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Abstract An important issue that is not considered in most flood risk assessments in

mountain villages in Spain is the transport of solids associated with the flood flow, in this

case, large wood transport. The transport and deposition of this wood in urban areas may

be a potentially worse hazard than the flood flow itself. Despite its importance, large wood

is a key ecological element in rivers, so removing it could be an unsuccessful approach.

Therefore, efforts are needed in the better understanding of wood transport and deposition

in streams. To analyse this process, scenario-based 2D hydrodynamic flood modelling was

carried out. Since flood risk assessment has considerable intrinsic uncertainty, probabilistic

thinking was complemented by possibilistic thinking, considering worst-case scenarios.

This procedure obtained a probabilistic flood map for a 500-year return period. Then, a

series of scenarios was built based on wood budget to simulate wood transport and

deposition. Results allowed us to identify the main infrastructures sensitive to the passing

of large wood and simulate the consequences of their blockage due to wood. The potential

damage was estimated as well as the preliminary social vulnerability for all scenarios (with

and without wood transport). This work shows that wood transport and deposition during

flooding may increase potential damage at critical stream configurations (bridges) by up to

50 % and the number of potentially exposed people nearby these areas by up to 35 %.
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1 Introduction

The transport and deposit of wood at critical stream configurations (i.e. bridges) can cause

a quick succession of backwater effects due to the reduction of cross-sectional area,

accompanied by bed aggradation, channel avulsion and local scouring processes, which

can ultimately lead to embankment/bridge collapse and floodplain inundation (Diehl 1997;

Comiti et al. 2007; Lyn et al. 2007; Mao and Comiti 2010; Comiti et al. 2012). As a result,

flooded areas are likely to be different from those predicted from models where the

presence of wood is not considered (see an example in Ruiz-Villanueva et al. 2012), and

therefore, this may result in the incorrect/uncertain estimation of flood risk. This potential

conflict between large wood and infrastructures may be particular important in urban areas,

where the problem has to be redefined as the inability of infrastructures to pass large wood

(Lassettre and Kondolf 2012; Schmocker and Hager 2011).

A common management response is to remove living vegetation and dead wood from

the channels (Bradley et al. 2005). In natural conditions, floods are the mechanisms reg-

ulating the river environment, and extensive literature now exists describing the positive

influence of wood on stream ecology (Martin and Benda 2001). In addition, it has been

demonstrated that large wood removal could fail, in part because of new inputs of wood

during floods (Young 1991; Gippel 1995; Dudley et al. 1998). However, the presence of

infrastructure on the channels, and the progressive alteration of the hydrogeomorphology

and land use of banks and floodplains have led to an exponential increase in channel

cleaning, which is now the subject of ongoing debate in some countries (Ollero 2013). The

challenge nowadays is thus to maintain the equilibrium of the good ecological and hy-

dromorphological condition of rivers and at the same time analyse and manage the

potential risks.

A wide range of factors can lead to uncertainty in flood risk estimation, but all of them

can be divided into two main types (Tung and Yen 1993; Paté-Cornell 1996): (A) Natural

variability (random uncertainty): refers to uncertainties associated with the inherent ran-

domness of natural processes; (B) Knowledge uncertainty (epistemic uncertainty): results

from incomplete knowledge of the system under consideration and is related to the ability

to understand, measure and describe the system (model, parameter and data uncertainties).

Knowledge or epistemic uncertainty can be reduced by acquiring more knowledge, while

natural variability is inherent in the system and cannot be reduced by more detailed

information. However, it is possible to include it in flood risk analysis (Apel et al. 2004).

According to the literature, flood maps can be produced using either deterministic or

probabilistic approaches (Bates et al. 2004; Merz et al. 2007; Di Baldassarre et al. 2010).

Deterministic approaches do not normally take the uncertainties into account (Bates et al.

2004). In addition, hydrological and other data are often far from complete, their reliability

is usually not perfect, and they can be analysed in different ways, resulting in slightly or

very different outcomes (Faulkner et al. 2007). This may therefore lead to incorrect hazard

assessment. The analysis of different scenarios (Mazzorana et al. 2011) and the what if

method (Yeo 1998) may also be used to estimate the variables, factors and parameters

considering the most likely values.

The aim of this article, therefore, was to analyse how the transport and deposition of

wood influence flood risk estimation in a mountain village using the worst-case scenario

approach. The studied river basin was identified as prone to wood delivery in a previous

stage (Ruiz-Villanueva et al. 2014b). In addition, we tried to take the uncertainties men-

tioned above and to obtain the optimal (most likely) flood risk estimate for the cases where

no wood was present and for different large wood transport scenarios.
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2 Study area

The study area is located in the eastern massif of the Sierra de Gredos (in the south of Avila

province), the highest section (Almanzor Peak 2,592 m a.s.l.) of the Spanish Central

System, which crosses the Iberian Peninsula SW–NE (Fig. 1). These mountains are the

natural division between the river basins of the Tajo (Tagus) to the S. and Duero to the N.

