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Abstract We improve the results from El Basraoui (Proc Amer Math Soc 138(7):2289–
2299, 2010) about the Eisenstein series E2(z) = 1 − 24

∑∞
n=1

nqn

1−qn . In particular we show
that there exists exactly one (simple) zero in each Ford circle and give an approximation to
its location.
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1 Introduction

Let Mk(�) be the space of holomorphic modular forms of weight k for the full modular group
� = P SL(2, Z). It is well known that Mk(�) has dimension k

12 + O(1) and a modular form
f ∈ Mk has k

12 + O(1) inequivalent zeros in a fundamental domain �\H.

For the cuspidal Hecke eigenforms, it is a consequence of the recent proof of the holomor-
phic Quantum Unique Ergodicity (QUE) by Holowinsky and Soundararajan [5] that the zeros
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124 Ö. Imamoḡlu et al.

are uniformly distributed. More precisely, for a sequence { fk} of cuspidal Hecke eigenforms
of weight k we have that as k → ∞ the zeros of fk become equidistributed with respect to
the normalized hyperbolic measure 3

π
dxdy

y2 .

In contrast to this in the case of Eisenstein series, it was conjectured by Rankin in 1968 and
proved by Rankin and Swinnerton-Dyer [7] that all the zeros, in the standard fundamental
domain, of the series

Ek(τ ) = 1

2

∑

(c,d)=1

(cτ + d)−k

lie on the geodesic arc {z ∈ H||z| = 1, 0 ≤ Re(z) ≤ 1/2} and as k → ∞ they become
uniformly distributed on this unit arc. A similar result for the cuspidal Poincare series was
proved by Rankin [6]. For generalizations of these results to other Fuchsian groups and to
weakly holomorphic modular functions see [1,2], among many others. For some recent work
on the zeros of holomorphic Hecke cusp forms that lie on the geodesic segments of the
standard fundamental domain see [4].

Next we turn our attention to the location of the zeros of the non-modular Eisenstein series
of weight 2

E2(τ ) = 1 − 24
∞∑

n=1

σ(n)qn = 1 − 24
∞∑

n=1

nqn

1 − qn
, q = e2π iτ .

As it is well known E2(τ ) is not modular but it is a quasi-modular form and for γ =
(

a b
c d

)

∈
SL2(Z) satisfies the transformation property

E2(γ τ)(cτ + d)−2 = E2(τ ) + 6

π i

c

(cτ + d)
. (1)

The zeros of E2 has already been investigated in [3]. El Basraoui and Sebbar showed that
there are infinitely many non-equivalent zeros of E2 and two zeros are equivalent if and only
if one is a Z-translate of the other. Of particular interest is the unique zero on the imaginary
axis x = 0 and the unique zero on x = 1

2 . Those two zeros also occur in [9]. They were
computed by Cohen:

τ0 = 0.52352170001799926680053440480610976968 . . . i

τ 1
2

= 1

2
+ 0.13091903039676244690411482601971302060 . . . i.

If

F := {
z ∈ H| |z| > 1, | Re(z)| < 1

2

} ∪ {
z ∈ H| |z| ≥ 1, − 1

2 ≤ Re(z) ≤ 0
}

is the standard (strict) fundamental domain, El Basraoui and Sebbar also show that there are
infinitely many SL2(Z)-translates of F that contain a zero and infinitely many that do not
contain a zero.

In this note we improve these results. More precisely for (a, c) = 1 recall that the asso-
ciated Ford circle is the circle on the upper half plane with center a

c + 1
2c2 i and radius 1

2c2 .
Then we have

Theorem 1.1 Inside each Ford circle there is a unique (simple) zero of E2 and E2 has no
other zeros on the upper half plane.
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Fig. 1 Ford circles and zeros of E2

Moreover in the Ford circle at the cusp a
c ∈ Q the zero τ of E2 satisfies the following

approximation:

0.000075
1

c2 <

∣
∣
∣τ − a

c
− π

6c2 i
∣
∣
∣ < 0.0000777

1

c2 . (2)

Since π/6 is close to 1/2, the zeros are almost at the center of each Ford circle and in fact
when plotted on a not small enough scale as in Fig. 1, the zeros seem to have remarkable
uniformity on the upper half plane.

Throughout the paper we use the variable τ for the location of the zeros of E2.z is used
for general points in H, often corresponding to a point in the fundamental domain.

