found in forests with thick organic cover. \(r_k \)-factor values around 0.5 have been reported in areas with thick organic cover as in wetlands (Williams and Smith, 1989).

2.5. Ensemble-based modelling of subpixel heterogeneity

Permafrost extent and temperatures can vary considerably over short distances due to heterogeneous snow cover, vegetation, terrain and soil properties (Beer, 2016; Cable et al., 2016; Gisnås et al., 2014; 2016; Zhang et al., 2014). To simulate this variability, we run an ensemble of 200 model realizations with different combinations of \(n_f \) and \(r_k \)-factors that are selected according to subpixel statistics for the landcover classes and a typical distribution of snow depths within the 1 km² pixel. A log-normal distribution function is used to obtain an organic cover as in wetlands (Williams and Smith, 1989).

The comparison to borehole measurements shows a mean absolute error of \(-0.08\) °C, which is partly due to a fine-tuning of \(r_k \)-factors, while a RMSE of 1.99 °C is evidence of the differences between model and measurements (Fig. 2). For 35% of the boreholes, the agreement between borehole temperatures and modelled MAGT is better than 1 °C,
while it is better than 2°C for 69%, and better than 3°C for 87% of the boreholes. Most RMSE values for regional subdomains are < 2.0°C, except for Canada, Alaska, and the Asian part of Russia, where they are still < 2.5°C. For Canada and China, the average MAGT is underestimated by around 1°C, while it is overestimated between 1 and 1.5°C for Svalbard, Scandinavia and Greenland.

Assuming a Gaussian distribution of MAGT standard deviation (SD), 68% of borehole comparisons should fall within one SD, while 95 and 99% should be within two and three SDs, respectively. Our comparison shows 375 (41%) boreholes are contained within one, 622 (68%) within two and 752 (82%) within three SDs from the mean, which is similar to the numbers that Westermann et al. (2015a) obtained for a much smaller domain (47%, 75%, 90%).

3.3. Standard deviation

The MAGT SD (corresponding to the spread of the model ensemble) is highest in the open and wetlands landcover groups with an average SD of 1°C, and lowest in the forest and shrub landcover groups to the south with SD of 0.5 and 0.4°C, respectively. The low SDs south of tundra regions represent forest and shrub landcover groups. The SD in the open landcover group varies greatly between arctic tundra regions (SD between 2.0 and 2.5°C) and mountainous regions such as the European Alps, Scandinavian Mountains, the Caucasus, the Rocky Mountains, the Himalaya and the Tian Shan (SD usually below 1°C, Fig. 6).

Because the FDDs and TDDs are constant in all model runs, the MAGT variation is due to different \(n_r \) and \(r_k \)-factors. The differences in SD between the forest and open landcover groups are due to a low coefficient of variation set for the snow distribution. The differences within the open landcover group mainly relate to differences in snow cover. The \(n_r \)-factors are most variable at low snow depths while they change little once the snow cover is thick. The SDs reach 3.5°C on Ellesmere Island and in northern Greenland where the input snow cover is very thin. Few studies have evaluated the real spatial variability within the area of a modelled pixel, but Gismås et al. (2014) showed MAGT differences up to 6°C due to difference in snow cover within 1 km\(^2\) and Gruber et al. (2017) measured MAGT differences up to 2.5°C within 15 × 15 m plots due to differences in surficial geology, vegetation, drainage conditions, and snow accumulation.

3.4. Regional results and review of permafrost extent and MAGTs

The modelled results are compared to borehole measurements and existing regional permafrost maps, which were produced at different time and spatial scales and are based on various mapping techniques. For this reason, only the comparisons with borehole data can be treated as a validation while comparisons to other maps show only relative differences among them.

3.4.1. Russia

Our results for Russia show a temperature bias of 0.2°C when compared to borehole temperatures. However, a RMSE of 2.1°C (\(n = 287 \)) indicates significant regional differences. The model performance is better for the European part of Russia (RMSE 1.4°C; \(n = 82 \)) than for the Asian part (RMSE 2.4°C; \(n = 205 \)). Comparison in the area east of Ural Mountains reveals that modelled MAGT is overestimated with an average warm bias of 0.4°C and SD of 1.2°C, but is underestimated by approximately 1°C on Pay-Khoy ridge and the coastal plain northwest of the Polar Urals. The modelled MAGT is overestimated by 1–3°C on Yamal, Tazovsky and Gydan Peninsulas but sites show both positive and negative MAGT differences close to the southern limits of permafrost. The MAGT is considerably underestimated in the continental part of Siberia with differences ranging between 1 and 6°C. The boreholes in the vicinity of Yakutsk show MAGT underestimation by an average of 4°C. However, slight MAGT overestimation is observed at the Siberian sites by the Arctic Ocean. The modelled MAGT is also warmer in the southern part of Far East Russia (by 2–4°C), the Amur region (1°C on average) and Kamchatka (up to 3°C).