The sector of Sierra de Gredos studied here is on the southern slopes, in the basin of the

Tiétar, a tributary of the Tajo. We studied a reach of the Arenal, a tributary of the Tiétar.

The Arenal flows through the town of Arenas de San Pedro (*6,900 inhabitants). The

drainage area at Arenas de San Pedro is 67 km2, and the total length is 12.5 km. The study

reach is 1.2 km long (see Table 1), and the river flows in nearly natural conditions (since

there are no dams upstream), although part of the reach is channelled.

The geology of this region is mainly composed of granites (Upper Palaeozoic grani-

toids) covered by a sandy weathering mantle; the Arenal river bed consists mainly of

gravel, with some bedrock outcrops.

There is abundant forested mass in the area (Fig. 2), and different species are found

depending on altitude. At higher altitudes, where the extreme climatic characteristics

impede the development of tree or shrub species, grassland cover is found (mainly Festuca

sp., Carex sp.). At lower levels, there is a characteristic presence of shrubs (Cytisus sp.)

and stretches of high mountain conifers such as Pinus sylvestris. This species is replaced at

lower altitudes by Pinus pinaster which usually appears with Genista florida, Ilex aquo-

lifolium, Erica arborea and Sorbus aucuparia. Further down, the forest is composed

Fig. 1 Location of the study site. There are three bridges along the studied reach, and the Cuevas tributary
stream joins the Arenal in mid-reach
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mainly of deciduous trees such as Quercus pyrenaica and Quercus ilex. The riparian

vegetation is predominantly Alnus glutinosa and Fraxinus angustifolia. Tree clearance has

been carried out in the past in the study area and is still on going.

The climate of the study area is determined by the frequent arrival of Atlantic

depressions from the SW during autumn, winter and spring and by the predominant Azores

anticyclone causing very dry summers (only 10 % of annual precipitation). The yearly

precipitation recorded in the area is around 2,000 mm (1,913 mm at 800 m a.s.l.).

Flash floods are common in the Arenal catchment area boosted by heavy rains and the

high stream gradient ([0.02 mm-1), which lead to extremely high discharge and poten-

tially wood transport rates.

3 Methodology

The general methodological approach was designed to analyse flood risk in a mountain

village incorporating wood transport into the analysis. As mentioned in the introduc-

tion, the risk analysis itself is accompanied by several sources of uncertainty. To

consider these uncertainties in the analysis, the methodology was divided into four

steps (Fig. 3):

1. Step 1: For the flood frequency analysis (FFA), a Bayesian Markov Chain Monte Carlo

(MCMC) procedure (Reis and Stedinger 2005) was used. This approach can account

for uncertainties in hydrological extremes as it provides estimates of confidence

bounds for the estimated quantiles (Gaál et al. 2010).

2. Step 2: Model performance and water depth reconstruction were analysed under

uncertainty of the input Manning roughness coefficient values and the accuracy of the

digital elevation model used for 2D hydrodynamic simulation.

3. Step 3: The role of large wood transport during floods was included in the analysis by

modelling different scenarios.

4. Step 4: Damage functions with predictive bounds and flood hazard thresholds were

used to estimate the 500-year flood risk in terms of expected or potential direct damage

(Messner and Meyer 2005) and in terms of danger or hazards for people (HR

Wallingford 2005).

Table 1 Main morphometric
characteristics of the Arenal river
basin and the studied reach

Arenal river at Arenas de San Pedro

Drainage area (km2) 67

River length (km) 12.5

Maximum basin altitude (m a.s.l.) 2,200

Minimum basin altitude (m a.s.l.) 400

Average stream slope 0.14

Time concentration (h) 2.95

Studied reach length (km) 1.2

Studied reach maximum altitude (m a.s.l.) 545

Studied reach minimum altitude (m a.s.l.) 489

Studied reach average stream slope (mm-1) 0.046
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Therefore, the flood risk is estimated as:

R ¼ P
Q0

P0

� �
� P Z 0

Q0

� �
� P S0

Z0 � Z 0 � 0

� �
� S0

The probabilities describe the following uncertainties: P(Q0/P0), uncertainty in the dis-

charge–probability relationship; P(Z0/Q0), uncertainty in the stage–discharge relationship

(model performance); P[S0/(Z0 - Z0 B 0)]: uncertainty in the stage–damage relationships.

If no uncertainties are taken into account, then risk is defined as:

R ¼ PS0

where S0 is the consequences (damage potential); P is the probability of hazard occurrence

(probability of the flood event).