Theorem 1.1 restricts the possible location of the zeros of E2 to a very thin annular region
in each Ford circle. For the images of these zeros inside the standard fundamental domain F
we have

Theorem 1.2 Let τ = γ z a
c

be the unique zero of E2 around a
c with γ =

(
a b
c d

)

, c > 0 and

z a
c

∈ F then we have

0.00027 <

∣
∣
∣
∣z a

c
−

(

−d

c
+ 6

π
i

)∣
∣
∣
∣ < 0.00029. (3)

We may rephrase Theorem 1.1 as saying that around each finite cusp there is a unique zero

of E2. i.e. given (a, c) = 1 with c > 0, there is a unique matrix γ =
(

a b
c d

)

∈ SL2(Z) such

that γF contains a zero.
While preparing this manuscript we learned that Wood and Young [11] proved a quanti-

tatively equivalent result about the locations of the zeros of E2 simultaneously and indepen-
dently of us.

Theorems 1.1 and 1.2 are proved in the next section and are based on mapping properties
of the function

f (z) := z − 6i

π E2(z)
. (4)

and its inverse.
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126 Ö. Imamoḡlu et al.

It is possible to give further improvements on the approximations in the above theorems
by studying the mapping properties of f in more detail and expanding f −1 in Fourier or
Taylor series. The Fourier series is studied in Sect. 3. As a corollary to Theorems 3.5 and
3.6 it is possible to give an explicit and fast converging series approximation to za/c. For
example we obtain the following improvement on Theorem 1.2.

Theorem 1.3 Let z a
c

∈ F be the SL2(Z)-translate of the zero of E2 around a
c inside F .

Then we have the following stronger estimate:

0.000000449 ≤
∣
∣
∣
∣z a

c
−

(

−d

c
+ 6i

π
+ 144i

π
e−12e2π i(−d/c)

)∣
∣
∣
∣ ≤ 0.000000454.

The zeros for small a/c, in particular the zeros near 1/c were first considered by [3]. These
zeroes are best approximated by Taylor series which are studied in Sect. 4. In the last two
sections we also provide some numerical data on the Fourier and Taylor expansions.

2 Proofs of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 are based on the mapping properties of the function f (z)
defined in (4).

The function f appears in [10] and some of the properties shown here have been proved
there. We will see in this section that f is analytic in the fundamental domain, and even on

{z ∈ C | Im(z) > 0.53}. Let z be in the fundamental domain F , and let γ =
(

a b
c d

)

∈
SL2(Z). Then based on the transformation formula (1), one has the fundamental relation

E2(γ z) = 0 ⇐⇒ f (z) = −d/c. (5)

Therefore we are interested in the solutions of the equation

f (z) = −d/c z ∈ F .

Here d, c ∈ Z. We start by describing the set of all z ∈ F such that f (z) ∈ R. Let f = u + iv,
where u = u(x, y) and v = v(x, y) are R-valued functions and

A = {z ∈ F | v(z) = 0}. (6)

As a simple application of the implicit function theorem it will be proved below that A is the
graph of a function φ : [−1/2, 1/2] → (0,∞). More precisely if x +iy ∈ F and v(x, y) = 0
then y = φ(x).

In view of the relation (5) the possible values c, d ∈ Z that arise from a zero of E2 are

those for which −d/c ∈ f (A). Let τ = γ z be a zero of E2 with γ =
(

a b
c d

)

∈ SL2(Z) and

z ∈ F . Then we will show that |d/c| ≤ 1/2 and conversely any such −d/c ∈ [−1/2, 1/2]
arises from a zero of E2(z).

Namely we have

Theorem 2.1 f (A) = [−1/2, 1/2].
The first claim in Theorem 1.1 now follows immediately from

Corollary 2.2 If z ∈ F, γ =
(

a b
c d

)

∈ SL2(Z) and E2(γ z) = 0 then |d/c| ≤ 1/2.
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Estimates on the zeros of E2 127

In particular Corollary 2.2 uniquely determines the fundamental domain around a
c which

contains the zero of E2.
The more precise location of zeros of E2 given in (2) and (3) follow from bounds for E2

and its derivative. To prove Theorem 2.1 we will use the implicit function theorem. We are
interested in v(x, y) = 0. We need the following estimates.