The results (Fig. 7) can also be compared to the MAGT at the ZAA on the Geocryological map of the USSR (scale 1:2,500,000, digitised to 100 m\(^2\) pixels) compiled in 1991 (Kondratieva et al., 1996), and representing several decades before the 2000–2016 period (Supplementary Fig. S1). The permafrost extent appears to be overestimated in the Ob River floodplain, which is classified as wetland in the CCI landcover. The southern limits of permafrost are modelled north by 30–40 km at the Pechora River and 80 km in the area close to the Ural Mountains. As a result of mean MAGT overestimation in West-Siberian regions, the southern limit of permafrost is modelled about 100 km farther north compared to the Geocryological map. The areas at the southern
permafrost limit (south of Taimyr) show mostly MAGT overestimation, so that the resulting permafrost limit is shifted about 500 km to the north-east. The southern limit of permafrost is for the same reason shifted towards the north of Okhotsk Sea by 150 km compared to the Geocryological map. The extent of continuous permafrost in Eastern Siberia and Russian Far East is similar in both maps, except for the Chukotka and Magadan regions (North-East Russia), where extent is smaller in the GlobPermafrost map.

3.4.2. Canada

The average difference between borehole temperatures in Canada and predictions is \(-1.1^\circ C\) with an RMSE of 2.2 \(^\circ C\) \((n = 130)\). The results are highly correlated for the entire set of Canadian boreholes \((r^2 = 0.75; \ n = 130)\), but the correlation is significantly lower \((r^2 = 0.27; \ n = 108)\) for MAGTs above \(-5^\circ C\) (Supplementary Fig. S4). For borehole temperatures just below 0 \(^\circ C\), modelled temperatures vary from \(-5\) to \(+3^\circ C\), while the largest systematic differences between modelled and borehole MAGTs occur above 0 \(^\circ C\). Borehole temperature clustering is apparent in western Canada with modelled MAGTs almost all warm-biased (up to 1.7 \(^\circ C\)) in the southern Yukon and almost all cold-biased (up to 5 \(^\circ C\), 2 \(^\circ C\) on average) within the Mackenzie Valley (Northwest Territories), resulting in corresponding under- and over-prediction of permafrost probabilities, respectively. Overall, the accuracy of permafrost presence in our model is lower in the sporadic permafrost zone of subarctic Canada and higher in Arctic Canada where permafrost is continuous.

Our modelling predicts that 34–46% of the land area of Canada \((3.0 \times 10^6 \text{km}^2 \text{ to } 4.0 \times 10^6 \text{km}^2)\) is underlain by permafrost (Fig. 8), similar to the estimate of 33–47% by Brown et al. (1997). The spatial pattern of permafrost zonation across Canada in this study, such as the substantial shift of permafrost zones northward on the eastern side of Hudson Bay, is similar to the Permafrost Map of Canada (Heginbottom et al., 1995), representing the 50-year period prior to our study period. The boundary of the continuous permafrost zone, however, is displaced southwards across much of the Northwest Territories and northern Manitoba compared to Heginbottom et al. (1995), more closely resembling the southern boundary of the discontinuous permafrost zone (Supplementary Fig. S3). In contrast, continuous permafrost on the shore of Hudson Bay in northern Ontario appears under-represented while the continuous permafrost in northern Manitoba and sporadic permafrost in parts of northern Ontario modelled by Zhang et al. (2012) and Ou et al. (2016) is generally reproduced. Discontinuous permafrost across much of the boreal forest zone is less widespread compared to Heginbottom et al. (1995), particularly in the southern Yukon and northern Ontario. In the high mountain areas in southern Alberta, the GlobPermafrost map shows significantly more detail in the permafrost distribution due to the better spatial resolution. For comparisons to regional permafrost maps see supplemental material.
3.4.3. Alaska

Our MAGT is modelled as 0.4 °C too warm relative to the borehole data with a relatively high RMSE of 2.08 °C (n = 174). The increase of permafrost temperature along a North-South transect is not very clearly captured by our modelled MAGT. The modelled mean MAGT is close to −6.0 °C near the coast (mean MAGT: Barrow: −6.2 °C; West Dock: −6.6 °C) and colder mean MAGT values were modelled further inland (Franklin Bluff: −7.2 °C; Galbraith Lake: −7.7 °C), which however remains inside the RMSE band. Overall, mean MAGT values for most of Alaska (i.e. south of the North Slope) appear warm biased.

In comparison to the “Permafrost Characteristics of Alaska” map (Jorgenson et al., 2008; based on surficial geology and the PRISM climate map), the permafrost extent matches well in northern Alaska (i.e. North Slope of Alaska) and southwestern Alaska (Fig. 8). However, the boundary between continuous and discontinuous permafrost is shifted northwards in our product. Permafrost is continuous in the northern part of the Seward Peninsula and discontinuous in the southern part in Jorgenson et al. (2008), while it is modelled as discontinuous in the northern part and as sporadic in the southern part in our product. In contrast, the extent of the isolated patches zone in central Alaska appears to be overestimated by our model. Permafrost is absent south of Katmai National Park and in Kodiak Island, but patches of discontinuous or isolated permafrost south of Katmai National Park are modelled. Overall, the GlobPermafrost map shows a smaller permafrost extent in Alaska than the Permafrost Characteristics of Alaska map.