Fig. 2 Vegetation distribution in the Arenal River Basin

Fig. 3 Scheme of methodological approach for flood risk estimation. Qt is a given return period discharge;
LW large wood transport
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3.1 Extreme value statistics: flood frequency analysis

As several studies have indicated, the major source of uncertainty in flood risk assessment

has to be expected in extreme values statistics (Merz et al. 2002). The Arenal river basin at

Arenas de San Pedro is ungauged, so no flow measurements were available. We used a

compilation of historical discharges estimated using rainfall run-off methods and

accounting for uncertainties related to antecedent conditions and land-use changes. These

historical floods were reconstructed from documentary sources and tree-ring analysis

(described in detail in Ruiz-Villanueva et al. 2013). Then, the Bayesian Markov Chain

Monte Carlo (MCMC) procedure (Reis and Stedinger 2005) was applied accounting for

uncertainties in discharge estimates and providing confidence bounds for the obtained

quantiles (Gaál et al. 2010; Gaume et al. 2010). Through the incorporation of several

subsets of data on historical floods with associated uncertainty, the influence of varying

approaches on the estimation of quantiles in at-site analyses provided the related

variability.

3.2 2D-hydrodynamic modelling

The hydrodynamic simulation was carried out applying the IBER two-dimensional

hydrodynamic software (Bladé et al. 2012; www.iberaula.es), developed by CIMNE,

GEAMA group (UDC) and Flumen Research Institute (UPC). IBER is a numerical tool for

2D simulation of turbulent free surface unsteady flow and sediment transport in water-

courses. IBER uses the finite volume method, which is widely used in computational fluid

dynamics (Leveque 2002; Versteeg and Malalasekera 2007). To solve the hydrodynamics,

the finite volume method with a second order Roe Scheme (time explicit scheme) is used

on non-structured meshes. This method is especially suitable for flows in mountain rivers,

where shocks and discontinuities can occur giving very sharp hydrographs. The method is

conservative even when wetting and drying processes take place.

The reach geometry was produced by topographical survey using a combination of

differential GPS and total station to obtain a detailed digital elevation model (DEM) with a

pixel size equal to 1 m and vertical accuracy equal to 10 cm.

Since there was a lack of data for model calibration, the water depth in the studied reach

was analysed under uncertainty of the topographical accuracy and input Manning rough-

ness coefficient values. The range of possible roughness unit values was defined following

the criteria established by Chow (1959) and adapted for mountain streams by Jarret (1990).

Assuming that there is a statistical distribution of possible values of the Manning coeffi-

cient defined by a normal distribution, the distribution parameters are N(l, r2). In the fuzzy

set, universe ± 2r2 was selected to achieve a confidence interval of 95 %.

3.3 Wood transport recruitment and 2D hydrodynamic wood transport simulation

In forested mountain catchments, the supply of large wood (LW) may be caused by a

variety of mechanisms including landslides, floods and bank erosion (May and Gresswell

2003; Swanson 2003). Potentially recruited wood volumes (in terms of number of trees;

Vw) were estimated depending on the recruitment process severity, but focused on fluvial

transport during floods as the main recruitment process. The estimation was carried out

following the methodology proposed by Ruiz-Villanueva et al. (2014a). A GIS was used to

obtain a spatially distributed analysis of potential LW source areas and to estimate

potential wood volumes (such as the number of trees that may contribute wood to the

972 Nat Hazards (2014) 74:967–987

123

http://www.iberaula.es


channel throughout the basin). Multi-criteria together with fuzzy logic principles were used

to define reliable scenarios, classifying areas by the likelihood of wood material recruit-

ment based on potential recruitment processes, vegetation resistance and abundance. For

the three main species in any given area, the total canopy cover (Cci) was extracted from

the Forest Map of Spain and National Forest Inventory produced by the Ministry of the

Environment (MFE 2011). The tree density (expressed as number of trees per area) is

called relative density (Di) and is used together with species occupation and canopy cover

to estimate the final number of trees in a given area. Cai is the contributing area defined for

a specific recruitment process: Vwi ¼ Cai � Cci � Di � Fc.

In the delineated source area, the probability of a tree entering the stream may vary

(Robison and Beschta 1990). This variability was incorporated into the method using a

volume correction factor (Fc), which takes into account vegetation resistance to being

recruited (based on species and stay) and the severity of the recruitment mechanism. This

is equivalent to a recruitment probability and can be 1, 0.5 or 0.1; here it was computed by

means of fuzzy logic matrices. This factor therefore reduces the total number of trees of

recruitable wood in those areas where the severity of the process is lowest and/or vege-

tation resistance highest. Once the number of recruited trees is assessed, the number of logs

can be estimated taking into consideration the occurrence of breakage using a coefficient k:

Log s = k�Vwt. We estimated the number of trees and logs using k = 1. However,

uncertainty exists regarding this assumption.