Lemma 2.3 Let z = x + iy ∈ H and let q = e2π i z . We have the following estimates.

|E2(z) − 1| ≤ 24|q|
(1 − |q|)3 ,

23.68|q| < |E2(z) − 1| for y ≥
√

3

2
,

|E ′
2(z)| ≤ 48π

|q|(1 + |q|)
(1 − |q|)5

. (7)

In particular for y > 0.53, using (7), we have |E2(z) − 1| < 1 and so E2(z) �= 0 in this
region and hence f in (4) is well defined.

Proof We have

|E2(z) − 1| ≤ 24
∞∑

n=1

n|q|n
1 − |q|n ≤ 24

1 − |q|
∞∑

n=1

n|q|n = 24|q|
(1 − |q|)3 .

The claim for the lower bound for E2(z) and E ′
2(z) follows along the same lines:

|E2(z) − 1| ≥ 24
|q|

1 + |q| − 24
1

1 − |q|
∞∑

n=2

n|q|n

≥ 24|q| 1 − 5|q|
(1 + |q|)(1 − |q|)3 > 23.68|q|, for y ≥

√
3

2
.


�
Lemma 2.4 If Im(z) ≥ 1 then

| f ′(z) − 1| < 0.6.

Proof Since

| f ′(z) − 1| = 6|E ′
2(z)|

π |E2(z)|2
the result follows from Lemma 2.3 and the bounds (valid for Im(z) ≥ 1)

|E2(z)| ≥ |E2(i Im(z))| ≥ |E2(i)|
and

|E ′
2(z)| ≤ |E ′

2(i Im(z))| ≤ |E ′
2(i)|.


�
We will also need the following

Lemma 2.5 For x ∈ [−1/2, 1/2] and y ∈ [√3/2, 1] we have

Im( f (x + iy)) < −0.39 < 0.
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128 Ö. Imamoḡlu et al.

Proof For any x we have

Re (E2(x + iy)) ≥ 1 − 24e−2πy

(1 − e−2πy)3

and

|E2(x + iy)| ≤ 1 + 24e−2πy

(1 − e−2πy)3 .

Therefore for y ∈ [√3/2, 1] we have

Im( f (x + iy)) = y − 6 Re (E2(x + iy))

π |E2(x + iy)|2 < 1 − 6(1 − t)

π(1 + t)2

where

t = 24e−2π
√

3/2

(1 − e−2π
√

3/2)3
.

The lemma follows from the numerical estimate t < 0.1054. 
�
Since ∂yv = ∂x u = Re

(
f ′(z)

)
we also have

Lemma 2.6 If y ≥ 1 then ∂yv(x, y) > 0.

Proof By Lemma 2.4,

| f ′(z) − 1| < 0.6.

So ∂yv(z) = Re
(

f ′(z)
)

> 0.4. 
�
From Lemma 2.6 it follows that for each x ∈ [−1/2, 1/2] there can be only one y such that
v(x+iy) = 0. By Lemma 2.5, it is also clear that such a y exists since limy→∞ v(x+iy) = ∞.
Therefore there is a function φ : [−1/2, 1/2] → (0,∞) such that x+iy ∈ F and v(x, y) = 0
implies y = φ(x).

Moreover this φ is differentiable by the implicit function theorem, and we have φ′(x) =
−∂xv/∂yv.

Let now the arc A be as in (6). We know from [3], Proposition 3.1–3.2 that there are points
z1/2 and z−1/2 on both of the vertical boundaries of F , where f takes the values −1/2 and
1/2. They correspond to the zeros of E2 with real parts 1/2 and −1/2.

By the intermediate value theorem it follows that f restricted to the arc A, (which is the
same as u since v vanishes on A) takes all values between −1/2 and 1/2. This shows that
there is at least one zero in each Ford circle. It is left to show that there is only one in each
Ford circle. To show this, we need to show that f (A) = u(A) = [−1/2, 1/2]. We will prove
this by showing that the function defined by x �→ u(x, φ(x)) is monotonically increasing on
the interval [−1/2, 1/2].
Proposition 2.7 Let f = u + iv and φ : [−1/2, 1/2] → (1,∞) the function such that

{z ∈ F | v(z) = 0} = {x + iφ(x)|x ∈ [−1/2, 1/2]}
For |x | < 1/2 we have

d

dx
u(x, φ(x)) > 0.
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Proof We need to show that

d

dx
u(x, φ(x)) = ∂x u(x, φ(x) + ∂yu(x, φ(x))φ′(x) > 0.