3.4.4. China

In comparison to borehole measurements, our modelled MAGT is underestimated on average by −0.94 °C (n = 188) with an RMSE of 1.76 °C. The MAGT is mainly overestimated (up to 3 °C) in northeastern China although under- and overestimations in the Daxinganling Mountains are relatively small. The majority of the Chinese boreholes (n = 151) are located in the eastern part of the Tibetan Plateau, where MAGT is moderately, but consistently underestimated (1.5 °C on average), which significantly influences the Chinese average. The MAGT was mainly overestimated in the western part of Tibetan Plateau.

In comparison to permafrost maps in northeastern China (Guo et al., 1981; Zhou and Guo, 1982; Zhou et al., 1996; Wei et al., 2011, Luo et al., 2014a, 2014b), the GlobPermafrost map (Fig. 9) reproduces the continuous and discontinuous permafrost in the Daxinganling Mountains, sporadic permafrost in Xiaoxinganling Mountains and southern permafrost limit in both. Comparison to Tibetan Plateau permafrost map (period 2003–2012, TTOP model based on regional datasets) (Zou et al., 2017) shows a substantial agreement between both datasets (Supplementary Table S1) with differences occurring mainly at the margins of the continuous permafrost zone (Supplementary Fig. S6). The permafrost distribution also matches well with the “Map of Snow, Ice and Frozen Ground in China” (Shi and Mi, 1988) in both the Altai Mountains and the Tien Shan, except for the Youledusi Basin in the central Tien Shan, where discontinuous and sporadic permafrost is modelled, while the Chinese map does not indicate the existence of permafrost (Supplementary Fig. S7).
3.4.5. Mongolia

The comparison to 36 boreholes shows a negative temperature bias of $-0.31^\circ C$ and RMSE of $1.36^\circ C$. The MAGT is slightly overestimated according to 11 borehole sites in Khentii Mountain ($0.6^\circ C$ on average) and moderately underestimated in the area between Khangai Mountains and Shishged River ($1.0^\circ C$ on average, $n = 22$). Three borehole temperatures in the northern part of Altai Mountains show average MAGT overestimation of $1.8^\circ C$. Permafrost presence is correctly modelled at 82% of 109 local observation sites, but some of these are located in small permafrost patches that are not captured by the model resolution.

Permafrost extent in the high altitude regions in Altai Mountains is similar to that in the permafrost map of Mongolia (Jambaljav et al., 2017; Supplementary Fig. S8) which is based on TTOP modelling using MODIS LST and local datasets. Our results indicate sporadic and discontinuous permafrost in the Uvs Lake depression but both field studies and the Mongolian map do not show permafrost there. Permafrost presence is modelled in the mountain regions of Dariganga Plateau and Gurvan Saikhan, where the Mongolian permafrost map again does not show permafrost. However, Gravis et al. (1971) reported permafrost presence in both regions, although this was not confirmed by recent observations. The modelled permafrost extent is underestimated in Shishged River Valley and the northwest side of Khentii Mountain, which are covered by forest and moist organic soil layers that favour permafrost existence (Ettelmüller et al., 2006; Dashtseren et al., 2014) and are likely not captured by the TTOP approach.

3.4.6. Scandinavia

On average, the modelled MAGT is overestimated by $1.3^\circ C$ (RMSE = 1.73) in comparison to 35 boreholes. The model results are generally too warm in mountain areas with thin snow cover, whereas some fit well and a few are modelled as too cold (Tron, Tarfala, Lavkavagge 2, Guloas 2, 3, Kistefjellet). The latter are in the areas of thick snow cover and where winter temperature inversions occur (Farbrot et al., 2013; Westermann et al., 2013).

The general permafrost distribution patterns in Scandinavia accord well in the GlobPermafrost map (Supplementary Fig. S9) and the Nordic permafrost map (Gisnås et al., 2017). However, the GlobPermafrost map shows less continuous and discontinuous permafrost in mountainous regions of southern Norway, northern Sweden, inner Troms and the Gaissane Mountains in Finnmark. On the other hand, the extent of sporadic permafrost appears greater in the areas southeast of Rondane and Valdresflya, and lowland areas of northern Norway, Sweden and Finland, where permafrost is mainly present in palsas. The greater extent of sporadic permafrost might be due to the overrepresentation of wetlands in the CCI landcover or due to strong temperature inversions that previous modelling approaches did not take into account.