Based on knowledge of the riparian vegetation, ranges were established for wood

diameters, wood density and lengths of pieces.

A numerical model was developed and integrated in the 2D IBER model to simulate the

hydrodynamics and wood transport (a detailed description can be found in Ruiz-Villanueva

et al. (2014a); only a brief description is provided here). The model calculates the position

and velocity of different size logs (assuming that they are cylinders) based on the balance

of forces involved in wood motion: (1) the gravitational force acting on the log, equal to

the effective weight of the log in a downstream direction; (2) the friction force in the

opposite direction of the flow, which is equal to the normal force acting on the log

multiplied by the coefficient of friction between the wood and the bed; (3) and the drag

force, also acting in the direction of the flow, which is the downstream drag exerted on the

log by the water in motion. The combination of these three forces yields the force balance

at incipient motion for a circular cylinder lying on the river bed: Ff = Fg ? Fd; which is

equal to:

g � qw � Lw � Aw � g � q � Lw � Asubð Þ � lbed � cos a� sin að Þ
¼ U2

flow=2 � q � Cd � Lw � h � sin hþ Asub � cos hð Þ

where Lw is the piece length, qw and q are the wood and water densities, respectively, a is

the angle of the channel bed in the direction of the flow, g is gravity, Aw is the area of the

log perpendicular to the piece length, h is the water depth, and Cd is the drag coefficient of

the wood in water.

The movement of logs includes two possible transport regimes (i.e. floating or sliding

and rolling) based on wood density; and when floating, both translation and rotation, due to

the fact that one end of the piece of wood is moving faster than the other end (based on

flow velocity field), causing the piece to rotate towards a more flow-parallel orientation.

Interactions between logs and the channel configuration and among logs themselves are

also taken into account in the model. Therefore, log velocity and trajectory may change

due to contact with the banks or with other logs. If one moving piece of wood meets
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another piece (floating or resting), the two may collide and continue moving at a different

velocity. Moreover, when a piece of wood reaches the bank, it can be entrapped, the

driving forces decrease due to the reduction of the submerged area, but the resisting forces

are still active around the log, and therefore, the initial motion condition is re-calculated.

The wood jam formation is a 3D process; however, this 2D model attempts to reproduce

a quasi-3D process. If a log is lying (resting) on the river bed or bank and another piece

floats above it, these two may interact, depending on the water depth and log diameters,

and the lying log may start to move or the floating log may stop according to the force

balance.

The hydrodynamics and wood transport are computed in two related ways; thus, the

hydrodynamics influence the wood transport, but the presence of wood also influences

the hydrodynamics. A drag force is included in the flow model as an additional term in

the Saint-Venant equations, similar to roughness. This force is included as an additional

shear stress at every finite volume, resulting from the presence of logs:

swood;i ¼

P
log s

Fd

Ai
where swood;i is the shear stress at every finite volume, or mesh element, I;

Fd the drag forces; and Ai the volume of the 2D finite volume, or area of mesh element i,

that is: swood;i ¼
P
log s

U � Ulog

� �2
=2 � q � Cd � Lw � y � sin hþ Asub � cos hð Þ

" #
=Ai where U is

the water velocity; Ulog is the component of the log velocity in the direction of the flow. In

this model, drag coefficient Cd is assumed to be constant (we assigned a value of 1.2

according to Manga and Kirchner 2000; Brooks et al. 2006; Bocchiola et al. 2006), but the

method allows its value to be changed in each simulation.

A series of scenarios was then simulated assuming that peak wood transport occurred

just before and during peak discharge and varying the distribution of the wood budget

(according to the three transport regime definitions proposed by Braudrick et al. 1997):

• Scenario 1. Uncongested transport: low, steady wood load entering during peak

discharge. Piece-to-piece contact between logs occurring rarely or not at all during

movement. Logs typically occupy \10 % of the channel area.

• Scenario 2. Semi-congested transport: medium, steady wood load entering during peak

discharge. Some logs moving individually and others moving in clumps. Logs normally

occupy 10–33 % of the channel area.

• Scenario 3. Congested transport: high wood load entering during peak discharge. Little

spacing between logs. Logs normally move as almost a single mass occupying more

than 33 % of the channel area.

In possibilistic terms, Scenario 1 is more likely to occur than Scenario 3 which is

unlikely and the worst-case scenario. Since there was no information on the initial wood

conditions, no logs were placed in the reach at the initial time step.

3.4 Potential flood damage and risk to population

The concept of damage functions is central to flood damage estimation, relating damage to

each element at risk to the flood characteristics (i.e. flood maps and land-use maps

reflecting the type and the density of objects at risk). For physical assets such as buildings

(contents and structure), the relative functions (Kreibich et al. 2010) provide susceptibility

expressed as a percentage of the total asset value. In most flood damage models, the

resulting damage is obtained from the type or use of the element at risk and the water depth
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(Wind et al. 1999; NRC 2000). Flood damage potential is used here as potential damage in

a flood-prone area. Sometimes this term is used as synonymous with expected flood

damage (flood damage figures estimated before a flood event) in the context of flood risk

management (Messner et al. 2007). Therefore, we evaluated the impacts of the flooding

related to structural damage to buildings and properties based on depth-damage functions.