By implicit differentiation of v(x, φ(x)) = 0 we have φ′(x) = −∂xv/∂yv. Therefore

d

dx
u(x, φ(x)) = ∂x u∂yv − ∂yu∂xv

∂yv
= (∂x u)2 + (∂yu)2

∂yv
= | f ′|2

∂yv
> 0.


�
This also finishes the proof of Theorem 2.1 and hence the first claim in Theorem 1.1.

The next Proposition on the other hand proves the estimates (2) and (3) about the location
of zeros in Theorems 1.1 and 1.2.

Proposition 2.8 If E2(γ z) = 0, z = x + iy ∈ F, γ =
(

a b
c d

)

∈ SL2(Z) with c > 0 and

τ = γ z then 1.909 < y < 1.911 and

0.000144 < |E2(z) − 1| < 0.000149, (8)

0.00027 <

∣
∣
∣
∣z −

(

−d

c
+ 6

π
i

)∣
∣
∣
∣ < 0.00029, (9)

0.0000750
1

c2 <

∣
∣
∣τ −

(a

c
+ π

6c2 i
)∣
∣
∣ < 0.0000777

1

c2 . (10)

Proof We first note that since y ≥
√

3
2 on F , using (7) we have

|E2(z) − 1| ≤ 24
(

1 − e−π
√

3
)3 |q| < 24.32|q| < 0.106. (11)

And similarly

23.68|q| < |E2(z) − 1|. (12)

We next recall that E2(γ z) = 0 gives f (z) = −d/c which in return implies z− 6i
π E2(z) = −d

c .

Hence using estimate (11) we get:
∣
∣
∣
∣z −

(

−d

c
+ 6

π
i

)∣
∣
∣
∣ = 6

π

|E2(z) − 1|
|E2(z)|

<
6

π

0.106

(1 − 0.106)
< 0.226. (13)

This in turn means that y > 6
π

− 0.226 > 1.68 which in return gives a better estimate for
(11) and also in return for (13). Repeating this procedure twice again already gives the nice
estimates:

y ≥ 1.909, |q| ≤ 6.18 × 10−6,

|E2(z) − 1| < 24
1

(1 − |q|)3 |q| < 0.000149,

∣
∣
∣
∣z −

(

−d

c
+ 6

π
i

)∣
∣
∣
∣ < 0.00029. (14)
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The estimates also show that y < 6
π

+ 0.00029 < 1.911 resp. [using (12)] |E2(z) − 1| >

0.000144, so

0.00027 <

∣
∣
∣
∣z −

(

−d

c
+ 6

π
i

)∣
∣
∣
∣ .

In particular, we also see that Eq. (9) holds. On the other hand using τ = γ −1z and E2(γ z) =
0 we have

E(z) = E(γ −1τ) = 6

π i
(−c)(−cτ + a)

and

τ = a

c
+ π

6c2 i + π

6c2 i(E2(z) − 1).

So
∣
∣
∣τ − a

c
− π

6c2 i
∣
∣
∣ <

π

6c2
|E2(z) − 1| < 0.0000777

1

c2 ,

where we used (14). Similarly we get the other inequality in (10):

0.0000750
1

c2 <
π

6c2
|E2(z) − 1| <

∣
∣
∣τ − a

c
− π

6c2 i
∣
∣
∣ .


�

3 Fourier expansion

Let f (z) be defined as in (4). As shown in [10] f is equivariant, i.e.

f (γ z) = γ ( f (z)) for all γ ∈ SL2(Z).

Consequently f −1(w) is also equivariant. In particular

G(w) := f −1(w) − w =
∞∑

n=0

cne2π inw

is 1-periodic and possesses a Fourier expansion, defined in some half-plane {w | Im(w) > c}.
In this section we will determine the Fourier coefficients of G and the maximal possible

half-plane mentioned above. This will also lead to the proof Theorem 1.3.
To this end we will first examine the mapping properties of f more closely than in the

previous section.
By Lemmas 2.5 and 2.6 we have that the inverse of f (and hence also the Fourier expansion)

exist in the half-plane {w | Im(w) > −0.39}.
Let

C = {eiθ | θ ∈ [π/3, 2π/3]}
and

M = {eiθ | θ ∈ [π/3, 2π/3]} + Z,

its periodic extension. M divides C in to two connected components. Let U denote the upper
component. Similarly let V denote the upper component of M . We use M to denote the
conjugate of M . For the closure (resp. interior) of a set U we use the notation cl(U ) (resp.
int (U )). The following stronger result holds:
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Estimates on the zeros of E2 131

Fig. 2 Domain U and range V of f , together with preimages of {Im(w) = c}, where c = −
(

1 − 1
n

) √
3

2
for n = 1, 2, 4, 8, ∞

Theorem 3.1 f maps U biholomorphically onto V . The map extends to a homeomorphism
on the boundaries.