3.4.7. Svalbard

The modelled MAGTs are in Svalbard higher than measured
borehole temperatures (mean difference of 1.48°C, \(n = 19 \), RMSE = 1.93). The MAGT overestimation varies greatly among landforms, as these have highly variable snow depths and ground ice contents (Christiansen et al., 2010). This variability is captured in the ensemble spread but not in the mean MAGT.

Permafrost is traditionally classified as continuous throughout the archipelago (Brown et al., 1997), but the modelled results indicate presence of discontinuous permafrost in the coastal areas of western Spitsbergen and some larger lowland valley areas. This is in accordance with previous modelling studies that indicated the potential formation of taliks in the lowlands (Etzelmüller et al., 2011), and recent warming trends observed in lowland coastal areas in western Svalbard, partly due to reduced sea ice cover (Isaksen et al., 2016; Christiansen et al., 2019). This partly accords with the increasing permafrost borehole temperatures at the west coast of Svalbard, to date reaching close to \(-3°C\) at around 10 m depth (Christiansen et al., 2019).

3.4.8. Iceland

The agreement between the modelled and measured MAGT in four boreholes is good (mean difference = 0.53°C, RMSE = 0.90). The modelled MAGT is underestimated by 0.6°C in the mountains close to Vopnafjörður, where the borehole is situated in a snow drift and overestimated in the Egilsstaðir by 1.3°C. The modelled MAGT accords well with the measured MAGT in the other two boreholes.

The spatial distribution of the permafrost zonation in Iceland (Supplementary Fig. S9) is similar to previous studies (Etzelmüller et al., 2007; Farbrot et al., 2007) in the northern part around Tröllaskagi and southwards towards Hågöngur, while permafrost abundance appears to be slightly exaggerated in the southern and south-eastern part of Iceland. The area where palsas occur (as described in Arnalds, 2008) is identified, but the modelled extent of isolated patches is greater. Permafrost in the southeast (Egilsstaðir) appears better represented by the GlobPermafrost map than by previous attempts (e.g. Farbrot et al., 2007), based on field measurements in the area. The GlobPermafrost map indicates discontinuous permafrost at higher elevations on the Vestfjord Peninsula where permafrost presence is confirmed by landslides originating in a frozen debris cover (Sæmundsson et al., 2018).

3.4.9. Greenland

The distribution of permafrost in the Greenland is controlled by the overall climatic zonation from north to south and regional climatic gradients from the coast to the Greenland Ice Sheet. The comparison of our MAGT values to seven boreholes, which are distributed across all climate zones in Greenland, yields satisfactory results with average temperature overestimation of < 1.0°C and an RMSE of 1.6°C. Modeled MAGT is too high except for the inland site of Kangerlussuaq close to the Greenland Ice Sheet. Further validation with additional six independent sites confirms good model performance and robustness in Greenland (Supplementary Fig. S10).

Although the permafrost zonations from GlobPermafrost and Westergaard-Nielsen et al. (2018) were derived differently (see
supplement), there is a considerable agreement between them (Supplementary Figs. S11 and S12). Differences in the distribution of permafrost types between these two maps (Supplementary Fig. S13) are mainly in South Greenland between 59 and 65°N where continuous permafrost is modelled in our study, whereas the Westergaard-Nielsen et al. (2018) map shows only 15% of the area as continuous permafrost. An earlier map (Christiansen and Humlum, 2000) does not show permafrost in southern Greenland, while the GlobPermafrost map indicates sporadic permafrost. On the other hand, the GlobPermafrost map shows isolated patches in coastal areas up to 70°N on the east coast of Greenland, where both of the previous maps indicate predominantly discontinuous permafrost. On the west coast, GlobPermafrost map shows more extensive continuous permafrost in the central part (67°–68°N) compared to the two earlier maps, which are often set to indicate continuous permafrost in areas with MAAT below −5°C and discontinuous permafrost in areas with MAAT between −5 and −2°C.

3.4.10. European Alps

The MAGT in the Alps is overestimated by 0.9°C (n = 35, RMSE = 1.48°C) when compared to borehole measurements. The discrepancy is small especially when considering a strong thermal disequilibrium caused by air temperature warming over the last 25–30 years. The MAGT difference is smaller than 1°C at 18 sites and it is slightly > 2°C only at 6 sites. The site in Swiss Alps, where MAGT is overestimated by 4°C, is located in an extra-zonal permafrost.

The GlobPermafrost map (Supplementary Fig. S14) mimics the pattern of permafrost distribution shown in the high resolution Alpine Permafrost Index Map (Boeckli et al., 2012). Only isolated areas in the class “Permafrost only in very favourable categories”, which commonly represent steep rock walls and extra-zonal permafrost sites, are absent from the GlobPermafrost map.

3.4.11. Other mountain areas

Permafrost distribution is modelled for several mountainous areas outside the regions described above. All permafrost zones occur in the Rocky Mountains of the USA with sporadic permafrost in Colorado at elevations above 3200 m asl and discontinuous permafrost above 3500 m asl, results which agree with observations by Ives and Fahey (1971). Isolated permafrost patches are modelled in the highest peaks of the Sierra Nevada in the southwestern USA, which corresponds well with the presence of active rock glaciers in the area (Liu et al., 2013).