We revised available catalogues of residential depth-damage functions (USACE 1992;

Patricova 2002; Ballesteros-Canovas et al. 2013), and to estimate the impacts, GIS tools

based on statistical and spatial analysis were used following the guidelines proposed by

Kang et al. (2005).

All data used for our analysis are publicly available and updated. Most of the data were

obtained from municipal statistics (census and social data, Arenas de San Pedro). Seven

single land-use types were used for elements at risk: residential buildings (single storey,

multi-storey, with and without basement), industrial areas, agricultural areas (mainly fruit

and olive trees), and sports or recreation areas. Since there is a large riverside parking area,

potential damage to vehicles was also taken into account in terms of damages due to

inundation. Damage caused by impacts of the transported woody pieces is out of the scope

of this work, but it could increase the economic losses. To estimate the damage, we used

the average market replacement price for Arenas de San Pedro for residential and industrial

buildings, cars, and sport or recreation areas. For residential and industrial uses, the

financial value of structural damage was taken as 15 % of the average building price; the

value of contents damage was assessed as 20 %.

Recent literature on natural hazards highlights the significance of the social dimension

in hazard and related risk analysis (Haque and Etkin 2007). In these situations, human

safety is at risk when people are exposed to flows which exceed their ability to remain

upright or to cross a waterway. In recent years, several numerical and laboratory-based

experimental studies have been undertaken to define the limits of human stability within

differing flow regimes (Gómez et al. 2010; Russo et al. 2011). Human stability has been

found to be influenced by numerous factors, but there is broad agreement that the flood

hazard level (defined as flood conditions causing people to be swept away) is primarily

related to velocity (v) and depth (y) and several authors have proposed different ratios

between these two parameters to express hazard levels in floods (Abt et al. 1989; Reiter

2000; Kelman et al. 2002; Shand et al. 2010). This dimension was therefore introduced

using depth-velocity functions (HR Wallingford 2005) to assess the human risk threshold.

Although to date velocity has rarely been taken into account in damage evaluation, we

attempted to include it in the analysis by means of hazardousness or dangerousness for

people. Some additional observations regarding population statistics were also analysed.

4 Results

4.1 Expected 500-year flood event and wood budget

The compiled discharge data series used in previous work were used as explained for the

frequency analysis. As a first stage, the data were processed as instrumental records in the

MCMC frequency analysis, and then trials were run with some of the events as instru-

mental and others as historical, including the estimated uncertainty through an iterative

process. Some results of this iterative process are summarized in Table 2.

According to the differences in quantile estimates, an average value of

769 ± 252 m3 s-1 (32 %) represents the variability in the estimated 500-year flood
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discharge. The maximum likelihood estimated value was 610 m3 s-1, and values of 517

and 1,022 m3 s-1 as 5 and 95 % confidence limits respectively.

For the Cuevas tributary stream, since there is a dam upstream of its confluence with the

Arenal, we assumed the maximum discharge without overflooding to be 205 m3 s-1.

Manning coefficient values were assigned to each cell of the mesh, ranging from 0.011

to 0.019 m1/2 s-1 in the built-up area, from 0.066 to 0.189 m1/2 s-1 for forested areas,

0.06–0.14 m1/2 s-1 for vegetated banks, and 0.023–0.084 m1/2 s-1 in the main channel

where large boulders were present.

The combination of the flood frequency results with the Manning values distribution

allowed us to obtain a probabilistic map for the expected flood-prone area for the 500-year

flood (Fig. 4).

Wood transport scenarios were built based on the parameters (discharge and Manning

roughness values) used for the 90 % probability inundation map.

The wood-contributing areas were identified, and the probability of vegetation being

recruited from them was assigned. Together with vegetation density and canopy cover,

estimations of potentially recruitable wood budget could be used as input for the model

(Fig. 5).

According to this estimation, the maximum potentially recruitable wood is around 9,800

logs for the entire basin (19,500 m3 or 290 m3 km-2; assuming 0.65 m as average

diameter and 6 m average length). For the defined transport scenarios, we reduced the

computed wood budget to the drainage area upstream from the study site and to the El

Arenal village located upstream from Arenas de San Pedro (see Fig. 1), where we assume

that wood recruited upstream will be deposited. This reduces the maximum number of logs

up to 3,100 (6,100 m3). This amount is distributed in time, as explained in the

methodology.