For the proof of Theorem 3.1 we first need to understand the image of the boundary
∂U = M (Fig. 2).

Proposition 3.2 The map f is a homeomorphism between ∂U and
f (∂U ) = ∂V = ∂U.

Proof Since f is equivariant we have for |z| = 1, Im z > 0

f (−z) = f (−1/z) = −1/ f (z).

However f (−z) = − f (z) for any z ∈ H and so the image of the arc C = {eiθ | θ ∈
[π/3, 2π/3]} lies on the unit circle. An easy calculation determines that f (z) = z for z =
eπ i/3, eπ i/2 and e2π i/3. It follows that f (C) contains C.

To show that it equals C we first note that by an identity of Ramanujan, the derivative of
f satisfies

f ′(z) = 1 − E ′(z)
E2

2(z)
= E4(z)

E2
2(z)

. (15)

Next we consider the function

g(z) = −i log f (eiz)

where the principal branch of log is used. By Lemma 2.5 this is defined in a complex
neighborhood of the real interval [π/3, 2π/3] and by the above argument g takes real values
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132 Ö. Imamoḡlu et al.

on [π/3, 2π/3], g(π/3) = −π/3 and g(2π/3) = −2π/3. Also note that g′(z) = f ′(eiz)eiz

f (eiz)

is real (again using the fact that g is real on [π/3, 2π/3] ) and non-zero if z ∈ (π/3, 2π/3)

and so g is monotonically decreasing on [π/3, 2π/3] and therefore bijective. This implies
that f : C → f (C) is homeomorphism.

Finally by f (z + 1) = f (z) + 1 we also have that f (∂U ) = f (M) = M and the map is
a homeomorphism. 
�
Lemma 3.3 If zn ∈ U and f (zn) is a convergent sequence then zn has a convergent subse-
quence.

Proof Let wn = f (zn) ∈ f (U ) denote a sequence which converges to w. Since the function
f (z) − z = 12

2π i
1

E2(z) is bounded on U , the sequence w − zn = (w − wn) + ( f (zn) − zn) is
also bounded. 
�
Lemma 3.4 We have f (U ) ⊂ V .

Proof Since V = int (cl(V )) and f (U ) is open, it is enough to show that f (U ) ⊂ cl(V ).
Suppose there exists a z ∈ U such that w = f (z) �∈ cl(V ). Let t0 = sup{t ∈ [0,∞) |

w − i t ∈ f (U )}. Then t0 is finite since Im f (z) = Im z + Im( f (z) − z) is bounded from
below on cl(U ). It is also positive, since f is open.

Therefore there exists a sequence 0 < tn < t0, such that tn → t0 and w − tni = f (zn)

for some zn ∈ U . By Lemma 3.3 we may assume that zn → z ∈ cl(U ).
If z ∈ ∂U then f (z) = w − t0i ∈ ∂V by Proposition 3.2, contradicting that w is not in

cl(V ). Therefore w − t0i ∈ f (U ), but by the definition of t0, (w − t0i) − εi �∈ f (U ) for all
ε > 0. This gives a contradiction to the fact that f is an open map. 
�
Proof of Theorem 3.1 By Lemma 3.4 and since f is open the image f (U ) is an open subset
of int (cl(V )) = V . Also if zn ∈ U, f (zn) → w ∈ V then Lemma 3.3 and Proposition 3.2
shows that w ∈ f (U ). It follows that cl( f (U )) ∩ V = f (U ), so the image f (U ) is a closed
subset of V as well. Since V is connected f (U ) = V . Finally V is simply connected, U
is connected and the map f is a surjective covering map since f ′(z) �= 0 on U by (15).
Therefore f is a bijection. 
�

As a corollary of Theorem 3.1 we obtain the following theorem.