The model predicts sporadic permafrost for the highest parts of the Pyrenees Mountains, above 2500 m asl. Serrano et al. (2001) showed permafrost presence there above 2700 m asl. No permafrost is modelled in the Sierra Nevada, Spain, where Gómez et al. (2001) located permafrost remnants, but the lowest MAGTs from the ensemble spread are close to 0°C.

Permafrost extent is successfully modelled for eastern and south eastern Europe. Small areas are correctly modelled for the Southern
Carpathians, where permafrost is present above 2000–2100 m asl (Urdea, 1998) and for the Tatra Mountains where isolated permafrost patches start to occur above 1900 m asl (Moscicki and Keldzia, 2001). The model correctly reproduces permafrost presence in the Balkan Mountains above 2300 m asl (Dobiński, 2005).

Permafrost is modelled in several mountainous areas in Turkey: above 3100 m asl in the Taurus Mountains and above 2600 m asl in the Pontus Mountains. The existence of permafrost in these two regions is indicated by active rock glaciers (Karge et al., 2014). According to our results, permafrost starts at between 2600 and 2800 m asl in the Caucasus Mountains and between 2700 and 3000 m asl in the South Caucasus Mountains. These elevations are lower than the limits estimated by Gorbunov (1978). Permafrost is inferred to begin at 3400 m asl on Sabalan Mountain and at around 3600 m asl in the Elburz Mountain Range in Iran, which is again lower than estimated by Gorbunov (1978).

Isolated patches of permafrost are modelled for the Daisetsu Mountains, Hokkaido, Japan, above 1800 m a.s.l. where Ishikawa and Hirakawa (2000) reported permafrost presence above 1750 m a.s.l. Continuous permafrost is modelled for the peak of Mt. Fuji, where permafrost has been confirmed by Higuchi and Fujii (1971). Isolated patches of permafrost are also modelled for the Japanese Alps above 2500 m a.s.l.

4. Discussion

The GlobPermafrost map is the first to portray both ground temperature and permafrost zones at circumpolar scale using a TTOP model based primarily on remote sensing dataset with a spatial resolution of 1 km. Here we discuss the model limitations, outputs and influence of input data on results.

4.1. Model performance and limitations

The TTOP framework is an equilibrium model that does not take into account the history of ground thermal conditions before the study period, nor changes of ground temperature under a warming climate. This can affect its accuracy where permafrost is rapidly warming or cooling, especially where ground temperatures approach 0°C and the soil moisture content is high. In such cases, the disequilibrium between atmospheric and ground temperatures increases because latent heat
effects slow down potential thaw (Smith et al., 2005, 2010). Numerous measured borehole temperatures are close to 0°C (Fig. 2) which makes disequilibrium with surface climate possible at these sites. The magnitude of the disequilibrium is associated with the persistence of relict permafrost rather than the ratio of frozen to thawed thermal conductivities (James et al., 2013; Throop et al., 2012). The occurrence of relict permafrost cannot be simulated for this reason and permafrost extent may be underestimated in areas where it persists deeper in the ground beneath a talik. Such transient conditions may persist for decades until TTOP values eventually exceed 0°C or for centuries if the relict permafrost layer is thick. In the interim, the measured borehole MAGT would be colder than modelled MAGT, as could be the case for example, in much of the southern Yukon (Fig. 8).

Exclusion of n_t-factors from the model enabled us to use high-resolution MODIS LST data, but may have reduced the model performance in forested regions where the inputs represent the temperature of the tree canopy rather than ground surface. The percentage of MODIS LST measurements included in FDD and TDD calculation also depends on the cloudiness of the area. The fused MODIS LST and ERA-Interim time series likely don’t represent the microclimates of dense forests well and these also vary among different forests types (Vanwalleghem and Meentemeyer, 2009).

The model does not account for permafrost variability in steep mountains due to aspect and topography. Elevation and aspect sub-grid variability are especially important for permafrost distribution in mountainous areas (Gruber and Haeberli, 2009), but the MODIS LST is measured from space and contains little signal from steep slopes and no signal from vertical walls. The model is also not able to simulate the absence of snow on steep mountain slopes. There are no studies that describe relationships between elevation, aspect and MAGT at scales relevant for our work, precluding their representation as terrain sub-pixel variability within the TTOP model. This could be a reason for the MAGT mismatch in the mountains of Eastern Siberia, but on the other hand, the model performed well for the European Alps and other mountainous regions outside the Arctic. We therefore assume that the modelling results are satisfactory in most mountainous regions, although validation is lacking where few permafrost studies have been conducted (e.g. the Caucasus, Turkey and Middle Asia).