When wood enters the simulation, the main effect is the backwater effect upstream of

the bridges where the wood is entrapped and deposited, reducing the cross-sectional area,

and as a result the water depth increases significantly nearby these areas. Figure 6 shows

this backwater effect for the SC3.

In addition, we could observe the simulated wood deposits and identify the most sen-

sitive cross-sections. According to results of the model, bridge 1, which is the bridge

located farthest upstream, is the main critical section and where the largest amount of wood

is trapped (Fig. 7). In this section, the water depth increases up to 3 m, flooding the nearby

areas; in the bridge 2 section the water also floods the channelization increasing the water

depth due to wood deposits up to 1 m. Finally, water depth in the bridge 3 section increases

Table 2 Arenal river at Arenas de San Pedro village estimation of the discharge quantiles Q(ML) corre-
sponding to the return period T = 500

FFA settings Q(ML) CI0.05 CI0.95

FFA 1 476 406 1,020

FFA 2 413 405 609

FFA 3 424 368 943

FFA 4 1,129 889 1,518

Mean 610 517 1,022

Regional model 641 – –

CI0.05 (CI0.95) is the 5 % (95 %) confidence limit of the estimates Q(ML)
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up to 4 m for the SC3. These increments may be equivalent to values obtained with

discharges of clear water (without wood) corresponding to a higher return period event.

The design of bridge 1, together with the fact that is the first infrastructure of the studied

reach, could be the reason that it is easily clogged. The geometry of the stone and concrete

bridge with lateral abutments, closed spandrel deck arch and a small culvert represents a

big obstacle to wood transport and causes wood to be easily deposited. In addition, the

bridge crosses over a river bend and the small culvert (see detail in Fig. 7) is located at the

inner part of the bend, which means wood is deposited mainly in the area upstream of the

culvert. Note that basement windows are not very high up in the buildings located in this

reach. Bridge number 3 (stone and concrete arch bridge, see Fig. 7) is also partially

blocked, as can be seen in the figure, while bridge 2 (a small pedestrian pony truss bridge)

Fig. 4 Probabilistic inundation map (without wood transport) for 500-year flood
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allows wood to pass. Table 3 summarizes all these geometrical characteristics and the

water depth for all scenarios.

Therefore, this potential inability of infrastructures to pass large wood should be taken

into account in river management.

4.2 Potential damages with and without wood transport scenarios

The financial replacement value for damage estimation was based on average market prices

for this town: residential buildings—1,200 € m-2; industrial buildings—1,400 € m-2;

vehicles—12,000 €; sport and recreation areas—60 € m-2. For residential and industrial

uses, the financial value of structural damage was taken as 15 % of the average building

price and the value of contents damage as 20 %, based on insurance data and previous

studies (PATRICOVA 2002; Ballesteros-Canovas et al. 2013; Fig. 8).

Seven land-use types were analysed, with most buildings in type 3: single storey without

basement; type 4: multi-storey without basement; and type 9: industrial. These three types

were therefore used for further analysis (Fig. 9).

The total estimated expected damage in Arenas de San Pedro for the 500-year flood

(probability equal to 0.002) without wood transport is up to 14,000 € m-2 affected area

(with 85 % probability). When wood transport is simulated, these values change to up to

21,000 € m-2 (Fig. 10).

Arenas de San Pedro has a total area of approx. 195 km2 with 6,874 inhabitants,

49.25 % male and 50.75 % female (INE 2008 and municipal census data). A population

analysis by age shows that 1,535 (22.33 %) are under 25; 2,581 (37.54 %) are 25–50;

1,549 (22.53 %) are 50–70; and 1,209 (17.58 %) are over 70. A total of 29.15 % of the

population is considered as dependant (over 65 or under 18). There are at least 453

illiterate inhabitants (6.6 %); 961 (13.4 %) with no formal education; 1,613 (23.46 %) with

basic qualifications; 187 (2.7 %) university graduates; approx. 605 (8.8 %) are

Fig. 5 Number of logs potentially recruitable as large wood to streams, based on landslides, floods and
bank erosion processes, connectivity to streams and vegetation stand and density in the Arenal River basin
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unemployed (2,008 census data). There are approx. 2,358 households (usual residence)

with an average two occupants over 35 and one 16–34. The second most common type of

household has 2 occupants with at least one over 65.

These statistics suggest that approx. 30 % of the population is highly vulnerable, and

based on the flood simulations without wood transport, a minimum of 105 residential

buildings would be affected, with 50 % of these multi-storey; assuming that each storey is

one household, with an average 3 residents per house, the minimum number of people

potentially affected by flooding is 400 (with 120 of these highly vulnerable). If we take into

account the worst-case wood transport scenario, these figures increase to 120 buildings

with 540 (162 highly vulnerable) inhabitants.