Theorem 3.5 Let G(w) = f −1(w)−w. Then G(w) is holomorphic in
{
w | Im(w) >−

√
3

2

}
,

and extends continuously to the boundary. Moreover the Fourier coefficients cn in G(w) =∑∞
n=0 cne2π iw satisfy the bound

|cn | ≤ 3e−π
√

3n . (16)

Proof . By Theorem 3.1 and the arguments at the beginning of the section we know that
G(w) = f −1(w)−w = ∑∞

n=0 cnqn , where the Fourier expansion converges on the (closed)

half-plane
{

Im(w) ≥ −
√

3
2

}
.

Hence

cn =
1∫

0

G

(

x − i

√
3

2

)

e−2π in(x−i
√

3
2 )dx . (17)
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Note that

max
x∈[0,1]

∣
∣
∣
∣
∣
G

(

x − i

√
3

2

)∣
∣
∣
∣
∣
≤ max

x∈[0,1]

(∣
∣
∣
∣
∣

f −1

(

x − i

√
3

2

)∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
x −

√
3

2
i

∣
∣
∣
∣
∣

)

≤ |0.5 + 1.911i | +
∣
∣
∣
∣
∣
0.5 −

√
3

2
i

∣
∣
∣
∣
∣
≤ 3,

where we used the fact that f −1 is equivariant and that f −1
({

Im(w) = −
√

3
2

})
lies below

f −1(R). The latter can be used to bound the former by using the estimates in Proposition
2.8. (16) now follows from a basic estimate of the absolute value of (17). 
�
Our next theorem gives an explicit formula for the Fourier coefficients cn .

Theorem 3.6 Let rn be defined as the coefficients of the formal power series

∑

n≥0

rnqn = −12 + log

⎛

⎜
⎝

(
q exp

(
12

E2(q)
− 12

))−1

q

⎞

⎟
⎠ ∈ Q[[q]].

Then the Fourier coefficients of

G(w) = f −1(w) − w =
∞∑

n=0

cnqn

satisfy

cn = 1

2π i
rne−12n . (18)

Proof Let w = f (z) and consider

s = exp(2π iw − 12) = exp(2π i f (z) − 12) = q exp(g(q))

where q = exp(2π i z) and

g(q) =
−288

∞∑
n=1

σ(n)qn

1 − 24
∞∑

n=1
σ(n)qn

.

Note that as a formal power series g(q) = O(q) in Q[[q]] and so exp(g(q)) has rational
coefficients. Also since s = q + O(q2) there is an inverse function still given by rational
coefficients

q =
∞∑

n=1

ansn .

This series converges on some disc |s| < c where it gives for f (z) = w

e2π i z = e−12e2π iw
∞∑

n=0

an+1sn

where s = e−12+2π iw is as above.
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Finally since

e2π i z = e2π iwe2π iG(w)

we have

e2π iG(w) = e−12
∞∑

n=0

an+1sn .

Since a1 �= 0 the right hand side has a continuous logarithm on a (maybe even smaller) disc.
If the formal logarithm is used

2π iG(w) = −12 +
∞∑

m=1

(−1)m

am+1
1 (m + 1)

( ∞∑

n=1

an+1sn

)m

+ 2πki

for some integer k. A simple comparison for Re(w) = 0 shows that k = 0. Note that when
returning to the variable w the above formal computations make sense in some upper half
plane, and by the uniqueness of Fourier coefficients we have

G(w) = 1

2π i

(

−12 +
∞∑

n=1

rnsn

)

= 6i

π
+

∞∑

n=1

cne2π inw

where rn ∈ Q and where cn = rne−12n

2π i . 
�

Corollary 3.7 Let z a
c

:= f −1
(−d

c

) ∈ F be the SL2(Z)-translate of the zero of E2 around
a
c inside F . For N ≥ 1 we have the following estimate:

∣
∣
∣
∣
∣
z a

c
−

(

−d

c
+ 6i

π
+

N∑

n=1

rne−12ne
2π in

( −d
c

))∣
∣
∣
∣
∣
≤ 0.014e−√

3π N .

Proof Since z a
c

= G
(−d

c

) + (− d
c

)
Theorems 3.5 and 3.6 gives the estimate:

∣
∣
∣
∣
∣
z a

c
−

(

−d

c
+ 6i

π
+

N∑

n=1

rne−12ne
2π in

( −d
c

))∣
∣
∣
∣
∣
≤

∞∑

n=N+1

|cn |

≤ 3e−π
√

3(N+1) 1

1 − e−π
√

3
≤ 0.014e−π

√
3N .