Permafrost properties are known to vary considerably within 1 km2 grid cells (Schmid et al., 2012; Gisnås et al., 2014). The ability to partially represent this variability at a spatial resolution of 1 km2 using subpixel landcover information is crucial for model accuracy and in particular for comparison to borehole data. A previous TTOP statistical modelling approach by Westermann et al. (2015a) used a single landcover value and snow thickness values to define possible ranges of n_t and r_t-factors for a pixel. The GlobPermafrost approach takes into account all landcover classes present within a 1 km2 MODIS pixel for defining n_t and r_t values. We note that extra-zonal permafrost occurrence in talus slopes or ice caves is not represented by the GlobPermafrost map as their special site conditions and processes are typically not represented in the input data and the TTOP model, respectively.
4.2. Permafrost extent and MAGT

Our estimate of 13.9×10^6 km2 for permafrost area (MAGT $< 0 \, ^\circ C$) in the Northern hemisphere is within the range of or lower than the middle values reported in previous studies. Zhang et al. (2000) estimated the Northern Hemispheric permafrost area to between 12.2 and 17.0 $\times 10^6$ km2 based on the IPA map zone fractions. Gruber (2012) estimated the permafrost area to range between 12.9 and 17.7 $\times 10^6$ km2 using a semi-empirical modelling scheme based on downsampled climate reanalysis data. Our permafrost area range calculated based on a MAGT RMSE of 2°C is larger than the latter. Aalto et al. (2018) produced circum-Arctic MAGT at ZAA and active layer thickness, and estimated the permafrost extent to be around $15.1 \pm 2.8 \times 10^6$ km2, a value which is close to our estimate. They reported an RMSE of 1.6°C, which is lower than our estimate but the models differ significantly since the results are fitted to validation data using statistical forecasting.

The extents of the permafrost region (area of all permafrost zones) estimated by Zhang et al. (2000) and Gruber (2012) are 22.8 and 21.7 $\times 10^6$ km2, respectively, while our estimate of 20.8 $\times 10^6$ km2 is about 2 $\times 10^6$ km2 (2% of exposed land area) lower than these two. Moreover, our modelled permafrost region area may be underestimated in zones of isolated patches permafrost, which often extend beyond those in Brown et al. (1997), especially in eastern Russia and central Canada. In our modelling scheme, the isolated-patches zone is subject to considerable uncertainty. In contrast, the spatial resolution of the modelled product is considerably higher than Brown et al. (1997), so mountain permafrost distribution is represented in greater detail and often occupies smaller areas.

The zero-degree isotherm of ensemble-average MAGT generally follows the discontinuous/sporadic permafrost transition boundary or extends slightly into the sporadic-permafrost zone. The modelled areas of continuous and discontinuous permafrost together underneath slightly less (13.8 $\times 10^6$ km2) than the area with MAGT $< 0 \, ^\circ C$. This indicates that the average 0°C MAGT of ensemble runs corresponds well with the 50% of model runs with MAGT below 0°C. The MAGTs that follow the permafrost boundaries show a positive bias of 0.5°C in comparison to empirical values earlier indicated by Kondratieva et al. (1996) for the Geocryological map of the USSR.

The accuracy of the permafrost extent is higher in regions with steep vertical gradients because variations in modelled MAGT translate to relatively small errors in horizontal permafrost extent, such as mountainous regions of Central Asia, China and Mongolia. However, a small inaccuracy in modelled MAGT can shift permafrost boundaries by several hundred kilometres in flat areas, as in central Canada and lowland regions of Siberia.

4.3. Comparison of results to boreholes and regional maps

An important advantage of the TTOP modelling is that predicted MAGT values can be directly validated using borehole MAGT measurements in contrast to previous permafrost probability maps (e.g. Gruber, 2012; Bonnaveventure et al., 2012). However, evaluating our results based on borehole MAGTs is imperfect because of variability in the validation dataset relating to measurement period and measurement depth. For example, the MAGT period of boreholes from the TSP data is mostly from the middle of our study period while the borehole MAGT data from Chinese publications are from various periods between 2000 and 2016. Measurement depths in the TSP data are usually not at the top of permafrost while MAGT in the GIN-P database mostly have no information on the measurement period or the measurement depth. To include as many borehole sites as possible we accepted records that did not completely match the modelled time-period and depth.

Further challenges with the validation occur because of errors in borehole coordinates appearing in the validation datasets. Despite this the exact site snow cover, geomorphology, subsurface properties and vegetation cover, might not have been fully incorporated in the model. This spatial variability is to some extent contained in the ensemble spread and shown by SD although only the ensemble mean of MAGTs could be compared to borehole measurements. Where a borehole was drilled at a location that is not representative at the modelled scale (e.g. an isolated peatland or snow drift), as is the case for some sites in Mongolia and in Svalbard, the difference between the modelled and measured MAGT might be considerable. Many boreholes are located close to coasts, where a sea temperature signal might affect the MODIS data. This could explain a warm bias in modelled MAGTs along the coasts of Alaska, Canada and Siberia (Fig. 6) and the modelled presence of only isolated permafrost patches as far north as 70°N on the east coast of Greenland.