Fig. 6 Water depth (in metres) change between the 90 % probabilistic flooding map without wood, and
scenario 3 of wood transport and deposition. Black arrows show bridge locations
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The car park area located in the left side and nearby the bridge 1 section has an approx.

capacity for 75 vehicles, although there are also other parking areas. But just considering

this area, and the average market price of 12,000 € per vehicle, the potential damages may

be as high as 400,000–500,000 € (with 85 % probability), but if wood transport is included

in the simulation, this value increases to 700,000 €.

In addition, we analysed the human danger zone (based on water depth and flow velocity;

Fig. 11) and the potential transport capacity of the flow (in terms of potentially mobile

sediment diameter), which could both be important factors in an evacuation process.

Fig. 7 Simulation result for scenario 2. Wood deposits at critical stream configurations (b), particularly at
bridges 1 (a) and 3 (c)

Table 3 Main characteristics of the 3 bridges and the cross-sectional water depth for the four scenarios

Section Deck high (m) Base width (m) Water depth (m) Geometry

No wood SC1 SC2 SC3

Bridge 1 7 11 6.6 8.5 9.1 9.7 Single arch

Bridge 2 5a 18 7.7 8.3 8.4 8.6 Rectangular

Bridge 3 6 14 4.8 4.9 7.4 9.0 3 Archs and 2 pillars

a Embankment is up to 8 m
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For the worst-case wood transport scenario (SC3), the transport capacity does not

change significantly. The backwater effect in the flooded areas means that the flow has a

very low transport capacity. However, the human danger zone increases significantly,

particularly in the area marked in Fig. 11 with an ellipse, where the effect of bridge

clogging causes inundation. In this area, not only the increase in water depth but also the

flow velocity makes walking difficult and potentially harmful for people.

5 Discussion

Large wood is an additional hazard during floods, considerably increasing their destructive

power (Schmocker and Weitbrecht 2013). Risk analysis and proper management measures

are therefore key elements to minimize potential damage. This paper uses a probabilistic

approach to numerical modelling to analyse the potential impacts of large wood transport

and deposition on flood risk in a mountain village in Central Spain. Since this process has

Fig. 8 Examples of the damage functions used in this analysis. a Structural vulnerability b contents
vulnerability (depth-damage functions) for one-storey residential buildings with basement

Fig. 9 Potential damage to the structure and content of the three main types of buildings in the area based
on simulation without wood
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considerable intrinsic uncertainty, the probabilistic thinking was complemented by pos-

sibilistic thinking, including the worst-case scenario. As outlined in the introduction, there

is a lack of direct observations of wood transport during extreme floods, and in general,

wood is not considered in flood risk management in Spain. Therefore, the method pre-

sented here was used to test the potential role of large wood in flood risk by evaluating

different scenarios. We evaluated the worst-case scenario, but different scenarios can also

be designed. We are aware that the use of worst-case scenarios is problematic and decision

Fig. 10 Potential estimated damage for the four scenarios, 500-year flood with no wood transport, and the
three scenarios for wood transport

Fig. 11 a Danger zone for people without wood and b scenario 3 of wood transport. Maps are related to the
90 % probability 500-year flood
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makers often refuse to consider them, since they are perceived as unrealistic. But we think

that the value of including worst-case scenarios in situations where there is considerable

uncertainty is an additional dimension that this process adds to risk assessment and risk

management strategies (Merz et al. 2010).

We based most of the work on models, as they may provide an alternative approach to

addressing some of the unknowns regarding wood dynamics. The model represents a

controllable virtual world which tries to replicate the real world (with limitations and

uncertainties). This virtual world can be analysed fully in any space and at any time and

can be used to test hypotheses and to run scenarios, such as this case.

As a result of this work, the infrastructures most sensitive to the passing of large wood

have been identified, as well as the consequences of their blockage due to the increase in

the water level and flooded areas nearby.

The most important input parameter when wood transport is evaluated is the quantity of

transported wood for a given flood event. Although several empirical methods exist to

predict the potential wood delivered for a given catchment (Rickenmann 1997), a com-

parison with field data indicates a large scatter (Waldner et al. 2007; Bezzola and Hegg

2007). A detailed study of the catchment is therefore necessary for project planning. We

used a GIS-based approach in combination with fuzzy logic principles to design the wood

budget based on potential susceptibility to landslides, floods and bank erosion (based on

previous works by Ruiz-Villanueva et al. 2014a). The methodology incorporates so-called

vegetation resistance and the severity of the recruitment process together with the concept

of vegetation resistance and the volume correction factor. This concept may be equivalent

to the structural classification of forested areas posited by Blaschke et al. (2004) and the

large wood availability indicator used by Mazzorana et al. (2010). The volume correction

factor can be a source of subjectivity, and modification of this coefficient could change the

final results. In addition, we acknowledge some limitations of the conceptual model, and

probably one of the most striking findings is the validation of volume estimations.