�
The coefficients rn of the formal power series

∑

n≥0

rnqn = −12 + log

⎛

⎜
⎝

(
q exp

(
12

E2(q)
− 12

))−1

q

⎞

⎟
⎠

in Theorem 3.6 can be computed explicitly and we have
∑

n≥0

rnqn = −12 − 288q + 75168q2 − 29321856q3 + 13541649696q4 + O(q5)

(Note that higher index coefficients no longer all lie in Z)
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From this the constants cn can be computed explicitly, for example c0 = 6i
π

and c1 =
144 e−12

π
i etc.

In particular we can approximate the SL2(Z)-translates of the zeros of E2 arbitrarily well
by explicit expressions. For example taking N = 3 in Corollary 3.7 gives the following
improvement of Theorem 1.2 thereby proving Theorem 1.3:

z a
c

= −d

c
+ 6i

π
+ 144i

π
e−12e

2π i
( −d

c

)

+ η, (19)

where

0.000000449 ≤
∣
∣
∣
∣75168

e−24

2π i

∣
∣
∣
∣ −

∣
∣
∣
∣−29321856

e−36

2π i

∣
∣
∣
∣ − 0.014e−π

√
3·3

≤ |η|

≤
∣
∣
∣
∣75168

e−24

2π i

∣
∣
∣
∣ +

∣
∣
∣
∣−29321856

e−36

2π i

∣
∣
∣
∣ + 0.014e−π

√
3·3 ≤ 0.000000454.

Calculations of the Fourier coefficients by numerical integration show perfect agreement with
the computations from Theorem 3.6. The numerical results for cn , n ≥ 0 were calculated
using sage [8]:

c0 = 1.90985931710274402922660516047017234441351574888547738497i

c1 = 0.00028162994902227980400370919939063856289594529890275357i

c2 = −0.00000045163288929282012635455207577614911204985274433204i

c3 = 0.00000000108245596925811696405920054080771200657423178116i

c4 = −0.00000000000307154282808538137128721799597366123291772057i

c5 = 0.00000000000000957094344711630129941209014246199967789040i

c6 = −0.00000000000000003165503372449709626701121359204401518804i

c7 = 0.00000000000000000010911333723210259127123321555755721374i

c8 = −0.00000000000000000000038769575689989675972304397185016487i

c9 = 0.00000000000000000000000140991650336337176376718140570072i

c10 = −0.00000000000000000000000000522238601930043508518075691844i

The code is available at http://sites.google.com/site/jjermann2/research/e2_zeros/.
See Fig. 3 for a picture of G(w), the error term in the approximation f −1(w) ≈ w, for w

corresponding to zeros of height 100:
The closed curve G(R) = G

([− 1
2 , 1

2

])
is already extremely well approximated by the

first two terms c0 + c1 exp(2π iw). Indeed estimate (3) for w = d
c (in fact for any w ∈ R)

and G
(− d

c

) = f −1
(− d

c

) + d
c shows:

0.00027 <

∣
∣
∣
∣G(w) − 6i

π

∣
∣
∣
∣ < 0.00029, w ∈ R.

This good approximation follows from the exponential decay of the Fourier coefficients
cn . Indeed the bounds are very close to the absolute value of the next Fourier coefficient
|c1| = 0.00281 . . .. These circular bounds are also visible in Fig. 3.
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Fig. 3 G(w) for w = d
100 ∈ Q ∩

[
− 1

2 , 1
2

]
with (d, 100) = 1

4 Taylor expansion

We can also examine the Taylor expansion F(w) = ∑∞
n=0 bnwn around w = 0. By Theorem

3.1 it has radius of convergence 1 and converges on the boundary.
By Lagrange inversion theorem the Taylor coefficients can be calculated in terms of the

Taylor coefficients of f (z) at z0, where z0 is the SL2(Z)-translate in the strict fundamental
domain of the zero of E2 on the imaginary axis.

Note that f (z) is a rational function in E2(z) and z. Its derivatives can be calculated as
rational functions in E2(z), E4(z), E6(z) and z. Therefore the Taylor expansion at z0 can be
expressed as a rational function in X := E4(z0), Y := E6(z0), Z := E2(z0) and z0. By the
transformation property (1) we have z0 = − 12

2π i Z , so in fact we get a rational function in
X, Y and Z .