In areas of discontinuous permafrost, borehole sites may be biased towards the coldest parts of the landscape because most boreholes in the dataset were established by scientists or engineers studying perennially frozen ground. In North America, Russia and Mongolia, these locations are usually forested, with ecosystem-protected permafrost overlain by thick surface organic mats, and/or in peat deposits (e.g. Lewkowicz et al., 2011). In all such situations, thermal offsets are especially large where permafrost is present, and the modelled MAGT is overestimated compared to borehole temperatures and thus not representative for larger areas.

The RMSE of 2°C is within the range of similar modelling efforts. Westermann et al. (2015a) estimated an accuracy between 2 and 2.5°C using the same modelling approach for the North Atlantic permafrost region. Kroisleitner et al. (2018) and Aalto et al. (2018) estimated accuracy of their results for the Circum-Arctic region to 2.2°C and between 1.6°C and 1.9°C, respectively, using different approaches. Our regional scale comparison revealed that the model is generally more accurate in tundra regions with continuous permafrost, where the presence of permafrost and its thermal state are mostly controlled by climate and snow cover. The model accuracy decreases within the discontinuous permafrost zone where vegetation and soil properties become important factors determining the ground thermal regime.

The regional maps that are compared to the GlobPermafrost map differ in terms of time periods and depth of the MAGT. Permafrost maps of Labrador and northern Québec, Mongolia, Scandinavia and Greenland show TTOP, but the Geocryological map of the USSR shows temperature at ZAA. The latter map also shows MAGT several decades prior our study, whereas the time periods of other studies fall within or overlap with our modelling period. Given recent climate warming, the earlier time period might explain some cases of smaller permafrost extent in comparison to the Geocryological map of the USSR (Supplementary Fig. S1) and to the Labrador and Québec (Supplementary Fig. S5). On the other hand the deeper MAGT at ZAA could result in modelled MAGT being too low. However, the gradients observed in the boreholes show that the difference between the MAGT at TTOP and ZAA should be $< 1 \, ^\circ C$.

4.4. Land surface temperatures

The gap-filling of MODIS LST with ERA-Interim data significantly reduces a potential cold bias that stems from an absence of LST measurements under cloudy conditions (Westermann et al., 2012; Østby et al., 2014). However, downscaled air temperature from different ERA-Interim air pressure levels does not capture subpixel phenomena, such as temperature inversions, especially in valleys smaller than the ERA-Interim spatial resolution. Temperature inversions are, on the other hand, captured by MODIS LST data under clear-sky conditions. Lower MAGT and increased permafrost probability due to temperature inversion is therefore likely to be captured for continental climates with frequent clear-sky conditions. This pattern is modelled across all of Siberia, but not in valleys below treeline with inverted annual lapse rates, as for example in the Yukon (Lewkowicz and Bonnaveventure,
whereas nf-factors used in our study are estimated between 0.55 and 0.65. The MODIS LST values are averaged for each 1 km² grid cell and consequently subpixel spatial LST variability due to soil moisture, albedo, vegetation, aspect and alitudinal differences is not accounted for. An alternative or additional explanation could be that valleys in western Canada are narrower than those in Siberia, so that the valley MODIS temperature signal can be mixed with the temperature signal from the slopes.

4.5. Snow depth and nf-factors

Incorporation of snowmelt in the model is an important improvement over Westermann et al. (2015a), who computed nf-factors solely from ERA snowfall data. Although the T-index model is not able to simulate snow sublimation and redistribution, it appears to account for snow variability in a satisfactory way when averaged over long time periods and in large areas. Alitudinal gradients, which can vary regionally (Körner, 2007), are used in the present study to downscale the snowfall, so that the latter likely features a higher uncertainty in mountain regions. On the other hand, according to the relationship implemented between snow thickness and nf-factors, the errors in thick snow cover have less effect on nf-factors than those in thin snow cover.

Many TTOP modelling studies showed that nf-factors have the greatest influence on MAGT (e.g. Smith and Riseborough, 2002; Way and Lewkowicz, 2016, 2018). There are indeed several areas in our map where inaccurate snow depths, density and nf-factors cause modelling errors. The considerable MAGT underestimations in continental Siberia could be explained by the inability of our snow model to simulate very low-density snowpack in this area so that calculated nf-factors are likely too high. The spatially consistent negative differences between measured and modelled temperatures in the Mackenzie Valley are also a consequence of high values for nf produced by too little snow in our model, or because the relationships between snow depth and nf-factors may be inaccurate for highly continental boreal forests. Wright et al. (2003) reported nf-factors between 0.3 and 0.35 for this region, whereas nf-factors used in our study are estimated between 0.55 and 0.65. The coarse resolution of climate inputs or other subpixel influences on snow redistribution could have caused smaller, but relatively consistent differences in the two probability maps presented for coastal areas of northern Labrador and Québec. Overestimations of MAGT in the mountainous regions of southern Norway, Greenland and Svalbard are likely caused by underestimated snow depths.