Although exact numbers are obtained, they cannot be validated but should be assumed as

order of magnitude. Moreover, a range was considered to take the uncertainty into account.

Together with the quantity of wood transported, the 500-year flood was assumed as the

worst-case flood scenario. Several studies indicate that the source of most uncertainties in

flood risk assessment is the incomplete understanding of the flood-frequency law (Merz

et al. 2010; Apel et al. 2004). For this purpose, a Bayesian Markov chain Monte Carlo

(MCMC) framework (Kuczera 1999; Reis and Stedinger 2005; Gaál et al. 2010; Gaume

et al. 2010) was used and a likelihood function was built to handle the information on

historical floods properly. This analysis revealed large differences in quantile estimation of

the 500-year quantile. Underestimating this value may result in risk underestimation, but at

the same time, overestimating it could result in financial and risk management overesti-

mation. Because of this uncertainty in the quantile estimation, flood hazard maps have been

produced using a probability approach (Romanowicz and Beven 2003; Bates et al. 2004;

Pappenberger et al. 2006). Our further research focused on the 500-year flood scenario, and

the 2D hydraulic model was applied to compute the hydrodynamics and wood transport.

There was no rating curve or any other data available to calibrate the hydraulic model, and

water depth was analysed under uncertainty of the input Manning roughness coefficient

values. The value range was treated as normally distributed but using a fuzzy set approach.

Komatina (2005) compares this method with a Monte Carlo simulation and found them

highly comparable, with both methods giving almost the same results. When input

parameters are treated as random variables with known probability distributions (Apel

et al. 2004), the uncertainty is described in the most informative, but also the strictest way.
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But if no prior information regarding the parameter probability distribution is available, an

alternative approach could be used instead, based on the imprecise probability (i.e. fuzzy

set approach), in which some probability theory axioms are relaxed (Fellin et al. 2005).

The establishment of different wood transport scenarios allowed us to study the influ-

ence of the inlet boundary conditions on the wood clogging of bridges and their potential

impacts. As expected, steady transport (SC1) is associated with a lower probability of

blocking, whereas congested transport (SC3) resulted in the highest blocking rate.

Although the only stochastic component in the model is the assessment of log shape

(based on established ranges) in the inlet boundary conditions and the effect of turbulence,

simulating the same scenario of wood transport several times can result in slightly different

random log interactions and blocking processes. The final logs forming the deposits may

also vary for each simulation. But the likely depositional areas should be the same since

these areas are mainly defined by the river morphology and the flood hydrodynamics.

The shape of logs (as cylinders, disregarding the effect of branches or roots) is the main

simplification assumed by the model. This geometry can be a good approximation for key

pieces or non-rooted and defoliated trees (Braudrick et al. 1997; Bocchiola et al. 2008;

Buxton 2010), although according to the findings of Schmocker and Hager (2010), the

probability of blocking may increase with the presence of roots, and log trajectories may be

different.

In order to estimate the damaged share of the asset values, depending on water depth

(influenced by the presence of wood), relative depth-damage functions have to be applied.

Such damage functions show the average susceptibility of each sector against inundation

depth. Since there was no organized systematic collection of flood damage data in Arenas

de San Pedro, we used functions based on those used in other similar regions in Spain and

computed predictive bounds to take the uncertainty into account. Some studies apply

aggregated values from insurance companies. For example, in the Netherlands use an

approximate value of 70,000 € per flat (year 2000). German studies (e.g. Reese et al. 2003)

often apply an average value of 700 € per m2 of living area (full replacement value) or 350

€ per m2 (depreciated value) which also come from an insurance company. The values we

used are reliable approximations, but the calculations are in € m-2 because the aim of this

study was to make a probabilistic evaluation of uncertainty and to analyse the influence of

wood transport. The goal was to compare values, not to obtain exact monetary losses.

6 Conclusions

The presence of wood during a flood may influence the consequences and potential damage

of flooding, as demonstrated in this work. The main effect is the obstruction of cross-

sectional areas particularly in critical sections such as bridges, which can trigger the

inundation of nearby areas. As a result, the flooded areas and flow conditions are different

from those defined in the absence of wood. Transport and deposition of wood in forested

mountain basins should therefore not be ignored in flood risk assessment. However, a lack

of direct observations makes it difficult to address this process. Models can be used to

address some of the uncertainties related to wood dynamics, but field data and an in-depth

knowledge of the riparian forest and in-stream wood must be obtained to establish inlet

boundary conditions and appropriately validate results. As this empirical data are not

always available, models may still be used as an alternative and supplementary tool for

generating scenarios. It is particularly important for practitioners who must assess and

manage flooding risks associated with wood to identify wood delivery sources and
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potentially critical sections (i.e. infrastructures). However, systematic analysis still requires

considerable research.
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