For the first coefficient we have b0 = ( 6i
π

) 1
Z . For the remaining coefficients (n > 0)

calculations seem to indicate that bn is of the following shape:

bn = (−1)n
(

12

2π i

)1−n

X−2n+1an(X, Y, Z),

where an(X, Y, Z) ∈ Q[X, Y, Z ] is a weighted homogenous polynomial of degree 10n − 6,
where deg(X) := 4, deg(Y ) := 6, deg(Z) := 2. The degree of the (weighted homogenous)
rational function bn(X, Y, Z) is 2(n − 1).

Here is a list of the first few polynomials an(X, Y, Z) for n > 0:

a1 = Z2

a2 = X Z5 + X2 Z3 − 2Y Z4

a3 = X2 Z8 − 2X3 Z6 − 4XY Z7 + X4 Z4 − 4X2Y Z5 + 8Y 2 Z6
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a4 = X3 Z11 − 5X4 Z9 − 6X2Y Z10 − 9X5 Z7 + 20X3Y Z8

+ 20XY 2 Z9 + X6 Z5 − 6X4Y Z6 + 24X2Y 2 Z7 − 40Y 3 Z8

a5 = X4 Z14 − 8X5 Z12 − 8X3Y Z13 + 66

5
X6 Z10

+ 56X4Y Z11 + 36X2Y 2 Z12 − 20X7 Z8 + 104X5Y Z9

− 836

5
X3Y 2 Z10 − 112XY 3 Z11 + X8 Z6 − 8X6Y Z7

+ 48X4Y 2 Z8 − 160X2Y 3 Z9 + 224Y 4 Z10.

The numerical evaluations of those polynomials (Z = E2(z0), etc.) give for Taylor coeffi-
cients bn :

b0 = 1.9101404964982709820376545357984830913777487030i

b1 = 0.9982361219015924374815710878280361648431190825

b2 = −0.0055236842011260453610739166397990326586651337i

b3 = 0.01149489150274208316313259093815041563703067326

b4 = 0.0178252611095229253133162329291348589135823077i

b5 = −0.0218243134639575211728774441381952550676521991

b6 = −0.0216634844629385759461618124642355350591382590i

b7 = 0.0173461622715009362175946164162223267332088060

b8 = 0.0104172812309514952250501361120571266678673695i

b9 = −0.0029825116383882005761911965146832408919333302.

Figure 4. shows the approximations arising from the Taylor approximations of order 6 and
8. In general the Taylor polynomial is inferior to the Fourier approximation. However for
the zeros z1/c of E2 near 1/c found in [3], the Taylor polynomials give a fast converging
asymptotic series in c:

Fig. 4 Taylor approximation of F(w) for N = 6 and 8 together with zeros of height 100 and the basic bounds
from Eq. (3)
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Proposition 4.1 Let c ≥ 2, z 1
c

= f −1
(− 1

c

)
. Then

∣
∣
∣
∣
∣
z 1

c
−

N∑

n=0

bn

(−c)n

∣
∣
∣
∣
∣
< 3c−(N+1) 1

1 − 1
c

≤ 6c−(N+1).

Proof The proposition follows from the following estimate:

|bn | ≤ max|w|≤1

∣
∣ f −1(w)

∣
∣ < 3. (20)

To prove the estimate (20) let |w| ≤ 1 and (using f (z + 1) = f (z) + 1)

z = f −1(w) ∈ {z = x + iy ∈ F + Z | |x | ≤ 1} .

If by contradiction |z| ≥ 3 then:

|w| = | f (z)| ≥ |z| − 6

π

1

1 − |E2(z) − 1| > |z| − 2 ≥ 1,

where we used e.g. estimate (7) to bound (1 − |E2(z) − 1|) π > 3. This gives a contradiction,
so |z| = | f −1(w)| < 3. 
�
For example

∣
∣
∣
∣z 1

c
− b0 + b1

c

∣
∣
∣
∣ <

6

c2 .

Note that b0 = z0 = −1/τ0 for the unique zero τ0 of real part 0 and we have |b0 −
6i/π | > 0.00027. Also note b1 is close but not equal to 1. These explain the limitations of
the approximation z 1

c
≈ 6i

π
− 1

c (Fig. 3).
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