4.6. Landcover and rk-factors

The ASAR GM dataset classes provide three wetness levels for tundra regions, which correspond to a varying degree of water saturation in the upper soil column (Widhal et al., 2016). Therefore, it is possible to directly relate rk-factors to ground moisture data in tundra regions, but not for other areas where woody vegetation is present. The class groups within the CCI Landcover represent soil moisture less specifically than in the ASAR GM dataset, except for wetlands, which are often present near the southern limit of permafrost. Therefore, any misclassification of landcover to wetlands influences modelled extent of sporadic permafrost and isolated patches. Wetlands in the CCI Landcover often correspond to floodplains and do not encompass all peatland areas. This has an impact, for example in the Murmansk region and the Ob River floodplain east of the Ural Mountains (Fig. 10).

The forest landcover groups do not include any information on soil moisture and thermal conductivity, so that the rk-factors are subject to fine tuning. Rk-factors may range from 0.9 in forests with coarse surficial material in Southern Yukon (Bevington and Lewkowicz, 2015) to significantly lower values in forests with thick organic cover as identified for instance in Mongolia (Dashtseren et al., 2014). In addition, evergreen needle-leaved forest provides more shade during summer and traps more snow in canopies during winter than deciduous needle-leaved forests. Forests in Alaska and Western Canada mostly consist of black and white spruce, whereas Northern Siberian forest is dominated by larch. Thus, boreal forests in North America provide a stronger cooling effect. Consequently, our modelled MAGT in the boreal forest zones is overestimated in Alaska and much of western Canada, but underestimated under larch forests in Siberia. The exact relationships between ground surface temperatures and canopies are not known and should be investigated in future studies.

5. Conclusions

We developed and implemented a TTOP equilibrium model at a circumpolar scale based on remotely sensed LST, ERA Interim climate reanalysis, and landcover information. It provides MAGT at TTOP, permafrost probability, and permafrost zonation datasets for the Northern Hemisphere at 1 km² spatial resolution. The modelled permafrost area (MAGT < 0°C) underlies 13.9 × 10⁶ km² (14.6% of exposed land area), which is within the range but slightly below the average of previous estimates. The permafrost region (total area of the zones of isolated patches, sporadic, discontinuous and continuous permafrost) underlies 20.8 × 10⁶ km² (21.8% of exposed land area), which is 2 × 10⁶ km² less than estimated previously. The accuracy of modelled MAGT at the top of the permafrost (TTOP) estimated from comparison to borehole data over the Northern Hemisphere is ± 2°C. The model accuracy decreases where the modelled MAGT approaches 0°C, most likely because the model does not include the transient response of the ground to surface to warming and/or cooling.

A detailed review of regional-scale results revealed that the general patterns of permafrost extent are represented well, with notable differences in some regions. The model performs better in sparsely forested tundra regions than in densely vegetated areas where FDDs and TDDs include a tree canopy signal, and where the employed CCI Landcover product does not adequately resolve ground properties and geomorphology. The permafrost extent is, in comparison to existing permafrost maps, smaller in Far East Russia, Alaska and the Yukon and larger in the Canadian Northwest Territories and northern Manitoba. Some of the differences in map-to-map comparisons may have originated from different map time periods or uncertainties in the datasets compared. A comparison of the modelled MAGT to the measured borehole data can thus be considered as a more reliable validation. Enhanced borehole coverage and duration of observations are therefore regarded as crucial for improving model results and accuracy estimates. Increased availability, quality and resolution of input and validation datasets together with increased computing capacity would enable use of transient permafrost modelling at similar scales.

Data are available for download at: https://doi.pangaea.de/10.1594/PANGAEA.888600

Acknowledgements

We thank the anonymous reviewers for their useful and constructive comments on an earlier version of the manuscript.

Funding

This work was supported by the European Space Agency GloBPermafrost project [grant number 4000116196/15/1-NB] and the Research Council of Norway SatPerm project [grant number 239918]. Data storage resources were provided by Norwegian National Infrastructure for Research Data (project NS9079K). The Terra and AQUA MODIS LST datasets were acquired from the Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), located in the Goddard Space Flight Center in
Greenbelt, Maryland (https://ladsweb.nascom.nasa.gov/). Landcover data were provided through the ESA CCI Landcover project webpage, www.esa-landcover-cci.org.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.earscirev.2019.04.023.

References

Fig. 10. Permafrost probability for the area east of Ural Mountains with different r_k values for the wetlands landcover group. (Left) regular run of the model for an r_k-factor of 0.55; (right) r_k-factor modified to 0.8, showing the sensitivity of modelled permafrost extent to both wetland classification accuracy and thematic resolution.

York.